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1. Introduction

• Ingredients :

— Second order semi-parametric models :

{
E(Yt|Xt) = mt(Xt, θ)

V (Yt|Xt) = Ωt(Xt, θ)
, t = 1, 2, ...

⇔{
Yt = mt(Xt, θ) + ut

E(ut|Xt) = 0, V (ut|Xt) = Ωt(Xt, θ)
, t = 1, 2, ...

— Second order PML estimators : a class of estimators which jointly

estimates, through the maximization of a pseudo log-likelihood

function, the mean and variance parameters of the second order

semi-parametric model (ex : gaussian PML)

—Disruptive element : conditional variance misspecification

•Purpose of the paper : to study the behavior of second order PML

estimators under conditional variance misspecification
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2. General set-up

•The observed data are a realization of a (unknown) true DGP Po :

W ≡ {Wt = (Y ′

t , Z
′

t)
′, t = 1, 2, ...}

•Xt denotes some subset of the information set (Zt,Ψt−1), where

Ψt−1 ≡ (Yt−1, Zt−1, ..., Y1, Z1)

⇒ Interest lies in explaining Yt in terms of Xt (Yt ⊂ R
G, Xt ⊂ R

Kt)

• Semi-parametric model S for E(Yt|Xt) and V (Yt|Xt)

S ≡
{

{mt(Xt, θ) : θ ∈ Θθ}
{Ωt(Xt, θ) : θ ∈ Θθ}

, t = 1, 2, ...

•Concepts of correct specification : S is said

(a) first order correctly specified if for some θo ∈ Θθ

mt(Xt, θ
o) = E(Yt|Xt), t = 1, 2, ...

(b) second order correctly specified if for some θo ∈ Θθ

{
mt(Xt, θ

o) = E(Yt|Xt)

Ωt(Xt, θ
o) = V (Yt|Xt)

, t = 1, 2, ...

(c) first order dynamically complete if

E(Yt|Xt) = E(Yt|Xt,Φt−1), t = 1, 2, ...

(d) second order dynamically complete if (c) holds and

V (Yt|Xt) = V (Yt|Xt,Φt−1), t = 1, 2, ...

where Φt−1 ≡ (Yt−1,Xt−1, ..., Y1, X1)
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3. Second order pseudo-maximum likelihood
estimators

•A second order pseudo-maximum likelihood estimator θ̂n of S is de-

fined as a solution of

Maxθ∈Θθ
Ln(Y

n, Xn, θ) ≡ 1

n

n∑
t=1

ln ft (Yt,mt(Xt, θ),Ωt(Xt, θ))

where the p.d.f. ft (Y,m,Σ) are indexed by their mean m and by

their covariance matrix Σ and are “compatible” with S

• λt (., Xt, θ) = ft (.,mt(Xt, θ),Ωt(Xt, θ)) is a conditional density for

Yt givenXt whose the two first conditional moments are by definition

mt(Xt, θ) and Ωt(Xt, θ). The higher conditional moments depend on

ft.

⇒ θ̂n is just a standard ML estimator of a possibly misspecified

parametric model P implicitly defined by S and the sequence {ft}

P ≡ {λt (.,Xt, θ) = ft (.,mt(Xt, θ),Ωt(Xt, θ)) : θ ∈ Θθ} , t = 1, 2, ...

• Further concepts of correct specification : P is said

(a) third order correctly specified if S is second order correct and

Covλo

t
[(vec (YtY

′

t
) , Yt)|Xt] = Cov [(vec (YtY

′

t
) , Yt)|Xt] , t = 1, 2, ...

(b) fourth order correctly specified if P is third order correct and

Vλ
o

t
[vec (YtY

′

t
)|Xt] = V [vec (YtY

′

t
)|Xt] , , t = 1, 2, ...

whereCovλo

t
[.|Xt] and Vλ

o

t
[.|Xt] are taken with respect to λt (Yt, Xt, θ

o)

(c) correctly specified for the conditional density if for some θo ∈ Θθ

λt (., Xt, θ
o) = pt(.|Xt), t = 1, 2, ...
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4. Outline of the addressed questions

We have :

•A unknown true DGP Po

•A second order semi-parametric model S forE(Yt|Xt) and V (Yt|Xt) :

S ≡
{

{mt(Xt, θ) : θ ∈ Θθ}
{Ωt(Xt, θ) : θ ∈ Θθ}

, t = 1, 2, ...

•A class of second order PML estimators for S :

Maxθ∈Θθ
Ln(Y

n, Xn, θ) ≡ 1

n

n∑
t=1

ln ft (Yt,mt(Xt, θ),Ωt(Xt, θ))

⇒Questions :

•Under which conditions does θ̂n provide a consistent estimator of

both mean and variance parameters when S is second order correctly

specified?

