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k-automatic words

An infinite word x = (xp)n>0 is k-automatic if it is computable by
a finite automaton taking as input the base-k representation of n,
and having x, as the output associated with the last state
encountered.

Example
The Thue-Morse word is 2-automatic:

t = totytr--- = 011010011001 - - -

It is defined by t, = 0 if the binary representation of n has an even
number of 1's and t, = 1 otherwise.
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Properties of the Thue-Morse word

> aperiodic

» uniformly recurrent

> contains no block of the form xxx

» contains at most 4n blocks of length n4+ 1 forn >'1

> etc.



Enumeration and decidable properties

We present algorithms to decide if a k-automatic word
> is aperiodic
> is recurrent
» avoids repetitions

> etc.

We also describe algorithms to calculate its
» complexity function
> recurrence function

> etc.



Connection with logic

Theorem (Honkala 1986)
Ultimate periodicity is decidable for k-automatic words.

Theorem (Allouche-Rampersad-Shallit 2009)
Squarefreeness is decidable for k-automatic words.

These properties are decidable because they are expressible as a
predicates in the first-order structure (N, +, Vi), where Vi (n) is
the largest power of k dividing n.

Main idea

If we can express a property of a k-automatic word x using
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.



Another definition for k-automatic words

An infinite word x = (xp)n>0 is k-definable if,
for each letter a, there exists a FO formula ¢, of (N, +, Vi) s.t.

©a(n) is true if and only if x, = a.

Theorem (Biichi-Bruyere)

An infinite word is k-automatic iff it is k-definable.

First direction: formula ¢ — DFA A,

Second direction: DFA A — formula ¢ 4



First direction: formula ¢ — DFA A,

Automata for addition, equality and Vj are built in a
straightforward way.

The connectives “or" and negation are also easy to represent.
Nondeterminism can be used to implement “3J".

Ultimately, deciding the property we are interested in corresponds
to verifying that L(M) = () or that L(M) is finite for the DFA M
we construct.

Both can easily be done by the standard methods for automata.

Corollary (Bruyére 1985)
Th((N,+)) and Th((N, +, Vi)) are decidable theories.



Determining periodicity

Theorem (Honkala 1986)
Ultimate periodicity is decidable for k-automatic words.

It is sufficient to give the proof for k-automatic sets X C N.
Let ox(n) be a formula of (N, +, Vi) defining X.
The set X is ultimately periodic iff

(3N 3p)(Vn)((n > i and px(n)) = ex(n+ p)).

As Th((N, +, Vi)) is a decidable theory, it is decidable whether
this sentence is true, i.e., whether X is ultimately periodic.



Bordered factors

A finite word w is bordered if it begins and ends with the same
word x with 0 < |x| < |—';" Otherwise it is unbordered.

Example
The English word ingoing is bordered.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Then the infinite word
Y = Yoviyo - defined by

B 1, ifx has an unbordered factor of length n;
Yn = 0, otherwise;

is k-automatic.



Arbitrarily large unbordered factors

Theorem (C-Rampersad-Shallit 2011)

The following question is decidable: given a k-automatic word x,
does x contain arbitrarily large unbordered factors.



Recurrence

An infinite word x = (x,)n>0 is recurrent if every factor that occurs
at least once in it occurs infinitely often.

Equivalently, for each occurrence of a factor there exists a later
occurrence of that factor.

Equivalently, for all n and for all r > 1, there exists m > n such
that for all j < r, Xptj = Xm4j.



Uniform recurrence

An infinite word is uniformly recurrent if every factor that occurs at
least once occurs infinitely often with bounded gaps between
consecutive occurrences.

Equivalently, for all r > 1, there exists t > 1 such that for all n,
there exists m with n < m < n+ t such that for all i < r,

Xn+i = Xm+i-



Deciding recurrence

We obtain another proof of the following result:

Theorem (Nicolas-Pritykin 2009)

There is an algorithm to decide if a k-automatic word is recurrent
or uniformly recurrent.



Some more results

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Then the following infinite words are

also k-automatic:

(a) b(i) =1 if there is a square beginning at position i; 0
otherwise

(b) ¢(i) =1 if there is an overlap beginning at position i; 0
otherwise

(c) d(i) =1 if there is a palindrome beginning at position i; 0
otherwise

Brown, Rampersad, Shallit, and Vasiga proved results (a)—(b) for
the Thue-Morse word.



