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Positional numeration systems

A positional numeration system (PNS) is given by a sequence of
integers U = (U;)i>0 such that

| 2 UO = ]_
» Vi U; < Ui+1
> (Ui-l—l/Ui)iZO is bounded — CU = Sup;>q [UZ‘+1/UZ'—|

The greedy U-representation of a positive integer n is the unique
word repy;(n) = ¢p—1 -+ co over Xy = {0,...,Cy — 1} satisfying

/-1 t

n= Zcz- U, cg-1#0 and Vit ZCZ-UZ- < Ugyq.
i=0 i=0



Recognizable sets of integers

A set X C N is U-recognizable or U-automatic if the subset
repy (X) = {repy(z): x € X} of £ is regular.



Integer base b > 2

U= (b')izo
Sy = {0, ,b— 1}
Ly, = repy(N) =35\ 035

0,1,2
1,2

repz(N)

N is 3-recognizable

repy, Xy — repy, 2p

27 31
el0
1)1
2|2

1 0|3
1 1|4
1 2|5
2 06
2 1|7
2 218
0 09




Integer base b > 2

U = (b")ix0
Sy = {0, ,b— 1}
Ly = repy(N) = 35 \ 0%

0,2 0,2

repy, (2N)

2N is 3-recognizable

repy, Xy — repy, 2p

27 9 3 1
el0
1)1
212
1 0|3
1 114
1 2|5
2 06
2 1|7
2 218

1 0 09




Fibonacci (or Zeckendorf) numeration system

Let F = (Fi)iso = (1,2,3,5,8,13,21,...) be defined by

Fy=1, Fi=2 and Vi €N, Fypo=Fi 1 +F}.

Yr={0,1}
The factor 11 is forbidden :

AR

repp(N) = 1{0,01}* U {¢}

N is F-recognizable

13

O = =
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Fibonacci (or Zeckendorf) numeration system
Let F' = (F})i>0 = (1,2,3,5,8,13,21,...) be defined by

Fy=1, Fi =2 and Vi€ N, Fiio = Fi 1+ F.

13 8 5 3 2

O =
OO OO =
O R OO0 OO

repp(2N) 1
2N is F-recognizable

OO R O, OO O

0 ~J O Ui W N~ O



U-recognizability of N

Is the set N U-recognizable? Otherwise stated, is the numeration
language repy;(N) regular? Not necessarily:

Theorem (Shallit 1994)

Let U be a PNS. If N is U-recognizable, then U is linear, i.e., it
satisfies a linear recurrence relation over Z.

Loraud (1995) and Hollander (1998) gave sufficient conditions for
the numeration language to be regular : “The characteristic
polynomial of the recurrence relation has a particular form”.



U-recognizability of arithmetic progressions

Proposition
Let U = (U;)i>0 be a linear numeration system and let p,q € N.

If N is U-recognizable, then p + Nq is U-recognizable and a DFA
accepting rep;(p + Nq) can be obtained efficiently.

Consequently, any ultimately periodic set is U-recognizable.



Abstract numeration systems

An abstract numeration system (ANS) is a triple S = (L, %, <)
where L is an infinite regular language over a totally ordered
alphabet (X, <).

By enumerating the words of L w.r.t. the radix order <,.q induced
by <, we define a bijection :

repg : N—= L ValgzrepglzL%N.

A set X C N is S-recognizable if repg(X) is regular.



L={a,b}* Y={a,b} a<bd

n\01234567

rep(n ‘5 a b aa ab ba bb aaa

L=a"b" Y ={a,b} a<bd

n\0123456

rep(n ‘E a b aa ab bb aaa



A generalization

ANS generalize PNS having a regular numeration language:

Let U be a PNS and let z,y € N. We have

x <y < repy(x) <rqd repy(y).

Example (Fibonacci)
repp(N) = 1{0,01}* U {e}

6 < 7 and 1001 <,.,q 1010
(same length)

6 < 8 and 1001 <44 10000
(different lengths)

13 8 5 3 2 1
el 0

1)1

1 02

1 0 03

1 0 1|4

1 0 0 0|5
1 0 0 1]6
1 01 0|7
10 0 0 08




A generalization

ANS generalize PNS having a regular numeration language:

Let U be a PNS and let z,y € N. We have

x <y < repy(x) <rqd repy(y).

Example (Fibonacci)
repp(N) = 1{0,01}* U {e}

6 < 7 and 1001 <,.,q 1010
(same length)

6 < 8 and 1001 <44 10000
(different lengths)

13 8 5 3 2 1
el 0
1)1
1 02
1 0 03
1 0 1|4
1 0 0 0|5
1 0 0 1]6
1 01 0|7
8

0

)
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A generalization

ANS generalize PNS having a regular numeration language:

Let U be a PNS and let z,y € N. We have
x <y < repy(x) <rqd repy(y).

Example (Fibonacci)

~—

repp(n

repp(N) = 1{0,01}* U {e}

= M

100
101
1000
1001
1010
10000

OO\I@OT;-&OONJI—‘O‘:;




Decimation of languages

Let L be a language ordered w.r.t. the radix order.

