A DECISION PROBLEM FOR ULTIMATELY PERIODIC SETS IN NON-STANDARD NUMERATION SYSTEMS

Jason Bell¹ Emilie Charlier² Avierzri Fraenkel³ Michel Rigo²

¹Department of Mathematics Simon Fraser University

²Department of Mathematics University of Liège

³Department of Computer Science and Applied Mathematics Weizmann Institute of Science

Séminaire Louvain-la-Neuve, December 12th 2008

BACKGROUND

Let's start with classical k-ary numeration system, $k \ge 2$:

$$n = \sum_{i=0}^{\ell} d_i k^i, \ d_{\ell} \neq 0, \quad \operatorname{rep}_k(n) = d_{\ell} \cdots d_0 \in \{0, \dots, k-1\}^*$$

DEFINITION

A set $X \subseteq \mathbb{N}$ is *k-recognizable*, if the language

$$\operatorname{rep}_k(X) = \{\operatorname{rep}_k(x) \mid x \in X\}$$

is regular, i.e., accepted by a finite automaton.

BACKGROUND

Examples of k-recognizable sets

- ▶ In base 2, the set of even integers : $rep_2(2\mathbb{N}) = 1\{0,1\}^*0 + e$.
- ▶ In base 2, the set of powers of 2 : $rep_2({2^i : i \in \mathbb{N}}) = 10^*$.
- ▶ In base 2, the *Thue-Morse set* :

$$\{n \in \mathbb{N} \colon |\operatorname{rep}_2(n)|_1 \equiv 0 \pmod{2}\}.$$

▶ Given a k-automatic sequence $(x_n)_{n\geq 0}$ over an alphabet Σ , then for all $a \in \Sigma$, the following set is k-recognizable :

$$\{n \in \mathbb{N} \mid x_n = a\}.$$

BACKGROUND

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

DEFINITION

Two integers k, $\ell \geq 2$ are multiplicatively independant if $k^m = \ell^n \Rightarrow m = n = 0$.

THEOREM (COBHAM, 1969)

Let $k, \ell \geq 2$ be two multiplicatively independant integers. If $X \subseteq \mathbb{N}$ is both k- and ℓ -recognizable, then X is ultimately periodic, i.e. a finite union of arithmetic progressions.

THEOREM (J. HONKALA, 1985)

Let $k \ge 2$. It is decidable whether or not a k-recognizable set is ultimately periodic.

Sketch of Honkala's Decision Procedure

- ▶ The input is a finite automaton A_X accepting rep_k(X).
- ▶ The number of states of A_X produces upper bounds on the possible (minimal) index and period for X.
- Consequently, there are finitely many candidates to check.
- ▶ For each pair (i, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with A_X .

DEFINITION

A positional numeration system is an increasing sequence $U=(U_i)_{i\geq 0}$ of integers s.t. $U_0=1$ and $C_U:=\sup_{i\geq 0}\lceil U_{i+1}/U_i\rceil$ is finite.

The greedy *U*-representation of a positive integer n is the unique finite word $\operatorname{rep}_U(n) = d_\ell \cdots d_0$ over $A_U := \{0, \dots, C_U - 1\}$ satisfying

$$n = \sum_{i=0}^{\ell} d_i \ U_i, \ d_{\ell} \neq 0 \ \text{and} \ \sum_{i=0}^{t} d_i U_i < U_{t+1}, \ \forall t = 0, \dots, \ell.$$

If $x = x_{\ell} \cdots x_0$ is a word over a finite alphabet of integers, then the *U-numerical value* of x is $\operatorname{val}_U(x) = \sum_{i=0}^{\ell} x_i U_i$.

A set $X \subseteq \mathbb{N}$ is *U-recognizable* if the language $\operatorname{rep}_U(X)$ over A_U is regular.

LINEAR NUMERATION SYSTEMS

DEFINITION

A positional numeration system $U=(U_i)_{i\geq 0}$ is said to be *linear* if there exist $k\geq 1$ and constant coefficients a_1,\ldots,a_k such that for all $i\geq 0$, we have

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i$$
, with $a_1, \ldots, a_k \in \mathbb{Z}, a_k \neq 0$.

