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In the Chomsky’s hierarchy, the simplest models of computation
are finite automata accepting regular languages.
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100100, 1000, 1000100, 0000001, . . .



With this model in mind, what is a “simple” set of integers ?

DEFINITION

A set X ⊂ N is k-recognizable, if the set of base k expansions of
the elements in X is accepted by some finite automaton, i.e.,
repk(X) is a regular language.

Much “simpler” than a recursive set of integers for which there
is an algorithm that decides whether or not a given number
belongs to the set.



SOME EXAMPLES

A 2-RECOGNIZABLE SET

X = {n ∈ N | ∃i, j ≥ 0 : n = 2i + 2j} ∪ {1}

A B C D

0 0 0 0,1

1 1 1

X = {1,2,3,4,5,6,8,9,10,12, 16,17,18, 20, 24, . . .}
rep2(X) = {1,10,11,100,101,110,1000,1001, 1010, 1100, . . .}



SOME EXAMPLES

◮ The set of even integers is 2-recognizable.
◮ The Prouhet–Thue–Morse set is 2-recognizable,

X = {n ∈ N | s2(n) ≡ 0 mod 2}

1

1

0 0

X = {0,3,5,6,9,10,12,15,17, 18, . . .}
rep2(X) = {ε,11,101,110,1001,1010,1100, 1111,10001, 10010, . . .}

◮ The set of powers of 2 is 2-recognizable.



MORE EXAMPLES

Let X = {x0 < x1 < x2 < · · · } ⊆ N. Define

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞
(xi+1 − xi).

GAP THEOREM (COBHAM ’72)

Let k ≥ 2. If X ⊆ N is a k-recognizable infinite subset of N,
then either RX > 1 or DX < +∞.

A. Cobham, Uniform tag, Theory Comput. Syst. 6, (1972), 164–192.

COROLLARY

Let k, t ≥ 2 be integers.
The set {nt | n ≥ 0} is NOT k-recognizable.

S. Eilenberg, Automata, Languages, and Machines, 1974.



MORE EXAMPLES

M INSKY–PAPERT 1966

The set P of prime numbers is not k-recognizable.

A proof using the gap theorem :
Since n! + 2, . . . , n! + n are composite numbers, DP = +∞
Since pn ∈ (n ln n, n ln n + n ln ln n), RP = 1
E. Bach, J. Shallit, Algorithmic number theory, MIT Press

M.-P. SCHÜTZENBERGER(1968)

No infinite subset of P can be recognized by a finite automaton.



BASE SENSITIVITY

Is this notion of recognizability base dependent ?

◮ Is the set of even integers 3-recognizable ? (exercise)
◮ Is the set of powers of 2 also 3-recognizable ?

2,11,22,121,1012, 2101,11202, 100111, 200222,1101221,

2210212,12121201, 102020102,211110211, 1122221122, 10022220021,

20122210112,111022121001,222122012002,1222021101011, . . .



BASE SENSITIVITY

Two integers k, ℓ ≥ 2 are multiplicatively independent
if km = ℓn ⇒ m = n = 0, i.e., if logk/ log ℓ is irrational.

COBHAM ’ S THEOREM (1969)

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is ultimately periodic,
i.e., X is a finite union of arithmetic progressions.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS’94.

F. Durand, M. Rigo, On Cobham’s theorem, to appear in Handbook of Automata.

TOOL (KRONECKER’ S THEOREM)

Let θ be an irrational number.
The sequence ({nθ})n≥0 is dense in [0,1).



BASE SENSITIVITY

S. Eilenberg (p. 104): “The proof is correct, long and hard. It is
a challenge to find a more reasonable proof of this fine
theorem”

The easy part, e.g., conversion between base 2 and base 4,

00 0
01 1
10 2
11 3

◮ such a transformation preserves regularity
◮ L is regular IFF 0∗L is regular



BASE SENSITIVITY

Some consequences of Cobham’s theorem from 1969:

◮ k-recognizable sets are easy to describe but non-trivial,
◮ motivates characterizations of k-recognizability,
◮ motivates the study of “exotic” numeration systems,
◮ generalizations of Cobham’s result to various contexts:

multidimensional setting, logical framework, extension to
Pisot systems, substitutive systems, fractals and tilings,
simpler proofs, . . .

B. Adamczewski, J. Bell, G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès,
J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, M.-I. Cortez, . . .



BASE SENSITIVITY

There are three kinds of sets:
◮ Ultimately periodic sets are recognizable in all bases,
◮ Sets that are k-recognizable for some k, and only

km-recognizable, m ≥ 1,
◮ Sets that are not k-recognizable.

27
81

3
9

...

5
25
125
625
...

6
36
216
1296
...

7
49
...

10
100
1000
...

2
4
8
16
32
...

multiplicative dependence is trivially an equivalence relation.



