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But : estimation d’une densité de probabilité conjointe sur
un grand nombre de variables.

But à long terme :

Bioinformatique

Réseaux électriques (16 000 noeuds de transmission en Europe)

Deux problèmes principaux :

Complexité algorithmique → modèles simples (arbres de Markov)

Peu d’échantillons : grande variance → méthodes d’ensemble

Dans cette présentation :

Accélération du bagging d’arbres de Markov : 10 fois plus rapide

Résultats empiriques

F. Schnitzler (ULG) Accélérer le bagging d’arbres de Markov CAP 2012 2 / 18



Un arbre de Markov encode une distribution de probabilités
sur n variables X .
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Pas de cycle, chaque variable a un
seul parent (racine exceptée)

Inférence : O(n)

Apprentissage au maximum de
vraisemblance : O(n2 log n)

PT (X ) = P(A)P(B|A)P(C |B)P(D|B)

Factorisation : produit des densités marginales de chaque variable,
conditionnellement à ses parents dans le graphe.
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Un mélange d’arbres possède certaines propriétés
intéressantes des arbres.

Une forêt est un arbre, moins
quelques arcs :

Un mélange d’arbres est une méthode
d’ensemble :
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Un mélange d’arbres possède certaines propriétés
intéressantes des arbres.

Plusieurs modèles → modélisation
améliorée

Modèles simples → faible complexité :
I inférence : linéaire,
I apprentissage : logquadratique.

Il y a deux types de mélanges :

Réduction du biais
I ex : mélanges de gaussiennes

Réduction de variance
I ex : random forests (classification)
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Le bagging réduit la variance.
moyenne sur m arbres de Markov appris chacun sur un réplicat
bootstrap :
→ présente typiquement une variance plus faible,
→ moins de surapprentissage.

Un réplicat bootstrap D′ d’un ensemble d’apprentissage D est
échantillonné avec remise dans D′.

Complexité : O(mn2 log n)

Exemple : 200 variables et 200 observations (problème synthétique)
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F. Schnitzler (ULG) Accélérer le bagging d’arbres de Markov CAP 2012 5 / 18



Nous développons une approximation pour accélérer le
bagging.
Complexité : O(mn2 log n)

But : accélérer l’apprentissage sans sacrifier la précision.

Motivation : il faut beaucoup d’arbres : le mélange est d’autant
meilleur.

Le terme quadratique vient du nombre d’arcs considérés pour chaque
arbre.

Ti (D′) = arg maxT
∑

(X ,Y )∈E(T ) ID′(X ;Y ) ,
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Approximation : ne considérer qu’un sous-ensemble d’arcs.
Idées :

I premier arbre appris au maximum de vraisemblance sur les données.
I exploiter ce calcul pour obtenir un bon ensemble S d’arcs candidats,

utilisés pour les arbres suivants.
→ les termes du mélange ne sont plus indépendants.
F Seul le sous-ensemble d’arbres (ou forêts) inclus à S est exploré.

Résultat :
I complexité : O(mn2 log n)→ O(n2 log n + m|S| log |S|)
I temps de calcul : un ordre de grandeur plus rapide.
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(X ,Y ) ∈ S
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S doit contenir les arcs dont l’information mutuelle est
élevée.

Des arcs dont l’information mutuelle est faible
I ont peu de chance de faire partie d’un arbre (même si les poids sont

perturbés),
I sont probablement peu significatifs (bruit, ou relation indirecte).
→ Ils peuvent sans doute être ignorés.

Premier arbre :
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Un arc est inclu dans S en fonction d’un test
d’indépendance.

ID(X ;Y ) est comparé à une valeur limite dépendant d’une risque de
première espèce choisi, par exemple α = 0.05.

Similaire à une régularisation :
Tλ
CL(D) = arg maxT

∑
(X ,Y )∈E(T ) ID(X ;Y )− λ|T |

S contient les paires de variables dont l’information mutuelle (sur les
données initiales) est supérieure à la valeur seuil.

Premier arbre :
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Régulariser est un autre moyen de réduire la variance.
Arbre régularisé :

Tλ
CL(D) = arg max

T

∑
(X ,Y )∈E(T )

ID(X ;Y )−λ|T |

λ est ici optimisé sur l’ensemble de test.
→ Meilleure régularisation possible (pour comparaison)
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Ces algorithmes sont évalués sur des problèmes
synthétiques et plus réalistes.

Réseaux synthétiques :

Pour chaque Xi

I nombre de parents aléatoirement choisis dans [0,max(5, i − 1)]
I parents choisis aléatoirement dans {X1, ...,Xi−1}.

