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Background

Let’s start with classical k-ary numeration system, k ≥ 2:

n =
∑̀
i=0

di k i , d` 6= 0, repk(n) = d` · · · d0 ∈ {0, . . . , k − 1}∗

Definition
A set X ⊆ N is k-recognizable, if the language

repk(X ) = {repk(x) | x ∈ X}

is regular, i.e., accepted by a finite automaton.



Background

Examples of k-recognizable sets

I In base 2, the set of even integers : rep2(2N) = 1{0, 1}∗0 + e.
I In base 2, the set of powers of 2 : rep2({2i : i ∈ N}) = 1 0∗.
I In base 2, the Thue-Morse set :

{n ∈ N : | rep2(n)|1 ≡ 0 (mod 2)}.

I Given a k-automatic sequence (xn)n≥0 over an alphabet Σ,
then for all a ∈ Σ, the following set is k-recognizable :

{n ∈ N | xn = a}.



Background

Divisibility criteria
If X ⊆ N is ultimately periodic, then X is k-recognizable ∀k ≥ 2.

X = (3N + 1) ∪ (2N + 2) ∪ {3}, Index = 4, Period = 6
χX = � � � � | � � � � � � � � � � � � · · ·

Definition
Two integers k , ` ≥ 2 are multiplicatively independant if
km = `n ⇒ m = n = 0.

Theorem (Cobham, 1969)

Let k , ` ≥ 2 be two multiplicatively independant integers.
If X ⊆ N is both k- and `-recognizable, then X is ultimately
periodic, i.e. a finite union of arithmetic progressions.



Start for this work

Theorem (J. Honkala, 1985)

Let k ≥ 2. It is decidable whether or not a k-recognizable set is
ultimately periodic.

Sketch of Honkala’s Decision Procedure
I The input is a finite automaton AX accepting repk(X ).
I The number of states of AX produces upper bounds on the

possible (minimal) index and period for X .
I Consequently, there are finitely many candidates to check.
I For each pair (i , p) of candidates, produce a DFA for all

possible corresponding ultimately periodic sets and compare it
with AX .



Non standard Numeration Systems

Definition
A positional numeration system is an increasing sequence
U = (Ui )i≥0 of integers s.t. U0 = 1 and CU := supi≥0dUi+1/Uie is
finite.

The greedy U-representation of a positive integer n is the unique
finite word repU(n) = d` · · · d0 over AU := {0, . . . ,CU − 1}
satisfying

n =
∑̀
i=0

di Ui , d` 6= 0 and
t∑

i=0

diUi < Ut+1, ∀t = 0, . . . , `.

If x = x` · · · x0 is a word over a finite alphabet of integers, then the
U-numerical value of x is valU(x) =

∑`
i=0 xiUi .

A set X ⊆ N is U-recognizable if the language repU(X ) over AU is
regular.



Linear Numeration Systems

Definition
A positional numeration system U = (Ui )i≥0 is said to be linear if
there exist k ≥ 1 and constant coefficients a1, . . . , ak such that for
all i ≥ 0, we have

Ui+k = a1Ui+k−1 + · · ·+ akUi , with a1, . . . , ak ∈ Z, ak 6= 0.

We say that k is the order of the recurrence relation.



Example (Fibonacci System)

Consider the sequence defined by F0 = 1, F1 = 2 and
Fi+2 = Fi+1 + Fi , i ≥ 0. The Fibonacci (linear numeration) system
is given by F = (Fi )i≥0 = (1, 2, 3, 5, 8, 13, . . .).

1 1 8 10000 15 100010
2 10 9 10001 16 100100
3 100 10 10010 17 100101
4 101 11 10100 18 101000
5 1000 12 10101 19 101001
6 1001 13 100000 20 101010
7 1010 14 100001 21 1000000

repF (N) = 1(0 + 01)∗, AF = {0, 1}.



A Decision Problem

Lemma
Let U = (Ui )i≥0 be a (linear) numeration system such that N is
U-recognizable. Any ultimately periodic X ⊆ N is U-recognizable
and a DFA accepting repU(X ) can be effectively obtained.

Remark (J. Shallit, 1994)

If N is U-recognizable, then U is linear.

Problem
Given a linear numeration system U and a U-recognizable set
X ⊆ N. Is it decidable whether or not X is ultimately periodic, i.e.,
whether or not X is a finite union of arithmetic progressions ?



First part (Upper Bound on the Period)

“pseudo-result”
Let X be ultimately periodic with period pX (X is U-recognizable).