LOGICAL CHARACTERIZATION

BÜCHI–BRUYÈRE THEOREM

A set X ⊂ Nd is k-recognizable IFF it is definable by a first order
formula in the extended Presburger arithmetic 〈N,+,Vk〉.

Vk(n) is the largest power of k dividing n ≥ 1, Vk(0) = 1.

ϕ1(x) ≡ V2(x) = x

ϕ2(x) ≡ (∃y)(V2(y) = y) ∧ (∃z)(V2(z) = z) ∧ x = y + z

ϕ3(x) ≡ (∃y)(x = y + y + y + y + 3)

from formula to automata from automata to formula...

RESTATEMENT OFCOBHAM ’ S THM.

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is definable in 〈N,+〉.



LOGICAL CHARACTERIZATION

Applications to decision problems and, in computer science, to
model-checking and formal verification.

THEOREM (BRUYÈRE 1985)

The theory 〈N,+,Vk〉 is decidable.

EXAMPLE

Let X be a k-recognizable set of integers.
Decide whether or not X is ultimately periodic ?

Let ϕ(x) be a formula such that a ∈ X IFF ϕ(a) holds true.
Consider the sentence

(∃p)(∃i)(∀a ≥ i)(ϕ(a) ⇔ ϕ(a + p)).



MORPHIC CHARACTERIZATION

THEOREM (COBHAM 1972)

An infinite word x is morphic and generated by a k-uniform
morphism + coding IFF x is k-automatic, i.e., ∀n ≥ 0, xn is
generated by an automaton reading repk(n).

f : A 7→ AB, B 7→ BC, C 7→ CD, D 7→ DD

fω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·

A B C D

0 0 0 0,1

1 1 1



MORPHIC CHARACTERIZATION

COROLLARY

A set X ⊆ N is k-recognizable IFF its characteristic sequence is
k-automatic.

Link with combinatorics on words

f (0) = 01, f (1) = 10

fω(0) = 01101001100101101001011001101001· · ·

A. THUE (1912)

The Thue–Morse word is overlap free.



MORPHIC CHARACTERIZATION

The k-kernel of x = (xn)n≥0 is defined by

Nk(x) = {(xken+d)n≥0 | e ≥ 0, 0≤ d < ke}

S. EILENBERG (1974)

A sequence x = (xn)n≥0 is k-automatic IFF Nk(x) is finite.

DEFINITION (J.-P. ALLOUCHE, J. SHALLIT 1992)

Let R be a (possibly infinite) commutative ring. Let
x = (xn)n≥0 ∈ RN. If the R-module generated by all sequences in
Nk(x) is finitely generated then x is said to be (R, k)-regular.

J.-P. Allouche, J. Shallit, The ring of k-regular sequences, TCS 98, 163–197.



MORPHIC CHARACTERIZATION

A SEQUENCE OFC. MALLOWS

There is a unique monotone sequence (a(n))n≥0 of
non-negative integers such that a(a(n)) = 2n for all n 6= 1,

n 0 1 2 3 4 5 6 7 8 9 10 11 12
a(n) 0 1 3 4 6 7 8 10 12 13 14 15 16

This sequence (a(n))n≥0 is (Z,2)-regular.
J.-P. Allouche, J. Shallit, The ring of k-regular sequences II.

J. BELL (2005)

Let R be a commutative ring. Let k, ℓ be two multiplicatively
independent integers. If a sequence x ∈ RN is both
(R, k)-regular and (R, ℓ)-regular, then it satisfies a linear
recurrence over R.



NON-STANDARD NUMERATION SYSTEMS

DEFINITION

Consider an increasing sequence (Un)n≥0 of integers such that
◮ U0 = 1

◮ supUn+1/Un is bounded

Any integer n can be written as

n =

ℓ
∑

i=0

ci Ui, ci > 0.

We choose the greedy representation: repU(n) = cℓ · · · c0.

A. Fraenkel, Systems of numeration, Amer. Math. Monthly, 1985

M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press 2002, Chap. by Ch. Frougny

Combinatorics, Automata and Number Theory, V. Berthé, M. Rigo (Eds.), Cambridge Univ. Press 2010, Chap. 2& 3



NON-STANDARD NUMERATION SYSTEMS

canonical alphabet AU = {0, . . . , ⌈maxUn+1/Un⌉ − 1}
repU : N→ A∗

U

for any alphabet B ⊂ Z, valU : B∗ → Z

valU(dℓ · · · d0) =

ℓ
∑

i=0

di Ui.

REMARK

We have positional numeration systems.



NON-STANDARD NUMERATION SYSTEMS

FIBONACCI (ZECKENDORF 1972)

repF(11) = 10100but valF(10100) = valF(10011) = valF(1111)
U0 = 1, U1 = 2 and Un+2 = Un+1 + Un.

