Enumeration and Decidable Properties of Automatic Sequences

Émilie Charlier¹ Narad Rampersad ² Jeffrey Shallit¹

¹University of Waterloo

²Université de Liège

AMMCS Waterloo, July 26, 2011

k-automatic words

An infinite word $\mathbf{x} = (x_n)_{n \geq 0}$ is k-automatic if it is computable by a finite automaton taking as input the base-k representation of n, and having x_n as the output associated with the last state encountered.

Example

The Thue-Morse word is 2-automatic:

$$\mathbf{t} = t_0 t_1 t_2 \cdots = 011010011001 \cdots$$

It is defined by $t_n = 0$ if the binary representation of n has an even number of 1's and $t_n = 1$ otherwise.

Properties of the Thue-Morse word

- aperiodic
- uniformly recurrent
- contains no block of the form xxx
- ▶ contains at most 4n blocks of length n+1 for $n \ge 1$
- etc.

Enumeration and decidable properties

We present algorithms to decide if a k-automatic word

- ▶ is aperiodic
- is recurrent
- avoids repetitions
- etc.

We also describe algorithms to calculate its

- complexity function
- recurrence function
- etc.

Connection with logic

Theorem (Honkala 1986)

Ultimate periodicity is decidable for k-automatic words.

Theorem (Allouche-Rampersad-Shallit 2009)

Squarefreeness is decidable for k-automatic words.

These properties are decidable because they are expressible as a predicates in the first-order structure $(\mathbb{N},+,V_k)$, where $V_k(n)$ is the largest power of k dividing n.

Main idea

If we can express a property of a k-automatic word \mathbf{x} using quantifiers, logical operations, integer variables, the operations of addition, subtraction, indexing into \mathbf{x} , and comparison of integers or elements of \mathbf{x} , then this property is decidable.

Another definition for k-automatic words

An infinite word $\mathbf{x} = (x_n)_{n \geq 0}$ is k-definable if, for each letter a, there exists a FO formula φ_a of $\langle \mathbb{N}, +, V_k \rangle$ s.t.

 $\varphi_a(n)$ is true if and only if $x_n = a$.

Theorem (Büchi-Bruyère)

An infinite word is k-automatic iff it is k-definable.

First direction: formula $arphi o \mathsf{DFA} \ \mathcal{A}_{arphi}$

Second direction: DFA $\mathcal{A} o$ formula $arphi_{\mathcal{A}}$

First direction: formula $arphi o \mathsf{DFA} \ \mathcal{A}_{arphi}$

Automata for addition, equality and V_k are built in a straightforward way.

The connectives "or" and negation are also easy to represent.

Nondeterminism can be used to implement " \exists ".

Ultimately, deciding the property we are interested in corresponds to verifying that $L(M) = \emptyset$ or that L(M) is finite for the DFA M we construct.

Both can easily be done by the standard methods for automata.

Corollary (Bruyère 1985)

 $\mathsf{Th}(\langle \mathbb{N}, + \rangle)$ and $\mathsf{Th}(\langle \mathbb{N}, +, V_k \rangle)$ are decidable theories.

Determining periodicity

Theorem (Honkala 1986)

Ultimate periodicity is decidable for k-automatic words.

It is sufficient to give the proof for k-automatic sets $X \subseteq \mathbb{N}$.

Let $\varphi_X(n)$ be a formula of $\langle \mathbb{N}, +, V_k \rangle$ defining X.

The set X is ultimately periodic iff

$$(\exists i)(\exists p)(\forall n)((n > i \text{ and } \varphi_X(n)) \Rightarrow \varphi_X(n+p)).$$

As $\mathsf{Th}(\langle \mathbb{N}, +, V_k \rangle)$ is a decidable theory, it is decidable whether this sentence is true, i.e., whether X is ultimately periodic.

Bordered factors

A finite word w is bordered if it begins and ends with the same word x with $0 < |x| \le \frac{|w|}{2}$. Otherwise it is unbordered.

Example

The English word ingoing is bordered.

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} be a k-automatic word. Then the infinite word $\mathbf{y} = y_0 y_1 y_2 \cdots$ defined by

$$y_n = \begin{cases} 1, & \text{if } \mathbf{x} \text{ has an unbordered factor of length } n; \\ 0, & \text{otherwise;} \end{cases}$$

is k-automatic.

Arbitrarily large unbordered factors

Theorem (C-Rampersad-Shallit 2011)

The following question is decidable: given a k-automatic word x, does x contain arbitrarily large unbordered factors.

Recurrence

An infinite word $\mathbf{x} = (x_n)_{n \ge 0}$ is recurrent if every factor that occurs at least once in it occurs infinitely often.

Equivalently, for each occurrence of a factor there exists a later occurrence of that factor.

Equivalently, for all n and for all $r \ge 1$, there exists m > n such that for all j < r, $x_{n+j} = x_{m+j}$.

Uniform recurrence

An infinite word is <u>uniformly recurrent</u> if every factor that occurs at least once occurs infinitely often with bounded gaps between consecutive occurrences.

Equivalently, for all $r \ge 1$, there exists $t \ge 1$ such that for all n, there exists m with n < m < n + t such that for all i < r, $x_{n+i} = x_{m+i}$.

Deciding recurrence

We obtain another proof of the following result:

Theorem (Nicolas-Pritykin 2009)

There is an algorithm to decide if a k-automatic word is recurrent or uniformly recurrent.

Some more results

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} be a k-automatic word. Then the following infinite words are also k-automatic:

- (a) b(i) = 1 if there is a square beginning at position i; 0 otherwise
- (b) c(i) = 1 if there is an overlap beginning at position i; 0 otherwise
- (c) d(i) = 1 if there is a palindrome beginning at position i; 0 otherwise

Brown, Rampersad, Shallit, and Vasiga proved results (a)–(b) for the Thue-Morse word.

