Orbits of Language Operations: Finiteness and Upper Bounds

Émilie Charlier1 Mike Domaratzki2 Tero Harju3 Jeffrey Shallit1

1University of Waterloo \hspace{0.5cm} 2University of Manitoba \hspace{0.5cm} 3University of Turku

Theory Seminar
Toronto, August 12, 2011
Closure operations

Let \(x : 2^\Sigma^* \to 2^\Sigma^* \) be an operation on languages. Suppose \(x \) satisfies the following three properties:

1. \(L \subseteq x(L) \) (expanding);
2. If \(L \subseteq M \) then \(x(L) \subseteq x(M) \) (inclusion-preserving);
3. \(x(x(L)) = x(L) \) (idempotent).

Then we say that \(x \) is a closure operation.

Example
Kleene closure, positive closure, prefix, suffix, factor, subword.
Some notation and a first result

If $x(L) = y(L)$ for all languages L, then we write $x \equiv y$.

We write $\epsilon(L) = L$ and $xy = x \circ y$, that is, $xy(L) = x(y(L))$.

Define c to be the complementation: $c(L) = \Sigma^* - L$. In particular, we have $cc \equiv \epsilon$.

Theorem

Let x, y be closure operations. Then $xcycxcy \equiv xcy$.
Proof of the previous result

∀L, xcyxcy(L) ⊆ xcy(L):

We have: ∀L, L ⊆ y(L).
Then: ∀L, cy(L) ⊆ c(L).
Then: ∀L, xcy(L) ⊆ xc(L).
Then: ∀L, xcy(cxcy(L)) ⊆ xc(cxcy(L)) = xcy(L).

∀L, xcy(L) ⊆ xycxcycy(L):

We have: ∀L, L ⊆ x(L).
Then: ∀L, cy(L) ⊆ x(cy(L)).
Then: ∀L, cxcy(L) ⊆ ccy(L) = y(L).
Then: ∀L, ycxcy(L) ⊆ yy(L) = y(L).
Then: ∀L, cy(L) ⊆ cycxcy(L).
Finally: ∀L, xcy(L) ⊆ xycxcycy(L).
Corollary (Peleg 1984, Brzozowski-Grant-Shallit 2009)

Let x be any closure operation and L be any language. If $S = \{x, c\}$, then the orbit $O_S(L) = \{y(L) : y \in S^*\}$ contains at most 14 languages, which are given by the images of L under the 14 operations

$$
\epsilon, \ x, \ c, \ xc, \ cx, \ xcx, \ cxc, \ xcxc, \ cxcx, \\
xcccx, \ cxcxc, \ xccxcx, \ ccxcxx, \ ccxxcc.
$$

NB: This result is the analogous for languages of Kuratowski-14 sets-theorem for topological spaces.
Orbits of languages

Given a set S of operations, we consider the orbit of languages
$O_S(L) = \{x(L) : x \in S^*\}$ under the monoid generated by S.

So compositions of operations in S are considered as “words over the alphabet S”.

We are interested in the following questions:

- When is the monoid S^*/\equiv finite?
- Is the cardinality of $O_S(L)$ bounded, independently of L?
Operations with infinite orbit

The orbit of \(L \) under an arbitrary operation need not be finite.

Example
Consider the operation \(q \) defined by

\[
q(L) = \{ x \in \Sigma^* : x \text{ is a proper prefix of some } y \in L \}.
\]

Let \(M = \{ a^n b^n : n \geq 1 \} \). Then the orbit

\[
O_{\{q\}}(M) = \{ M, q(M), q^2(M), q^3(M), \ldots \}
\]

is infinite, since we have

\[
a^{i+1}b \in q^i(M) \text{ and } a^{i+1}b \notin q^j(M) \text{ for } j > i.
\]
The situation is somewhat different if L is regular:

Theorem

Let L be a regular language accepted by a DFA of n states. Then $|\mathcal{O}_{\{q\}}(L)| \leq n$, and this bound is tight.

To see that the bound is tight, consider the language $L_n = \{\epsilon, a, a^2, \ldots, a^{n-2}\}$, which is accepted by a n state DFA. Then $q(L_n) = L_{n-1}$, so this shows $|\mathcal{O}_{\{q\}}(L_n)| = n$.
It is possible for the orbit under a single operation to be infinite even if the operation is expanding and inclusion-preserving.