E. Zeckendorf, Bull. Soc. Roy. Sci. Liège 41, 179–182.

. . . ,610,377,233,144,89, 55,34,21, 13,8, 5, 3, 2,1

1 1 8 10000 15 100010
2 10 9 10001 16 100100
3 100 10 10010 17 100101
4 101 11 10100 18 101000
5 1000 12 10101 19 101001
6 1001 13 100000 20 101010
7 1010 14 100001 21 1000000



NON-STANDARD NUMERATION SYSTEMS

Can we extend Cobham’s theorem on recognizability into two
integer base systems to non-standard numeration systems ?

DEFINITION

A set X ⊂ N is U-recognizable, if the set of greedy expansions
of the elements of X is accepted by some finite automaton, i.e.,
repU(X) is a regular language.

If X ⊂ N is U-rec. and V-rec., U and V being “sufficiently
independent”, does it imply that X is ultimately periodic ?

We can also study the U-recognizable sets of integers for
themselves !



NON-STANDARD NUMERATION SYSTEMS

It is natural to ask whether or not repU(N) is regular...
check with a DFA if a word over AU is a valid representation ?

OBSERVATION (G. HANSEL, J. SHALLIT , ...)

If N is U-recognizable, then (Un)n≥0 satisfies a linear recurrence
relation with (constant) integer coefficients.

repU(Uℓ) = 10ℓ for all ℓ ≥ 0. Amongst the words of length ℓ+1 in
repU(N), the smallest one for the genealogical ordering is 10ℓ.

Consequently, Uℓ+1− Uℓ = #(repU(N) ∩ Aℓ+1).

Since repU(N) is regular, it is accepted by a DFA and the
number of words of length n in repU(N) is equal to the number
of paths of length n from the initial state to the final ones
(then use Cayley-Hamilton theorem).



NON-STANDARD NUMERATION SYSTEMS

N being U-recognizable is somehow a minimal requirement,

PROPOSITION

Let p, r ≥ 0. If (Un)n≥0 is a numeration system satisfying a linear
recurrence relation with integer coefficients, then

val−1
AU ,U

(pN + r) =

{

cℓ · · · c0 ∈ A∗
U |

ℓ
∑

k=0

ck Uk ∈ pN + r

}

is accepted by a DFA that can be effectively constructed.

COROLLARY

If N is U-recognizable, then any utimately periodic set is
U-recognizable.



NON-STANDARD NUMERATION SYSTEMS

Satisfying a linear recurrence is not enough...

COUNTER-EXAMPLE (SHALLIT 1994)

Take (Un)n≥0 defined by Un = (n + 1)2.
We have U0 = 1, U1 = 4, U2 = 9 and
Un+3 = 3Un+2− 3Un+1 + Un. In that case,

repU(N) ∩ 10∗10∗ = {10a10b | b2 < 2a + 4}

showing with the pumping lemma that N is not U-recognizable.

N. Loraud, β-shift, systèmes de numération et automates, JTNB 7 (1995), 473-–498.
M. Hollander, Greedy numeration systems and regularity, Theory Comput. Systems 31 (1998), 111–133.



PISOT NUMERATION SYSTEMS

DEFINITION

Consider a linear numeration system such that the
characteristic polynomial of (Un)n≥0 is the minimal polynomial
of a Pisot number (i.e., an algebraic integer α > 1 whose Galois
conjugates have modulus less than 1).

V. Bruyère, G. Hansel, Bertrand numeration systems and recognizability, TCS 181 (1997).

lim
n→∞

Un

cαn = 1.

For these systems, all the “nice” properties hold true
◮ repU(N) is regular (for any reasonable initial conditions),
◮ for a precise choice of intial conditions, we have

a Bertrand system (i.e., v ∈ repU(N)⇔ v0 ∈ repU(N)),
◮ normalization is computable by some finite automaton,
◮ the logical characterization can be extended,
◮ the morphic characterization too.



PISOT NUMERATION SYSTEMS

A link with the expansions of real numbers
L(β) is the set of factors in some sequences dβ(x), x ∈ [0,1]

greedy β-expansion dβ(x) = x1x2 · · · , x =

+∞
∑

i=1

xiβ
−i

A. BERTRAND (1989)

Let U be a numeration system. It is a Bertrand system if and
only if there exists a real number β > 1 such that

repU(N) = L(β).

In this case, if U is linear, then β is a root of the characteristic
polynomial of U.



PISOT NUMERATION SYSTEMS

Dβ is the set of greedy β-expansions of numbers of [0,1).

W. PARRY (1960)

Let β > 1 and let s be an infinite sequence of non-negative
integers. The sequence s belongs to Dβ IFF

∀k ≥ 0, σk(s) <lex d∗β(1)

and s belongs to Sβ , i.e., closure of Dβ, IFF

∀k ≥ 0, σk(s) ≤lex d∗β(1).