If wg < wy < --- are the elements of L and X C N, then
LIX] ={wp:ne X}

If S=(L,%,<), then L[ X]| = repg(X).

If L[X] is accepted by a finite automaton, what does it imply on
X7? What conditions on X insures that L[X] is regular?



Motivation for ANS

ANS are a generalization of all usual PNS like integer base
numeration systems or linear numeration systems, and even rational
numeration systems.

Thanks to this general point of view on numeration systems, we try
to distinguish results that deeply depend on the algorithm used to
represent the integers from results that only depend on the set of
representations.

Due to the general setting of ANS, some new questions concerning
languages arise naturally from this numeration point of view.
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S-automatic words



b-automatic words

An infinite word z = (z,)n>0 is b-automatic if there exists a DFAO
A= (Q,q0,%p,0,I',7) s.t. foralln >0,

zy = 7(6(qo, repy(n))).

Theorem (Cobham 1972)

Let b > 2. An infinite word is b-automatic iff it is the image under
a coding of an infinite fixed point of a b-uniform morphism.



S-automatic words

Let S = (L, X, <) be an ANS.
An infinite word © = (x5, )n>0 is S-automatic if there exists a DFAO
A=(Q,q),%,6,I',7) s.t. for all n >0,

Ty = 7(3(qo, reps(n)))-

Theorem (Rigo-Maes 2002)

An infinite word is S-automatic for some ANS S iff it is the image
under a coding of an infinite fixed point of a morphism, i.e. a
morphic word.



Corollary
The set of primes is never S-recognizable.

Its characteristic sequence is not morphic (Mauduit 1988).

Corollary

The factor complexity of an S-automatic word is O(n?).



Idea of the proof

Example (Morphic — S-Automatic)

Consider the morphism p defined by a — abc ; b+— be ; ¢ — aac.
We have p¥(a) = abcbcaacbcaacabeabeaachcaacabeabe - - -

One canonically associates the DFA A, ,

Lo ={c,1,2,10,11,20,21,22,100, 101, 110,111, 112,200, . .. }
If S = (Lua,{0,1,2},0 < 1 < 2), then
(u*(a))n = du(a,repg(n)) for all n > 0.



Idea of the proof

Example (S-Automatic — Morphic)
S =(L,{0,1,2},0 <1 < 2) where L = {w € £*: |wl|; is odd}

minimal automaton of L DFAO generating «
0,2 0,2
H- 8258
1 0,1

n 0o 1 2 3 4 5 6 7 8

repg(n) {1 01 10 12 21 001 010 012 021

T b a a b b b b a a




Example (Continued)

fra—alyFpl, F, — F,1,F, g oIy, Iy— e
I, — ILFp1, Fy,— F,I,F, F,—a
Ib — IaFaIb Fb — b

LCY¥|e 0 1 2 00 01 02 10 11 12 20

fw<a) o Ib Fb Ia Ia Fa Ib Fa Ia Fb Ib

x b a a b
9(f“(a)) =z



Multidimensional Case

A d-dimensional infinite word over an alphabet X is a map

x: N% — ¥, We use notation like T,y OF T(N1,...,ng) to
denote the value of = at (ny,...,ng).
If wy,...,wy are finite words over the alphabet X,

(w1, ..., wg)" = (#m_“’“‘wl, .. .,#m_lwd‘wd)
where m = max{|wi|, ..., |wq|}.
Example

(ab,bbaa)? = (#4ab, bbaa) = (#,b)(#,b)(a,a)(b, a)



A d-dimensional infinite word over an alphabet T" is b-automatic if
there exists a DFAO

A= (Q) q0, (Zb)d’ 6’ F’ 7_)

s.t. forallny,...,ng >0,
™ (8 (a0, (repy(ma), - 1Py (10))°) ) = Ty

Theorem (Salon 1987)

Let b > 2 and d > 1. A d-dimensional infinite word is b-automatic
iff it is the image under a coding of a fixed point of a b-uniform
d-dimensional morphism.



Theorem (C-Karki-Rigo 2010)

Let d > 1. The d-dimensional infinite word is S-automatic for some
ANS S = (L, %, <) where € € L iff it is the image under a coding
of a shape-symmetric infinite d-dimensional word.



Shape-symmetric

e ]b]iud) =[f]

; (e
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Consider the morphism 17 defined by
a+>ab;b—e ;e eb.

We have 1y (a) = abeebebeebeebebeebebeebeeb - - - .
One canonically associates the DFA A, ,

Ly, .« ={e,1,10,100,101, 1000, 1001, 1010, 10000, . . . }



Open question

» If S and T are two ANS, (S, 7T")-automatic words are
bidimensional infinite words (z, 5)m n>0 for which there exists
a DFAO A= (Q,(ZU{#1%,8,q0,T,7) s.t. Ym,n € N,

Zmn = T(8(q0, (repg (m), repp(n))¥)).

