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Abstract
Nowadays lots of real time applications are used over the Internet: voice over IP, online
video games, etc. For these applications the performance of the path between two com-
municating nodes is critical. Particularly, most of these applications require small delays
between communicating nodes. For these applications, the problem is that the choice of
the routes in the Internet is generally not very much guided by performance concerns. It
is well known that for lots of node pairs the default Internet path is suboptimal and there
exists an alternative path providing a smaller delay between these nodes. In this thesis,
we mainly address the problem of finding these alternative paths.

Replacing Internet’s routing philosophy in order to obtain default paths providing the
best performance possible should be a good theoretical solution. However, replacing
Internet’s routing philosophy by a brand new one is very difficult or even impossible in
practice. Another solution is to leave the default routes as they are and to perform indirect
routing. Consider a path AB between two nodes A and B. If a path ACB has a smaller
delay than AB, then, instead of sending data directly to B, A can send them to C and
C can relay them to B. This is called overlay routing because we manage the routing
in an overlay network built on top of the Internet (i.e. at the application level). Overlay
routing is a promising way to improve the quality of service in the Internet but its main
drawback is its poor scalability: measuring the characteristics of the paths, exchanging
the measurement results between the nodes and computing the best routes in the full
mesh overlay network generally implies a high consumption of resources. In this thesis,
our main contribution is the design of a lightweight one-hop overlay routing mechanism
improving the latencies: we define criteria that rely on the information provided by an
Internet Coordinate System (ICS) in order to provide a small set of potential one-hop
shortcuts for any given path in the network with small costs. Our best criterion does not
guarantee to find the best shortcut for any given path in a network but, even in networks
with hundreds or thousands of nodes, it will restrict the search for potential shortcuts to
about one or two percent of the total number of nodes.

Even if the estimation-based approach of overlay routing is our main contribution,
this thesis also presents general results about routing shortcuts and Internet Coordinate
Systems. For an ICS, a routing shortcut is a Triangle Inequality Violation (TIV) and it is
often a big problem. Indeed, a TIV will cause estimation errors since, in this particular
case, nodes cannot be embedded into any metric space. In this thesis, we study TIVs
existing in the Internet and their impact on the Vivaldi ICS. This analysis leads to two
contributions. Firstly, we propose criteria to establish, with a high probability of success,
if there exists a shortcut or not for a given path AB. Secondly, we propose a Two-Tier
architecture for ICSes that mitigates the effect of TIVs on the estimations. Finally, this
thesis also discusses the efficiency of two solutions proposed in the literature in order
to obtain an ICS that can deal with TIVs. The first one consists in applying non-linear
transformations to delays before trying to embed them in a metric space. The second one
consists in modelling the estimation problem as a matrix completion problem in order to
completely avoid the embedding in a metric space.



iv



v

Résumé
Aujourd’hui de nombreuses applications communiquant en temps réel sont déployées
dans l’Internet : téléphonie IP, jeux vidéos en ligne, etc. Pour de telles applications, les
performances d’un chemin entre deux nœuds sont un point critique. En particulier, la
plupart de ces applications exigent que les délais entre les nœuds soient les plus petits
possible. Le problème est que le choix des routes dans l’Internet n’est généralement
pas basé sur les performances et il est bien connu que, pour de nombreux chemins dans
l’Internet, il existe un chemin alternatif proposant un délai plus court. Dans cette thèse,
notre objectif principal est de trouver ces chemins alternatifs.

Pour résoudre ce problème, une première solution est de remplacer les routes actuelle-
ment utilisées dans l’Internet par des routes offrant de meilleures performances. Toute-
fois, remplacer la philosophie de routage utilisée dans l’Internet semble très difficile,
voire impossible en pratique. Une autre solution consiste à laisser les routes actuelles
telles qu’elles sont et de réaliser du routage indirect. Considérons un chemin AB entre
deux nœuds A et B. Si un chemin ACB propose un délai plus court que AB, alors C est
un raccourci de routage pour AB. Dans ce cas, au lieu d’envoyer ses données directement
à B, A peut les envoyer à C et C peut les relayer vers B. Procéder de la sorte s’appelle
faire du routage overlay, car le routage est géré au sein d’un réseau overlay construit sur
l’Internet. Le principal problème du routage overlay est son coût : mesurer les caractéris-
tiques des chemins, échanger les résultats de ces mesures entre les nœuds et calculer les
meilleures routes, cela requiert énormément de ressources, et une telle approche peut dif-
ficilement être envisagée à grande échelle. La contribution principale de cette thèse est la
proposition d’un mécanisme de routage overlay économe en ressources. Nous proposons
des critères basés sur les informations fournies par un système de coordonnées (ICS) afin
d’obtenir, avec un coût minimal, un ensemble de raccourcis de routage potentiels pour
n’importe quel chemin donné dans un réseau. Dans des réseaux constitués de centaines,
voire de milliers de nœuds, notre meilleur critère est en mesure de réduire le nombre de
raccourcis potentiels pour n’importe quel chemin donné à environ un ou deux pour cent
du nombre total de nœuds.

Cette thèse présente également des résultats plus généraux concernant les raccourcis
de routage et les ICS. Pour un ICS, un raccourci de routage est une violation du principe
d’inégalité triangulaire (TIV) et c’est un problème majeur. En effet, les TIV n’étant pas
modélisables dans un espace métrique, ils génèrent des erreurs d’estimation. Une étude
des TIV présents dans l’Internet et de leur impact sur l’ICS appelé Vivaldi nous a per-
mis d’aboutir à deux résultats. Premièrement, nous proposons des critères qui permettent
d’établir s’il existe un raccourci de routage pour un chemin donné. Deuxièmement, nous
proposons d’adopter une structure hiérarchique pour les ICS afin de réduire l’impact des
TIV sur ceux-ci. Finalement, dans cette thèse, nous étudierons l’efficacité de deux so-
lutions proposées dans la littérature afin d’éliminer la problématique des TIV pour les
ICS. La première consiste à appliquer des transformations non linéaires aux délais avant
d’essayer de les plonger dans un espace métrique. La seconde consiste à considérer le
problème de l’obtention des estimations comme un problème de complétion de matrice
afin d’éviter les désagréments liés au plongement dans un espace métrique.
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Chapter 1

Introduction

Nowadays lots of real-time applications are used in the Internet: voice over IP, online
video games, etc. Such applications generally need some QoS (Quality of Service) guar-
antees and, particularly, low delays between communicating nodes in order to perform
correctly. However, since the Internet was not developed with QoS guarantees in mind,
the choice of the route between two nodes is not guided by QoS constraints. Thus, in
many cases, there exists an alternative path providing a smaller delay than the default
Internet path. Modifying Internet’s routing protocols in order to choose the best routes
with respect to QoS constraints should be a good theoretical solution. But, in practice,
replacing the Internet’s routing philosophy by a brand new one is very difficult or even
impossible. Another solution, is to keep Internet’s default routes as they are and to do
some indirect routing. In other words, a good alternative path for a given path AB, is a
path ACB so that C is a shortcut in terms of delays for the path AB:

RTT (A,B) > RTT (A,C) +RTT (C,B) (1.1)

where RTT (X, Y ) denotes the RTT (Round Trip Time) between nodes X and Y , i.e., the
time necessary to travel in the network from X to Y and back from Y to X .

In this thesis, our main goal is to find such shortcuts for any given path in a network
in order to obtain smaller delays: if C is a shortcut for the path AB, we intend to use C
as relay instead of sending the data directly from A to B. This is called overlay routing
because we will manage routing between nodes in an overlay network (i.e. in a network
laid over the Internet). Overlay routing is attractive because deploying an overlay re-
quires only the cooperation of the nodes participating in the overlay and it only consists
in deploying new software on top of existing software. Thus, overlay networks allows
the deployment of new services in the Internet without cooperation of the ISPs and with-
out expensive deployment of new equipment. This is why overlay networks have already
been used for multiple purposes: to provide a multicast service [26, 13], to provide QoS
to applications [78], to improve routing [1, 73], etc.