Parry, W. On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung. 11, (1960) 401-–416.



PISOT NUMERATION SYSTEMS

A. BERTRAND (1986)

Let β > 1 be a real number. The language L(β) is regular if and
only if β is a Parry number.

COROLLARY

The DFA accepting repU(N) has a very special form.

The β-shift Sβ is a dynamical system which is
◮ sofic IFF dβ(1) is ultimately periodic,
◮ of finite type IFF dβ(1) is finite.

Ito and Takahashi (1974), Bertrand-Mathis (1986), Blanchard (1989)



PISOT NUMERATION SYSTEMS

Integer base systems are special case of Pisot systems.

FIBONACCI

Un+2 = Un+1 + Un with U0 = 1 and U1 = 2

P(X) = X2− X − 1 has roots 1+
√

5
2 , 1−

√
5

2

◮ dβ(1) = 11, repU(N) is regular (no block 11)

0

1

0

◮ we have a Bertrand system
(i.e., v ∈ repU(N)⇔ v0 ∈ repU(N)),



PISOT NUMERATION SYSTEMS

(MODIFIED) FIBONACCI

Un+2 = Un+1 + Un with the inital conditions U0 = 1, U1 = 3

(Un)n≥0 = 1,3,4,7,11,18,29,47, . . .

1 2

3

0

1

2
0



PISOT NUMERATION SYSTEMS

Normalization νU : B∗ → A∗
U seems to be an essential tool,

B ⊂ Z, if valU(w) ≥ 0, then νU(w) = repU(valU(w)).
Example for Fibonacci

νF : 11011 7→ 100100, 11100 7→ 100100, . . . , 22 7→ 1001

THEOREM (CH. FROUGNY 1992)

For any given alphabet B, for a Pisot system U, νU is realisable
by a finite letter-to-letter transducer

COROLLARY

Addition is a U-recognizable ternary relation.

Ch. Frougny, Representations of numbers and finite automata, Math. Systems Theory 25, (1992) 37—60.

Ch. Frougny, J. Sakarovitch, Number representation and finite automata, CANT Ch. 2, Cambridge Univ. Press

(2010).



PISOT NUMERATION SYSTEMS

Logical characterization

BÜCHI–BRUYÈRE–HANSEL THEOREM

A set X ⊂ N is U-recognizable IFF it is definable by a first order
formula in the extended Presburger arithmetic 〈N,+,VU〉.

VU(n) is the smallest Ui occurring in repU(n) with a non-zero
coefficient.



WHAT ABOUT A MULTIDIMENSIONAL CONTEXT ?

Everything works fine !

◮ automata reading n-tuples (with leading zeroes),
◮ morphisms with images being n-cubes of size k,
◮ logical characterization in 〈N,+,Vk〉,
◮ extension to Cobham–Semenov’ theorem

COBHAM–SEMENOV’ THEOREM

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set Xn ⊆ N is k-rec. AND ℓ-rec. IFF X is definable in 〈N,+〉.



WHAT ABOUT A MULTIDIMENSIONAL CONTEXT ?



WHAT ABOUT A MULTIDIMENSIONAL CONTEXT ?

Looking at Cobham–Semenov’ theorem, the right extension of
ultimate periodicity over N could be definability in 〈N,+〉

cf. local periodicity and Muchnik criterion
A. A. Muchnik, The definable criterion for definability in Presburger arithmetic and its applications, Theoret. Comput.

Sci 290 (2003) 1433–1444.



SUMMARY

So far, we have seen
◮ integer base systems and recognizable sets
◮ Pisot numeration systems and recognizable sets

P. Lecomte (1997): “everyone is taking an increasing sequence
of integers then look at the regularity of repU(N).
We could proceed the other way round and start directly by
taking a regular language!”

REMARK

For positional numeration systems, repU is an increasing map:

x < y⇔ repU(x) < repU(y).



ABSTRACT NUMERATION SYSTEMS

DEFINITION ANS (P. LECOMTE, M.R. 2001)

An abstract numeration system S = (L,A, <) is a regular
language L over a totally ordered finite alphabet (A, <).

Numeration systems on a regular language, Theory Comput. Syst. 34 (2001), 27-–44.

◮ Enumerating the words in L using genealogical ordering
provides a one-to-one correspondance between N and L :

repS : N→ L, valS : L→ N.

◮ This generalizes any positional system U for which N is
U-recognizable.

DEFINITION

A set X ⊆ N is S-recognizable, if repS(X) is regular.