•Under which conditions does θ̂n provide a consistent estimator of the

mean parameters when S is first order correctly specified but second

order misspecified?

•Under which conditions does θ̂n provide a consistent estimator of

both mean and variance parameters when S is second order correctly

specified and continue to provide a consistent estimator of the mean

parameters when S first order correctly specified but second order

misspecified?

•What are the limiting distribution properties of such a robust to

conditional variance misspecification estimator ?



6

5. Pseudo-maximum likelihood of order 2
(PML2)

5.1. Quadratic exponential families

•A family of probability measures on R
G indexed bym and Σ is called

quadratic exponential if every element of the family has a p.d.f. which

may be written as

l(Y,m,Σ) = exp (A(m,Σ) +B(Y ) + C(m,Σ)′Y + Y ′D(m,Σ)Y )

where A(m,Σ) and B(Y ) are scalar, C(m,Σ) is a G× 1 vector and

D(m,Σ) is a G×G matrix

•Prominent member : the normal density

A(m,Σ) = −G

2
ln 2π − 1

2
ln |Σ| − 1

2
m′Σ−1m,

B(Y ) = 0, C(m,Σ) = Σ−1m and D(m,Σ) = −1

2
Σ−1

•Key properties :

(a) ∀ m, mo,∀ Σ, Σo, we have

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))

≥ A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

where the equality holds if and only if m = mo and Σ = Σo

(b) ∀ mo, ∀ Σ, Σo such that Σ �= Σo, it may exist m such that

m �= mo and that we have

A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))

< A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))
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5.2. Consistency of PML2 under second order cor-

rect specification

Proposition 1 Under usual regularity conditions,

if • S is second order correctly specified

• ∀ t, ft belongs to the quadratic exponential family

then θ̂n → θo as n → ∞

Proposition 2 (G = 1) Under usual regularity conditions,

if for any Po,

when S is second order correctly specified,

we have, ∀n, θ∗n = Argmaxθ∈Θθ
E (Ln(Y

n,Xn, θ)) = θo

(thus, θ̂n → θo)

then ∀ t, ft belongs to the quadratic exponential family

5.3. Inconsistency of PML2 under first order correct

specification but second order misspecification

Suppose that S is such that mean and variance parameters vary inde-

pendently, i.e., θ =
(
θ′1, θ

′

2

)
′ ∈ Θθ = Θθ1

×Θθ2
and

S ≡
{

{mt(Xt, θ) = mt(Xt, θ1) : θ1 ∈ Θθ1
}

{Ωt(Xt, θ) = Ωt(Xt, θ2) : θ2 ∈ Θθ2
} , t = 1, 2, ...

Proposition 3 Under usual regularity conditions,

if • mean and variance parameters vary independently

• S is first order correctly specified

but second order misspecified

• ∀ t, ft belongs to the quadratic exponential family

then we may have ∀n, θ∗n = Argmaxθ∈Θθ
E (Ln(Y

n,Xn, θ)) �= (
θo′1 , θ

∗′

2n

)
′

(thus, we may have θ̂1n � θo
1
)
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6. Robust pseudo-maximum likelihood of or-
der 2 (R1PML2 and RPML2)

6.1. Restricted generalized linear exponential fami-

lies

•A family of probability measures on R
G indexed bym and Σ is called

restricted generalized linear exponential if every element of the family

has a p.d.f. which may be written as

l(Y,m,Σ) = exp (A(m,Σ) + B(Σ, Y ) + C(m,Σ)′Y )

where A(m,Σ) and B(Σ, Y ) are scalar, C(m,Σ) is a G× 1 vector

•The normal density belongs to the family

•This family does not contain the quadratic exponential family

l(Y,m,Σ) = exp (A(m,Σ) +B(Y ) + C(m,Σ)′Y + Y ′D(m,Σ)Y )

but is a special case of the generalized linear exponential family

l(Y,m, η) = exp(A(m, η) + B(η, Y ) + C(m, η)′Y )

•Key property :

∀ m, mo,∀ Σ, we have

A(mo,Σ) + C(mo,Σ)
′mo

≥ A(m,Σ) + C(m,Σ)′mo

where the equality holds, ∀ Σ, if and only if m = mo
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6.2. Consistency of R1PML2 under first order cor-

rect specification but possible second order mis-

specification

Suppose that S is such that θ =
(
θ′

1
, θ′

2

)
′ ∈ Θθ = Θθ1

×Θθ2
and

S ≡
{

{mt(Xt, θ) = mt(Xt, θ1) : θ1 ∈ Θθ1
}

{Ωt(Xt, θ) = Ωt(Xt, θ2) : θ2 ∈ Θθ2
} , t = 1, 2, ...