So, using overlay routing to improve the performance of a network is not a new idea.
RON [1] (Resilient Overlay Network) was proposed in 2001 to improve the performance
and the reliability of networks. The idea of RON is to build a fully connected mesh
between the nodes participating in the overlay and to monitor all the paths. Using the col-
lected information, its main goal is to allow fast path recovery thanks to indirect routing:

1



2 CHAPTER 1. INTRODUCTION

if a path between two nodes A and B is broken, RON tries to find a node C reachable
from A and from which it is possible to reach B. In other words, its main goal is to build
a resilient network on top of the Internet where path recovery can take on the order of
several minutes after a failure [33]. RON’s functionalities have been extended to allow
also the search of indirect routes in case of performance failures: if a path between two
nodes A and B has too poor performance for a given application, using a node C as relay
between A and B can be the solution to provide the required QoS to the application. It
has been observed in [74] that indirect routing can significantly improve the performance
for many paths in the Internet. This second functionality of RON is of interest to us in
this thesis.

Nowadays, even if overlay networks seem to be an easy way to improve the perfor-
mance of the Internet, they are not often used by applications. The main problem is the
scalability. Indeed, to know exactly which node C is the best shortcut for a given path
AB, we must check if the inequality (1.1) is true for each node C. To be able to do that
for any given path AB, it is necessary to measure all the paths of the overlay network
and distribute measurements results among the overlay nodes. These operations become
costly if a large number of nodes take part in the overlay. Indeed, if there are n nodes
in the overlay, we have to measure permanently the RTT of O(n2) paths and we have to
share these measurement results among the n nodes. It represents a measurement traffic
which is O(n2) and a communication traffic which is O(n3). Thus, the traffic generated
by the overlay is considerable and its impact on the data traffic can be significant.

A solution to avoid a too large resource consumption due to measurements is to use
estimations of the RTTs instead of measuring them. The main contribution of this thesis
is to show that it is feasible to use an Internet Coordinate System (ICS) [61], namely Vi-
valdi [15], to estimate RTTs in a scalable manner (i.e., without too much measurement
overhead) and use this knowledge to find shortcuts in the network. Using the estimations
provided by an ICS to detect shortcuts leads to a major problem: by definition, a shortcut
situation is a Triangle Inequality Violation (TIV) that disappears after its (imperfect) em-
bedding in a metric space [35]. Since there are no shortcuts in the feature space, equation
(1.1) can never be satisfied when estimated RTTs are used instead of real RTTs. In this
thesis, we will mainly investigate several ways to circumvent this problem. Intuitively,
our idea consists in combining estimations with as few measurements as possible in or-
der to be able to find routing shortcuts in a scalable manner. With our estimation-based
approach [5, 8], we propose an overlay routing solution with a measurement traffic which
is O(n × m) (where m ≪ n is the number of reference points used by each node in
the ICS) and a communication traffic which is O(n2). The communication process used
in this thesis to share estimations among the nodes is very basic and, as discussed in the
"future work" chapter, it should be possible to reduce this traffic by at least O(

√
n).

The estimation-based approach of overlay routing is our main contribution. But this
thesis presents also some results about ICSes and the TIVs. Before trying to detect routing
shortcuts with an estimation mechanism, we will study the routing shortcuts existing in
the Internet and there impact on ICSes [7]. This study leads to two contributions. Firstly,
we propose a hierarchical approach for coordinate systems in order to mitigate the effect
of TIVs on the estimations [29, 6]. This Two-Tier architecture is based on the clustering
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of nodes. Within these clusters, nodes compute coordinates to predict local distances, and
keep predicting distances to nodes outside their clusters based on the original "flat" ICS.
This hierarchical approach allows nodes to embed short distances (i.e. intra-cluster dis-
tances) with very low relative errors. Moreover, with a careful design of the architecture,
it is possible to obtain this result with only a small overhead compared to the original
"flat" ICS.

Another contribution developed in the light of our study about TIVs and ICSes is
the proposition of criteria allowing the detection of TIV bases (i.e. paths for which there
exists at least one shortcut) just by observing the ICS behaviour [43, 28]. For this purpose,
we characterize node pairs using different metrics such that the Relative Estimation Error
(REE). One of our findings is that the REE variance of TIV bases is usually smaller. This
can be used to infer TIVs with some confidence without any additional measurement.
Consequently, we aim at clusterizing node pairs following their REE variances using
Gaussian Mixture Models (GMMs). GMMs are one of the most widely used unsupervised
clustering methods where clusters are approximated by Gaussian distributions, fitted on
the provided data. We apply also an AutoRegressive Moving Average (ARMA) model
on the sorted REE variances to find a breaking point, because in many practical cases
we cannot fit one uniform regression function to the data. Finally, instead of empirically
testing different approaches to detect TIV bases, we will use machine learning techniques
in order to find the more discriminative variable among many variables based on different
characteristics of the paths.

Finally, this thesis will also discuss two ways proposed in the literature to obtain
ICSes that are able to deal with TIVs. The first one was proposed by Wang et al. [82] and
consists in applying non-linear transformations to delays before trying to embed them
in a metric space. Since non-linear transformations eliminate TIVs, they should allow a
more accurate embedding than a classical ICS like Vivaldi [9]. The second solution is
called DMF and it was proposed by Liao et al. [42, 40]. DMF’s idea consists in seeing the
estimation problem as a matrix completion problem: we can build a partial delay matrix
with the delays measured by the nodes between them and their reference points and use
existing techniques to complete that matrix. Since this approach does not require any
embedding in a metric space, it should not worry about TIVs. In this thesis, compared
to a classical ICS like Vivaldi, we will evaluate the capacity of these two solutions to (i)
provide better estimations and (ii) provide better shortcuts detection results.

Structure of the thesis

The thesis is organized as follows:

• In chapter 2 we will first recall some concepts about routing and QoS. Then, we will
make a small survey about overlay routing related work. Finally, we will formalize
the main problem we try to solve in this thesis.
• Chapter 3 begins with a state of the art about Internet coordinate systems. At the end

of this survey, we will choose one ICS, namely Vivaldi, to conduct our experiments.
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Then, the chapter contains a description of Vivaldi’s algorithm, its parameters and
some improvements that have been proposed for this algorithm.
• In chapter 4, we will investigate the problems met by classical ICSes like Vivaldi

when they face TIVs. After an analysis of the TIVs existing in the Internet, we
will propose some criteria allowing to suspect the presence of TIVs. As discussed
in the introduction, these criteria allow to detect TIV bases with a high probability
of success just by observing the ICS behaviour. This chapter also contains a little
discussion about the possibility to detect routing shortcuts just by observing the ICS
behaviour.
• Chapter 5 presents the main contribution of the thesis: our criteria combining es-

timations with as few measurements as possible in order to be able to find routing
shortcuts in a scalable manner. At the beginning of the chapter, we will describe our
estimation-based shortcut detection criteria and we will evaluate them using Vivaldi
as estimation mechanism. These evaluation results will be compared to a random
relay node selection in order to ensure that they provide significantly better detec-
tion results. Then, we propose variants of our criteria that require less measure-
ments than the original criteria and we discuss the advantages and the drawbacks
of these variants. Finally, we will try to define which characteristics the estimations
must have in order to provide good detection results with our criteria. Following
the conclusion of this analysis, we will try to detect shortcuts with other estimation
mechanisms than Vivaldi in chapters 6, 7 and 8.
• In chapter 6, we will analyse the capacity of non-linear transformations of the de-

lays to improve the accuracy of the estimations obtained with Vivaldi. We will
also discuss the shortcut detection results obtained with our criteria when they are
applied using such estimations.
• Chapter 7, briefly presents DMF (an estimation mechanism that is not impacted by

TIVs) and evaluates the shortcut detection results obtained when our criteria are
applied using the DMF estimations.
• In chapter 8, we present another major contribution of this thesis: the hierarchical

approach for the ICSes. Firstly, we describe Two-Tier Vivaldi, the hierarchical
version of Vivaldi, and we evaluate its efficiency using manually defined clusters of
nodes. Secondly, we propose a self-organized distributed way to build the clusters.
Finally, we evaluate the shortcut detection results obtained when our criteria are
applied using the Two-Tier Vivaldi estimations.
• In chapter 9, we discuss some improvements and extensions that are potentially

interesting for the work presented in this thesis.
• Finally, we will summarize our conclusions in chapter 10.