- 200 et 1000 variables ; 200, 600 et 1000 observations.

- Validation par estimation Monte-Carlo de la divergence de Kullback-Leibler entre

le modèle réel et le mélange.
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Les deux mélanges ont souvent une précision similaire.

200 échantillons, 200 variables :
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Temps de calcul relatif pour un mélange de 500 arbres (premier arbre : 1) :

Bagging d’arbres : 532

Approximation : 21
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Influence du risque de première espèce α :
200 variables, 200 observations :
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α = 5E−2

α = 5E−4

α = 5E−3

Plus α est petit, plus faible est la variance du premier arbre.
→ Ici, amélioration de la précision.
I Augmentation du biais.

Plus α est grand, plus la convergence est lente, mais meilleure est la
précision.
→ Plus grande diversité dans les arbres.
→ Meilleure réduction de la variance due au mélange.
I Le biais des arbres est également meilleur.
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Problèmes plus réalistes.

8 modèles comptant entre 200 et 801 variables ; 200 et 500
observations :

I 4 distributions classiques (Child10, Insurance10, Alarm10, Hailfinder10)
I 2 modèles ressimulés à partir de données d’expression génétique (Gene,

Lung Cancer)
I 2 systèmes experts (Munin,Pigs)

- Score : log-vraisemblance négative de 5000 observations indépendantes.

α = 0.05 pour l’approximation.
Résumé de la précision de l’approximation par rapport au bagging :

Approximation moins bonne que Bagging : 3 configurations sur 16

Approximation ≈ Bagging : 9/16

Approximation meilleure que Bagging : 4/16
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Exemple où le bagging est meilleur que l’approximation.
Insurance10, 270 variables, 200 observations
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Exemple où la précision des deux mélanges est similaire.

Pigs, 441 variables, 200 observations
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Exemple où l’approximation est meilleure que le bagging.

Hailfinder10, 560 variables, 200 observations
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Conclusions

Nous développons un algorithme pour apprendre un mélange d’arbres
de Markov, avec une précision généralement similaire au bagging
d’arbres, et un temps d’apprentissage plus court.

Il exploite le calcul du premier arbre du mélange pour réduire le
nombre d’arcs évalués pour les arbres suivants.

Les arcs sont sélectionnés sur base d’un test d’indépendance.

Choisir un bon risque de première espèce instance pour le test est
nécessaire.
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Table: Influence d’α sur le nombres d’arcs, moyenne sur 5 densités fois 6
ensembles de données, pour n = 1000 variables et p = 200 observations

Nombres d’arcs (% du total) for α =
Edges 1E−1 5E−2 5E−3 5E−4

T1 998 997.9 993.2 626.8
S 52278(10.5%) 26821(5.36%) 3311(0.66%) 683 (0.13%)



Table: Temps de calcul série minimum

temps relatif minimum pour l’apprentissage
Méthode n=200, m=500 - sauf CL n=1000, m=100 - sauf CL

p=200 p=600 p=1000 p=200 p=600 p=1000

CL 1 3.07 5.3 37 98 174

Bagg. 532 1531 2674 5037 11662 19431
Approx. 21 82 191 139 612 1005



Table: Log-vraisemblance négative (moyenne sur 5 ensembles d’apprentissage)

Distribution n N CL regCL Bagg. Approx.

Alarm10 370 200 166.65 166.65 163.59 166.80
Alarm10 370 500 136.37 136.28 135.31 135.61
Child10 200 200 135.29 135.08 133.94 134
Child10 200 500 131.71 131.71 131.01 131.02
Gene 801 200 485.21 483.6 482.80 482.66
Gene 801 500 477.48 476.75 473.75 473.79
Hailfinder10 560 200 550.85 547.64 551.75 549.89
Hailfinder10 560 500 523.81 523.26 523.61 523.31
Insurance10 270 200 210.1 210.1 206.77 215.23
Insurance10 270 500 198.87 198.87 195.47 202.01
Lung Cancer 800 200 435.72 435.46 437.41 436.01
Lung Cancer 800 500 424.69 424.44 418.31 418.30
Munin 189 200 42.614 36.987 41.799 35.566
Munin 189 500 37.66 35.414 37.656 35.140
Pigs 441 200 390.75 390.75 387.19 387.24
Pigs 441 500 385.59 385.59 382.22 382.26


	What are we trying to do?
	Inference for high-dimensional data
	Mélange d'arbres
	Perturb and Combine : Bagging

	Annexe