Proposition 5 Under usual regularity conditions,

if • mean and variance parameters vary independently

• S is first order correctly specified

• ∀ t, ft belongs to the restricted generalized linear exponential family

then θ̂1n → θo
1
and θ̂2n − θ∗2n → 0 as n → ∞

where θ∗2n = Argmaxθ2∈Θθ2

1

n

n∑
t=1

E [ln ft (Yt,mt(Xt, θ
o

1),Ωt(Xt, θ2))]

Suppose that S is such that θ =
(
θ′1, θ

′

2

)
′ ∈ Θθ = Θθ1

×Θθ2
and

S ≡
{

{mt(Xt, θ) = mt(Xt, θ1) : θ1 ∈ Θθ1
}

{Ωt(Xt, θ) = Ωt(Xt, θ1, θ2) : θ1 ∈ Θθ1
, θ2 ∈ Θθ2

} , t = 1, 2, ...

Proposition 6 Under usual regularity conditions and S as given above,

if for any Po,

when S is first order correctly specified

we have, ∀n, θ∗n = Argmaxθ∈Θθ
E (Ln(Y

n,Xn, θ1, θ2)) = (θo′1 , θ
∗′

2n
)′

(thus, θ̂1n → θo1 and θ̂2n − θ∗2n → 0)

then • ∀ t, ft belongs to the restricted generalized linear exponential family

• ∀ t, Ωt(Xt, θ1, θ2) does not depend on θ1.

(thus, mean and variance parameters vary independently)



10

6.3. Restricted quadratic exponential families

•A family of probability measures on R
G indexed bym and Σ is called

restricted quadratic exponential if every element of the family has a

p.d.f. which may be written as

l(Y,m,Σ) = exp (A(m,Σ) + B(Y ) + C(m,Σ)′Y + Y ′D(Σ)Y )

where A(m,Σ) and B(Y ) are scalar, C(m,Σ) is a G× 1 vector and

D(Σ) is a G×G matrix

•The normal density belongs to the family.

•This family is a special case of the quadratic exponential family

l(Y,m,Σ) = exp (A(m,Σ) +B(Y ) + C(m,Σ)′Y + Y ′D(m,Σ)Y )

and of the restricted generalized linear exponential family

l(Y,m,Σ) = exp (A(m,Σ) + B(Σ, Y ) + C(m,Σ)′Y )

•Key properties :

(a) ∀ m, mo,∀ Σ, Σo, we have

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(Σo)(Σo +mom

′

o))

≥ A(m,Σ) + C(m,Σ)′mo + tr (D(Σ)(Σo +mom
′

o))

where the equality holds if and only if m = mo and Σ = Σo

(b) ∀ m, mo,∀ Σ, we have

A(mo,Σ) + C(mo,Σ)
′mo

≥ A(m,Σ) + C(m,Σ)′mo

where the equality holds, ∀ Σ, if and only if m = mo
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6.4. Consistency of RPML2 under first order cor-

rect specification but possible second order mis-

specification

Suppose that S is such that θ =
(
θ′

1
, θ′

2

)
′ ∈ Θθ = Θθ1

×Θθ2
and

S ≡
{

{mt(Xt, θ) = mt(Xt, θ1) : θ1 ∈ Θθ1
}

{Ωt(Xt, θ) = Ωt(Xt, θ2) : θ2 ∈ Θθ2
} , t = 1, 2, ...

Proposition 7 Under usual regularity conditions,

if • mean and variance parameters vary independently

• S is first order correctly specified

• ∀ t, ft belongs to the restricted quadratic exponential family

then θ̂1n → θo
1
and θ̂2n − θ∗

2
n

→ 0 as n → ∞

if, in addition, S is second order correctly specified

then θ̂1
n
→ θo

1
and θ̂2

n
→ θo

2
as n → ∞

Suppose that S is such that θ =
(
θ′

1
, θ′

2

)
′ ∈ Θθ = Θθ1

×Θθ2
and

S ≡
{

{mt(Xt, θ) = mt(Xt, θ1) : θ1 ∈ Θθ1
}

{Ωt(Xt, θ) = Ωt(Xt, θ1, θ2) : θ1 ∈ Θθ1
, θ2 ∈ Θθ2

} , t = 1, 2, ...

