A Decision Problem for ultimately periodic Sets in non-standard Numeration Systems

Emilie Charlier Michel Rigo

Department of Mathematics
University of Liège

Journées de Numération
Prague May 26-30 2008

Outline of the talk

Preliminaries and Motivation

A Decision Problem

An upper Bound for the Period

An upper Bound for the Preperiod

A Decision Procedure

Abstract Numeration Systems

Non standard Numeration Systems

Definition

A numeration system is given by a (strictly) increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers such that $U_{0}=1$ and $C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite.
The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=w_{\ell} \cdots w_{0}$ over $A_{U}:=\left\{0, \ldots, C_{U}-1\right\}$ satisfying $n=\sum_{i=0}^{\ell} w_{i} U_{i}, w_{\ell} \neq 0$ and $\sum_{i=0}^{t} w_{i} U_{i}<U_{t+1}$, $\forall t=0, \ldots, \ell$. We set $\operatorname{rep}_{U}(0)=\varepsilon$.
If $x=x_{\ell} \cdots x_{0}$ is a word over a finite alphabet of integers, then the U-numerical value of x is $\operatorname{val}_{U}(x)=\sum_{i=0}^{\ell} x_{i} U_{i}$.

Non standard Numeration Systems

Definition

A numeration system is given by a (strictly) increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers such that $U_{0}=1$ and
$C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite.
The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=w_{\ell} \cdots w_{0}$ over $A_{U}:=\left\{0, \ldots, C_{U}-1\right\}$ satisfying $n=\sum_{i=0}^{\ell} w_{i} U_{i}, w_{\ell} \neq 0$ and $\sum_{i=0}^{t} w_{i} U_{i}<U_{t+1}$, $\forall t=0, \ldots, \ell$. We set $\operatorname{rep}_{U}(0)=\varepsilon$.
If $x=x_{\ell} \cdots x_{0}$ is a word over a finite alphabet of integers, then the U-numerical value of x is $\operatorname{val}_{U}(x)=\sum_{i=0}^{\ell} x_{i} U_{i}$.

Definition

A set $X \subseteq \mathbb{N}$ of integers is U-recognizable if the language $\operatorname{rep}_{U}(X)$ over A_{U} is regular (i.e., accepted by a finite automaton).

Definition
A numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear (of order k), if the sequence U satisfies a homogenous linear recurrence relation like

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

for some $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k} \neq 0$.

Definition

A numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear (of order k), if the sequence U satisfies a homogenous linear recurrence relation like

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

for some $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k} \neq 0$.

Example (Fibonacci System)

Consider the sequence defined by $F_{0}=1, F_{1}=2$ and $F_{i+2}=F_{i+1}+F_{i}, i \geq 0$. The Fibonacci (linear numeration) system is given by $F=\left(F_{i}\right)_{i \geq 0}=(1,2,3,5,8,13, \ldots)$. For instance, $\operatorname{rep}_{F}(15)=100010$ and $\operatorname{val}_{F}(101001)=13+5+1=19$.

Motivation

Definition

Two integers $p, q \geq 2$ are multiplicatively independant if $p^{k}=p^{\ell}$ and $k, \ell \in \mathbb{N} \Rightarrow k=\ell=0$.

Notation
If $p \geq 2$ and $U=\left(p^{i}\right)_{i \geq 0}$, a set $X \subseteq \mathbb{N}$ of integers is said p-recognizable if the language $\operatorname{rep}_{U}(X)$ over $A_{U}=\{0, \ldots, p-1\}$ is regular.

Theorem (Cobham, 1969)
Let $X \subseteq \mathbb{N}$ be a set of integers. If p and q are two multiplicatively independant integers, X is p-recognizable and q-recognizable if and only if X is ultimately periodic.

Theorem (J. Honkala, 1985)

Let $p \geq 2$. It is decidable whether or not a p-recognizable set is ultimately periodic.

A Decision Problem

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a (linear) numeration system such that \mathbb{N} is U-recognizable. If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is U-recognizable, and a DFA accepting $\operatorname{rep}_{U}(X)$ can be effectively obtained.

Problem

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

Ultimately periodic Sets

Definition

Let $X \subseteq \mathbb{N}$ be a set of integers.
The characteristic word of X is an infinite word $x_{0} x_{1} x_{2} \cdots$ over $\{0,1\}$ defined by $x_{i}=1$ if and only if $i \in X$.

Ultimately periodic Sets

Definition

Let $X \subseteq \mathbb{N}$ be a set of integers.
The characteristic word of X is an infinite word $x_{0} x_{1} x_{2} \cdots$ over $\{0,1\}$ defined by $x_{i}=1$ if and only if $i \in X$.

