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k-automatic words

An infinite word x = (xn)n≥0 is k-automatic if it is computable by
a finite automaton taking as input the base-k representation of n,
and having xn as the output associated with the last state
encountered.

Example

The Thue-Morse word is 2-automatic:

t = t0t1t2 · · · = 011010011001 · · ·

It is defined by tn = 0 if the binary representation of n has an even
number of 1’s and tn = 1 otherwise.
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Properties of the Thue-Morse word

I aperiodic

I uniformly recurrent

I contains no block of the form xxx

I contains at most 4n blocks of length n + 1 for n ≥ 1

I etc.



Enumeration and decidable properties

We present algorithms to decide if a k-automatic word

I is aperiodic

I is recurrent

I avoids repetitions

I etc.

We also describe algorithms to calculate its

I complexity function

I recurrence function

I etc.



Connection with logic

Theorem (Honkala 1986)

Ultimate periodicity is decidable for k-automatic words.

Theorem (Allouche-Rampersad-Shallit 2009)

Squarefreeness is decidable for k-automatic words.

These properties are decidable because they are expressible as a
predicates in the first-order structure 〈N,+,Vk〉, where Vk(n) is
the largest power of k dividing n.

Main idea
If we can express a property of a k-automatic word x using
quantifiers, logical operations, integer variables, the operations of
addition, subtraction, indexing into x, and comparison of integers
or elements of x, then this property is decidable.



Another definition for k-automatic words

An infinite word x = (xn)n≥0 is k-definable if,
for each letter a, there exists a FO formula ϕa of 〈N,+,Vk〉 s.t.

ϕa(n) is true if and only if xn = a.

Theorem (Büchi-Bruyère)

An infinite word is k-automatic iff it is k-definable.

First direction: formula ϕ → DFA Aϕ

Second direction: DFA A → formula ϕA



First direction: formula ϕ → DFA Aϕ

Automata for addition, equality and Vk are built in a
straightforward way.

The connectives “or” and negation are also easy to represent.

Nondeterminism can be used to implement “∃”.

Ultimately, deciding the property we are interested in corresponds
to verifying that L(M) = ∅ or that L(M) is finite for the DFA M
we construct.

Both can easily be done by the standard methods for automata.

Corollary (Bruyère 1985)

Th(〈N,+〉) and Th(〈N,+,Vk〉) are decidable theories.



Determining periodicity

Theorem (Honkala 1986)

Ultimate periodicity is decidable for k-automatic words.

It is sufficient to give the proof for k-automatic sets X ⊆ N.

Let ϕX (n) be a formula of 〈N,+,Vk〉 defining X .

The set X is ultimately periodic iff

(∃i)(∃p)(∀n)((n > i and ϕX (n)) ⇒ ϕX (n + p)).

As Th(〈N,+,Vk〉) is a decidable theory, it is decidable whether
this sentence is true, i.e., whether X is ultimately periodic.



Bordered factors

A finite word w is bordered if it begins and ends with the same
word x with 0 < |x | ≤ |w |

2
. Otherwise it is unbordered.

Example

The English word ingoing is bordered.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Then the infinite word
y = y0y1y2 · · · defined by

yn =

{

1, if x has an unbordered factor of length n;

0, otherwise;

is k-automatic.



Arbitrarily large unbordered factors

Theorem (C-Rampersad-Shallit 2011)

The following question is decidable: given a k-automatic word x,
does x contain arbitrarily large unbordered factors.



Recurrence

An infinite word x = (xn)n≥0 is recurrent if every factor that occurs
at least once in it occurs infinitely often.

Equivalently, for each occurrence of a factor there exists a later
occurrence of that factor.

Equivalently, for all n and for all r ≥ 1, there exists m > n such
that for all j < r , xn+j = xm+j .



Uniform recurrence

An infinite word is uniformly recurrent if every factor that occurs at
least once occurs infinitely often with bounded gaps between
consecutive occurrences.

Equivalently, for all r ≥ 1, there exists t ≥ 1 such that for all n,
there exists m with n < m < n + t such that for all i < r ,
xn+i = xm+i .



Deciding recurrence

We obtain another proof of the following result:

Theorem (Nicolas-Pritykin 2009)

There is an algorithm to decide if a k-automatic word is recurrent
or uniformly recurrent.



Some more results

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Then the following infinite words are
also k-automatic:

(a) b(i) = 1 if there is a square beginning at position i ; 0
otherwise

(b) c(i) = 1 if there is an overlap beginning at position i ; 0
otherwise

(c) d(i) = 1 if there is a palindrome beginning at position i ; 0
otherwise

Brown, Rampersad, Shallit, and Vasiga proved results (a)–(b) for
the Thue-Morse word.



Enumeration results

The k-kernel of an infinite word (xn)n≥0 is the set

{(xken+c )n≥0 : e ≥ 0, 0 ≤ c < ke}.