ABSTRACT NUMERATION SYSTEMS

Example : consider a prefix-closed language L = {b, ε}{a, ab}∗

0

1 2

3 4 5

6 7 8 9 10

a b

a b a

a b a a b



ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗
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ABSTRACT NUMERATION SYSTEMS
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ABSTRACT NUMERATION SYSTEMS
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

#b

#a



ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

#b

#a



ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗
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ABSTRACT NUMERATION SYSTEMS

A non-positional ANS L = a∗b∗

valS(a
pbq) =

1
2
(p + q)(p + q + 1) + q =

(

p + q + 1
2

)

+

(

q
1

)

ε a b aa ab bb aaa · · ·
0 1 2 3 4 5 6 · · ·

U0 = 1, U1 = 2, p(a) = 1, p(b) = 2

Generalization : valℓ(a
n1
1 · · · a

nℓ
ℓ
) =

ℓ
∑

i=1

(

ni + · · ·+ nℓ + ℓ− i
ℓ− i + 1

)

.

∀n ∈ N,∃z1, . . . , zℓ : n =

(

zℓ
ℓ

)

+

(

zℓ−1

ℓ− 1

)

+ · · ·+
(

z1

1

)

with the condition zℓ > zℓ−1 > · · · > z1 ≥ 0
[Katona, Gel’fand, Lehmer, Fraenkel, Lew, Morales, . . . ]



ABSTRACT NUMERATION SYSTEMS

val(apbq) modulo 8



ABSTRACT NUMERATION SYSTEMS

THEOREM [P. LECOMTE, M.R.]

Let S be an ANS. Any ultimately periodic set of intergers is
S-recognizable.

EQUIVALENT FORMULATION [D. KRIEGER et al. TCS’09]

Let L be a regular language. Any “periodic decimation” of L is a
regular language.

In general, this result does not hold for context-free languages.



ABSTRACT NUMERATION SYSTEMS

Another example, an unambiguous positional system
L = {1,2}∗

0 ε
1 1
2 2
3 11
4 12
5 21
6 22
7 111
8 112
9 121

10 122
...

...



ABSTRACT NUMERATION SYSTEMS

LEMMA

valS(w) =
∑

q∈Q

|w|
∑

i=1

bq,i(w)uq(|w| − i)

with

bq,i(w) := #{a < wi | q0 · w1 · · ·wi−1a = q}+ 1q0,q

and
uq(n) = #{v ∈ An | q · v ∈ F}.

vq(n) = #{v ∈ A≤n | q · v ∈ F} =
n

∑

i=0

uq(i).



ABSTRACT NUMERATION SYSTEMS

Let S = (L,A, <) an ANS.

1 2 3

a

b

b

a

a, b

L1 L2 L3

0 ε ε −−
1 a b −−
2 b bb −−
3 aa bbb −−
4 ab bbbb −−
5 bb bbbbb −−

If xy belongs to Lq, y 6= ε, then

valq(xy) = valq·x(y) + vq(|xy| − 1)− vq·x(|y| − 1) +
∑

w<x
|w|=|x|

uq·w(|y|).



ABSTRACT NUMERATION SYSTEMS

If xy belongs to Lq, y 6= ε, then

valq(xy) = valq·x(y) + vq(|xy| − 1)− vq·x(|y| − 1) +
∑

w<x
|w|=|x|

uq·w(|y|).

x y
x

x

qL

L q.x

y

w

2

3
1

4



MANY NATURAL QUESTIONS. . .

◮ What about S-recognizable sets ?
◮ Are ultimately periodic sets S-recognizable for any S ?
◮ For a given X ⊆ N, can we find S s.t. X is S-recognizable ?
◮ For a given S, what are the S-recognizable sets ?

◮ Can we compute “easily” in these systems ?
◮ Addition, multiplication by a constant, . . .

◮ Are these systems equivalent to something else ?
◮ Any hope for a Cobham’s theorem ?
◮ Can we also represent real numbers ?
◮ Number theoretic problems like additive functions ?
◮ Dynamics, odometer, tilings, logic. . .



Recall that the set of squares is never recognizable in any
integer base system.

EXAMPLE

Let L = a∗b∗ ∪ a∗c∗, a < b < c.

0 1 2 3 4 5 6 7 8 9 · · ·
ε a b c aa ab ac bb cc aaa · · ·

FOLKLORE

Il L is a regular language, then the set min(L) of minimal words
of each length is again regular.



THEOREM (M.R. 2002)

Let Pi be polynomials belonging to Q[x] such that Pi(N) ⊂ N

and αi be non-negative integers, i = 1, . . . , k, k ≥ 1. Set

f (n) =
k

∑

i=1

Pi(n)α
n
i .

There exists an ANS S such that f (N) is S-recognizable.

DEFINITION OF GROWTH RATE

Let A = (Q, q0,F,Σ, δ)

uq0(n) = #(L ∩ Σn).