Example
Consider the operation of fractional exponentiation, defined by

\[n(L) = \{ x^\alpha : x \in L \text{ and } \alpha \geq 1 \text{ rational} \} = \bigcup_{x \in L} x^+ p(\{x\}). \]

Let \(M = \{ab\} \). Then the orbit

\[O_{\{n\}}(M) = \{M, n(M), n^2(M), n^3(M), \ldots\} \]

is infinite, since we have

\[aba^i \in n^i(M) \quad \text{and} \quad aba^j \not\in n^j(M) \quad \text{for } j < i. \]
Some notation and definitions

If t, x, y, z are words with $t = xyz$, we say

- x is a prefix of t;
- z is a suffix of t; and
- y is a factor of t.

If $t = x_1y_1x_2y_2 \cdots x_ny_nx_{n+1}$ for some words x_i and y_j, we say

- $y_1 \cdots y_n$ is a subword of t.

Thus a factor is a contiguous block, while a subword can be “scattered”.

Further, x^R denotes the reverse of the word x.
8 natural operations on languages

\[k: L \mapsto L^* \]
\[e: L \mapsto L^+ \]
\[c: L \mapsto \overline{L} = \Sigma^* - L \]
\[p: L \mapsto \text{pref}(L) \]

\[s: L \mapsto \text{suff}(L) \]
\[f: L \mapsto \text{fact}(L) \]
\[w: L \mapsto \text{subw}(L) \]
\[r: L \mapsto L^R \]

where

\[L^* = \bigcup_{n \geq 0} L^n \quad \text{and} \quad L^+ = \bigcup_{n \geq 1} L^n \]
\[\text{pref}(L) = \{ x \in \Sigma^* : x \text{ is a prefix of some } y \in L \} \]
\[\text{suff}(L) = \{ x \in \Sigma^* : x \text{ is a suffix of some } y \in L \} \]
\[\text{fact}(L) = \{ x \in \Sigma^* : x \text{ is a factor of some } y \in L \} \]
\[\text{subw}(L) = \{ x \in \Sigma^* : x \text{ is a subword of some } y \in L \} \]
\[L^R = \{ x \in \Sigma^* : x^R \in L \} \]
Kuratowski identities

We now consider the set $S = \{k, e, c, p, s, f, w, r\}$.

Lemma

The 14 operations $k, e, p, s, f, w, kp, ks, kf, kw, ep, es, ef, and ew$ are closure operations.

Theorem (mentioned above)

Let x, y be closure operations. Then $xcycxcy \equiv xcy$.

Together, these two results thus give $196 = 14^2$ separate identities.
Further identities

Lemma

Let \(a \in \{ k, e \} \) and \(b \in \{ p, s, f, w \} \). Then \(aba \equiv bab \equiv ab \).

In a similar fashion, we obtain many kinds of Kuratowski-style identities involving the operations \(k, e, c, p, s, f, w, \) and \(r \).

Proposition

Let \(a \in \{ k, e \} \) and \(b \in \{ p, s, f, w \} \). Then we have the following identities:

- \(abcacaca \equiv abca \)
- \(bcbcbcab \equiv bcab \)
- \(abcbcabcab \equiv abcab \)
Additional identities (I)

We obtain many additional identities connecting the operations $k, e, c, p, s, f, w,$ and r.

Proposition

We have the following identities:

- $rp ≡ sr; \ rs ≡ pr$
- $rf ≡ fr; \ rw ≡ wr; \ rc ≡ cr; \ rk ≡ kr$
- $ps ≡ sp ≡ pf ≡ fp ≡ sf ≡ fs ≡ f$
- $pw ≡ wp ≡ sw ≡ ws ≡ fw ≡ wf ≡ w$
- $rkw ≡ kw ≡ wk$
- $ek ≡ ke ≡ k$
- $fks ≡ pks; \ fkp ≡ skp$
- $rkf ≡ skf ≡ pkf ≡ fkk ≡ kf$
Additional identities (II)

Proposition

For all languages L, we have

- $pcs(L) = \Sigma^*$ or \emptyset.
- The same result holds for pcf, fcs, fcf, scp, scf, fcp, wcp, wcs, wcf, pcw, scw, fcw, and wcw.

