

Finite Orbits of Language Operations

Émilie Charlier¹ Mike Domaratzki² Tero Harju³ Jeffrey Shallit¹

¹University of Waterloo ²University of Manitoba ³University of Turku

LATA 2011
Tarragona, May 27, 2011

Closure operations

Let $x : 2^{\Sigma^*} \rightarrow 2^{\Sigma^*}$ be an operation on languages. Suppose x satisfies the following three properties:

1. $L \subseteq x(L)$ (expanding);
2. If $L \subseteq M$ then $x(L) \subseteq x(M)$ (inclusion-preserving);
3. $x(x(L)) = x(L)$ (idempotent).

Then we say that x is a **closure operation**.

Example

Kleene closure, positive closure, prefix, suffix, factor, subword.

Some notation and a first result

If $x(L) = y(L)$ for all languages L , then we write $x \equiv y$.

We write $\epsilon(L) = L$ and $xy = x \circ y$, that is, $xy(L) = x(y(L))$.

Define c to be the complementation: $c(L) = \Sigma^* - L$. In particular, we have $cc \equiv \epsilon$.

Theorem

Let x, y be closure operations. Then $xcycxcy \equiv xcy$.

Corollary (Peleg 1984, Brzozowski-Grant-Shallit 2009)

Let x be any closure operation and L be any language.

If $S = \{x, c\}$, then the orbit $\mathcal{O}_S(L) = \{y(L) : y \in S^\}$ contains at most 14 languages, which are given by the images of L under the 14 operations*

$\epsilon, x, c, xc, cx, xcx, cxc, xcxc, cxcx,$
 $xcxcx, cxcxc, xcxcxc, cxcxcx, cxcxcxc.$

NB: This result is the analogous for languages of Kuratowski-14 sets-theorem for topological spaces.

Orbits of languages

Given a set S of operations, we consider the orbit of languages $\mathcal{O}_S(L) = \{x(L) : x \in S^*\}$ under the monoid generated by S .

So compositions of operations in S are considered as “words over the alphabet S ”.

We are interested in the following questions: When is this monoid finite? Is the cardinality of $\mathcal{O}_S(L)$ bounded, independently of L ?

Operations with infinite orbit

It is possible for the orbit under a single operation to be infinite even if the operation is expanding and inclusion-preserving.

Example

Consider the operation of fractional exponentiation, defined by

$$n(L) = \{x^\alpha : x \in L \text{ and } \alpha \geq 1 \text{ rational}\} = \bigcup_{x \in L} x^+ p(\{x\}).$$

Let $M = \{ab\}$. Then the orbit

$$\mathcal{O}_{\{n\}}(M) = \{M, n(M), n^2(M), n^3(M), \dots\}$$

is infinite, since we have

$$aba^i \in n^i(M) \text{ and } aba^i \notin n^j(M) \text{ for } j < i.$$

Some notation and definitions

If t, x, y, z are words with $t = xyz$, we say

- ▶ x is a **prefix** of t ;
- ▶ z is a **suffix** of t ; and
- ▶ y is a **factor** of t .

If $t = x_1y_1x_2y_2 \cdots x_ny_nx_{n+1}$ for some words x_i and y_j , we say

- ▶ $y_1 \cdots y_n$ is a **subword** of t .

Thus a factor is a contiguous block, while a subword can be “scattered”.

Further, x^R denotes the reverse of the word x .