See also, E. Charlier, N. Rampersad, The growth function of
S-recognizable sets, Theoret. Comput. Sci. 412 (2011),
5400–5408.



THEOREM (P. LECOMTE, M.R. 2001)

Let S = (a∗b∗, a < b). Multiplication by λ ∈ N>0 preserves
S-recognizability, i.e., for all S-recognizable set X ⊆ N, λX is
S-recognizable, IFF λ is an odd square.

THEOREM (“M ULTIPLICATION BY A CONSTANT”)
slender language uq0(n) ∈ O(1) OK

polynomial language uq0(n) ∈ O(nk) NOT OK
exponential language

with polynomial complement uq0(n) ∈ 2Ω(n) NOT OK
exponential language

with exponential complement uq0(n) ∈ 2Ω(n) OK ?

M. R., Numeration systems on a regular language : Arithmetic operations, Recognizability and Formal power series,

Theoret. Comp. Sci. 269 (2001), 469–498.



The successor function can be computed by means of finite
automata: It is realized by a (left or right) letter-to-letter finite
transducer

THEOREM (P.-Y. ANGRAND, J. SAKAROVITCH 2010)

The radix enumeration of a rational language is a finite union of
co-sequential functions.

A cascade of (at most 2) sequential (right) transducers, that is,
a first transducer reads the input and produces an output which
is then taken as the input of second transducer which depends
on the final state in the computation of the first one.

P.-Y. Angrand, J. Sakarovitch, Radix enumeration of rational languages, RAIRO - Theoret. Informatics and Appl. 44

(2010) 19–36.



MORPHIC WORDS

DEFINITION

Let f : Σ→ Σ∗ and g : Σ→ Γ∗ be to morphisms such that
f (a) ∈ aΣ+. We define a morphic word (a.k.a. substitutive) over
Γ,

w = g( lim
n→∞

f n(a)) = g(fω(a)).

We can assume f non-erasing and g is a coding.

EXAMPLE (CHARACTERISTIC SEQUENCE OF SQUARES)

f : a 7→ abcd, b 7→ b, c 7→ cdd, d 7→ d, g : a, b 7→ 1, c, d 7→ 0.

fω(a) = abcdbcdddbcdddddbcdddddddbc · · ·

g(fω(a)) = 110010000100000010000000010· · ·



MORPHIC WORDS

What is the link between morphic words and ANS ?

RECALL THIS RESULT (COBHAM 1972)

An infinite word x is morphic and generated by a k-uniform
morphism + coding IFF x is k-automatic, i.e., ∀n ≥ 0, xn is
generated by an automaton reading repk(n).

We can introduce S-automatic sequences...



MORPHIC WORDS

DEFINITION

Let S = (L,Σ, <) be an ANS andM = (Q, q0,Σ, δ,Γ, τ) be a
DFAO. Consider the S-automatic sequence

xn = τ(δ(q0, (repS(n))))

EXAMPLE

S = (a∗b∗, {a, b}, a < b)

a

10 2 3
a a a

b b

b
b

01023031200231010123023031203120231002310123· · ·



MORPHIC WORDS

Extension of Cobham’s result

THEOREM (A. M AES, M.R. 2002)

An infinite word x is morphic IFF there exists some ANS S such
that x is a S-automatic.

The set of S-automatic sequences (for all S) coincides with the
set of morphic words.

REMARK

A set X ⊆ N is S-recognizable IFF its characteristic sequence is
S-automatic.



MORPHIC WORDS

k-automatic sequence S-automatic sequence
m m

k-uniform morphism non-erasing morphism
+ coding + coding
[A. Cobham’72] [A. Maes, M.R.’02]

multidimensional setup
x : Nd → A

k-automatic sequence S-automatic sequence
m m

morphism g : A→ (Aq)d “shape-symmetric” morphism
+ coding + coding

[O. Salon’87] [É. Charlier, T. Kärki, M.R.’09]



MORPHIC WORDS

ϕ : a 7→ a b
c d

b 7→ i
e

c 7→ i j d 7→ i e 7→ f b

f 7→ g b
h d

g 7→ f b
h d

h 7→ i m i 7→ i m
h d

j 7→ k
c

k 7→ l m
c d

l 7→ k m
c d

m 7→ i
h

coding
µ : e, g, j, l 7→ 1, a, b, c, d, f , h, i, k,m 7→ 0



MORPHIC WORDS

a 7→ a b
c d

7→
a b i
c d e
i j i

7→

a b i i m
c d e h d
i j i f b
i m k i m
h d c h d

7→

a b i i m i m i
c d e h d h d h
i j i f b i m i
i m k i m g b i
h d c h d h d e
i m i l m i m i
h d h c d h d h
i m i i j i m i

7→ · · ·



MORPHIC WORDS

From E. Duchêne, A. S. Fraenkel, R. Nowakowski, M.R., Extensions and restrictions of wythoff’s game

preserving wythoff’s sequence as set of P-positions, JCTA (2010).