Any DFA accepting repU(X ) has at least f (pX ) states,
where f is increasing.

“pseudo-corollary”
Let X ⊆ N be a U-recognizable set of integers s.t. repU(X ) is
accepted by AX with k states.

If X is ultimately periodic with period p, then

f (p) ≤ k with
{

k fixed
f increasing.

⇒ The number of candidates for p is bounded from above.



A technical hypothesis :

lim
i→+∞

Ui+1 − Ui = +∞. (1)

Most systems are built on an exponential sequence (Ui )i≥0.

Lemma
Let U = (Ui )i≥0 be a numeration system satisfying (1).
For all j , there exists L such that for all ` ≥ L,

10`−| repU(t)| repU(t), t = 0, . . . ,Uj − 1

are greedy U-representations. Otherwise stated,
if w is a greedy U-representation, then for r large enough,
10rw is also a greedy U-representation.



Idea of the Proof with the Fibonacci System

Proposition (Fibonacci)

Let X ⊆ N be ultimately periodic with period pX (and index aX ).
Any DFA accepting repF (X ) has at least pX states.

I w−1L = {u | wu ∈ L} ↔ states of minimal automaton of L
I (Fi mod pX )i≥0 is purely periodic.

Indeed, Fn+2 = Fn+1 + Fn and Fn = Fn+2 − Fn+1.
I If i , j ≥ aX , i 6≡ j mod pX then there exists t < pX s.t. either

i + t ∈ X and j + t 6∈ X , or i + t 6∈ X and j + t ∈ X .



Idea of the Proof with the Fibonacci System

I ∃n1, . . . , npX , ∀j = 1, . . . , pX ,

10npX · · · 10n1repF (pX − 1) ∈ repF (N) (2)

valF (10n1+| repF (pX−1)|) ≥ aX (3)

valF (10nj · · · 10n1+| repF (pX−1)|) ≡ j mod pX (4)

I For i , j ∈ {1, . . . , pX}, i 6= j , the words

10ni · · · 10n1 and 10nj · · · 10n1

generate different states in the minimal automaton of
repF (X ). This can be shown by concatenating some word of
length | repF (pX − 1)|.



w−1L = {u | wu ∈ L} ↔ states of minimal automaton of L

X = (11N + 3) ∪ {2}, aX = 3, pX = 11, | repF (10)| = 5

Working in (Fi mod 11)i≥0 :

· · · 2 1 1 0 1 10 2 8 5 3 2 1 1 0 1 10 2 8 5 3 2 1
1 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2
1 0 0 0 0 0 0 0 0 1 0 1+2 ∈ X

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 2+2 /∈ X

⇒ (105)−1 repF (X ) 6= (109105)−1 repF (X )



NU(m) ∈ {1, . . . ,m} denotes the number of values that are taken
infinitely often by the sequence (Ui mod m)i≥0.

Example (Fibonacci System, continued)

(Fi mod 4) = (1, 2, 3, 1, 0, 1, 1, 2, 3, . . .) and NF (4) = 4.
(Fi mod 11) = (1, 2, 3, 5, 8, 2, 10, 1, 0, 1, 1, 2, 3, . . .) and
NF (11) = 7.

Proposition
Let U = (Ui )i≥0 be a numeration system satisfying (1).

Let X ⊆ N be an ultimately periodic set of period pX .

Then any DFA accepting repU(X ) has at least NU(pX ) states.



Corollary
Let U = (Ui )i≥0 be a numeration system satisfying (1).
Assume that

lim
m→+∞

NU(m) = +∞.

Then the period of an ultimately periodic set X ⊆ N such that
repU(X ) is accepted by a DFA with d states is bounded by the
smallest integer s0 such that for all m ≥ s0, NU(m) > d, which is
effectively computable.



Second Part (Upper Bound on the Index)

For a sequence U = (Ui )i≥0 of integers, if (Ui mod m)i≥0 is
ultimately periodic, we denote its (minimal) index by ιU(m).

Proposition
Let U = (Ui )i≥0 be a linear numeration system.

Let X ⊆ N be an ultimately periodic set of period pX and index aX .

Then any deterministic finite automaton accepting repU(X ) has at
least | repU(aX − 1)| − ιU(pX ) states.

If px is bounded and ax is increasing, then the number of states is
increasing.



A Decision Procedure

Theorem
Let U = (Ui )i≥0 be a linear numeration system such that N is
U-recognizable, satisfying condition (1). Assume that

lim
m→+∞

NU(m) = +∞.

Then it is decidable whether or not a U-recognizable set is
ultimately periodic.



