A DECISION PROBLEM FOR ULTIMATELY PERIODIC SETS IN NON-STANDARD NUMERATION SYSTEMS

EMILIE CHARLIER AND MICHEL RIGO

Definition 1. A numeration system is given by a (strictly) increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers such that $U_{0}=1$ and $C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite. Let $A_{U}=\left\{0, \ldots, C_{U}-1\right\}$. The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=w_{\ell} \cdots w_{0}$ over A_{U} satisfying

$$
n=\sum_{i=0}^{\ell} w_{i} U_{i}, w_{\ell} \neq 0 \text { and } \sum_{i=0}^{t} w_{i} U_{i}<U_{t+1}, \forall t=0, \ldots, \ell
$$

We set $\operatorname{rep}_{U}(0)$ to be the empty word ε. A set $X \subseteq \mathbb{N}$ of integers is U-recognizable if the language $\operatorname{rep}_{U}(X)$ over A_{U} is regular (i.e., accepted by a finite automaton). If $x=x_{\ell} \cdots x_{0}$ is a word over a finite alphabet of integers, then the U-numerical value of x is

$$
\operatorname{val}_{U}(x)=\sum_{i=0}^{\ell} x_{i} U_{i}
$$

Definition 2. A numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear, if the sequence U satisfies a homogenous linear recurrence relation. For all $i \geq 0$, we have

$$
\begin{equation*}
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i} \tag{1}
\end{equation*}
$$

for some $k \geq 1, a_{1}, \ldots, a_{k} \in \mathbb{Z}$ and $a_{k} \neq 0$.
We address the following decidability question.
Problem 1. Given a linear numeration system U and a set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is recognized by a (deterministic) finite automaton. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions?
J. Honkala showed in [1] that Problem 1 turns out to be decidable for the usual integer base $b \geq 2$ numeration system defined by $U_{n}=b U_{n-1}$ for $n \geq 1$.

In this work, we give a decision procedure for Problem 1 whenever U is a linear numeration system such that \mathbb{N} is U-recognizable and satisfying a relation like (1) with $a_{k}= \pm 1$ (the main reason for this assumption is that 1 and -1 are the only two integers invertible modulo n for all $n \geq 2$).
Theorem 3. Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U recognizable and satisfying a recurrence relation of order k of the kind (1) with $a_{k}= \pm 1$ and $\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty$. It is decidable whether or not a $U-$ recognizable set is ultimately periodic.

In a second part, we consider the same decision problem but restated in the framework of abstract numeration systems [2]. We apply successfully the same kind of techniques to a large class of abstract numeration systems.
Definition 4. [2] An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is an infinite regular language L over a totally ordered alphabet Σ. The genealogical order (words are ordered by increasing length and for words of same length, one uses
the lexicographical ordering induced by the total ordering $<$ on the alphabet Σ) gives a one-to-one correspondence denoted rep_{S} between \mathbb{N} and L. In particular, 0 is represented by the first word in L. The reciprocal map associating a word $w \in L$ to its index in the genealogically ordered language L is denoted val ${ }_{S}$ (the first word in L having index 0). A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_{S}(X)$ over Σ is regular (i.e., accepted by a finite automaton).

We denote by $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ the minimal automaton of L. The transition function $\delta_{L}: Q_{L} \times \Sigma \rightarrow Q_{L}$ is extended on $Q_{L} \times \Sigma^{*}$ and we denote by $\mathbf{u}_{j}(q)$ (resp. $\left.\mathbf{v}_{j}(q)\right)$ the number of words of length j (resp. $\leq j$) accepted from $q \in Q_{L}$ in \mathcal{M}_{L}.

We consider the following decidability question analogous to Problem 1.
Problem 2. Given an abstract numeration system S and a set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{S}(X)$ is recognized by a (deterministic) finite automaton. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

We give a decision procedure for Problem 2 whenever S satisfies some extra hypothesis.

Theorem 5. Let $S=(L, \Sigma,<)$ be an abstract numeration system such that for all states q of the trim minimal automaton $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ of L

$$
\lim _{j \rightarrow \infty} \mathbf{u}_{j}(q)=+\infty
$$

and $\mathbf{u}_{j}\left(q_{0, L}\right)>0$ for all $j \geq 0$. Assume moreover that $\left(\mathbf{v}_{i}\left(q_{0, L}\right)\right)_{i \geq 0}$ satisfies a linear recurrence relation of the form (1) with $a_{k}= \pm 1$. It is decidable whether or not a S-recognizable set is ultimately periodic.

References

[1] J. Honkala, A decision method for the recognizability of sets defined by number systems, Theoret. Inform. Appl. 20 (1986), 395-403.
[2] P.B.A. Lecomte, M. Rigo, Numeration systems on a regular language, Theory Comput. Syst. 34 (2001), 27-44.

Institute of Mathematics, University of Liège, Grande Traverse 12 (B 37), B-4000 Liège, Belgium

E-mail address: \{echarlier,M.Rigo\}@ulg.ac.be