We say that k is the *order* of the recurrence relation.

EXAMPLE (FIBONACCI SYSTEM)

Consider the sequence defined by $F_0 = 1$, $F_1 = 2$ and $F_{i+2} = F_{i+1} + F_i$, $i \ge 0$. The Fibonacci (linear numeration) system is given by $F = (F_i)_{i>0} = (1, 2, 3, 5, 8, 13, ...)$.

$$rep_F(\mathbb{N}) = 1(0+01)^*, A_F = \{0,1\}.$$

A Decision Problem

LEMMA

Let $U=(U_i)_{i\geq 0}$ be a (linear) numeration system such that $\mathbb N$ is U-recognizable. Any ultimately periodic $X\subseteq \mathbb N$ is U-recognizable and a DFA accepting $\operatorname{rep}_U(X)$ can be effectively obtained.

Remark (J. Shallit, 1994)

If \mathbb{N} is *U*-recognizable, then *U* is linear.

PROBLEM

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

FIRST PART (UPPER BOUND ON THE PERIOD)

"PSEUDO-RESULT"

Let X be ultimately periodic with period p_X (X is U-recognizable).

Any DFA accepting $rep_U(X)$ has at least $f(p_X)$ states, where f is increasing.

"PSEUDO-COROLLARY"

Let $X \subseteq \mathbb{N}$ be a *U*-recognizable set of integers s.t. $\operatorname{rep}_U(X)$ is accepted by \mathcal{A}_X with k states.

If X is ultimately periodic with period p, then

 \Rightarrow The number of candidates for p is bounded from above.

A technical hypothesis:

$$\lim_{i \to +\infty} U_{i+1} - U_i = +\infty. \tag{1}$$

Most systems are built on an exponential sequence $(U_i)_{i\geq 0}$.

LEMMA

Let $U = (U_i)_{i \geq 0}$ be a numeration system satisfying (1). For all j, there exists L such that for all $\ell \geq L$,

$$10^{\ell - |\operatorname{rep}_U(t)|} \operatorname{rep}_U(t), \ t = 0, \dots, U_j - 1$$

are greedy U-representations. Otherwise stated, if w is a greedy U-representation, then for r large enough, $10^r w$ is also a greedy U-representation.

Proposition (Fibonacci)

Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_X (and index a_X). Any DFA accepting $\operatorname{rep}_F(X)$ has at least p_X states.

- ▶ $w^{-1}L = \{u \mid wu \in L\} \leftrightarrow \text{states of minimal automaton of } L$
- ▶ $(F_i \mod p_X)_{i\geq 0}$ is purely periodic. Indeed, $F_{n+2} = F_{n+1} + F_n$ and $F_n = F_{n+2} - F_{n+1}$.
- ▶ If $i, j \ge a_X$, $i \not\equiv j \mod p_X$ then there exists $t < p_X$ s.t. either $i + t \in X$ and $j + t \not\in X$, or $i + t \not\in X$ and $j + t \in X$.

IDEA OF THE PROOF WITH THE FIBONACCI SYSTEM

 $\exists n_1,\ldots,n_{p_X}, \ \forall j=1,\ldots,p_X,$

$$10^{n_{p_X}} \cdots 10^{n_1} \operatorname{rep}_F(p_X - 1) \in \operatorname{rep}_F(\mathbb{N})$$
 (2)

$$\operatorname{val}_{F}(10^{n_{1}+|\operatorname{rep}_{F}(p_{X}-1)|}) \geq a_{X}$$
 (3)

$$\operatorname{val}_{F}(10^{n_{j}}\cdots 10^{n_{1}+|\operatorname{rep}_{F}(p_{X}-1)|}) \equiv j \mod p_{X}$$
 (4)

▶ For $i, j \in \{1, ..., p_X\}$, $i \neq j$, the words

$$10^{n_i} \cdots 10^{n_1}$$
 and $10^{n_j} \cdots 10^{n_1}$

generate different states in the minimal automaton of $\operatorname{rep}_F(X)$. This can be shown by concatenating some word of length $|\operatorname{rep}_F(p_X-1)|$.