Chapter 2

Routing and Overlay routing

Abstract
Using overlay routing to find better routes in the Internet is not a new idea. The ma-
jor contribution in overlay routing is RON (Resilient Overlay Networks) and it was pro-
posed in 2001. The main problem of the RON approach is its poor scalability and, in ten
years, many improvements have been proposed. In this chapter, we will first introduce
the concepts of routing and overlay routing. Then, we will describe RON and different
possibilities already investigated in the literature to improve RON’s scalability.

2.1 Routing
The Internet is a packet switching network. When a user sends data to a destination
through the Internet he puts that data inside packets, he gives a destination address to each
packet and the network has to forward each packet to its destination using its destination
address. Today, millions of nodes (hosts, servers, etc) are connected through the Internet.
In such conditions, it is impossible to have a full mesh network, i.e. a network were a
physical link is deployed between each pair of nodes. So, we have topologies like the
one presented on figure 2.1. On that figure, we have hosts connected to routers that are
interconnected by physical links.

Definition 1. A router is a device that is connected to two or more data lines and that
forwards packets between these lines. When one packet is received on one line, the router
analyses the information of the packet’s header in order to find its destination. Then, the
router uses the information contained in its routing table in order to forward the packet on
the right data line. In addition to its forwarding task, a router must also build its routing
table.

Following definition 1, the routers manage the forwarding procedure between a source
and a destination through the Internet. Indeed, when a source (for example, A on fig-
ure 2.1) wants to send data to a destination (for example, B in figure 2.1), A sends its
packets to its gateway (i.e. the output of the A’s local network, the router that provides

5
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Local ISP
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network
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Figure 2.1: Small example of topology. In this figure we can see hosts connected to routers that
are interconnected by physical links. Routers are grouped into Autonomous Systems (the circles
on the figure). The routers that are belonging to the same AS are managed by the same entity.

an access to the Internet) and that router tries to find the next-hop router towards B using
the packet’s destination address and its routing table. When it finds that next-hop router,
it forwards the packet to it and the next-hop router will restart the process. The process
continues until the router that connect B’s local network to the Internet is reached. That
router will see that the packet’s destination address is in a local network connected to one
of its interfaces and it will forward that packet to its final destination. All that process
requires routing tables to take the right decisions. These tables are built by the routers
using routing protocols.

Definition 2. A routing protocol is a protocol that specifies how routers must exchange
information in order to be able to select a route between any pair of nodes in a network.
The choice of these routes is done by routing algorithms.

In order to keep things scalable, the Internet (and the routing) has a hierarchical struc-
ture: the routers are aggregated into autonomous systems and routers that are in a same
AS run the same routing protocol.

Definition 3. An Autonomous System (AS) is a connected group of one or more IP pre-
fixes run by one or more network operators which has a single and clearly defined routing
policy. [24]

Routing protocols used inside the ASes are called Interior Gateway Protocols (IGP).
Each AS runs its own IGP and, a different IGP could potentially be used in each AS.
Considered individually, the IGP used by an AS allows only to find routes between the
nodes belonging to the AS. In order to be able to find routes towards nodes that do not
belong to the AS, it is necessary to obtain information about the topology outside the AS.
In other words, it is necessary to have a routing protocol that finds routes between the
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autonomous systems. It is the routing protocol that is at the upper level of the hierarchical
structure and it is called Exterior Gateway Protocol (EGP)1.

2.1.1 Interior Gateway Protocols (IGPs)
Multiple IGPs coexist in the Internet. They can be classified in two categories: distance
vector routing protocols (for example RIP [53]) and link state routing protocols (for ex-
ample, OSPF [56] and IS-IS [63]). These protocols have basically the same objective:
they try to find the shortest path between each pair of nodes belonging to a network with
respect to configured link weights. The difference between them is the way they proceed
to reach this objective. Our goal here is not to go into details about these protocols. We
will only give a small example with OSPF using the simple topology given in figure 2.2.
If the reader wants more informations about IGPs he can refer to networking introduction
books like [32].
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Figure 2.2: Example of OSPF usage. Figure 2.2(a) shows the topology with a weight configured
by the network administrator for each link and figure 2.2(b) gives the link state packets broadcast
by the nodes.

Consider the topology given in figure 2.2(a) which is the network of the AS of the
regional ISP of figure 2.1. In order to use an IGP, it is necessary to give a weight to each
physical link of the network. These weights are arbitrary values that are configured by the
network administrator. With OSPF, each node builds its link state packet containing the
cost of each link between the node and its neighbors. Figure 2.2(b) gives the information
contained in the link state packet of each node of the topology presented in figure 2.2(a).
These link state packets are broadcast through the network in order to allow each node
to discover the topology of the network and the weight of each link. Thanks to these
information, each node is able to compute the least cost path with respect to the weights
between any pair of node in the network. In OSPF, Dijkstra’s algorithm [17] is used for
this purpose. That algorithm provides a shortest path tree that gives the least cost path
between one node (the root of the tree) to all the other nodes. Each node computes its
own tree by considering itself as the root of the tree and figure 2.3(a) gives the shortest

1We use EGP as a generic term in this document. EGP is also the name of the first exterior gateway
protocol that was proposed. Today, the protocol EGP is obsolete and it is replaced by BGP.
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path tree obtained for node B in our example. Using this tree, for each destination in the
network, each node can decide which of its neighbors is the next-hop (see figure 2.3(b) for
node B in our example). These information will be useful to build the forwarding table
of the router but that is not enough: to build a forwarding table usable for any destination
in the Internet, each node needs informations about the others ASes. These information
are provided by an exterior gateway protocol (see section 2.1.2).

B

A E

DC

(a)

A C D EDestination:

Next-hop: A E E E

(b)

Figure 2.3: Dijkstra’s result for node B. Figure 2.3(a) gives the shortest path tree obtained for
B and figure 2.3(b) shows the information extracted from the tree that will be used to build B’s
forwarding table.

The main thing to keep in mind about IGPs is that they allow to optimize the routing
with respect to some metrics. Indeed, each node and each link is considered individually
by the protocol and the least cost path with respect to the weights is chosen between any
pair of nodes in the network. So, if the weights are chosen to represent a particular metric
(delay, bandwidth, etc.), the routing will be optimized with respect to that metric.

2.1.2 Exterior Gateway Protocols (EGPs)
The IGPs have interesting properties but they are not usable at the scale of the Internet for
two reasons. The first one is the scalability. In the Internet, there are millions of possible
destinations and it is impossible to store an entry for each destination in the routing tables.
Moreover, with the IGPs, the nodes need to obtain a large amount of information in order
to choose the least cost path to any destination. In large networks, exchanging this amount
of information is too expensive2 in terms of resource consumption. The second reason is
that Internet is a network of networks and each network administrator may want to manage
routing in its own network. For these two reasons, it is necessary to have a hierarchical
approach of routing: each network administrator can configure its IGP in its AS to reach
its own routing objective and, at the upper level of the hierarchy we have an EGP to
manage the routing between the ASes. The EGP that is used today in the Internet is BGP
(Border Gateway Protocol) [72]. As for IGPs, our goal is not to go into details about the

2With link state protocols, each node sends only information about its neighbors to the other nodes.
Even if the size of the link state packets is still scalable in large networks, these link state packets are
broadcast and broadcasting in large networks is expensive: in a network with N nodes and L links, the cost
of broadcasting is O(N × L). With distance vector protocols, each nodes sends only its distance vector to
its neighbors but that distance vector must contain the distance between the node and each destination he
knows. So, with such protocols, the size of the messages exchanged between the routers is not scalable.
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protocol. We will just give the bases of BGP and discuss some points that will be useful
in later sections of this document.

BGP has mainly three tasks. The first one is to allow each AS to obtain reachability
information from the ASes that are its neighbors: like in IGPs, routers have to exchange
informations about the topology. The second one is to propagate reachability information
to all AS-internal routers to allow them to build forwarding tables usable for any destina-
tion in the Internet. The last one is to determine a "good" route to each destination based
on reachability information collected and some rules called policies.

BGP reachability information dissemation

To exchange BGP information, pairs of routers use TCP connections called BGP sessions.
Routers connected through a BGP session are BGP neighbors. When the two routers con-
nected through a BGP session belong (resp. do not belong) to the same AS, we call this
session an iBGP session (resp. eBGP session). Inside an AS, an iBGP session is estab-
lished between each pair3 of routers that belong to the AS. The BGP sessions established
for the example given in figure 2.1 are given in figure 2.4.