Let's prove this for pcs:

If $s(L) = \Sigma^*$, then $cs(L) = \emptyset$ and $pcs(L) = \emptyset$.

Otherwise, $s(L)$ omits some word w.
Then $s(L) \cap \Sigma^* w = \emptyset$.
Then $\Sigma^* w \subseteq cs(L)$.
Then $\Sigma^* = p(\Sigma^* w) \subseteq pcs(L)$, hence $pcs(L) = \Sigma^*$.
Proposition

For all languages L, we have

★ $sckp(L) = \Sigma^* \text{ or } \emptyset$.

★ The same result holds for $fckp$, $pcks$, $fcks$, $pckf$, $sckf$, $fckf$, $wckp$, $wcks$, $wckf$, $wckw$, $pckw$, $sckw$, $fckw$.

Proposition

For all languages L, we have

★ $scskp(L) = \Sigma^* \text{ or } \emptyset$.

★ The same result holds for $pcpks$.
Additional identities (IV)

Proposition

For all languages \(L \) *and for all* \(b \in \{ p, s, f, w \} \), *we have*

\[
\begin{align*}
\text{kcb}(L) &= \text{cb}(L) \cup \{\epsilon\} \\
\text{kckb}(L) &= \text{ckb}(L) \cup \{\epsilon\} \\
\text{kckck}(L) &= \text{ckck}(L) \cup \{\epsilon\} \\
\text{kbcbckb}(L) &= \text{bcbckb}(L) \cup \{\epsilon\}.
\end{align*}
\]

Let’s prove \(\text{kcp}(L) \subseteq \text{cp}(L) \cup \{\epsilon\} \):

Assume \(x \in \text{kcp}(L) \) and \(x \neq \epsilon \).

We have \(x = x_1x_2 \cdots x_n \) for some \(n \geq 1 \), where each \(x_i \in \text{cp}(L) \).

Then \(x_1x_2 \cdots x_n \notin \text{p}(L) \), because if it were, then \(x_1 \in \text{p}(L) \).

Hence \(x \in \text{cp}(L) \).
Main Result

Theorem (C-Domaratzki-Harju-Shallit 2011)

Let $S = \{k, e, c, p, f, s, w, r\}$. Then for every language L, the orbit $\mathcal{O}_S(L)$ contains at most 5676 distinct languages.
Sketch of the proof

We used breadth-first search to examine the set $S^* = \{k, e, c, p, f, s, w, r\}^*$ w.r.t. the radix order with $k < e < c < p < f < s < w < r$.

As each new word x is examined, we test it to see if any factor is of the form given by “certain identities”.

If it is, then the corresponding language must be either Σ^*, \emptyset, $\{\epsilon\}$, or Σ^+; furthermore, each descendant language will be of this form. In this case the word x is discarded.

Otherwise, we use the remaining identities to try to reduce x to an equivalent word that we have previously encountered. If we succeed, then x is discarded.

Otherwise we append all the words in Sx to the end of the queue.
If the process terminates, then $\mathcal{O}_S(L)$ is of finite cardinality.

For $S = \{k, e, c, p, f, s, w, r\}$, the process terminated with 5672 nodes that could not be simplified using our identities. We did not count $\emptyset, \{\epsilon\}, \Sigma^+, \text{ and } \Sigma^*$. The total is thus 5676.

(The longest word examined was $ckpcscpckpckpcpckckcr$, of length 25, and the same word with p replaced by s.)
If we use two arbitrary closure operations a and b with no relation between them, then the monoid generated by $\{a, b\}$ is infinite, since any two finite prefixes of $ababab \cdots$ are distinct.

Example
Define the exponentiation operation

$$t(L) = \{x^i : x \in L \text{ and } i \text{ is an integer } \geq 1\}.$$

Then t is a closure operation.

Hence the orbits $O_{\{p\}}(L)$ and $O_{\{t\}}(L)$ are finite, for all L.

However, if $M = \{ab\}$, then the orbit $O_{\{p,t\}}(M)$ is infinite, as

$$aba^i \in (pt)^i(M) \text{ and } aba^i \not\in (pt)^j(M) \text{ for } j < i.$$

In this case at most 14 distinct languages can be generated. The bound of 14 can be achieved, e.g., by the regular language over $\Sigma = \{a, b, c, d\}$ accepted by the following DFA:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
The following table gives the appropriate set of final states under the operations.