 $w^{-1}L = \{u \mid wu \in L\} \leftrightarrow \text{states of minimal automaton of } L$

$$X = (11\mathbb{N} + 3) \cup \{2\}, \ a_X = 3, \ p_X = 11, \ |\operatorname{rep}_F(10)| = 5$$

Working in $(F_i \mod 11)_{i>0}$:

 $N_U(m) \in \{1, ..., m\}$ denotes the number of values that are taken infinitely often by the sequence $(U_i \mod m)_{i \geq 0}$.

EXAMPLE (FIBONACCI SYSTEM, CONTINUED)

$$(F_i \mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, ...)$$
 and $N_F(4) = 4$. $(F_i \mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, ...)$ and $N_F(11) = 7$.

Proposition

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying (1).

Let $X \subseteq \mathbb{N}$ be an ultimately periodic set of period p_X .

Then any DFA accepting rep_U(X) has at least $N_U(p_X)$ states.

COROLLARY

Let $U = (U_i)_{i \ge 0}$ be a numeration system satisfying (1). Assume that

$$\lim_{m\to+\infty}N_U(m)=+\infty.$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_U(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_0 such that for all $m \ge s_0$, $N_U(m) > d$, which is effectively computable.

SECOND PART (UPPER BOUND ON THE INDEX)

For a sequence $U = (U_i)_{i \geq 0}$ of integers, if $(U_i \mod m)_{i \geq 0}$ is ultimately periodic, we denote its (minimal) index by $\iota_U(m)$.

Proposition Proposition

Let $U = (U_i)_{i \ge 0}$ be a linear numeration system.

Let $X \subseteq \mathbb{N}$ be an ultimately periodic set of period p_X and index a_X .

Then any deterministic finite automaton accepting $\operatorname{rep}_U(X)$ has at least $|\operatorname{rep}_U(a_X-1)| - \iota_U(p_X)$ states.

If p_x is bounded and a_x is increasing, then the number of states is increasing.

A Decision Procedure

THEOREM

Let $U = (U_i)_{i \geq 0}$ be a linear numeration system such that $\mathbb N$ is U-recognizable, satisfying condition (1). Assume that

$$\lim_{m\to+\infty}N_U(m)=+\infty.$$

Then it is decidable whether or not a U-recognizable set is ultimately periodic.

Remark

Whenever $\gcd(a_1,\ldots,a_k)=g\geq 2$, for all $n\geq 1$ and for all i large enough, we have $U_i\equiv 0\mod g^n$ and $N_U(m)$ does not tend to infinity.

EXAMPLES

- ► Honkala's integer bases: $U_{n+1} = k U_n$
- $V_{n+2} = 2U_{n+1} + 2U_n$

$$a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b)...$$

CHARACTERIZATION

LEMMA

Let $U = (U_i)_{i \ge 0}$ be an increasing sequence satisfying

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i, \ i \ge 0,$$

with $a_1, \ldots, a_k \in \mathbb{Z}$, $a_k \neq 0$. The following assertions are equivalent:

- (I) $\lim_{m\to+\infty} N_U(m) = +\infty$
- (II) for all prime divisors p of a_k , $\lim_{v\to+\infty} N_U(p^v) = +\infty$. In particular, if $a_k = \pm 1$, then $\lim_{m\to+\infty} N_U(m) = +\infty$.

THEOREM

Let $U = (U_i)_{i \ge 0}$ be a linear recurrence sequence satisfying

$$U_{i+k} = a_1 U_{i+k-1} + \cdots + a_k U_i, \ i \ge 0,$$

with $a_1, \ldots, a_k \in \mathbb{Z}$, $a_k \neq 0$, and no recurrence relation of smaller order than k. One has $N_U(p^v) \not\to +\infty$ as $v \to +\infty$ if and only if $P_U(x) = A(x)B(x)$ with $A(x), B(x) \in \mathbb{Z}[x]$ such that:

- (I) A(0) = B(0) = 1;
- (II) $B(x) \equiv 1 \pmod{p\mathbb{Z}[x]}$;
- (III) A(x) has no repeated roots and all its roots are roots of unity.