AS1

AS2

AS4

AS3
$

=

$ $

$

iBGP session

eBGP session

1a

1b

1c

2a

2b

2e

2d

2c

3a

3b

3c

3d

4a

Figure 2.4: BGP sessions established between the routers given in figure 2.1. An eBGP session
can be established between a customer AS and a provider AS (symbol "$") or between peers
(symbol "=").

Once BGP sessions are established, BGP neighbors exchange information about the
AS topology. BGP is a path vector protocol: each router sends its path vector to its
neighbors. For each AS for which a router agrees to relay traffic, the path vector of that
router contains the AS path it uses to reach that AS and some information to allow other
routers to choose between that path and other paths potentialy received from their other
neighbors. For example, in figure 2.4, AS1 advertises reachability information to AS2

3This is for the basic version of BGP. In practice, requiring a full-mesh is a real problem in term of
scalability and more advanced solutions have been proposed (using route reflectors and/or defining confed-
erations).
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through the eBGP session established between routers 1b and 2a: AS1 advertises to AS2

that the addresses owned by AS1 are reachable through him with the AS path "AS1" and,
since AS4 is an AS1’s customer, AS1 also advertises to AS2 that the addresses owned
by AS4 are reachable through him with the AS path "AS1, AS4". When the router 2a
receives the path vector, it disseminates the reachability information in its AS using the
iBGP sessions and AS2’s nodes complete their forwarding tables. Moreover, routers 2c
and 2e advertise new reachability information to their neighbors belonging to other ASes.

Routers advertise reachability information to their neighbors but they do not advertise
all the routes to all neighbors. The general rule is that an AS wants to route only to/from its
customers. Have a look on the AS4 in figure 2.4. AS4 is a company network that has two
providers: AS1 and AS2. The eBGP sessions between these ASes are customer-provider
sessions (denoted by the symbol "$"): sending data on the corresponding links has a cost
for AS4 and, logically, AS4 do not want to relay traffic coming from one of its providers
to another of its providers. Consequently, AS4 advertises AS1 (resp. AS2) that it has a
path to AS4 but it does not advertise the path to AS2 (resp. AS1). Moreover, in addition
to the customer-provider sessions, ASes may also establish peering sessions (denoted by
the symbol "="). A peering relationship is an agreement between two ASes in order
to exchange traffic between them (and their customers) without using their respective
providers. For example, on figure 2.4, a peering relationship is established between AS4

and AS3. Through the corresponding link, AS4 (resp. AS3) can only send traffic destined
for AS3 (resp. AS4). Consequently, with the eBGP session between router 4a and router
3c, AS4 does not advertise the paths to AS1 and AS2.

BGP routing policies

When a router learns multiple paths from its neighbors for a same destination, it has
to choose one of these paths. For example, in figure 2.4, the routers belonging to AS2

receive two paths for the addresses of AS4: AS4 advertises the AS path "AS4" for that
destination and AS1 advertises the path "AS1, AS4" for that destination. In the absence of
policy, a router would choose the shortest path with respect to the number of AS-hops. In
our example, the routers of AS2 would choose to route the traffic destined for AS4 to the
router 2c and that router would forward that traffic directly to AS4. However, in order to
give more control to the network administrators over the selected paths, some attributes
are added to the advertisements sent by routers and multiple rules to choose a path are
defined using these attributes.

The BGP decision process consists of an ordered list of characteristics across which
paths are compared. When a router learns two paths for a same destination, the router
goes down the list and compares the two paths for each characteristic specified in the list.
If the paths have different values for one characteristic, the router choose the path that has
the most desirable value. Otherwise, it goes down in the list and compares the paths with
respect to the next characteristic given in the list.

Suppose that a router learns multiple paths to a same destination. The first comparison
point between the paths is the LocalPref attribute. When a router learns a path from a
neighboring AS, it sets the LocalPref attribute (an integer) of that path and it advertises
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that path to the other routers of its AS with that attribute. The value of that attribute is
deleted before advertising the neighboring ASes: the LocalPref attribute is a local value
fixed using local policies. The router chooses the path which has the higher value for its
LocalPref attribute. If some paths have the same value for the LocalPref attribute, then
the router chooses the path that has the lowest AS path length. If some paths also have
the same length, some rules based on the attributes of the paths are defined to choose one
of them. These rules are well defined in BGP but we will not enter into details about
them. We will only discuss a general principle used in BGP: the hot potato routing. The
hot potato routing is the principle of sending the traffic destined for another AS as fast as
possible outside the AS. Consequently, with hot-potato routing, a router will choose the
path which has the smallest IGP cost to exit its AS. With that behavior, an AS minimizes
the resource consumption for outgoing traffic.

BGP and performance

In section 2.1.1, we saw that IGPs may be configured to optimize the routing with respect
to some metrics. For example, if the weights of the links are delays, the route selected
between any pair of node will be the route with the smallest delays. With BGP, it is not
the case because policies dominate performance. Indeed, the selection of the routes in
BGP is based on commercial rules rather than on performance criteria: some paths are
not advertised by the ASes to their neighbors, an AS administrator may define policies
to force BGP to choose another path than the shortest one in terms of AS-hops (with the
LocalPref attribute) and, even if the path with the smallest number of AS-hops is used
between a pair of nodes, there are no guarantees that this path is the best with respect
to a given metric (delay, bandwidth, etc.). Consequently, at the level of the inter-domain
routing, there may be some paths that are better with respect to a given metric than the
one chosen by BGP. We will investigate that in section 4.3.1.

2.1.3 Quality of Service (QoS)

When the routing protocols presented in sections 2.1.1 and 2.1.2 were deployed, the main
usage of the Internet was different from what we need today. At this time, the Internet
was mainly used to get simple html pages or to send e-mails. In such context, the most
desirable property of a network is reachability: any destination must be reachable from
anywhere. The routing protocols ensure reachability with a re-convergence time that can
be more or less long in case of modification of the topology (for example a router or a
link failure). So, these routing protocols were sufficient. But today, the usage of Inter-
net has changed. We use it for multimedia applications: for IP telephony, to play online
video games, to watch videos (streaming), to organize video conferences, etc. For such
applications, ensuring reachability is not sufficient. They need more guarantees on the
characteristics of the path used between communicating nodes. Indeed, to perform cor-
rectly, some of them require a small delay, others require a large bandwidth, others require
a small delay and a large bandwidth and others can also require guarantees on more spe-
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cific characteristics (delay jitter, etc.). In other words, lots of applications deployed today
in the Internet require some level of quality of service.

Definition 4. The Quality of Service (QoS) is the ability to provide different priorities to
different applications, users, or data flows, or to guarantee a certain level of performance
to a data flow.

Basically, the Internet operates on a best-effort basis. During the forwarding proce-
dure, packets are processed in the arrival order by the router and the service is the same
for each packet. For example, a packet belonging to a flow generated by a VoIP (voice
over IP) application is processed the same way than a packet generated by the download
of a file. Ideally, since delays are critical for VoIP, the packets generated by that appli-
cation would have to be processed in priority. To solve such problems, QoS mechanisms
have been proposed for the Internet. We will give a short description of three common
approaches used to provide QoS in the Internet. Since these notions are a little bit out of
scope, we will not enter into details about them. If the reader wants more information on
the subject, he may refer to the literature [32, 31].

Intserv (Integrated Services)

A first solution proposed to provide QoS guarantees in the Internet is Intserv [3]. With
that approach, applications use RSVP (Resource ReSerVation Protocol) [4] to request and
reserve resources on the path between the source and the destination of the flow. Before
sending the data, there is a call admission phase. During that phase, the application de-
clares its needs to the network components and the network can reject the call if it cannot
meet these needs. If the call is accepted, since the resources are reserved, the application
has the guarantee that its packets will use a path that has characterics corresponding to
the its requirements. However, that approach has a problem of scalability because the
Internet’s core routers would have to keep state information for each reservation. Con-
sequently, Intserv is an interesting approach because it is a fine-grained QoS mechanism
where each flow does its own reservation depending of its own requirements but it is only
usable at a small scale.