<table>
<thead>
<tr>
<th>language</th>
<th>final states</th>
<th>language</th>
<th>final states</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>3,7,8</td>
<td>$pcpc(L)$</td>
<td>1,5,6,7</td>
</tr>
<tr>
<td>$c(L)$</td>
<td>1,2,4,5,6</td>
<td>$cpcp(L)$</td>
<td>2,3,6,7</td>
</tr>
<tr>
<td>$p(L)$</td>
<td>1,2,3,5,6,7,8</td>
<td>$cpcpc(L)$</td>
<td>2,3,4,8</td>
</tr>
<tr>
<td>$pc(L)$</td>
<td>1,2,3,4,5,6,8</td>
<td>$pcpcp(L)$</td>
<td>1,2,3,5,6,7</td>
</tr>
<tr>
<td>$cp(L)$</td>
<td>4</td>
<td>$pcpcpc(L)$</td>
<td>1,2,3,4,5,8</td>
</tr>
<tr>
<td>$cpc(L)$</td>
<td>7</td>
<td>$cpcpcp(L)$</td>
<td>4, 8</td>
</tr>
<tr>
<td>$pcp(L)$</td>
<td>1,4,5,8</td>
<td>$cpcpcpc(L)$</td>
<td>6, 7</td>
</tr>
</tbody>
</table>
Here there are at most 13 distinct languages, given by the action of
\[\{ \epsilon, k, p, s, f, kp, ks, kf, pk, sk, fk, pks, skp \} . \]
The bound of 13 is achieved, for example, by \(L = \{ abc \} . \)
Here breadth-first search gives 78 languages, so our bound is $78 + 4 = 82$. We can improve this bound by considering new kinds of arguments.

Lemma

For all languages L, we have either $f(L) = \Sigma^$ or $fc(L) = \Sigma^*$.***

Theorem (C-Domaratzki-Harju-Shallit 2011)

*Let L be an arbitrary language. Then 50 is a tight upper bound for the size of $O\{k,c,f\}(L)$.***
Sketch of the proof

The languages in $O_{\{k,c,f\}}(L)$ that may differ from $\Sigma^*, \emptyset, \Sigma^+$, and $\{\epsilon\}$ are among the images of L and $c(L)$ under the 16 operations

$$f, kf, kckf, kcf, fk, kcfk, fck, kfck, kckfck, kcfck, \quad (1)$$

$$fkck, kcfkck, fckck, kfckck, kckfckck, kcfckck,$$

the complements of these images, together with the 14 languages in $O_{\{k,c\}}(L)$.

We show that there are at most 32 distinct languages among the $64 = 16 \cdot 4$ languages given by the images of L and $c(L)$ under the 16 operations (1) and their complements.

Adding the 14 languages in $O_{\{k,c\}}(L)$, and $\Sigma^*, \emptyset, \Sigma^+$, and $\{\epsilon\}$, we obtain that $50 = 32 + 14 + 4$ is an upper bound for the size of the orbit of $\{k, c, f\}$.
This DFA accepts a language L with orbit size 50 under $\{k, c, f\}^*$.
Summary of results