Theorem (Eilenberg)

An infinite word is k-automatic iff its k-kernel is finite.



k-regular sequences

With this definition we can generalize the notion of k-automatic
words to the class of sequences over infinite alphabets.

A sequence (xn)n≥0 over Z is k-regular if the Z-module generated
by the set

{(xken+c)n≥0 : e ≥ 0, 0 ≤ c < ke}

is finitely generated.

Examples

I Polynomials in n with coefficients in N

I The sum sk(n) of the base-k digits of n.



Enumeration

Theorem (C-Rampersad-Shallit 2011)

Let S be a set of pairs of non-negative integers such that the
language of base-k representations

{(m, n)k : (m, n) ∈ S} is regular.

Then the sequence (am)m≥0 defined by

am = #{n : (m, n) ∈ S} is k-regular.

With this theorem we can recover or improve many results from
the literature.



Factor complexity

The following result generalizes slightly a result of Mossé (1996).

Carpi and D’Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Let yn be the number of factors of
length n in x. Then (yn)n≥0 is a k-regular sequence.



Palindrome complexity

The following result generalizes a result of Allouche, Baake,
Cassaigne and Damanik (2003).

Carpi and D’Alonzo (2010) proved a slightly more general result.

Theorem (C-Rampersad-Shallit 2011)

Let x be a k-automatic word. Let zn be the number of palindromes
of length n in x. Then (zn)n≥0 is a k-regular sequence.



Some more enumeration results

Theorem (C-Rampersad-Shallit 2011)

Let x and y be k-automatic words. Then the following are
k-regular:

(a) the number of square factors in x of length n;

(b) the number of squares in x beginning at (centered at, ending
at) position n;

(c) the length of the longest square in x beginning at (centered
at, ending at) position n;

(d) the number of palindromes in x beginning at (centered at,
ending at) position n;

(e) the length of the longest palindrome in x beginning at
(centered at, ending at) position n;



Theorem (cont’d)

(f) the length of the longest fractional power in x beginning at
(ending at) position n;

(g) the number of recurrent factors in x of length n;

(h) the number of factors of length n that occur in x but not in y;

(i) the number of factors of length n that occur in both x and y.

Brown, Rampersad, Shallit, and Vasiga proved results (b)–(c) for
the Thue-Morse word.



Theorem (C-Rampersad-Shallit 2011)

If a = (an)n≥0 is a k-automatic sequence, then the following
associated sequences are k-regular:

I The number of unbordered factors of length n;

I The recurrence function of a, that is, n 7→ the smallest integer
t such that every factor of length t of a contains every factor
of length n;

I The appearance function of a, that is, n 7→ the smallest
integer t such that the prefix of length t of a contains every
factor of length n.



Positional numeration systems

A positional numeration system is an increasing sequence of
integers U = (Un)n≥0 such that

I U0 = 1

I (Ui+1/Ui)i≥0 is bounded → CU = supi≥0dUi+1/Uie

It is linear if it satisfies a linear recurrence over Z.

The greedy U-representation of a positive integer n is the unique
word (n)U = c`−1 · · · c0 over ΣU = {0, . . . ,CU − 1} satisfying

n =

`−1
∑

i=0

ci Ui , c`−1 6= 0 and ∀t
t

∑

i=0

ciUi < Ut+1.



U-automatic words

An infinite word x = (xn)n≥0 is U-automatic if it is computable by
a finite automaton taking as input the U-representation of n, and
having xn as the output associated with the last state encountered.

Example

Let F = (1, 2, 3, 5, 8, 13, . . .) be the sequence of Fibonacci
numbers. Greedy F-representations do not contain 11.
The Fibonacci word

0100101001001010010100100101001 · · ·

generated by the morphism 0 7→ 01, 1 7→ 0 is F -automatic.
The (n + 1)-th letter is 1 exactly when the F -representation of n
ends with a 1.



Pisot systems

A Pisot number is an algebraic integer > 1 such that all of its
algebraic conjugates have absolute value < 1.

A Pisot system is a linear numeration system whose characteristic
polynomial is the minimal polynomial of a Pisot number.



An equivalent logical formulation

Let VU(n) be the smallest term Ui occurring in (n)U with a
nonzero coefficient.

An infinite word x = (xn)n≥0 is U-definable if, for each letter a,
there exists a FO formula ϕa of 〈N,+,VU〉 s.t.

ϕa(n) is true if and only if xn = a.

Theorem (Bruyère-Hansel 1997)

Let U be a Pisot system. A infinite word is U-automatic iff it is
U-definable.



Passing to this more general setting

By virtue of these results, all of our previous reasoning applies to
U-automatic sequences when U is a Pisot system.

Hence, there exist algorithms to decide periodicity, recurrence, etc.
for sequences defined in such systems as well.