Enumeration results

The k-kernel of an infinite word $(x_n)_{n\geq 0}$ is the set

$$\{(x_{k^e n+c})_{n \geq 0} \colon e \geq 0, \ 0 \leq c < k^e\}.$$

Theorem (Eilenberg)

An infinite word is k-automatic iff its k-kernel is finite.

k-regular sequences

With this definition we can generalize the notion of k-automatic words to the class of sequences over infinite alphabets.

A sequence $(x_n)_{n\geq 0}$ over $\mathbb Z$ is k-regular if the $\mathbb Z\text{-module}$ generated by the set

$$\{(x_{k^e n+c})_{n\geq 0}: e\geq 0, \ 0\leq c< k^e\}$$

is finitely generated.

Examples

- ▶ Polynomials in n with coefficients in \mathbb{N}
- ▶ The sum $s_k(n)$ of the base-k digits of n.

Enumeration

Theorem (C-Rampersad-Shallit 2011)

Let S be a set of pairs of non-negative integers such that the language of base-k representations

$$\{(m,n)_k \colon (m,n) \in S\}$$
 is regular.

Then the sequence $(a_m)_{m\geq 0}$ defined by

$$a_m = \#\{n : (m, n) \in S\}$$
 is k-regular.

With this theorem we can recover or improve many results from the literature.

Factor complexity

The following result generalizes slightly a result of Mossé (1996). Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let **x** be a k-automatic word. Let y_n be the number of factors of length n in **x**. Then $(y_n)_{n>0}$ is a k-regular sequence.

Palindrome complexity

The following result generalizes a result of Allouche, Baake, Cassaigne and Damanik (2003).

Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} be a k-automatic word. Let z_n be the number of palindromes of length n in \mathbf{x} . Then $(z_n)_{n\geq 0}$ is a k-regular sequence.

Some more enumeration results

Theorem (C-Rampersad-Shallit 2011)

Let \mathbf{x} and \mathbf{y} be k-automatic words. Then the following are k-regular:

- (a) the number of square factors in x of length n;
- (b) the number of squares in x beginning at (centered at, ending at) position n;
- (c) the length of the longest square in x beginning at (centered at, ending at) position n;
- (d) the number of palindromes in x beginning at (centered at, ending at) position n;
- (e) the length of the longest palindrome in **x** beginning at (centered at, ending at) position n;

Theorem (cont'd)

- (f) the length of the longest fractional power in x beginning at (ending at) position n;
- (g) the number of recurrent factors in x of length n;
- (h) the number of factors of length n that occur in \mathbf{x} but not in \mathbf{y} ;
- (i) the number of factors of length n that occur in both x and y.

Brown, Rampersad, Shallit, and Vasiga proved results (b)–(c) for the Thue-Morse word.

Theorem (C-Rampersad-Shallit 2011)

If $a = (a_n)_{n \ge 0}$ is a k-automatic sequence, then the following associated sequences are k-regular:

- ► The number of unbordered factors of length n;
- The recurrence function of a, that is, n → the smallest integer t such that every factor of length t of a contains every factor of length n;
- ▶ The appearance function of a, that is, n → the smallest integer t such that the prefix of length t of a contains every factor of length n.

Positional numeration systems

A positional numeration system is an increasing sequence of integers $U = (U_n)_{n \ge 0}$ such that

- ► $U_0 = 1$
- ▶ $(U_{i+1}/U_i)_{i\geq 0}$ is bounded $\rightarrow C_U = \sup_{i\geq 0} \lceil U_{i+1}/U_i \rceil$

It is linear if it satisfies a linear recurrence over \mathbb{Z} .

The greedy U-representation of a positive integer n is the unique word $(n)_U = c_{\ell-1} \cdots c_0$ over $\Sigma_U = \{0, \dots, C_U - 1\}$ satisfying

$$n = \sum_{i=0}^{\ell-1} c_i \ U_i, \ c_{\ell-1} \neq 0 \ \ \text{and} \ \ \forall t \ \sum_{i=0}^t c_i U_i < U_{t+1}.$$

U-automatic words

An infinite word $\mathbf{x} = (x_n)_{n \geq 0}$ is *U*-automatic if it is computable by a finite automaton taking as input the *U*-representation of n, and having x_n as the output associated with the last state encountered.

Example

Let F = (1, 2, 3, 5, 8, 13, ...) be the sequence of Fibonacci numbers. Greedy F-representations do not contain 11. The Fibonacci word

$0100101001001010010100100101001 \cdots$

generated by the morphism $0\mapsto 01,\ 1\mapsto 0$ is F-automatic. The (n+1)-th letter is 1 exactly when the F-representation of n ends with a 1.

Pisot systems

A Pisot number is an algebraic integer > 1 such that all of its algebraic conjugates have absolute value < 1.

A Pisot system is a linear numeration system whose characteristic polynomial is the minimal polynomial of a Pisot number.

An equivalent logical formulation

Let $V_U(n)$ be the smallest term U_i occurring in $(n)_U$ with a nonzero coefficient.

An infinite word $\mathbf{x} = (x_n)_{n \geq 0}$ is U-definable if, for each letter a, there exists a FO formula φ_a of $(\mathbb{N}, +, V_U)$ s.t.

 $\varphi_a(n)$ is true if and only if $x_n = a$.

Theorem (Bruyère-Hansel 1997)

Let *U* be a Pisot system. A infinite word is *U*-automatic iff it is *U*-definable.

Passing to this more general setting

By virtue of these results, all of our previous reasoning applies to U-automatic sequences when U is a Pisot system.

Hence, there exist algorithms to decide periodicity, recurrence, etc. for sequences defined in such systems as well.