A Decision Problem for Ultimately Periodic Sets in Non-Standard Numeration Systems

Jason Bell ${ }^{1}$ Emilie Charlier ${ }^{2}$ Avierzri Fraenkel ${ }^{3}$ Michel Rigo ${ }^{2}$
${ }^{1}$ Department of Mathematics Simon Fraser University
${ }^{2}$ Department of Mathematics University of Liège
${ }^{3}$ Department of Computer Science and Applied Mathematics
Weizmann Institute of Science
Séminaire Louvain-la-Neuve, December 12th 2008

BACKGROUND

Let's start with classical k-ary numeration system, $k \geq 2$:

$$
n=\sum_{i=0}^{\ell} d_{i} k^{i}, d_{\ell} \neq 0, \quad \operatorname{rep}_{k}(n)=d_{\ell} \cdots d_{0} \in\{0, \ldots, k-1\}^{*}
$$

DEFINITION

A set $X \subseteq \mathbb{N}$ is k-recognizable, if the language

$$
\operatorname{rep}_{k}(X)=\left\{\operatorname{rep}_{k}(x) \mid x \in X\right\}
$$

is regular, i.e., accepted by a finite automaton.

BACKGROUND

EXAMPLES OF k-RECOGNIZABLE SETS

- In base 2, the set of even integers : $\operatorname{rep}_{2}(2 \mathbb{N})=1\{0,1\}^{*} 0+e$.
- In base 2 , the set of powers of $2: \operatorname{rep}_{2}\left(\left\{2^{i}: i \in \mathbb{N}\right\}\right)=10^{*}$.
- In base 2, the Thue-Morse set :

$$
\left\{n \in \mathbb{N}:\left|\operatorname{rep}_{2}(n)\right|_{1} \equiv 0 \quad(\bmod 2)\right\} .
$$

- Given a k-automatic sequence $\left(x_{n}\right)_{n \geq 0}$ over an alphabet Σ, then for all $a \in \Sigma$, the following set is k-recognizable :

$$
\left\{n \in \mathbb{N} \mid x_{n}=a\right\} .
$$

BACKGROUND

DIVISIBILITY CRITERIA

If $X \subseteq \mathbb{N}$ is ultimately periodic, then X is k-recognizable $\forall k \geq 2$.

$$
\begin{gathered}
X=(3 \mathbb{N}+1) \cup(2 \mathbb{N}+2) \cup\{3\}, \text { Index }=4 \text {, Period }=6 \\
\chi x=\square \square \square
\end{gathered}
$$

DEFInITION

Two integers $k, \ell \geq 2$ are multiplicatively independant if $k^{m}=\ell^{n} \Rightarrow m=n=0$.

Theorem (CobHAM, 1969)

Let $k, \ell \geq 2$ be two multiplicatively independant integers. If $X \subseteq \mathbb{N}$ is both k - and ℓ-recognizable, then X is ultimately periodic, i.e. a finite union of arithmetic progressions.

Theorem (J. Honkala, 1985)

Let $k \geq 2$. It is decidable whether or not a k-recognizable set is ultimately periodic.

Sketch of Honkala's Decision Procedure

- The input is a finite automaton \mathcal{A}_{X} accepting rep ${ }_{k}(X)$.
- The number of states of \mathcal{A}_{X} produces upper bounds on the possible (minimal) index and period for X.
- Consequently, there are finitely many candidates to check.
- For each pair (i, p) of candidates, produce a DFA for all possible corresponding ultimately periodic sets and compare it with $\mathcal{A}_{\text {X }}$.

Non standard Numeration Systems

DEFINITION

A positional numeration system is an increasing sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers s.t. $U_{0}=1$ and $C_{U}:=\sup _{i \geq 0}\left\lceil U_{i+1} / U_{i}\right\rceil$ is finite.

The greedy U-representation of a positive integer n is the unique finite word $\operatorname{rep}_{U}(n)=d_{\ell} \cdots d_{0}$ over $A_{U}:=\left\{0, \ldots, C_{U}-1\right\}$ satisfying

$$
n=\sum_{i=0}^{\ell} d_{i} U_{i}, d_{\ell} \neq 0 \text { and } \sum_{i=0}^{t} d_{i} U_{i}<U_{t+1}, \forall t=0, \ldots, \ell
$$

If $x=x_{\ell} \cdots x_{0}$ is a word over a finite alphabet of integers, then the U-numerical value of x is $\operatorname{val}_{U}(x)=\sum_{i=0}^{\ell} x_{i} U_{i}$.
A set $X \subseteq \mathbb{N}$ is U-recognizable if the language $\operatorname{rep}_{U}(X)$ over A_{U} is regular.