Remark
Whenever gcd(a1, . . . , ak) = g ≥ 2, for all n ≥ 1 and for all i large
enough, we have Ui ≡ 0 mod gn and NU(m) does not tend to
infinity.

Examples

I Honkala’s integer bases: Un+1 = k Un

I Un+2 = 2Un+1 + 2Un

a, b, 2(a + b), 2(2a + 3b), 4(3a + 4b), 4(8a + 11b) . . .



Characterization

Lemma
Let U = (Ui )i≥0 be an increasing sequence satisfying

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with a1, . . . , ak ∈ Z, ak 6= 0. The following assertions are
equivalent:
(i) limm→+∞ NU(m) = +∞
(ii) for all prime divisors p of ak , limv→+∞ NU(pv ) = +∞.
In particular, if ak = ±1, then limm→+∞ NU(m) = +∞.



Theorem
Let U = (Ui )i≥0 be a linear recurrence sequence satisfying

Ui+k = a1Ui+k−1 + · · ·+ akUi , i ≥ 0,

with a1, . . . , ak ∈ Z, ak 6= 0, and no recurrence relation of smaller
order than k. One has NU(pv ) 6→ +∞ as v → +∞ if and only if
PU(x) = A(x)B(x) with A(x),B(x) ∈ Z[x ] such that:
(i) A(0) = B(0) = 1;
(ii) B(x) ≡ 1 (mod pZ[x ]);
(iii) A(x) has no repeated roots and all its roots are roots of unity.



Abstract Numeration Systems

Definition
An abstract numeration system is a triple S = (L,Σ, <) where L is
a regular language over a totally ordered alphabet (Σ, <).

Enumerating the words of L with respect to the genealogical
ordering induced by < gives a one-to-one correspondence

repS : N→ L valS = rep−1
S : L→ N.

Example
L = a∗, Σ = {a}

n 0 1 2 3 4 · · ·
rep (n) ε a aa aaa aaaa · · ·



Abstract Numeration Systems

Example
L = {a, b}∗, Σ = {a, b}, a < b

n 0 1 2 3 4 5 6 7 · · ·
rep (n) ε a b aa ab ba bb aaa · · ·

Example
L = a∗b∗, Σ = {a, b}, a < b

n 0 1 2 3 4 5 6 · · ·
rep (n) ε a b aa ab bb aaa · · ·



Abstract Numeration Systems

Remark
This generalizes non-standard numeration systems U = (Ui )i≥0 for
which N is U-recognizable, like integer base p systems or Fibonacci
system.

L = {ε} ∪ {1, . . . , p − 1}{0, . . . , p − 1}∗ or L = {ε} ∪ 1{0, 01}∗



Abstract Numeration Systems

Notation
If S = (L,Σ, <) is an abstract numeration system and if
ML = (QL, q0,L,Σ, δL,FL) is the minimal automaton of L, we
denote by uj(q) (resp. vj(q)) the number of words of length j
(resp. ≤ j) accepted from q ∈ QL inML.

Remark
The sequences (uj(q))j≥0 (resp. (vj(q))j≥0) satisfy the same
homogenous linear recurrence relation for all q ∈ QL.



Lemma
Let w = σ1 · · ·σn ∈ L. We have

valS(w) =
∑
q∈QL

|w |∑
i=1

βq,i (w) u|w |−i (q) (5)

where βq,i (w) := #{σ < σi | δL(q0,L, σ1 · · ·σi−1σ) = q}+ 1q,q0,L ,
for i = 1, . . . , |w |.



Abstract Numeration Systems

Definition
A set X ⊆ N of integers is S-recognizable if the language repS(X )
over Σ is regular (i.e., accepted by a finite automaton).

Proposition
Let S = (L,Σ, <) be an abstract numeration system built over an
infinite regular language L. Any ultimately periodic set X is
S-recognizable and a DFA accepting repS(X ) can be effectively
obtained.

Problem
Given an abstract numeration system S and a S-recognizable set
X ⊆ N. Is it decidable whether or not X is ultimately periodic ?



A Decision Procedure

Theorem
Let S = (L,Σ, <) be an abstract numeration system such that for
all states q of the trim minimal automaton of L
ML = (QL, q0,L,Σ, δL,FL), we have limi→∞ ui (q) = +∞ and
ui (q0,L) > 0 for all i ≥ 0. Assume moreover that v = (vi (q0,L))i≥0
is such that

lim
m→+∞

Nv(m) = +∞.

It is decidable whether or not an S-recognizable set is ultimately
periodic.