8 natural operations on languages

$$k: L \mapsto L^*$$

$$e: L \mapsto L^+$$

$$c: L \mapsto \overline{L} = \Sigma^* - L$$

$$p: L \mapsto \text{pref}(L)$$

$$s: L \mapsto \text{suff}(L)$$

$$f: L \mapsto \text{fact}(L)$$

$$w: L \mapsto \text{subw}(L)$$

$$r: L \mapsto L^R$$

where

$$L^* = \bigcup_{n \geq 0} L^n \text{ and } L^+ = \bigcup_{n \geq 1} L^n$$

$$\text{pref}(L) = \{x \in \Sigma^*: x \text{ is a prefix of some } y \in L\}$$

$$\text{suff}(L) = \{x \in \Sigma^*: x \text{ is a suffix of some } y \in L\}$$

$$\text{fact}(L) = \{x \in \Sigma^*: x \text{ is a factor of some } y \in L\}$$

$$\text{subw}(L) = \{x \in \Sigma^*: x \text{ is a subword of some } y \in L\}$$

$$L^R = \{x \in \Sigma^*: x^R \in L\}$$

Kuratowski identities

We now consider the set $S = \{k, e, c, p, s, f, w, r\}$.

Lemma

The 14 operations $k, e, p, s, f, w, kp, ks, kf, kw, ep, es, ef, ew$ are closure operations.

Theorem (mentioned above)

Let x, y be closure operations. Then $xcycxcy \equiv xcy$.

Together, these two results thus give $196 = 14^2$ separate identities.

Further identities

Lemma

Let $a \in \{k, e\}$ and $b \in \{p, s, f, w\}$. Then $aba \equiv bab \equiv ab$.

In a similar fashion, we obtain many kinds of Kuratowski-style identities involving the operations k , e , c , p , s , f , w , and r .

Proposition

Let $a \in \{k, e\}$ and $b \in \{p, s, f, w\}$. Then we have the following identities:

- ▶ $abcacaca \equiv abca$
- ▶ $bcbcbcab \equiv bcab$
- ▶ $abcabcab \equiv abcab$

Additional identities (I)

We obtain many additional identities connecting the operations k , e , c , p , s , f , w , and r .

Proposition

We have the following identities:

- ▶ $rp \equiv sr; rs \equiv pr$
- ▶ $rf \equiv fr; rw \equiv wr; rc \equiv cr; rk \equiv kr$
- ▶ $ps \equiv sp \equiv pf \equiv fp \equiv sf \equiv fs \equiv f$
- ▶ $pw \equiv wp \equiv sw \equiv ws \equiv fw \equiv wf \equiv w$
- ▶ $rkw \equiv kw \equiv wk$
- ▶ $ek \equiv ke \equiv k$
- ▶ $fks \equiv pks; fkp \equiv skp$
- ▶ $rkf \equiv skf \equiv pkf \equiv fkf \equiv kf$

Additional identities (II)

Proposition

For all languages L , we have

- ▶ $pcs(L) = \Sigma^*$ or \emptyset .
- ▶ The same result holds for pcf , fcs , fcf , scp , scf , fcp , wcp , wcs , wcf , pcw , scw , fcw , and wcw .

Let's prove this for pcs :

If $s(L) = \Sigma^*$, then $cs(L) = \emptyset$ and $pcs(L) = \emptyset$.

Otherwise, $s(L)$ omits some word w .

Then $s(L) \cap \Sigma^*w = \emptyset$.

Then $\Sigma^*w \subseteq cs(L)$.

Then $\Sigma^* = p(\Sigma^*w) \subseteq pcs(L)$, hence $pcs(L) = \Sigma^*$.

Additional identities (III)

Proposition

For all languages L , we have

- ▶ $sckp(L) = \Sigma^*$ or \emptyset .
- ▶ *The same result holds for $fckp$, $pcks$, $fcks$, $pckf$, $sckf$, $fckf$, $wckp$, $wcks$, $wckf$, $wckw$, $pckw$, $sckw$, $fckw$.*

Proposition

For all languages L , we have

- ▶ $scskp(L) = \Sigma^*$ or \emptyset .
- ▶ *The same result holds for $pcpks$.*

Additional identities (IV)

Proposition

For all languages L and for all $b \in \{p, s, f, w\}$, we have

- ▶ $kcb(L) = cb(L) \cup \{\epsilon\}$
- ▶ $kckb(L) = ckb(L) \cup \{\epsilon\}$
- ▶ $kckck(L) = ckck(L) \cup \{\epsilon\}$
- ▶ $kbcbckb(L) = bcbckb(L) \cup \{\epsilon\}.$

Let's prove $kcp(L) \subseteq cp(L) \cup \{\epsilon\}$:

Assume $x \in kcp(L)$ and $x \neq \epsilon$.