Diffserv (Differentiated Services)

A second approach to provide QoS in the Internet is Diffserv [62]. The basic idea of Diff-
serv consists in defining multiple classes of traffic and processing the different classes
differently in the network. A simple example is to define two classes "prior" and "best-
effort" and packets marked as "prior" have to be processed in priority when they are
received by a router. This is only the basic idea: in reality, more than two classes are gen-
eraly defined and more or less complex mechanisms (policing, shaping, etc) are necessary
to have something usable. Following that small description, Diffserv is a coarse-grained
QoS mechanism (it provides a per-class resource reservation mechanism and not a per-
flow reservation mechanism) but it is more scalable than Intserv.
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Over-provisioning

Instead of deploying complex QoS mechanisms, an alternative to provide a quality envi-
ronment to applications consists in deploying a physical network that is able to support
any traffic load. This is a simple solution that provides a reasonable level of performance
for lots of applications but it does not really solve the problem of QoS. Indeed, this prin-
ciple assumes that the network has "enough" capacity to support any traffic load. In such
conditions, what is "enough" ? For example, if you provide more bandwidth to a TCP
flow, its bandwidth consumption will increase until it will begin to lose packets. So, if
the network provides more capacity, the TCP flows will potentially adapt their bandwidth
consumption in order to use all the available bandwidth. So, whatever large capacity you
give to your network, it is always possible to find situations where you will experience
congestion and where the "natural" QoS provided by this approach disappears. Moreover,
the level of performance reached with that approach is sufficient for many applications
but not for all applications. Indeed, even if the network has a large capacity, the applica-
tions’ packets can still experience potentially large delays and bandwidth variations. For
example, a packet generated by a VoIP application may still reach a router just after a
large burst generated by a TCP best-effort flow. If the router does not manage any notion
of priority, the VoIP packet will have to wait the processing of all the packets of the TCP
burst before being processed. Consequently, over-provisioning is a suitable approach for
applications that can compensate delay and bandwidth variations like video streaming
(by using large buffers at the receiver) but is not a suitable approach for other real-time
applications like VoIP.

2.1.4 Routing on performance basis
The QoS mechanisms presented in section 2.1.3 have one major drawback: the rout-
ing mechanism and the QoS mechanism are independent. So, if the routing mechanism
chooses a route with bad characteristics between two nodes, the QoS mechanism can try
to reserve whatever it wants as resources on that path, it will never be able to meet some
application QoS requirements. For example, if the route chosen between two nodes A
and B is such that the minimal delay between A and B is 500ms, the QoS mechanism
cannot guarantee a path with a delay of less than 500ms between A and B. But 500ms
is a lot too much for applications like VoIP. In such cases, the only solution consists in
finding another route between A and B.

To be able to find good routes from the QoS point of view, the best solution would
probably be to replace the existing routing mechanism by another one that would take
performance into consideration. However, such approach induces several problems:

1. The characteristics of a "good route" are different for each application. For exam-
ple, a VoIP application requires only constraints on delays when a videoconference
application requires also constraints on bandwidth. In such conditions, choosing
routes suiting all applications is difficult.

2. Having a routing mecanism that computes the best routes using a variable metric
like the delay or the available bandwidth is difficult to manage. When a route
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between two nodes is chosen by a routing mechanism, that route will support an
additional traffic load and its characteritics will change. The new characterics of
that route may become inadequate for some applications for which another route
may be suitable.

3. Using that approach for the Internet means modifying the routing philosophy of the
Internet. But in a network, everybody must use the same rules to choose the routes.
If it is not the case, there may be loops, some destinations may be unreachable,
etc. In other words, replacing existing routing protocols by new ones is a tricky
operation that can lead to several problems.

Since modifying the existing routing protocols is difficult to manage, a solution con-
sists in keeping the current routes for the best-effort traffic and computing new routes for
the traffic that needs it. Overlay routing (routing in an overlay network) is a common ap-
proach to reach such a goal without adding complexity to the current routing mechanisms.

2.2 Overlay routing
Overlay routing refers to the usage of an overlay network to provide a particular routing
behavior.

2.2.1 Overlay Networks
Definition 5. An overlay network is a network built on top of another network. The
edges between the nodes in an overlay network are paths (that can be composed of many
physical links) in the underlay network.

Figure 2.5 gives an example of an overlay network built on top of the network given
in figure 2.1. For this overlay network we used the four end-hosts named A, B, C and D
in figure 2.1. Each of these end-hosts is a node in the overlay network. On the left part of
figure 2.5, we see that four links are defined between these nodes. These links are virtual
links. Indeed, each of these links corresponds to one path in the underlay network. The
paths in the underlay network corresponding to each virtual link of the overlay network
are given in the right part of figure 2.5. For this example, we used only end-hosts as nodes
but other network components (i.e., routers, servers, etc.) can also be used as nodes in an
overlay network.

Overlay networks are used to provide services that are not provided by the underlay
network. The usage of overlay networks to deploy new services has mainly three advan-
tages compared to a direct deployment in the underlay network:

Easy deployment: Deploying an overlay network means deploying new software on top
of existing software. It does not require an expensive deployment of new equip-
ment or a potentialy dangerous modification of existing protocols. Since the risks
are limited (from an economical and a practical point of view), there is a natural
incentive to deploy such solutions.
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Figure 2.5: Example of overlay network built on top of the network given in figure 2.1. The
left part of the figure gives the topology of the overlay network (four nodes connected by virtual
links) and the right part of the figure shows the path in the underlay network corresponding to each
virtual link.

Progressive deployment: The deployment of a new service requires the development of
a communication protocol between the nodes of the network. For example, to de-
ploy a new routing protocol, all the routers have to understand the new messages
received from their neighbors. Consequently, all the nodes have to be updated si-
multaneously and that can prevent the deployment of the new service. If that service
is provided using an overlay network, that problem disappears. Indeed, nodes in an
overlay communicate through virtual links and do not require the compatibility of
all the routers standing on the physical paths used by the virtual links. In such
conditions, it is possible to start working with only a few nodes and adding pro-
gressively new nodes later. In other words, it is not necessary to modify the entire
network at the beginning and the bootstrap phase of new protocols and services is
a lot easier.

Partial deployment: The source of this third advantage is the same as for the previous
one: deploying a new service using an overlay network approach does not require
the cooperation of all the routers standing on the physical path used by the virtual
links defined in the overlay. Consequently, it is possible to deploy new services
without the cooperation of all the ISPs (Internet Service Providers) acting in the
Internet. That was the major drawback of Diffserv and Intserv: in order to obtain
QoS guarantees between a source A and a destination B, all the routers on the path
between A and B have to be Intserv/Diffserv compliant. Since some ISPs are not
convinced by the necessity of such protocols, they are not widely deployed and
there are lots of situations were they are not usable. With an overlay containing
only nodes that are end-hosts (like in figure 2.5), it is possible to provide a new
service to the Internet users without any cooperation from the ISPs.

Overlay networks have been already used for multiple purposes. Among others, they
have been used in the Internet to provide a multicast service [26, 13], to provide QoS to
applications [78] and to improve routing [1, 73]. That last application of overlay networks
is called overlay routing and is the one that interests us.
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2.2.2 Detour

Detour [73] was the first major contribution in overlay routing. In [74], Savage et al.
used the results presented by Paxson [65, 66] and their own measurements results to
show that, for a large number of paths in the Internet, it is possible to find an alternative
path providing better performance. Following that observation, they proposed Detour.
The Detour’s architecture is composed of intelligent routers deployed at key access and
interchange points in the Internet and the traffic is sent through virtual links established
between these nodes. That architecture allows to improve the routing performance (the
routers exchange measurement results in order to choose the best route in the overlay), to
propose multipath routing possibilities, to improve the efficiency of TCP (by providing
better information about the network’s state to the transport protocol), etc.