Enumeration results

The k-kernel of an infinite word (x,)n>0 is the set

{(Xken+c)n>0: € >0, 0 < c < k®}.

Theorem (Eilenberg)
An infinite word is k-automatic iff its k-kernel is finite.



k-regular sequences

With this definition we can generalize the notion of k-automatic
words to the class of sequences over infinite alphabets.

A sequence (xp)n>0 over Z is k-regular if the Z-module generated
by the set

{(Xken—i-c)nZO: e>0,0<c< ke}

is finitely generated.

Examples

» Polynomials in n with coefficients in N

» The sum si(n) of the base-k digits of n.



Enumeration

Theorem (C-Rampersad-Shallit 2011)

Let S be a set of pairs of non-negative integers such that the
language of base-k representations

{(m,n),: (m,n) € S} is regular.
Then the sequence (am)m>0 defined by
am = #{n: (m,n) € S} is k-regular.

With this theorem we can recover or improve many results from
the literature.



Factor complexity

The following result generalizes slightly a result of Mossé (1996).

Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Let y, be the number of factors of
length n in x. Then (yn)n>0 is a k-regular sequence.



Palindrome complexity

The following result generalizes a result of Allouche, Baake,
Cassaigne and Damanik (2003).

Carpi and D'Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Let z, be the number of palindromes
of length n in x. Then (zp)n>0 is a k-regular sequence.



Some more enumeration results

Theorem (C-Rampersad-Shallit 2011)

Let x and y be k-automatic words. Then the following are
k-regular:

(a) the number of square factors in x of length n;

(b) the number of squares in x beginning at (centered at, ending
at) position n;

(c) the length of the longest square in x beginning at (centered
at, ending at) position n;

(d) the number of palindromes in x beginning at (centered at,
ending at) position n;

(e) the length of the longest palindrome in x beginning at
(centered at, ending at) position n;



Theorem (cont'd)

(f) the length of the longest fractional power in x beginning at
(ending at) position n;

(g) the number of recurrent factors in x of length n;

(h) the number of factors of length n that occur in x but not iny;

(i) the number of factors of length n that occur in both x and'y.

Brown, Rampersad, Shallit, and Vasiga proved results (b)—(c) for
the Thue-Morse word.



Theorem (C-Rampersad-Shallit 2011)
If a = (an)n>0 is a k-automatic sequence, then the following
associated sequences are k-regular:
» The number of unbordered factors of length n;
» The recurrence function of a, that is, n — the smallest integer
t such that every factor of length t of a contains every factor
of length n;
» The appearance function of a, that is, n — the smallest
integer t such that the prefix of length t of a contains every
factor of length n.



Positional numeration systems

A positional numeration system is an increasing sequence of
integers U = (Up)n>0 such that

| 2 UO = 1
> (U;+1/U,'),'20 is bounded — CU = SUpizo(UiJrl/UiW

It is linear if it satisfies a linear recurrence over Z.

The greedy U-representation of a positive integer n is the unique
word (n)U = Cp_1-Cy over ZU = {07 R CU _ 1} SatiSfying
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U-automatic words

An infinite word x = (x,)n>0 is U-automatic if it is computable by
a finite automaton taking as input the U-representation of n, and
having x, as the output associated with the last state encountered.

Example

Let F =(1,2,3,5,8,13,...) be the sequence of Fibonacci
numbers. Greedy F-representations do not contain 11.
The Fibonacci word

0100101001001010010100100101001 - - -

generated by the morphism 0 +— 01, 1 — 0 is F-automatic.
The (n+ 1)-th letter is 1 exactly when the F-representation of n
ends with a 1.



Pisot systems

A Pisot number is an algebraic integer > 1 such that all of its
algebraic conjugates have absolute value < 1.

A Pisot system is a linear numeration system whose characteristic
polynomial is the minimal polynomial of a Pisot number.



An equivalent logical formulation

Let Viy(n) be the smallest term U; occurring in (n)y with a
nonzero coefficient.

An infinite word x = (x,)n>0 is U-definable if, for each letter a,
there exists a FO formula ¢, of (N, +, V) s.t.

©a(n) is true if and only if x, = a.
Theorem (Bruyere-Hansel 1997)

Let U be a Pisot system. A infinite word is U-automatic iff it is
U-definable.



Passing to this more general setting

By virtue of these results, all of our previous reasoning applies to
U-automatic sequences when U is a Pisot system.

Hence, there exist algorithms to decide periodicity, recurrence, etc.
for sequences defined in such systems as well.