We have $x = x_1 x_2 \cdots x_n$ for some $n \geq 1$, where each $x_i \in cp(L)$.

Then $x_1 x_2 \cdots x_n \notin p(L)$, because if it were, then $x_1 \in p(L)$.

Hence $x \in cp(L)$.

Main Result

Theorem (C-Domaratzki-Harju-Shallit 2011)

Let $S = \{k, e, c, p, f, s, w, r\}$. Then for every language L , the orbit $\mathcal{O}_S(L)$ contains at most 5676 distinct languages.

Sketch of the proof

We used breadth-first search to examine the set

$S^* = \{k, e, c, p, f, s, w, r\}^*$ w.r.t. the radix order with
 $k < e < c < p < f < s < w < r$.

As each new word x is examined, we test it to see if any factor is of the form given by “certain identities”.

If it is, then the corresponding language must be either Σ^* , \emptyset , $\{\epsilon\}$, or Σ^+ ; furthermore, each descendant language will be of this form. In this case the word x is discarded.

Otherwise, we use the remaining identities to try to reduce x to an equivalent word that we have previously encountered. If we succeed, then x is discarded.

Otherwise we append all the words in Sx to the end of the queue.

Sketch of the proof (cont'd)

If the process terminates, then $\mathcal{O}_S(L)$ is of finite cardinality.

For $S = \{k, e, c, p, f, s, w, r\}$, the process terminated with 5672 nodes that could not be simplified using our identities. We did not count $\emptyset, \{\epsilon\}, \Sigma^+$, and Σ^* . The total is thus 5676.

(The longest word examined was *ckcpcpckpckpckpcpcpcckcr*, of length 25, and the same word with *p* replaced by *s*.)

If we use two arbitrary closure operations a and b with no relation between them, then the monoid generated by $\{a, b\}$ is infinite, since any two finite prefixes of $ababab\cdots$ are distinct.

Example

Define the exponentiation operation

$$t(L) = \{x^i : x \in L \text{ and } i \text{ is an integer } \geq 1\}.$$

Then t is a closure operation.

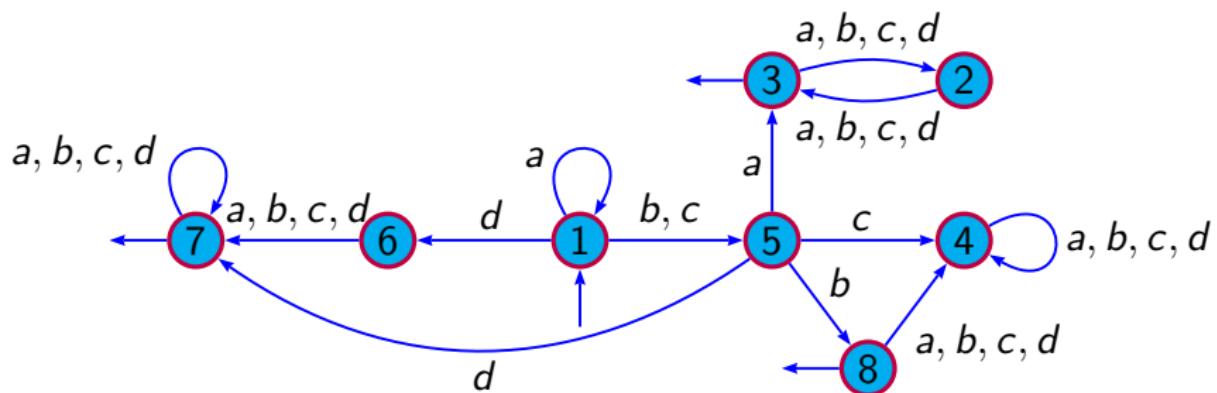
Hence the orbits $\mathcal{O}_{\{p\}}(L)$ and $\mathcal{O}_{\{t\}}(L)$ are finite, for all L .