DEFINITION

A positional numeration system $U=\left(U_{i}\right)_{i \geq 0}$ is said to be linear if there exist $k \geq 1$ and constant coefficients a_{1}, \ldots, a_{k} such that for all $i \geq 0$, we have

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, \quad \text { with } a_{1}, \ldots, a_{k} \in \mathbb{Z}, \quad a_{k} \neq 0
$$

We say that k is the order of the recurrence relation.

Example (Fibonacci System)

Consider the sequence defined by $F_{0}=1, F_{1}=2$ and $F_{i+2}=F_{i+1}+F_{i}, i \geq 0$. The Fibonacci (linear numeration) system is given by $F=\left(F_{i}\right)_{i \geq 0}=(1,2,3,5,8,13, \ldots)$.

1	1	8	10000	15	100010
2	10	9	10001	16	100100
3	100	10	10010	17	100101
4	101	11	10100	18	101000
5	1000	12	10101	19	101001
6	1001	13	100000	20	101010
7	1010	14	100001	21	1000000

$\operatorname{rep}_{F}(\mathbb{N})=1(0+01)^{*}, A_{F}=\{0,1\}$.

A Decision Problem

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a (linear) numeration system such that \mathbb{N} is U-recognizable. Any ultimately periodic $X \subseteq \mathbb{N}$ is U-recognizable and a DFA accepting $\operatorname{rep}_{U}(X)$ can be effectively obtained.

Remark (J. Shallit, 1994)

If \mathbb{N} is U-recognizable, then U is linear.

PROBLEM

Given a linear numeration system U and a U-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic, i.e., whether or not X is a finite union of arithmetic progressions ?

First part (Upper Bound on the Period)

"PSEUDO-RESULT"

Let X be ultimately periodic with period $p_{X}(X$ is U-recognizable $)$.
Any DFA accepting rep (X) has at least $f\left(p_{X}\right)$ states, where f is increasing.

"PSEUDO-COROLLARY"

Let $X \subseteq \mathbb{N}$ be a U-recognizable set of integers s.t. $\operatorname{rep}_{U}(X)$ is accepted by \mathcal{A}_{X} with k states.

If X is ultimately periodic with period p, then

$$
f(p) \leq k \quad \text { with }\left\{\begin{array}{l}
k \text { fixed } \\
f \text { increasing } .
\end{array}\right.
$$

\Rightarrow The number of candidates for p is bounded from above.

A technical hypothesis:

$$
\begin{equation*}
\lim _{i \rightarrow+\infty} U_{i+1}-U_{i}=+\infty \tag{1}
\end{equation*}
$$

Most systems are built on an exponential sequence $\left(U_{i}\right)_{i \geq 0}$.

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
For all j, there exists L such that for all $\ell \geq L$,

$$
10^{\ell-\left|\operatorname{rep}_{U}(t)\right|} \operatorname{rep}_{U}(t), t=0, \ldots, U_{j}-1
$$

are greedy U-representations. Otherwise stated, if w is a greedy U-representation, then for r large enough, $10^{r} w$ is also a greedy U-representation.

Proposition (Fibonacci)

Let $X \subseteq \mathbb{N}$ be ultimately periodic with period p_{X} (and index a_{X}). Any DFA accepting $\operatorname{rep}_{F}(X)$ has at least p_{X} states.

- $w^{-1} L=\{u \mid w u \in L\} \leftrightarrow$ states of minimal automaton of L
- $\left(F_{i} \bmod p_{X}\right)_{i \geq 0}$ is purely periodic. Indeed, $F_{n+2}=F_{n+1}+F_{n}$ and $F_{n}=F_{n+2}-F_{n+1}$.
- If $i, j \geq a_{X}, i \not \equiv j \bmod p_{X}$ then there exists $t<p_{X}$ s.t. either $i+t \in X$ and $j+t \notin X$, or $i+t \notin X$ and $j+t \in X$.

Idea of the Proof with the Fibonacci System

- $\exists n_{1}, \ldots, n_{p_{X}}, \forall j=1, \ldots, p_{X}$,

$$
\begin{align*}
10^{n_{p_{X}} \cdots 10^{n_{1}} \operatorname{rep}_{F}\left(p_{X}-1\right)} & \in \operatorname{rep}_{F}(\mathbb{N}) \tag{2}\\
\operatorname{val}_{F}\left(10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) & \geq a_{X} \tag{3}\\
\operatorname{val}_{F}\left(10^{n_{j}} \cdots 10^{n_{1}+\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|}\right) & \equiv j \bmod p_{X} \tag{4}
\end{align*}
$$