If now $X \subseteq \mathbb{N}$ is ultimately periodic, its characteristic word is an infinite word over $\{0,1\}$ of the form

$$
x_{0} x_{1} x_{2} \cdots=u v^{\omega}
$$

where u and v are chosen of minimal length. We say that $|u|$ (resp. $|v|)$ is the preperiod (resp. period) of X.

Idea of Honkala's Decision Procedure The input is a finite automaton accepting $\operatorname{rep}_{U}(X)$.
First, he gives an upper bound for the possible periods of X, by showing that, if Y is a ultimately periodic set of integers, then the number of states of any deterministic automaton accepting $\operatorname{rep}_{U}(Y)$ grows with the period of Y.

Then, once the period of X is bounded, he gives an upper bound for the possible preperiods of X, in a similar way.

An upper Bound for the Period

Notation

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers and an integer $m \geq 2$, $N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

An upper Bound for the Period

Notation
For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers and an integer $m \geq 2$, $N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Fibonacci System, continued)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and $N_{F}(11)=7$.

Notation
For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers and an integer $m \geq 2$, $N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Fibonacci System, continued)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and $N_{F}(11)=7$.

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. If $X \subseteq \mathbb{N}$ is an ultimately periodic U-recognizable set of period $|v|$, then any deterministic finite automaton accepting rep (X) has at least $N_{U}(|v|)$ states.

An upper Bound for the Period

Corollary

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. Assume that $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.
Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_{0} such that for all $m \geq s_{0}, N_{U}(m)>d$, which is effectively computable.

An upper Bound for the Period

Corollary

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. Assume that $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.
Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_{0} such that for all $m \geq s_{0}, N_{U}(m)>d$, which is effectively computable.

Lemma

If $U=\left(U_{i}\right)_{i \geq 0}$ is a linear numeration system satisfying a recurrence relation of order $k \geq 1$ of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$, then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

An upper Bound for the Period

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying condition $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$ and $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period $|v|$. If 1 occurs infinitely many times in $\left(U_{i} \bmod |v|\right)_{i \geq 0}$ then any deterministic finite automaton accepting $\operatorname{rep}_{U}(X)$ has at least $|v|$ states.

Definition

Let $L \subseteq \Sigma^{*}$ be a language over a finite alphabet Σ and x be a finite word over Σ. We set $x^{-1} . L=\left\{z \in \Sigma^{*} \mid x z \in L\right\}$. The Myhill-Nerode congruence \sim_{L} is defined as follows. Let $x, y \in \Sigma^{*}$. We write $x \sim_{L} y$ if $x^{-1} . L=y^{-1}$. L.

Proposition

A language L over a finite alphabet Σ is regular if and only if \sim_{L} has a finite index, being the number of states of the minimal automaton of L.

Definition

Let $L \subseteq \Sigma^{*}$ be a language over a finite alphabet Σ and x be a finite word over Σ. We set $x^{-1} . L=\left\{z \in \Sigma^{*} \mid x z \in L\right\}$.
The Myhill-Nerode congruence \sim_{L} is defined as follows. Let $x, y \in \Sigma^{*}$. We write $x \sim_{L} y$ if $x^{-1} . L=y^{-1}$. L.

Proposition

A language L over a finite alphabet Σ is regular if and only if \sim_{L} has a finite index, being the number of states of the minimal automaton of L.

Example (Fibonacci System, continued)

For all $m \geq 2$, the sequences $\left(F_{i} \bmod m\right)_{i \geq 0}$ is purely periodic. So $F_{0}=1$ appears infinitely often in $\left(F_{i} \bmod m\right)_{i \geq 0}$.
Let $X \subseteq \mathbb{N}$ be an ultimately periodic F-recognizable set of period $|v|$ and preperiod $|u|$.

Idea of the Proof with the Fibonacci System

Example (Fibonacci System, continued)

There exist $n_{1}, \ldots, n_{|v|}$ such that for all $t=0, \ldots,|v|-1$,

$$
\left.10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_{1}}\right|^{\left|\operatorname{rep}_{U}(|v|-1)\right|-\left|\operatorname{rep}_{U}(t)\right|} \operatorname{rep}_{U}(t)
$$

is a greedy F-representation.

Idea of the Proof with the Fibonacci System

Example (Fibonacci System, continued)

There exist $n_{1}, \ldots, n_{|v|}$ such that for all $t=0, \ldots,|v|-1$,

$$
10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_{1}} 0^{\left|\operatorname{rep}_{U}(|v|-1)\right|-\left|\operatorname{rep}_{u}(t)\right|} \operatorname{rep}_{U}(t)
$$

is a greedy F-representation. Moreover $n_{1}, \ldots, n_{|v|}$ can be chosen such that, for all $j=1, \ldots,|v|$,

$$
\operatorname{val}_{u}\left(10^{n_{j}} \cdots 10^{n_{1}+\mid \operatorname{rep}} u(|v|-1) \mid\right) \equiv j \quad \bmod |v|
$$

and $\operatorname{val}_{U}\left(10^{n_{1}+\mid \operatorname{rep}} U(|v|-1) \mid\right)>|u|$.