However, if $M = \{ab\}$, then the orbit $\mathcal{O}_{\{p,t\}}(M)$ is infinite, as

$$aba^i \in (pt)^i(M) \text{ and } aba^i \notin (pt)^j(M) \text{ for } j < i.$$

Prefix and complement

In this case at most 14 distinct languages can be generated. The bound of 14 can be achieved, e.g., by the regular language over $\Sigma = \{a, b, c, d\}$ accepted by the following DFA:



The following table gives the appropriate set of final states under the operations.

language	final states	language	final states
L	3,7,8	$pcpc(L)$	1,5,6,7
$c(L)$	1,2,4,5,6	$cpcp(L)$	2,3,6,7
$p(L)$	1,2,3,5,6,7,8	$cpcpc(L)$	2,3,4,8
$pc(L)$	1,2,3,4,5,6,8	$pcpcp(L)$	1,2,3,5,6,7
$cp(L)$	4	$pcpcpc(L)$	1,2,3,4,5,8
$cpc(L)$	7	$cpcpcp(L)$	4, 8
$pcp(L)$	1,4,5,8	$cpcpcpc(L)$	6, 7

Factor, Kleene star, complement

Here breadth-first search gives 78 languages, so our bound is $78 + 4 = 82$. We can improve this bound by considering new kinds of arguments.

Lemma

There are at most 4 languages distinct from Σ^ , \emptyset , Σ^+ , and $\{\epsilon\}$ in*

$$\mathcal{O}_{\{k,f,kc,fc\}}(\textcolor{red}{f(L)}).$$

These languages are among $f(L)$, $kf(L)$, $kckf(L)$, and $kcf(L)$.

Lemma

There are at most 2 languages distinct from Σ^ , \emptyset , Σ^+ , and $\{\epsilon\}$ in*

$$\mathcal{O}_{\{k,f,kc,fc\}}(\textcolor{red}{fk(L)}) - \mathcal{O}_{\{k,f,kc,fc\}}(f(L)).$$

These languages are among $fk(L)$ and $kcfk(L)$.

Lemma

For all languages L , we have either $f(L) = \Sigma^$ or $fc(L) = \Sigma^*$.*

Theorem (C-Domaratzki-Harju-Shallit 2011)

Let L be an arbitrary language. Then 50 is a tight upper bound for the size of $\mathcal{O}_{\{k,c,f\}}(L)$.

Sketch of the proof

The languages in $\mathcal{O}_{\{k,c,f\}}(L)$ that may differ from $\Sigma^*, \emptyset, \Sigma^+$, and $\{\epsilon\}$ are among the images of L and $c(L)$ under the 16 operations

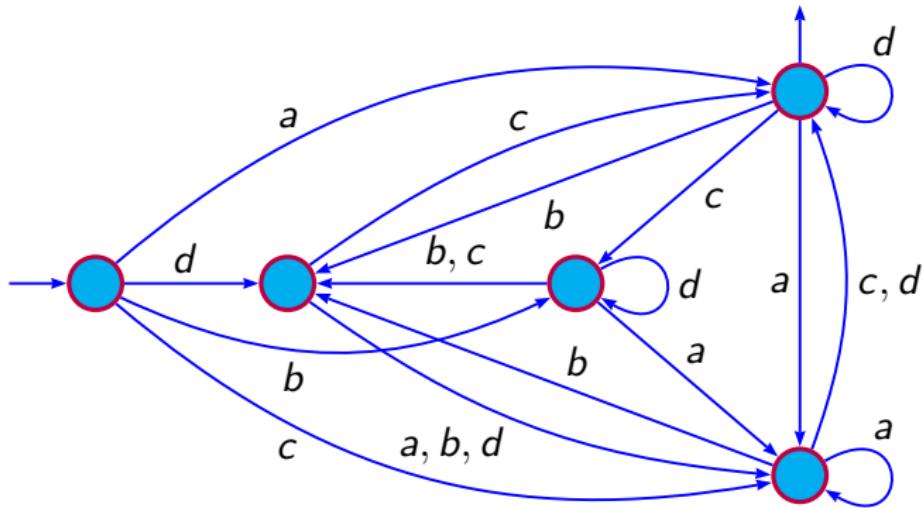
$$\begin{aligned} f, kf, kckf, kcf, fk, kcfk, fck, kfck, kckfck, kcfck, \\ fkck, kcfkck, fckck, kfckck, kckfckck, kcfckck, \end{aligned} \tag{1}$$

