Structural Properties of bounded Languages with Respect to Multiplication by a Constant

Emilie Charlier
Institut de mathématique
Grande Traverse, 12
B-4000 Liège
Belgique
echarlier@ulg.ac.be

Generalizations of positional number systems in which \mathbb{N} is recognizable by finite automata are obtained by describing an arbitrary infinite regular language according to the genealogical ordering. More precisely, an abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is an infinite language over the totally ordered alphabet $(\Sigma,<)$. Enumerating the elements of L genealogically with respect to $<$ leads to a one-to-one map r_{S} from \mathbb{N} onto L. To any natural number n, it assigns the $(n+1)$ th word of L, its S-representation, while the inverse map val_{S} sends any word belonging to L onto its numerical value. A subset X is said to be S-recognizable if $r_{S}(X)$ is a regular subset of L. We study the preservation of recognizability of a set of integers after multiplication by a constant for abstract numeration systems built over a bounded language.

This is joint work with Michel Rigo and Wolfgang Steiner.