Can these (S, T")-automatic words be characterized by
iterating morphisms?



b-kernel

An infinite word (x,,),>0 is b-automatic iff its b-kernel
{(xpentr)n>0: e, €N, r < b}
is finite. The b-kernel can be rewritten

{(xb‘“"n-l—valb(w))nz(): w e ZZ}

8§ 4 21 8§ 4 2 1 8§ 4 21
el0 11 06 11 0 012
111 1 1 147 11 0 1|13
1 02 1 0 0 0|8 111 014
1 113 10 0 119 1 1 1 1|15
1 0 04 1 01 010 1 0 0 0 0]16
1 0 115 1 01 1)11 10 00 1|17

NB: bl“ln + val,(w) is the base-b value of the (n + 1)-th word in
Ly, having w as a suffix.



Open question

The S-kernel of (z,)p>0 is

{(xfw(n))nZO: w € Z*}

where f,,(n) is the S-value of the (n + 1)-th word in L having w as
a suffix.

Theorem (Rigo-Maes 2002)
An infinite word is S-automatic iff its S-kernel is finite.

» Does a similar characterization hold in the multidimensional
setting?



Sets S-recognizable for all S



Ultimately periodic sets

It is an exercise to show that all ultimately periodic set are
b-recognizable for all b > 2.

Theorem (Cobham 1969)

Let k, £ > 2 be two multiplicatively independent integers.

A subset of N is both k-recognizable and (-recognizable iff it is
ultimately periodic.

Two numbers k and £ are multiplicatively independent if k™ = ¢»
and m,n € N implies m =n = 0.

Corollary
A subset of N is b-recognizable for all b > 2 iff it is ultimately
periodic.



Generalization to ANS

Theorem (Lecomte-Rigo 2001, Krieger et al. 2009)
Ultimately periodic sets are S-recognizable for all ANS S.

Corollary
A subset of N is S-recognizable for all ANS S iff it is ultimately
periodic.

Theorem (Krieger et al. 2009, Angrand-Sakarovitch 2010)

Letm,reNwithm >2and 0 <r <m—1 and let
S = (L,%,<) be an ANS. If L is accepted by a n-state DFA, then
the minimal DFA of repg(mN + 1) has at most nm™ states.



Semi-linear sets

A subset X of N? is b-recognizable if the language (rep,(X))#
over ({0,1,...,b— 1} U {#})? is regular, where

repy(X) = {(repy(n1),...,repy(ng)): (n1,...,nq) € X}.

Theorem (Cobham-Semenov, Semenov 1977)

Let k,¢ > 2 be two multiplicatively independent integers. A subset
of N is both k-recognizable and (-recognizable iff it is semi-linear.

A set X C N% is linear if there exist vo, v, - ,v; € N such that
X =vop+Nvi +Nvg+---+Nv,. Aset X C N is semi-linear if
it is a finite union of linear sets.



{(n,m) :n,m e N and n > m} =N(1,0) + N(1,1)



Semi-linear sets: a good generalization?

Corollary
A subset of N is b-recognizable for all b > 2 iff it is semi-linear.

In the one-dimensional case, we have the following equivalences:

semi-linear < ultimately periodic < 1-recognizable.



Multidimensional case for ANS

One might therefore expect that the semi-linear sets are
recognizable in all ANS. However, this fails to be the case, as the
following example shows.

Example

The semi-linear set X = {n(1,2) : n € N} ={(n,2n) | n € N} is
not 1-recognizable. Consider the language {(a"#",a?") | n € N},
consisting of the unary representations of the elements of X.

Use the pumping lemma to show that this is not accepted by a
finite automaton.



Let S = (L,%, <) be an ANS.

A subset X of N? is S-recognizable if the language (repg(X))#
over (X U {#1})) is regular, where

repg(X) = {(repg(n1),...,repg(ng)): (n1,...,nq) € X}.

It is 1-recognizable if it is S-automatic for the ANS S built on a*.



Multidimensional 1-recognizable sets

Theorem (C-Lacroix-Rampersad 2012)

A subset of N is S-recognizable for all ANS S iff it is
1-recognizable.

Theorem (C-Lacroix-Rampersad 2012)

The multidimensional 1-recognizable sets are the finite unions of
sets of the form

(a1 + b1 N)vy + -+ + (ay + by N)vy,

where

» Supp(v1) 2 Supp(vz) 2 --- 2 Supp(vy)
» All v; are vectors all of whose components are 0 or 1.



Recognizable sets

Another well-studied subclass of the class of semi-linear sets is the
class of recognizable sets.

A subset X of N is recognizable if the right congruence ~x has
finite index (z ~x y f V2 eN? (z+2€ X &y + 2 € X)).

When d = 1, we have again the following equivalences:

recognizable < ultimately periodic < 1-recognizable.

However, for d > 1 these equivalences no longer hold.



Multidimensional recognizable sets: a characterization

Theorem (Mezei)

The recognizable subsets of N? are precisely finite unions of sets of
the formY x Z, where Y and Z are ultimately periodic subsets
of N.

In particular, the diagonal set D = {(n,n) | n € N} is not
recognizable.

However, the set D is clearly a 1-recognizable subset of N2,

So we see that for d > 1, the class of 1-recognizable sets
corresponds neither to the class of semi-linear sets, nor to the class
of recognizable sets.