- For $i, j \in\left\{1, \ldots, p_{X}\right\}, i \neq j$, the words

$$
10^{n_{i}} \cdots 10^{n_{1}} \text { and } 10^{n_{j}} \cdots 10^{n_{1}}
$$

generate different states in the minimal automaton of $\operatorname{rep}_{F}(X)$. This can be shown by concatenating some word of length $\left|\operatorname{rep}_{F}\left(p_{X}-1\right)\right|$.
$w^{-1} L=\{u \mid w u \in L\} \leftrightarrow$ states of minimal automaton of L

$$
X=(11 \mathbb{N}+3) \cup\{2\}, a_{X}=3, p_{X}=11,\left|\operatorname{rep}_{F}(10)\right|=5
$$

Working in $\left(F_{i} \bmod 11\right)_{i \geq 0}$:

$N_{U}(m) \in\{1, \ldots, m\}$ denotes the number of values that are taken infinitely often by the sequence $\left(U_{i} \bmod m\right)_{i \geq 0}$.

Example (Fibonacci System, COntinued)

$\left(F_{i} \bmod 4\right)=(1,2,3,1,0,1,1,2,3, \ldots)$ and $N_{F}(4)=4$.
$\left(F_{i} \bmod 11\right)=(1,2,3,5,8,2,10,1,0,1,1,2,3, \ldots)$ and
$N_{F}(11)=7$.

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
Let $X \subseteq \mathbb{N}$ be an ultimately periodic set of period p_{X}.
Then any DFA accepting $\operatorname{rep}_{U}(X)$ has at least $N_{U}\left(p_{X}\right)$ states.

Corollary

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a numeration system satisfying (1).
Assume that

$$
\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty
$$

Then the period of an ultimately periodic set $X \subseteq \mathbb{N}$ such that $\operatorname{rep}_{U}(X)$ is accepted by a DFA with d states is bounded by the smallest integer s_{0} such that for all $m \geq s_{0}, N_{U}(m)>d$, which is effectively computable.

Second Part (Upper Bound on the Index)

For a sequence $U=\left(U_{i}\right)_{i \geq 0}$ of integers, if $\left(U_{i} \bmod m\right)_{i \geq 0}$ is ultimately periodic, we denote its (minimal) index by $\iota_{U}(m)$.

Proposition

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system.
Let $X \subseteq \mathbb{N}$ be an ultimately periodic set of period p_{X} and index a_{X}.
Then any deterministic finite automaton accepting rep (X) has at least $\left|\operatorname{rep}_{U}\left(a_{X}-1\right)\right|-\iota U\left(p_{X}\right)$ states.

If p_{x} is bounded and a_{x} is increasing, then the number of states is increasing.

A Decision Procedure

Theorem

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear numeration system such that \mathbb{N} is U-recognizable, satisfying condition (1). Assume that

$$
\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty
$$

Then it is decidable whether or not a U-recognizable set is ultimately periodic.

REMARK

Whenever $\operatorname{gcd}\left(a_{1}, \ldots, a_{k}\right)=g \geq 2$, for all $n \geq 1$ and for all i large enough, we have $U_{i} \equiv 0 \bmod g^{n}$ and $N_{U}(m)$ does not tend to infinity.

EXAMPLES

- Honkala's integer bases: $U_{n+1}=k U_{n}$
- $U_{n+2}=2 U_{n+1}+2 U_{n}$

$$
a, b, 2(a+b), 2(2 a+3 b), 4(3 a+4 b), 4(8 a+11 b) \ldots
$$

Characterization

LEMMA

Let $U=\left(U_{i}\right)_{i \geq 0}$ be an increasing sequence satisfying

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{1}, \ldots, a_{k} \in \mathbb{Z}, a_{k} \neq 0$. The following assertions are equivalent:
(I) $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$
(ii) for all prime divisors p of $a_{k}, \lim _{v \rightarrow+\infty} N_{U}\left(p^{v}\right)=+\infty$. In particular, if $a_{k}= \pm 1$, then $\lim _{m \rightarrow+\infty} N_{U}(m)=+\infty$.

Theorem

Let $U=\left(U_{i}\right)_{i \geq 0}$ be a linear recurrence sequence satisfying

$$
U_{i+k}=a_{1} U_{i+k-1}+\cdots+a_{k} U_{i}, i \geq 0
$$

with $a_{1}, \ldots, a_{k} \in \mathbb{Z}, a_{k} \neq 0$, and no recurrence relation of smaller order than k. One has $N_{U}\left(p^{v}\right) \nrightarrow+\infty$ as $v \rightarrow+\infty$ if and only if $P_{U}(x)=A(x) B(x)$ with $A(x), B(x) \in \mathbb{Z}[x]$ such that:
(I) $A(0)=B(0)=1$;
(II) $B(x) \equiv 1(\bmod p \mathbb{Z}[x])$;
(iii) $A(x)$ has no repeated roots and all its roots are roots of unity.