Example (Fibonacci System, continued)

There exist $n_{1}, \ldots, n_{|v|}$ such that for all $t=0, \ldots,|v|-1$,

$$
\left.10^{n_{|v|}} 10^{n_{|v|-1}} \cdots 10^{n_{1}}\right|^{\left|\operatorname{rep}_{U}(|v|-1)\right|-\left|\operatorname{rep}_{U}(t)\right|} \operatorname{rep}_{U}(t)
$$

is a greedy F-representation. Moreover $n_{1}, \ldots, n_{|v|}$ can be chosen such that, for all $j=1, \ldots,|v|$,

$$
\operatorname{val}_{U}\left(10^{n_{j}} \cdots 10^{n_{1}+\mid \operatorname{rep}} u(|v|-1) \mid\right) \equiv j \quad \bmod |v|
$$

and $\operatorname{val}_{U}\left(10^{n_{1}+\mid \operatorname{rep}} U(|v|-1) \mid\right)>|u|$. For $i, j \in\{1, \ldots,|v|\}, i \neq j$, the words

$$
10^{n_{i}} \cdots 10^{n_{1}} \text { and } 10^{n_{j}} \cdots 10^{n_{1}}
$$

are nonequivalent for $\sim_{\text {rep }}^{U}(X)$. This can be shown by concatenating some word of the kind $0\left|\operatorname{rep}_{U}(|v|-1)\right|-\left|\operatorname{rep}_{U}(t)\right| \operatorname{rep}_{U}(t)$ with $t<|v|$.

An upper Bound for the Preperiod

Notation

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}, m \geq 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota \cup(m)$ and its (minimal) period by $\pi_{U}(m)$.

An upper Bound for the Preperiod

Notation

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}, m \geq 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota \cup(m)$ and its (minimal) period by $\pi_{U}(m)$.

Example (Fibonacci System, continued)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $\pi_{F}(4)=6$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and $\pi_{F}(11)=10$.
We have $\iota_{F}(m)=0$, for all $m \geq 2$.

An upper Bound for the Preperiod

Notation

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}, m \geq 2$, is ultimately periodic, we denote its (minimal) preperiod by $\iota \cup(m)$ and its (minimal) period by $\pi_{U}(m)$.

Example (Fibonacci System, continued)
$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $\pi_{F}(4)=6$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and $\pi_{F}(11)=10$.
We have $\iota_{F}(m)=0$, for all $m \geq 2$.

Remark

If $U=\left(U_{i}\right)_{i \geq 0}$ is a linear numeration system of order k, then for all $m \geq 2$, we have $N_{U}(m) \geq \sqrt[k]{\pi_{U}(m)}$.

An upper Bound for the Preperiod

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system. Let $X \subseteq \mathbb{N}$ be an ultimately periodic U-recognizable set of period $|v|$ and preperiod $|u|$ such that $\left|\operatorname{rep}_{U}(|u|-1)\right|-\iota u(|v|)>0$.
Then any deterministic finite automaton accepting $\operatorname{rep}_{U}(X)$ has at least $\left|\operatorname{rep}_{U}(|u|-1)\right|-\iota_{U}(|v|)$ states.

A Decision Procedure

Theorem (E. C., M. Rigo)

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a recurrence relation of order k of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$ and such that $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

A Decision Procedure

Theorem (E. C., M. Rigo)

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a recurrence relation of order k of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$ and such that $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Remark
Whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, for all $n \geq 1$ and for all i large enough, we have $U_{i} \equiv 0 \bmod g^{n}$ and $N_{U}(m)$ does not tend to infinity.

A Decision Procedure

Theorem (E. C., M. Rigo)
Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a recurrence relation of order k of the kind

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{k}= \pm 1$ and such that $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. It is decidable whether or not a U-recognizable set is ultimately periodic.

Remark

Whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, for all $n \geq 1$ and for all i large enough, we have $U_{i} \equiv 0 \bmod g^{n}$ and $N_{U}(m)$ does not tend to infinity.

Question

What happen whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=1$ and $a_{k} \neq \pm 1$?