Abstract Numeration Systems

DEFINITION

An abstract numeration system is a triple $S = (L, \Sigma, <)$ where L is a regular language over a totally ordered alphabet $(\Sigma, <)$.

Enumerating the words of $\it L$ with respect to the genealogical ordering induced by $\it <$ gives a one-to-one correspondence

$$\operatorname{rep}_{S}: \mathbb{N} \to L \qquad \operatorname{val}_{S} = \operatorname{rep}_{S}^{-1}: L \to \mathbb{N}.$$

EXAMPLE

$$L = a^*, \ \Sigma = \{a\}$$

ABSTRACT NUMERATION SYSTEMS

EXAMPLE

$$L = \{a, b\}^*, \ \Sigma = \{a, b\}, \ a < b$$

$$\frac{n \ | \ 0 \ \ 1 \ \ 2 \ \ 3 \ \ 4 \ \ 5 \ \ 6 \ \ 7 \ \ \cdots}{\mathsf{rep}\,(n) \ | \ \varepsilon \ \ a \ b \ \ aa \ \ ab \ \ ba \ \ bb \ \ aaa \ \cdots}$$

EXAMPLE

ABSTRACT NUMERATION SYSTEMS

Remark

This generalizes non-standard numeration systems $U=(U_i)_{i\geq 0}$ for which $\mathbb N$ is U-recognizable, like integer base p systems or Fibonacci system.

$$L=\{arepsilon\}\cup\{1,\ldots,p-1\}\{0,\ldots,p-1\}^*$$
 or $L=\{arepsilon\}\cup\{0,01\}^*$

Abstract Numeration Systems

NOTATION

If $S = (L, \Sigma, <)$ is an abstract numeration system and if $\mathcal{M}_L = (Q_L, q_{0,L}, \Sigma, \delta_L, F_L)$ is the minimal automaton of L, we denote by $\mathbf{u}_j(q)$ (resp. $\mathbf{v}_j(q)$) the number of words of length j (resp. $\leq j$) accepted from $q \in Q_L$ in \mathcal{M}_L .

Remark

The sequences $(\mathbf{u}_j(q))_{j\geq 0}$ (resp. $(\mathbf{v}_j(q))_{j\geq 0}$) satisfy the same homogenous linear recurrence relation for all $q\in Q_L$.

LEMMA

Let $w = \sigma_1 \cdots \sigma_n \in L$. We have

$$val_{S}(w) = \sum_{q \in Q_{L}} \sum_{i=1}^{|w|} \beta_{q,i}(w) \, \mathbf{u}_{|w|-i}(q)$$
 (5)

where
$$\beta_{q,i}(w) := \#\{\sigma < \sigma_i \mid \delta_L(q_{0,L}, \sigma_1 \cdots \sigma_{i-1}\sigma) = q\} + \mathbf{1}_{q,q_{0,L}},$$
 for $i = 1, \dots, |w|$.

Abstract Numeration Systems

DEFINITION

A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_S(X)$ over Σ is regular (i.e., accepted by a finite automaton).

Proposition

Let $S = (L, \Sigma, <)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting $\operatorname{rep}_S(X)$ can be effectively obtained.

PROBLEM

Given an abstract numeration system S and a S-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic?

A Decision Procedure

THEOREM

Let $S=(L,\Sigma,<)$ be an abstract numeration system such that for all states q of the trim minimal automaton of L $\mathcal{M}_L=(Q_L,q_{0,L},\Sigma,\delta_L,F_L),$ we have $\lim_{i\to\infty}\mathbf{u}_i(q)=+\infty$ and $\mathbf{u}_i(q_{0,L})>0$ for all $i\geq 0$. Assume moreover that $\mathbf{v}=(\mathbf{v}_i(q_{0,L}))_{i\geq 0}$ is such that

$$\lim_{m\to+\infty}N_{\mathbf{v}}(m)=+\infty.$$

It is decidable whether or not an S-recognizable set is ultimately periodic.