Definition

An abstract numeration system is a triple $S=(L, \Sigma,<)$ where L is a regular language over a totally ordered alphabet $(\Sigma,<)$.

Enumerating the words of L with respect to the genealogical ordering induced by $<$ gives a one-to-one correspondence

$$
\operatorname{rep}_{S}: \mathbb{N} \rightarrow L \quad \operatorname{val}_{S}=\operatorname{rep}_{S}^{-1}: L \rightarrow \mathbb{N}
$$

ExAMPLE

$L=a^{*}, \Sigma=\{a\}$

n	0	1	2	3	4	\cdots
$\operatorname{rep}(n)$	ε	a	aa	aaa	aaaa	\cdots

Abstract Numeration Systems

ExAMPLE

$$
L=\{a, b\}^{*}, \Sigma=\{a, b\}, a<b
$$

n	0	1	2	3	4	5	6	7	\cdots
$\operatorname{rep}(n)$	ε	a	b	$a a$	$a b$	$b a$	$b b$	$a a a$	\cdots

EXAMPLE

$$
L=a^{*} b^{*}, \Sigma=\{a, b\}, a<b
$$

$$
\begin{array}{r|cccccccc}
n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots \\
\hline \operatorname{rep}(n) & \varepsilon & a & b & a a & a b & b b & a a a & \cdots
\end{array}
$$

Abstract Numeration Systems

REMARK

This generalizes non-standard numeration systems $U=\left(U_{i}\right)_{i \geq 0}$ for which \mathbb{N} is U-recognizable, like integer base p systems or Fibonacci system.

$$
L=\{\varepsilon\} \cup\{1, \ldots, p-1\}\{0, \ldots, p-1\}^{*} \text { or } L=\{\varepsilon\} \cup 1\{0,01\}^{*}
$$

Abstract Numeration Systems

NOTATION

If $S=(L, \Sigma,<)$ is an abstract numeration system and if $\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$ is the minimal automaton of L, we denote by $\mathbf{u}_{j}(q)$ (resp. $\left.\mathbf{v}_{j}(q)\right)$ the number of words of length j (resp. $\leq j$) accepted from $q \in Q_{L}$ in \mathcal{M}_{L}.

REMARK

The sequences $\left(\mathbf{u}_{j}(q)\right)_{j \geq 0}\left(\right.$ resp. $\left.\left(\mathbf{v}_{j}(q)\right)_{j \geq 0}\right)$ satisfy the same homogenous linear recurrence relation for all $q \in Q_{L}$.

LEMMA

Let $w=\sigma_{1} \cdots \sigma_{n} \in L$. We have

$$
\begin{equation*}
\operatorname{val}_{S}(w)=\sum_{q \in Q_{L}} \sum_{i=1}^{|w|} \beta_{q, i}(w) \mathbf{u}_{|w|-i}(q) \tag{5}
\end{equation*}
$$

where $\beta_{q, i}(w):=\#\left\{\sigma<\sigma_{i} \mid \delta_{L}\left(q_{0, L}, \sigma_{1} \cdots \sigma_{i-1} \sigma\right)=q\right\}+\mathbf{1}_{q, q_{0, L}}$, for $i=1, \ldots,|w|$.

Abstract Numeration Systems

DEFINITION

A set $X \subseteq \mathbb{N}$ of integers is S-recognizable if the language $\operatorname{rep}_{S}(X)$ over Σ is regular (i.e., accepted by a finite automaton).

PROPOSITION

Let $S=(L, \Sigma,<)$ be an abstract numeration system built over an infinite regular language L. Any ultimately periodic set X is S-recognizable and a DFA accepting $\operatorname{rep}_{S}(X)$ can be effectively obtained.

PROBLEM

Given an abstract numeration system S and a S-recognizable set $X \subseteq \mathbb{N}$. Is it decidable whether or not X is ultimately periodic?

A Decision Procedure

Theorem

Let $S=(L, \Sigma,<)$ be an abstract numeration system such that for all states q of the trim minimal automaton of L
$\mathcal{M}_{L}=\left(Q_{L}, q_{0, L}, \Sigma, \delta_{L}, F_{L}\right)$, we have $\lim _{i \rightarrow \infty} \mathbf{u}_{i}(q)=+\infty$ and $\mathbf{u}_{i}\left(q_{0, L}\right)>0$ for all $i \geq 0$. Assume moreover that $\mathbf{v}=\left(\mathbf{v}_{i}\left(q_{0, L}\right)\right)_{i \geq 0}$ is such that

$$
\lim _{m \rightarrow+\infty} N_{v}(m)=+\infty
$$

It is decidable whether or not an S-recognizable set is ultimately periodic.