Abstract Numeration Systems

Definition

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.
Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N} .
$$

Example
$L=a^{*}, \Sigma=\{a\}$

n	0	1	2	3	4	\cdots
$\operatorname{rep}(n)$	ε	a	aa	aaa	aaaa	\cdots

Abstract Numeration Systems

Example
$L=\{a, b\}^{*}, \Sigma=\{a, b\}, a<b$

$$
\begin{array}{r|ccccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b a & b b & a a a & \cdots
\end{array}
$$

Example
$L=a^{*} b^{*}, \Sigma=\{a, b\}, a<b$

n	0	1	2	3	4	5	6	\cdots
$\operatorname{rep}(n)$	ε	a	b	$a a$	$a b$	$b b$	aaa	\cdots

Abstract Numeration Systems

Remark

This generalizes non-standard numeration systems $U=\left(U_{i}\right)_{i \geq 0}$ for which \mathbb{N} is U-recognizable, like integer base p systems or Fibonacci system.

$$
L=\{\varepsilon\} \cup\{1, \ldots, p-1\}\{0, \ldots, p-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

Abstract Numeration Systems

Notation
If $S=(L, \Sigma,<)$ is an abstract numeration system and if $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ is the minimal automaton of L, we denote by $\mathbf{u}_{j}(q)$ (resp. $\left.\mathbf{v}_{j}(q)\right)$ the number of words of length j (resp. $\leq j$) accepted from $q \in Q_{L}$ in \mathcal{M}_{L}.

Abstract Numeration Systems

Notation
If $S=(L, \Sigma,<)$ is an abstract numeration system and if $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ is the minimal automaton of L, we denote by $\mathbf{u}_{j}(q)$ (resp. $\left.\mathbf{v}_{j}(q)\right)$ the number of words of length j (resp. $\leq j$) accepted from $q \in Q_{L}$ in \mathcal{M}_{L}.

Remark

The sequences $\left(\mathbf{u}_{j}(q)\right)_{j \geq 0}\left(\right.$ resp. $\left.\left(v_{j}(q)\right)_{j \geq 0}\right)$ satisfy the same homogenous linear recurrence relation for all $q \in Q_{L}$.

Abstract Numeration Systems

Notation
If $S=(L, \Sigma,<)$ is an abstract numeration system and if
$\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ is the minimal automaton of L, we denote by $\mathbf{u}_{j}(q)$ (resp. $\left.\mathbf{v}_{j}(q)\right)$ the number of words of length j (resp. $\leq j$) accepted from $q \in Q_{L}$ in \mathcal{M}_{L}.

Remark

The sequences $\left(\mathbf{u}_{j}(q)\right)_{j \geq 0}\left(\right.$ resp. $\left.\left(v_{j}(q)\right)_{j \geq 0}\right)$ satisfy the same homogenous linear recurrence relation for all $q \in Q_{L}$.

Lemma
Let $w=\sigma_{1} \cdots \sigma_{n} \in L$. We have

$$
\begin{equation*}
\operatorname{val}_{S}(w)=\sum_{q \in Q_{L}} \sum_{i=1}^{|w|} \beta_{q, i}(w) \mathbf{u}_{|w|-i}(q) \tag{1}
\end{equation*}
$$

where $\beta_{q, i}(w):=\#\left\{\sigma<\sigma_{i} \mid \delta_{L}\left(q_{0, L}, \sigma_{1} \cdots \sigma_{i-1} \sigma\right)=q\right\}+\mathbf{1}_{q, q_{0, L}}$, for $i=1, \ldots,|w|$.

Abstract Numeration Systems

Definition

A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_{S}(X)$ over Σ is regular (i.e., accepted by a finite automaton).

Abstract Numeration Systems

Definition

A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_{S}(X)$ over Σ is regular (i.e., accepted by a finite automaton).

Proposition

Let $S=(L, \Sigma,<)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting rep (X) can be effectively obtained.

Abstract Numeration Systems

Definition

A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_{S}(X)$ over Σ is regular (i.e., accepted by a finite automaton).

Proposition

Let $S=(L, \Sigma,<)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting rep (X) can be effectively obtained.

Problem

Given an abstract numeration system S and a S-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic ?

A Decision Procedure

Theorem
Let $S=(L, \Sigma,<)$ be an abstract numeration system and let $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ the trim minimal automaton of L. Assume that

$$
\begin{gathered}
\forall q \in Q_{L} \lim _{j \rightarrow \infty} \mathbf{u}_{j}(q)=+\infty ; \\
\forall j \geq 0 \mathbf{u}_{j}\left(q_{0, L}\right)>0
\end{gathered}
$$

Assume moreover that $\mathbf{v}=\left(\mathbf{v}_{i}\left(q_{0, L}\right)\right)_{i \geq 0}$ satisfies a linear recurrence relation of the form

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k}= \pm 1$.
It is decidable whether or not a S-recognizable set is ultimately periodic.

