
L1-based compression of random forest model

Arnaud Joly, François Schnitlzer, Pierre Geurts, Louis Wehenkel
a.joly@ulg.ac.be - www.ajoly.org

Departement of EE and CS & GIGA-Research

www.ajoly.org


High dimensional supervised learning applications

3D Image 
segmentation

Genomics Electrical grid

x=original image
y=segmented image

x=DNA sequence
y=phenotype

x=system state
y=stability

From 105 to 109 dimensions.



Tree based ensemble methods

From a dataset of input-output pairs {(xi , yi )}ni=1 ⊂ X × Y, we
approximate f : X → Y by learning an ensemble of M decision trees.
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The estimator f̂ of f is obtained by averaging the predictions of the
ensemble of trees.



High model complexity → Large memory requirement

The complexity of tree based methods is measured by the number of
internal nodes and increases with

I the ensemble size M;
I the number of samples n in the dataset.

The variance of individual trees increases with the dimension p of the
original feature space → M(p) should increase with p to yield near optimal
accuracy.

Complexity grows as nM(p) → may require huge amount of storage.

Memory limitation will be an issue in high dimensional problems.



L1-based compression of random forest model (I)

We first learn an ensemble of M extremely randomized trees (Geurts, et al.,
2006) . . .
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. . . and associate to each node an indicator function 1m,l (x) which is equal
to 1 if the sample (x , y) reaches the l -th node of the m-th tree, 0 otherwise.



L1-based compression of random forest model (II)

The node indicator functions 1m,l (x) may be used to lift the input space X
towards its induced feature space Z

z(x) = (11,1(x), . . . , 11,N1(x), . . . , 1M,1(x), . . . , 1M,NM (x)) .

Example for one sample xs
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L1-based compression of random forest model (III)

A variable selection method (regularization with L1-norm) is applied on the
induced space Z to compress the tree ensemble using the solution of

(
β∗j (t)

)q
j=0 = argmin

β

n∑
i=1

yi − β0 −
q∑

j=1

βj zj(xi )

2

s.t.
q∑

j=1

|βj | ≤ t.

Pruning: a test node is deleted if all its descendants (including the test
node itself) correspond to β∗j (t

∗) = 0.



Overall assessment on 3 datasets

Datasets Error Complexity

ET rET ET rET ET/rET

Friedman1 0.19587 0.18593 29900 885 34
Two-norm 0.04177 0.06707 4878 540 9

SEFTi 0.86159 0.84131 39436 2055 19

ET Extra trees;
rET L1-based compression of ET.

Table: Parameters of the Extra-Tree method: M = 100; K = p; nmin = 1 on
Friedman1 and Two-norm, nmin = 10 on SEFTi.



An increase of t decreases the error of rET until t = 3 with
drastic pruning

(a) Estimated risk (b) Complexity

Friedman1 : M = 100, K = p = 10 and nmin = 1



Managing complexity in the extra tree method

Bound M
Restrict the size M of the tree based ensemble.

Pre-pruning
Pre-pruning reduces the complexity of tree based methods by imposing a
condition to split a node e.g.

I minimum number of samples nmin in order to split,
I minimum decrease of an impurity measure,
I . . .



The accuracy and complexity of an rET model does not
depend on nmin, for nmin small enough (nmin < 10 )

(c) Estimated risk (d) Complexity

Friedman1 : M = 100, K = p = 10 and t = t∗cv



After variance reduction has stabilized (M ' 100), further
increasing M keeps enhancing the accuracy of the rET
model without increasing complexity

(e) Estimated risk (f) Complexity

Friedman1 : nmin = 10, K = p = 10 and t = t∗cv



Conclusion & perspectives

1. Drastic pruning while preserving accuracy.
2. Strong compressibility of the tree ensemble suggests that it could be

possible to design novel algorithms suited to very high dimensional
input space.

3. Future research will target similar compression ratio without using the
complete set of node indicator functions of the forest model.
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Appendix



Overall assessment on 3 datasets

Datasets Error Complexity

ET rET Lasso ET rET Lasso

Friedman1 0.19587 0.18593 0.282441 29900 885 4
Two-norm 0.04177 0.06707 0.033500 4878 540 20

SEFTi 0.86159 0.84131 0.988031 39436 2055 14

ET Extra trees;
rET L1-based compression of ET.

Table: Overall assessment (parameters of the Extra-Tree method: M = 100;
K = p; nmin = 1 on Friedman1 and Two-norm, nmin = 10 on SEFTi).
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