MORPHIC WORDS

From A. Maes Ph.D. thesis, Prédicats morphiques et
applications à la décidabilité de théories arithmétiques



MORPHIC WORDS

THEOREM (F. DURAND 1998)

Let (f , g, a) (resp. (f ′, g′, a′)) be a primitive substitution with a
dominating eigenvalue α > 1 (resp. β > 1). Let α and β be
multiplicatively independent. If x = g(fω(a)) = g′(f ′ω(a′)), then x
is ultimately periodic.

◮ F. Durand, A generalization of Cobham’s theorem, Theory of
Computing Systems 31 (1998), 169–185.

◮ F. Durand, A Theorem of Cobham for non primitive substitutions,
Acta Arithmetica 104 (2002), 225–241.

◮ F. Durand, M. R., Syndeticity and independent substitutions,
Adv. in Applied Math. 42 (2009), 1–22.

◮ F. Durand, Cobham’s theorem for substitutions, J. Eur. Math.
Soc. 13 (2011), 1797-–1812.



MORPHIC WORDS

An “application”

EXAMPLE

The Fibonacci word 0100101001· · · generated by
f : 0 7→ 01,1 7→ 0 is not k-automatic.

(

1 1
1 0

)

Indeed, this (Sturmian) word is not ultimately periodic and for
all integers k, k and (1+

√
5)/2 are multiplicatively independent.

Of course, one can also use this result about frequency

PROPOSITION

In any k-automatic sequence, if the frequency of a symbol
exists, then it is rational.



MORPHIC WORDS

An “application”

EXAMPLE

If X ⊆ N is both S- and T -recognizable where S (resp. T ) is
built over an exponential (resp. a polynomial) language then
X is ultimately periodic.



A FEW WORDS ONω-HD0L ULTIMATE PERIODICITY

Question : given f , g two morphisms, decide whether or not
g(fω(a)) is ultimately periodic.

◮ Trivial for k-automatic sequences, thanks to first order logic.
◮ J. Honkala, A decision method for the recognizability of

sets defined by number systems, Theoret. Inform. Appl. 20
(1986), 395–403.

◮ T. Harju, M. Linna, On the periodicity of morphisms on free
monoids, RAIRO Inform. Théor. Appl. 20 (1986), 47–54.

◮ J.-J. Pansiot, Decidability of periodicity for infinite words,
RAIRO Inform. Théor. Appl. 20 (1986), 43–46.

◮ J.-P. Allouche, N. Rampersad, J. Shallit, Periodicity,
repetitions, and orbits of an automatic sequence, Theoret.
Comput. Sci 5162, pp. 241–252, Springer-Verlag (2008).



A FEW WORDS ONω-HD0L ULTIMATE PERIODICITY

◮ J. Leroux, A Polynomial Time Presburger Criterion and
Synthesis for Number Decision Diagrams, LICS 2005,
IEEE Comp. Soc. (2005), 147–156.

◮ E. Charlier, M. Rigo, A decision problem for ultimately
periodic sets in non-standard numeration systems, MFCS
2008, Lect. Notes in Comput. Sci. 5162 (2008), 241–252.

Equivalent question : Let given a S-recognizable set of
integers, decide whether or not it is ultimately periodic.

◮ F. Durand, Decidability of the HD0L ultimate periodicity
problem, arXiv:1111.3268v1

◮ I. Mitrofanov, A proof for the decidability of HD0L ultimate
periodicity, arXiv:1110.4780



SOME OPEN PROBLEMS

◮ Give a proof based on ANS for the ω-HD0L ultimate
periodicity (based on automata, we could have a better
view/complexity).

◮ If g(fω(a)) is infinite, one can always assume that f is
non-erasing and g is a coding [Cobham’68,
Allouche–Shallit’03, Honkala’09], again give a proof based
only on automata.

◮ Given a ANS, decide whether or not this system is a
positional numeration system.



HOW TO REPRESENT REAL NUMBERS

EXAMPLE (BASE 10)

π − 3 = .14159265358979323846264338328· · ·
1
10

,
14
100

,
141
1000

, . . . ,
val(wn)

10n , . . .

val(w)
#{words of length ≤ |w|}

THIS DESERVES NOTATION

vq0(n) = #(L ∩Σ≤n) =
n

∑

i=0

uq0(i).



HOW TO REPRESENT REAL NUMBERS

EXAMPLE (AVOID aa ON THREE LETTERS)

s t p
a a

b,c

a,b,cb,c

w val(w) vq0(|w|) val(w)/vq0(|w|)
bc 8 12 0.66666666666667
bac 19 34 0.55882352941176
babc 52 94 0.55319148936170
babac 139 258 0.53875968992248
bababc 380 706 0.53824362606232

lim
n→∞

val((ba)nc)
vq0(2n + 1)

=
1

1+
√

3
+

3

9+ 5
√

3
≃ 0.535898.