Detour is a service deployed inside the Internet. Indeed, the nodes belonging to the
overlay are routers and not end-hosts. If an application running on an end-host wants
to use the Detour service, it has to send its outgoing traffic to the nearest Detour router.
Then, the packets are forwarded along the virtual links of the overlay and exit the Detour
network at a point close to the destination. That design has mainly two drawbacks. Firstly,
the solution is application-independent and does not allow an application to define quality
metrics and routing decision rules depending of its specific requirements. Secondly, the
deployment of new routers which are Detour compliant (or the adaptation of existing
routers) in the heart of the Internet requires the cooperation of ISPs. However, ISPs will
probably not be interested in the deployment of such service. Indeed, even if it has been
observed that such service can provide better performance from an end-user point of view,
we will see in section 4.3.1 that, in many cases, the alternative paths proposed by such
services violate the routing rules applied by the ISPs. These drawbacks can explain the
low success of Detour compared to solution proposed two years later: RON.

2.2.3 Resilient Overlay Network (RON)

The main goal of RON [1] is to enable to recover from failures in the Internet within
several seconds while BGP may take in the order of several minutes to converge to a new
valid route after a link failure [33]. For applications, there are two types of failures: there
are outages where some destinations are unreachable and performance failures where
the path chosen by the Internet to reach some destinations has (perhaps temporarily) too
bad characteristics to meet the application’s requirements. RON intends to detect these
failures and to find alternative routes that circumvent the detected problems.

To reach its objectives, RON builds a full-mesh overlay network (i.e. a network where
a virtual link is defined between each pair of nodes) composed of application-layer overlay
nodes deployed on end-hosts. In order to detect failures as fast as possible, RON nodes
monitor permanently the reachability and the quality of the Internet paths corresponding
to the virtual links established between them. The results of the monitoring done by each
node are distributed among all the nodes to allow them to use this information to decide
to route packets directly over the Internet or indirectly through other nodes. Since nodes
are end-hosts, each node can take its own decision based on its specific requirements.
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In [1], Andersen et al. observed that, over a 64-hour period of monitoring in a RON
network composed of twelve nodes in the Internet, there were 32 significant outages and
RON’s routing mechanism was able to detect and route around all of them in less than
twenty seconds on average. Furthermore, they observed that RON was able to improve
the loss rate, latency, or throughput perceived by data transfers. Finally, they observed
that forwarding packets via at most one intermediate RON node is sufficient to overcome
faults and improve performance in most cases. They concluded that RON’s approach for
fault detection and recovery works well at discovering alternate paths in the Internet.

Comparison with Detour

RON shares with Detour the idea of routing through intermediate nodes but differs from
Detour mainly on two points. Firstly, RON is designed as an application-controlled rout-
ing overlay while Detour is application-independent. Consequently, RON can integrate
specific metrics and policies required by applications. Secondly, RON can be more easily
deployed than Detour (it requires a deployment on end-hosts while Detour requires a de-
ployment on routers). Finally, RON gives experimental results obtained from a real-world
deployment.

RON’s scalability

Even though RON’s approach has interesting characteristics and a small deployment in
the Internet has given good results, RON has a big problem of scalability. Indeed, RON
has a huge measurement cost and a huge dissemination cost.

Definition 6. The measurement cost denotes the traffic load generated by the measure-
ments required by the overlay routing mechanism. The communication cost denotes the
traffic load generated by the exchanges of information between the nodes participating in
the overlay routing mechanism.

Measurement cost: With RON’s approach, each node in the overlay has to perform per-
manent measurements with all the other nodes in order to enable a quick detec-
tion of failures. Since RON’s overlay network is a full-mesh network, there are
n×(n−1)/2 bidirectional virtual links to monitor in a network containing n nodes.
Consequently, RON has a measurement cost which is O(n2).

Communication cost: With RON, each node has to send its measurement results to each
other nodes. So, in a network containing n nodes, the number of messages isO(n2).
Since each message contains the measurements computed between the sender of the
message and all the other nodes of the network, the size of each message is O(n).
Consequently, the traffic generated by the dissemination of the measurement results
among the nodes is O(n3).

Notice that these estimations of the costs are done for the monitoring of one parameter.
Indeed, if the overlay requires the monitoring of p parameters (bandwidth, latency, etc),
the measurement cost becomesO(p×n2) and the communication cost becomesO(p×n3).
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2.2.4 Improving RON’s scalability

With a measurement cost O(n2) and a communication cost O(n3) there is room for im-
provements and, over the years, many improvements have already been proposed for
RON’s approach. They can be grouped into three categories: some improvements try
to reduce the number of virtual links to monitor in the overlay, others try to reduce the
communication overhead and, finally, others try to reduce the measurement overhead.

Elimination of redundant overlay links

A first approach to improve the scalability of RON’s approach consists in reducing the
number of overlay links to monitor. With that approach, the measurement cost is reduced
and the communication cost is reduced (since there is less information to exchange among
the nodes).

Nakao et al. [57, 58] proposed to eliminate redundant overlay links by using topolog-
ical information in order to build a routing mesh that is representative of the underlying
physical network. So, by contrast to many overlay mechanisms they do not consider the
Internet as a black-box and they try to eliminate virtual links that use the same physical
links in the underlay. To provide a scalable overlay routing mechanism, they use only
passive measurements and topological information that rarely change (such as AS-level
topology and geographical information) to build their overlay network. Their experiments
showed that their approach is able to reduce the measurement cost and the communica-
tion cost by a factor of two with only a small negative impact on route selection. Fei et
al. [20] used a similar way to select, for each pair of nodes of a network, a small number
of AS-disjoint paths as potential alternative paths.

Another way to reduce the number of links to monitor consists in replacing RON’s
unstructured overlay by a structured overlay. As the routing in the Internet uses a struc-
tured architecture to be scalable, Qazi and Moors [70] proposed to do the same in the
overlay, namely to define logical zones built around landmarks and to attach each node to
one logical zone. In that structure, each node monitors only a few nodes selected in each
logical zone.

Reducing the communication overhead

Another solution to improve RON’s scalability consists in reducing the communication
overhead generated by the exchanges of the measurements results between all the nodes.
In RON this overhead is O(n3) where n is the number of nodes in the overlay. Sontag et
al. [77] proposed a protocol allowing each node to find an optimal one-hop path to any
other node with a communication cost O(n2 × √n) and to find the optimal path to any
other node with a communication cost O(n2 × √n × log(n)). Let’s consider only the
search of one-hop alternative paths (this is a little bit more complicated with multi-hop
alternative paths). Their approach is based on the fact that, if a node C receives the results
of the measurements done by A and the results of the measurements done by B, C is able
to find the optimal one-hop path between A and B. Consequently, it is not necessary to
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disseminate the measurement results in the whole network and each node can only send
its measurements results to a few other nodes.

Reducing the measurement overhead

A last common way to improve the scalability of RON’s approach is to reduce the mea-
surement overhead. Since the objective is to change traffic routes, we suppose that mea-
surements must be done quite frequently to have accurate information about the state of
the network. Indeed, even if some studies [84] have shown that metrics like loss, latencies
and throughput remain generally constant over time intervals of a few minutes, the goal of
a system like RON is to detect and recover from failures as fast as possible. Consequently,
monitoring only one time every 5 minutes (for example) is not sufficient for RON and the
network has to be monitored permanently4.

To circumvent this problem Gummadi et al. [22] proposed to route through random
relay nodes instead of doing measurements and they observed that it is sufficient to ensure
reliability. However, Sontag et al. [77] observed that it is not sufficient to find good
alternative paths considering particular metrics like latency.

Recently, Lumezanu et al. [48] proposed to use an ICS (Internet Coordinate System)
to find alternative paths in a network. An ICS is a mechanism that allows to estimate
metrics like latency between any pair of nodes of a network with a small measurement
cost. However, we will see in chapter 4 that such mechanism is unable to provide accurate
estimations when an alternative path has better characteristics than the direct path between
two nodes. In other words, when there exist routing shortcuts, there are estimation errors.
Lumezanu et al. proposed to infer the existence of routing shortcuts from the observation
of these estimation errors.