the complements of these images, together with the 14 languages in $\mathcal{O}_{\{k,c\}}(L)$.

We show that there are at most 32 distinct languages among the $64 = 16 \cdot 4$ languages given by the images of L and $c(L)$ under the 16 operations (1) and their complements.

Adding the 14 languages in $\mathcal{O}_{\{k,c\}}(L)$, and $\Sigma^*, \emptyset, \Sigma^+$, and $\{\epsilon\}$, we obtain that $50 = 32 + 14 + 4$ is an upper bound for the size of the orbit of $\{k, c, f\}$.

Sketch of the proof (cont'd)



The DFA made of two copies of this DFA accepts a language L with orbit size 50 under operations k , c , and f .

Kleene star, prefix, suffix, factor

Here there are at most 13 distinct languages, given by the action of

$$\{\epsilon, k, p, s, f, kp, ks, kf, pk, sk, fk, pks, skp\}.$$

The bound of 13 is achieved, for example, by $L = \{abc\}$.

Summary of results

r	2	w	2	f	2
s	2	p	2	c	2
k	2	w, r	4	f, r	4
f, w	3	s, w	3	s, f	3
p, w	3	p, f	3	c, r	4
c, w	6*	c, f	6*	c, s	14
c, p	14	k, r	4	k, w	4
k, f	5	k, s	5	k, p	5
k, c	14	f, w, r	6	s, f, w	4
p, f, w	4	p, s, f	4	c, w, r	10*
c, f, r	10*	c, f, w	8*	c, s, w	16*
c, s, f	16*	c, p, w	16*	c, p, f	16*
k, w, r	7	k, f, r	9	k, f, w	6
k, s, w	7	k, s, f	9	k, p, w	7
k, p, f	9	k, c, r	28	k, c, w	38*
k, c, f	50*	k, c, s	1070	k, c, p	1070

Summary of results (Cont'd)

p, s, f, r	8	p, s, f, w	5	c, f, w, r	12*
c, s, f, w	16*	c, p, f, w	16*	c, p, s, f	16*
k, f, w, r	11	k, s, f, w	10	k, p, f, w	10
k, p, s, f	13	k, c, w, r	72*	k, c, f, r	84*
k, c, f, w	66*	k, c, s, w	1114	k, c, s, f	1450
k, c, p, w	1114	k, c, p, f	1450	p, s, f, w, r	10
c, p, s, f, r	30*	c, p, s, f, w	16*	k, p, s, f, r	25
k, p, s, f, w	14	k, c, f, w, r	120*	k, c, s, f, w	1474
k, c, p, f, w	1474	k, c, p, s, f	2818	c, p, s, f, w, r	30*
k, p, s, f, w, r	27	k, c, p, s, f, r	5628	k, c, p, s, f, w	2842
k, c, p, s, f, w, r	5676				

Further work

We plan to continue to refine our estimates of the previous tables, and pursue the status of other sets of operations.

For example, if t is the exponentiation operation, then, using the identities $kt \equiv tk \equiv k$, and the inclusion $t \subseteq k$, we get the additional Kuratowski-style identities

- ▶ $kctckck \equiv kck$,
- ▶ $kckctck \equiv kck$,
- ▶ $kctctck \equiv kck$,
- ▶ $tctctck \equiv tck$,
- ▶ $kctctct \equiv kct$.

This allows us to prove that $\mathcal{O}_{\{k,c,t\}}(L)$ is finite and of cardinality at most 126.