Proposition 8 (G = 1) Under usual regularity conditions and S as

given above,

if for any Po,

when S is first order correctly specified

we have, ∀n, θ∗n = Argmaxθ∈Θθ
E (Ln(Y

n,Xn, θ1, θ2)) = (θo′1 , θ
∗′

2n
)′

(thus, θ̂1n → θo1 and θ̂2n − θ∗2n → 0)
and, when S is in addition second order correctly specified

we have, ∀n, θ∗n = Argmaxθ∈Θθ
E (Ln(Y

n,Xn, θ1, θ2)) = (θo′1 , θ
o′

2 )
′

(thus, θ̂1n → θo1 and θ̂2n → θo2)

then • ∀ t, ft belongs to the restricted quadratic exponential family

• ∀ t, Ωt(Xt, θ1, θ2) does not depend on θ1.

(thus, mean and variance parameters vary independently)
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7. Limiting distribution of RPML2

Proposition 9 Under usual regularity conditions,

θ̂n − θ∗n → 0 as n → ∞
and √

n
(
θ̂n − θ∗n

)
≈ N(0, C∗

n), C∗

n = A∗−1

n B∗

nA
∗−1

n

whereA∗

n =E
(

∂2

∂θ∂θ′Ln(Y
n, Xn, θ∗

n)
)
andB∗

n = V
(
n1/2 ∂

∂θLn(Y
n,Xn, θ∗

n)
)

Prominent results (Prop. 10-12) Under usual regularity conditions,

if • ∀ t, ft belongs to the restricted quadratic exponential family

• mean and variance parameters vary independently

• S is first order correctly specified

then ∀n, θ∗

n =
(
θo′
1
, θ∗′

2n

)
′

, A∗

n12
= A∗′

n21
= E

[
∂2

∂θ1∂θ
′

2

Ln(Y
n,Xn, θ∗n)

]
= 0

such that C∗

n =

[
C∗

n11
C∗

n12

C∗′

n12
C∗

n22

]
=

[
A∗

−1

n11
B∗

n11
A∗

−1

n11
A∗

−1

n11
B∗

n12
A∗

−1

n22

A∗
−1

n22
B∗′

n12
A∗

−1

n11
A∗

−1

n22
B∗

n22
A∗

−1

n22

]

where B∗

nij
= 1

n

n∑
t=1

E
[
si∗t s

j∗′
t

]
+ 1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
si∗t s

j∗′
t−τ

]
+ E

[
si∗t−τs

j∗′
t

])

if, in addition, S is first order dynamically complete

then C∗

n11
= C

∗

n11
= A∗

−1

n11
B

∗

n11
A∗

−1

n11
, where B

∗

n11
= 1

n

n∑
t=1

E
[
s1∗
t
s1∗′
t

]

if, in addition, S is second order correctly specified

then ∀n, θ∗

n
=

(
θo′
1
, θo′

2

)
′

, C∗

n11
= C̄

o

n11
= −Ao

−1

n11

and we have C
∗

n11
− C̄

o

n11
 0

i.e, C̄
o

n11
is the minimum asymptotic covariance matrix of a RPML2

mean parameters estimator of a semi-parametric model S first order

correctly specified and first order dynamically complete
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if, in addition, S is second order dynamically complete

then C∗

n12
= C

o

n12
= Ao

−1

n11
B

o

n12
Ao

−1

n22
, where B

o

n12
= 1

n

n∑
t=1

E
[
s1o
t
s2o′
t

]
C∗

n22
= C

o

n22
= Ao

−1

n22
B

o

n22
Ao

−1

n22
, where B

o

n22
= 1

n

n∑
t=1

E
[
s2o
t
s2o′
t

]

if, in addition, P is third order correctly specified

then C∗

n12
= C̄

o

n12
= 0

if, in addition, P is fourth order correctly specified

then C∗

n22
= C̄

o

n22
= −Ao

−1

n22

and we have C
o

n
− C̄

o

n
 0

i.e., C̄
o

n
is the minimum asymptotic covariance matrix of a RPML2 es-

timator of a semi-parametric model S second order correctly specified

and second order dynamically complete

Proposition 13 Under usual regularity conditions,

if • ∀ t, ft belongs to the restricted quadratic exponential family

• mean and variance parameters vary independently

• S is first order correctly specified

• the observations are independent across t

then ∀n, θ∗

n
=

(
θo′
1
, θ∗′

2n

)
′

C∗

n11
= C

∗

n11
= A∗

−1

n11
B

∗

n11
A∗

−1

n11
, where B

∗

n11
= 1

n

n∑
t=1

E
[
s1∗
t
s1∗′
t

]
C∗

n12
= C

∗

n12
= A∗

−1

n11
B

∗

n12
A∗

−1

n22
, where B

∗

n12
= 1

n

n∑
t=1

E
[
s1∗
t
s2∗′
t

]
C∗

n22
� Q

∗

n22
= A∗

−1

n22
B

∗

n22
A∗

−1

n22
, where B

∗

n22
= 1

n

n∑
t=1

E
[
s2∗
t
s2∗′
t

]