2.3 Problem statement
Consider that an application wants to send data from a node A to a node B with the con-
straint thatRTT (A,B) must be smaller or equal to some threshold x. IfRTT (A,B) > x,
the application cannot perform correctly. In such case, we intend to provide a service that
can be used by the application: it can ask to find an alternative path to go fromA toB with
the smallest possible delay. When such request is received, we will try to find the best C
node such that RTT (A,C) + RTT (C,B) < RTT (A,B). Such service is already pro-
posed by existing overlay routing systems like RON (RON proposes even more than that
service). However, RON is a measurement-based service and is not scalable. Our objec-
tive is to provide that service in a scalable manner by using an estimation-based approach
instead of using a measurement-based approach: instead of performing measurements be-
tween A and each potential C and between B and each potential C, we intend to use an
ICS to obtain estimations of the required RTTs. If we find at least one node C which is

4As indicated by some studies (e.g. [77]), measurements and route computations could be done, for
example, every 5 minutes and failures could be discovered through passive measurements (triggering an
active monitoring phase and a route recomputation phase when a failure is discovered). Indeed, since a
failure is problematic only if it impacts a flow, detecting the failures by analysing the flows is sufficient.
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a routing shortcut for the path AB, the best shortcut is returned to the application. Then,
the application can use that node as relay to route indirectly its data from A to B with a
smaller delay than the delay experienced using the Internet default path.

In this thesis, our main objective is to prove the feasibility of using a scalable
estimation-based approach to provide the same service as RON’s non-scalable
measurement-based approach.

Before going deeper into the subject, we want to clarify some important points about our
research:

We focus on RTTs as performance indicator: RON considers more metrics but RTT
seems a good choice for a proof of feasibility, because it is simple to monitor and
sufficient for many applications (see section 3.1).

We are only interested in RON performance improvement functionality: We do not
intend to provide a resilient overlay network (RON’s main objective). Providing
such service with an estimation-based approach is simply impossible. Basically,
the principle of an ICS is to measure only the RTTs of a few paths in a network and
to infer estimations of the other RTTs from these measurement results. So, the first
problem with an estimation-based approach is that the system will only be able to
detect outages for the measured paths (if everything is "normal" for the measured
paths, it is impossible to infer from the measurements that there is an outage on
an estimated path). Even if an outage is detected for a measured path, the second
problem is that it is impossible to know if estimated paths are impacted or not by the
outage. So, even if the failure is detected, using only the estimations, it is impossible
to find a C node allowing to circumvent the outage. In practice, the ICS will simply
wait for the establishment of new routes by Internet’s routing protocols and then
reconverge to estimations reflecting the new RTTs. Note that the problem does not
appears for RON’s performance improvement functionality. Indeed, in case of a
simple performance failure, all the paths can still be monitored and the ICS can
immediately reconverge to new estimations reflecting the performance changes.

We do not intend to improve all the routes in the Internet: Previous studies [30] have
shown that uncoordinated effort between ISP’s traffic management and overlay’s
traffic management may cause performance degradation for both overlay and un-
derlay traffic. That’s essentially why we do no intend to optimize the routes for the
whole traffic: an application can ask a routing shortcut when it is necessary5 (i.e.
when the default route has too poor performance) and only the packets generated
by that application will be routed through the alternative path. In our mind, the best
effort traffic still uses the default Internet routes. This ensures that the major part of
the traffic remains unchanged. Thus, we avoid the problems presented in [30].

We focus on one-hop routing shortcuts: Previous studies (e.g. [51]) have shown that
limiting alternative routes to one intermediate hop is sufficient to solve many per-
formance failures. The improvement provided by multi-hops alternative routes is

5We can imagine a pay per use service in order to avoid systematic requests from applications.
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quite small compared to the additional costs induced by the consideration of such
paths. However, the possibility to extend our work to multi-hops routing shortcuts
will be briefly discussed in section 9.3.

Each overlay node is a potential shortcut: In a recent study, Lumezanu et al. [51, 48]
have investigated the problem of mutual advantage in overlay routing: they consider
that overlay edges should exist only between hosts that benefit from each other’s re-
sources or position in the network. Obviously, that reduces the number of potential
shortcuts for each path. However, their study has shown that, even with the con-
straint of mutual advantage, it is still possible to find routing shortcuts for a large
part of the paths in the Internet. For our work, we do not consider such constraint
and any overlay node can potentially be a shortcut for any overlay link.

2.4 Conclusion
In this chapter, we introduced the concept of overlay routing. Using overlay routing to
provide a better routing service than the one provided in the Internet seems promising
mainly because it can provide the required service (for example, refer to the experiments
presented in [1]) and it is quite easy to deploy (because it requires only the cooperation
of the nodes participating in the overlay). However, the overlay network approach is not
often used by applications because of its poor scalability. RON [1] was the first main con-
tribution in overlay routing and it was proposed in 2001. Since 2001, many improvements
have been proposed in order to increase its scalability. However, none of them has really
convinced. Recently, [48] proposed to use an ICS to estimate the characteristics of the
paths instead of measuring them, but their usage of the ICS was quite basic. We think that
the usage of an ICS to replace the measurements is an interesting approach: it can reduce
drastically RON’s measurement and communication costs. Obviously, these cost reduc-
tions will have consequences. The main drawback is that we will lose precision because
we will use estimations of the characteristics of the paths instead of real measurements.
This can lead to detection errors (thinking that an alternative path has good characteris-
tics when this is not the case) and to suboptimal solutions (finding one good alternative
path which is not the best one). Even if the obtained results are perfectible, we think that
such approach can give good results with the major advantage of being scalable. In the
following chapter, we will introduce the concept of ICS and, in the next chapters, we will
investigate ways to use the estimations produced by an ICS to detect alternative routes.
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Chapter 3

Internet coordinate systems

Abstract
In the previous chapter, we have seen that overlay routing is a promising way to improve
the quality of the routes in the Internet, but we have also seen that the scalability is a major
drawback with that approach: a huge amount of traffic is generated by the monitoring of
the network and by the dissemination of the measurements results among the nodes. In
this chapter, we will introduce the notion of Internet Coordinate System. Such systems
allow for the estimation of metrics between any pair of nodes in a network with only a
small measurement cost. Consequently, Internet Coordinate Systems seem to be a simple
way to solve the problem of scalability of overlay routing, but we will see in the next
chapter that this is not so simple.

3.1 Round Trip Time as performance indicator
Our objective is to find a lightweight mechanism that provides indications about the per-
formance of the paths in a network. Ideally the performance of a network path should be
represented by the QoS perceived by the users of the path. However, such metric depends
of the user requirements, is difficult to quantify and requires the intervention of the users
to be quantified. We need something more convenient as metric. In the following sections
of this thesis we will focus on one metric: the Round-Trip-Time (RTT).

Definition 7. The Round Trip Time (RTT), is the time required for a packet to travel from
a specific source to a specific destination and back again. In the Internet, this can be
measured by computing the time elapsed between sending an ICMP echo request packet
to the destination and receiving the corresponding ICMP echo reply packet.

This choice has been done mainly for three reasons:

• RTT is a simple metric useful for many applications. For example, VoIP (Voice
over IP, i.e. IP telephony) can be highly impacted by a large RTT between com-
municating nodes. Another example is online realtime multiplayers video games
where a small RTT between players is required for a good experience. For other

23
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applications the RTT is an important metric, but not the only one. For example,
video-conferences require small delays between communicating nodes but also a
large bandwidth for the video signal. Anyway, in lots of cases, the RTT is an im-
portant indication of network performance.
• Compared to other significant metrics of network performance, the RTT is easy

the monitor. For example, compared to available bandwidth measurements, RTT
measurements consume a lot less network resources and have less impact on the
ordinary traffic. Compared to one-way delay measurements, RTT measurements
do not require synchronizations between nodes (which is difficult to obtain).
• Several Internet Coordinate Systems have already been developed to provide RTT

estimations.

3.2 Internet Coordinate Systems
An Internet Coordinate System (ICS) is a mechanism that allows network nodes to es-
timate metrics (like latency or available bandwidth) between them without performing
direct measurements. To achieve that goal, an ICS models the network as a geometric
space and computes a position for each node in that space. The position of a node in the
space is defined by its coordinate. These coordinates are such that the distance between
the coordinates of two nodes gives an estimation of the metric considered by the ICS
between these two nodes. For example, in figure 3.1 the ICS models the network as a
two-dimensional Euclidean space to estimate latencies. Nodes A and B have respectively
the coordinates (xa, ya) and (xb, yb) in that space. An estimation L̂(A,B) of the latency
L(A,B) existing between the nodes A and B can be computed as the Euclidean distance
between the coordinates of these nodes:

L̂(A,B) =
√

(xa − xb)2 + (ya − yb)2

A

B

Latency ? A

B

(Xa, Ya)

(Xb, Yb)

Y

X

Latency (A, B) = 

euclidean_dist ((Xa, Ya), (Xb, Yb))

Figure 3.1: Example of ICS usage. This ICS models the network as a 2-dimensional Euclidean
space to allow latency estimations. The latency between two nodes is estimated by the Euclidean
distance between the coordinates of these nodes.