HOW TO REPRESENT REAL NUMBERS

valS(w) =
∑

q∈Q

|w|
∑

i=1

bq,i(w)uq(|w| − i)

with

bq,i(w) := #{a < wi | q0 · w1 · · ·wi−1a = q}+ 1q0,q

HYPOTHESES: FOR ALL STATE q OFML, EITHER

(i) ∃Nq ∈ N : ∀n > Nq, uq(n) = 0, or

(ii) ∃βq ≥ 1, Pq(x) ∈ R[x] , bq > 0 : limn→∞
uq(n)

Pq(n)βn
q
= bq.

From automata theory, we have

βq0 ≥ βq andβq = βq0 ⇒ deg(Pq) ≤ deg(Pq0)



HOW TO REPRESENT REAL NUMBERS

Let β = βq0 and for any state q, define

lim
n→∞

uq(n)
Pq0(n)β

n
= aq ∈ Q(β), aq0 > 0 and aq could be zero.

IF (wn)n∈N IS CONVERGING TOW = W1W2 · · · THEN

lim
n→∞

val(wn)

vq0(|wn|)
=

β − 1
β2

∞
∑

j=0

∑

q∈Q

aq

aq0

bq,j+1(W)β−j = x.

We say that W is a representation of x



HOW TO REPRESENT REAL NUMBERS

A real number can have
◮ a unique expansion
◮ finitely many expansions
◮ countably many expansions

x ∈ Iw, if there exists an infinite word having w as prefix and
representing x.

Wℓ:=set of words of length ℓ that are
prefixes of infinitely many words in L. Let w ∈ Wℓ,

Iw =





1
β
+

β − 1
βℓ+1

∑

v<w, v∈Wℓ

aq0.v

aq0

,
1
β
+

β − 1
βℓ+1

∑

v≤w, v∈Wℓ

aq0.v

aq0



 .



HOW TO REPRESENT REAL NUMBERS

IN BASE 10

L = {ε} ∪ {1, . . . ,9}{0, . . . ,9}∗, we represent [1/10,1].

3/10 4/102/101/10 8/10 9/10 1

3/10

4/10

31/100

39/100

I I

I30

1 2

I
31

I9



HOW TO REPRESENT REAL NUMBERS

NOTATION (FOR ALL STATES q)

Ratio of words starting with a, b or c. . .

[0,1] = [0, lim uq.a(n−1)
uq(n)

[ (Aq,a)

∪ [lim uq.a(n−1)
uq(n)

, lim uq.a(n−1)+uq.b(n−1)
uq(n)

[ (Aq,b)

∪ [lim uq.a(n−1)+uq.b(n−1)
uq(n)

,1[ (Aq,c)

If I = [a, b] ∋ x, then fI : [a, b]→ [0,1] : x 7→ (x− a)/(b − a)



HOW TO REPRESENT REAL NUMBERS

ALGORITHM

Let x ∈ [1/β,1]

Initialization
q← q0

w← ε
I ← [1/β,1]
x← fI(x)

repeat
Find the letter σ ∈ Σ s.t. x ∈ Aq,σ.
q← q · σ
w← concat(w, σ)
I ← Aq,σ

x← fI(x)
until some halt condition.



ASSOCIATED DYNAMICAL SYSTEM

NOTATION

h : Q× [0,1]→ Q× [0,1] : (q, x) 7→ (q′, x′)
There exists a unique letter σ s.t. x ∈ Aq,σ hence

{

q′ = q · σ
x′ = fAq,σ(x)

GENERAL QUESTION

are there i < j such that hi(q0, x) = hj(q0, x) ?
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IN GENERAL, QUITE DIFFICULT



◮ S. Akiyama, Ch. Frougny, J. Sakarovitch, Powers of
rationals modulo 1 and rational base number systems,
Israel J. Math. 168 (2008) 53–91.

◮ E. Charlier, M. Le Gonidec, M. Rigo, Representing reals
numbers in a generalized numeration system, J. Comput.
Syst. Sci. 77 (2011), 743–759.

◮ P. Lecomte, M. Rigo, Real numbers having ultimately
periodic representations in abstract numeration systems,
Inform. and Comput. 192 (2004), 57–83.

◮ M. Rigo, W. Steiner, Abstract beta-expansion and
ultimately periodic representations, J. Theor. Nombres
Bordeaux 17 (2005), 288–299.

◮ P. Lecomte, M. Rigo, On the representation of real
numbers using regular languages, Theory Comput. Syst.
35 (2002), 13–38.

◮ Fibred systems, see for instance, M. Madritsch