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>2</td>
<td>w</td>
<td>2</td>
<td>f</td>
<td>2</td>
</tr>
<tr>
<td>s</td>
<td>2</td>
<td>p</td>
<td>2</td>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>k</td>
<td>2</td>
<td>w, r</td>
<td>4</td>
<td>f, r</td>
<td>4</td>
</tr>
<tr>
<td>f, w</td>
<td>3</td>
<td>s, w</td>
<td>3</td>
<td>s, f</td>
<td>3</td>
</tr>
<tr>
<td>p, w</td>
<td>3</td>
<td>p, f</td>
<td>3</td>
<td>c, r</td>
<td>4</td>
</tr>
<tr>
<td>c, w</td>
<td>6*</td>
<td>c, f</td>
<td>6*</td>
<td>c, s</td>
<td>14</td>
</tr>
<tr>
<td>c, p</td>
<td>14</td>
<td>k, r</td>
<td>4</td>
<td>k, w</td>
<td>4</td>
</tr>
<tr>
<td>k, f</td>
<td>5</td>
<td>k, s</td>
<td>5</td>
<td>k, p</td>
<td>5</td>
</tr>
<tr>
<td>k, c</td>
<td>14</td>
<td>f, w, r</td>
<td>6</td>
<td>s, f, w</td>
<td>4</td>
</tr>
<tr>
<td>p, f, w</td>
<td>4</td>
<td>p, s, f</td>
<td>4</td>
<td>c, w, r</td>
<td>10*</td>
</tr>
<tr>
<td>c, f, r</td>
<td>10*</td>
<td>c, f, w</td>
<td>8*</td>
<td>c, s, w</td>
<td>16*</td>
</tr>
<tr>
<td>c, s, f</td>
<td>16*</td>
<td>c, p, w</td>
<td>16*</td>
<td>c, p, f</td>
<td>16*</td>
</tr>
<tr>
<td>k, w, r</td>
<td>7</td>
<td>k, f, r</td>
<td>9</td>
<td>k, f, w</td>
<td>6</td>
</tr>
<tr>
<td>k, s, w</td>
<td>7</td>
<td>k, s, f</td>
<td>9</td>
<td>k, p, w</td>
<td>7</td>
</tr>
<tr>
<td>k, p, f</td>
<td>9</td>
<td>k, c, r</td>
<td>28</td>
<td>k, c, w</td>
<td>38*</td>
</tr>
<tr>
<td>k, c, f</td>
<td>50*</td>
<td>k, c, s</td>
<td>1070</td>
<td>k, c, p</td>
<td>1070</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----</td>
<td>------------------</td>
<td>-----</td>
<td>------------------</td>
<td>-----</td>
</tr>
<tr>
<td>p, s, f, r</td>
<td>8</td>
<td>p, s, f, w</td>
<td>5</td>
<td>c, f, w, r</td>
<td>12</td>
</tr>
<tr>
<td>c, s, f, w</td>
<td>16</td>
<td>c, p, f, w</td>
<td>16</td>
<td>c, p, s, f</td>
<td>16</td>
</tr>
<tr>
<td>k, f, w, r</td>
<td>11</td>
<td>k, s, f, w</td>
<td>10</td>
<td>k, p, f, w</td>
<td>10</td>
</tr>
<tr>
<td>k, p, s, f</td>
<td>13</td>
<td>k, c, w, r</td>
<td>72</td>
<td>k, c, f, r</td>
<td>84</td>
</tr>
<tr>
<td>k, c, f, w</td>
<td>66</td>
<td>k, c, s, w</td>
<td>1114</td>
<td>k, c, s, f</td>
<td>1450</td>
</tr>
<tr>
<td>k, c, p, w</td>
<td>1114</td>
<td>k, c, p, f</td>
<td>1450</td>
<td>p, s, f, w, r</td>
<td>10</td>
</tr>
<tr>
<td>c, p, s, f, r</td>
<td>30</td>
<td>c, p, s, f, w</td>
<td>16</td>
<td>k, p, s, f, r</td>
<td>25</td>
</tr>
<tr>
<td>k, p, s, f, w</td>
<td>14</td>
<td>k, c, f, w, r</td>
<td>120</td>
<td>k, c, s, f, w</td>
<td>1474</td>
</tr>
<tr>
<td>k, c, p, f, w</td>
<td>1474</td>
<td>k, c, p, s, f</td>
<td>2818</td>
<td>c, p, s, f, w, r</td>
<td>30</td>
</tr>
<tr>
<td>k, p, s, f, w, r</td>
<td>27</td>
<td>k, c, p, s, f, r</td>
<td>5628</td>
<td>k, c, p, s, f, w</td>
<td>2842</td>
</tr>
<tr>
<td>k, c, p, s, f, w, r</td>
<td>5676</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further work

We plan to continue to refine our estimates of the previous tables, and pursue the status of other sets of operations.

For example, if t is the exponentiation operation, then, using the identities $kt \equiv tk \equiv k$, and the inclusion $t \subseteq k$, we get the additional Kuratowski-style identities

- $kctckck \equiv kck$,
- $kckctck \equiv kck$,
- $kctctck \equiv kck$,
- $tctctck \equiv tck$,
- $kctctct \equiv kct$.

This allows us to prove that $O_{\{k,c,t\}}(L)$ is finite and of cardinality at most 126.