In figure 3.1 we took as example an ICS that estimates latencies. This choice was
not done randomly. Indeed, most of the ICS (e.g. [61, 15, 14]), have been developed to
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provide latency estimations. However, recent works (e.g. [71, 41]) have shown that it is
also possible to provide estimations for metrics like the available bandwidth.

It is important to notice that the estimation of a metric between two nodes with an
ICS requires only the knowledge of the coordinates of these nodes and can be computed
even if it has never been physically measured. In fact, the global objective of an ICS is to
minimize the estimation errors with the constraint that the network resource consumption
must be as small as possible.

Definition 8. Let RTT (A,B) be the measured RTT between the nodes A and B and
let EST (A,B) be the estimated RTT between the nodes A and B using the coordinates
of these nodes. The Absolute Estimation Error AEE(A,B) and the Relative Estimation
Error REE(A,B) for the Internet path between the nodes A and B are

AEE(A,B) = EST (A,B)−RTT (A,B) REE(A,B) =
AEE(A,B)

RTT (A,B)

Following these definitions, AEE(A,B) and REE(A,B) are negative (resp. positive)
values when EST (A,B) underestimates (resp. overestimates) RTT (A,B).

Obviously, measuring the path between each pair of nodes and applying an optimi-
sation algorithm to compute the best coordinate for each node will provide an optimal
result, but is not an acceptable solution. Indeed, if a measurement result is available for
each path, the estimations become useless. Consequently, an ICS must only measure a
few paths in the network and infer the position of the nodes in the space from the mea-
surement results and the positions of the other nodes in the space. There exist multiple
ICS and each ICS has its own method to compute the coordinates of the nodes. A good
survey on this subject can be found in [18]. Based on their general behavior, the coordi-
nate systems can be divided into two categories: the landmark-based coordinate systems
(see section 3.2.1) and the decentralized coordinate systems (see section 3.2.2).

3.2.1 Landmark-based coordinate systems
In a landmark-based coordinate system, there are generally two categories of nodes: the
landmarks and the ordinary nodes. In a classical scheme, each landmark performs mea-
surements with all the other landmarks in order to compute a coordinate that gives it a
good position in the space considering the position of the other landmarks. Then, when
an ordinary node wants to compute its coordinate, it performs measurements with the
landmarks in order to find a good position in the space considering the position of the
landmarks.

State of the art

Global Network Positioning (GNP) [61] was the first mechanism that proposed to model
the Internet as a n-dimensional geometric space. GNP implements the basic behavior for
landmark-based coordinate systems described above. In GNP, only a small number of
nodes are designated as landmarks. Each landmark performs measurements with all the
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other landmarks and a position in the geometric space that minimises estimation errors
on the measured paths is computed for each landmark (using an optimization algorithm
called the Simplex DownHill method [59]). When an ordinary node wants to compute its
coordinate, it performs measurements with respect to each landmark and uses the Simplex
DownHill method to find a coordinate that minimises the estimation errors for the paths
between it and the landmarks.

Lighthouses [68] is a GNP variation. With GNP, each ordinary node must do measure-
ment with each landmark. So, when the number of ordinary nodes grows, the incoming
measurement traffic at the landmarks grows proportionally. That becomes a real problem
if GNP is deployed at a large scale. To circumvent this problem, Lighthouses proposes to
use multiple landmarks sets. When an ordinary node wants to compute its coordinate, it
performs measurements only with the landmarks belonging to one of the landmarks set.

Network Positioning System (NPS) [60] is another GNP variation that intends to re-
duce the traffic load experienced by the landmarks. NPS is a hierarchical coordinate
system where all nodes can potentially be used as landmarks by the other nodes. For each
node, the choice of the landmarks is done by a server. NPS still uses a set of permanent
landmarks and these landmarks form the layer 0 of the architecture. The nodes using only
permanent landmarks as landmarks form the layer 1 of the architecture. If the permanent
landmarks are too heavily loaded or if they are unavailable, the server adds a layer 2 to
the architecture and proposes nodes of the layer 1 as landmarks to the nodes of the layer
2. Finally, each node belonging to layer i randomly uses some nodes from layers below
layer i as its landmarks.

Lim et al. [44] and Tang et al. [79] both proposed models based on Lipschitz em-
bedding. The basic idea of the Lipschitz embedding is to use the measured distances as
coordinates: the coordinate of node A is (a1, . . . , an) where ai is the measured distance
between A and the landmark i for i = 1, . . . , n. Since two nodes that are close to each
other in the Internet have generally similar distances to the other nodes, two nearby nodes
in the Internet will have similar coordinates in the Lipschitz embedding and will be con-
sidered as nearby nodes using the estimations. The two models begin by embedding the
nodes in a n-dimentional space using their distances to the n landmarks (Lipschitz em-
bedding). To reduce the dimentionality, the coordinates in the n-dimentional space are
then projected in a d-dimentional space (with d < n) using a method called principal
component analysis (PCA) [27].

Internet Distance Estimation Service (IDES) [54] proposes a model based on matrix
factorization. The idea is to approximate a large matrix containing the distances between
each pair of nodes belonging to the network by the product of two smaller matrices. To
compute the small matrices from network measurements, IDES proposes two algorithms:
Singular Value Decomposition (SVD) [34] and Non-Negative Matrix Factorization (NMF)
[36]. For the measurements, IDES operates as a standard landmark-based approach. On
one side, landmarks measure distances between them, and their "coordinates" (composed
of an outgoing and an incoming vector in IDES) are computed using SVD or NMF applied
on the full inter-landmarks delay matrix. On the other side, an ordinary node measures
distances with the landmarks and computes its outgoing and incoming vectors using a
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least squares optimization algorithm applied using the measurement results and the out-
going and incoming vectors of the landmarks.

Phoenix [10] improves the approach proposed by IDES. Compared to IDES, Phoenix
adopts a weighted model adjustment to achieve better prediction accuracy and ensures that
the predicted distances are positive values (it was not the case with IDES and it could be
a problem for some applications). Even if each node in Phoenix can potentially choose as
reference point any node that has already computed its coordinate, Phoenix is not totally
distributed. Indeed, during a first phase, Phoenix still considers the early-entered nodes
as landmarks and a centralized algorithm (NMF) is used to compute the coordinates of
these nodes.

Limitations

The main drawback of the landmark-based models is the usage of landmarks. A first
major problem is that landmark failures and overloadings affect latencies. Consequently,
the measurement results used to compute the coordinates become themselves inaccurate.
Distributing the measurement load among all the nodes rather than on a small number of
them would provide better results. Secondly, many studies [61, 54] have shown that the
choice of the landmarks (their number and their positions) has an important impact on the
accuracy of the estimations. Again, avoiding the use of the same set of reference points
for all the nodes would reduce the impact of a bad choice of reference points. Even if
some landmark-based approaches like Lighthouses or NPS tend to distribute the load on
more nodes, they still require a dedicated infrastructure which is a point of failure.

These problems induce that landmark-based ICS are not attractive solutions for de-
ployments at a large scale and we prefer fully distributed approaches.

3.2.2 Distributed coordinate systems

The distributed ICS extend the embedding concept proposed by the landmark-based solu-
tions. Distributed approaches generalize the role of landmark to any node existing in the
system (like NPS does but without the use of the centralized management server) and do
not require any dedicated infrastructure.

State of the art

Practical Internet Coordinates (PIC) [14] is a variation of GNP that does not require ex-
plicitly designated landmarks. In PIC, any node that has already computed its coordinate
can be used as landmark and a joining node has to use an active node discovery protocol
to find its landmarks (there is no central server for this purpose). Moreover, PIC was the
first ICS that introduced a security mechanism against malicious behaviours of nodes1.

1With landmark-based approaches, it was possible to guarantee the reliability of the nodes belonging
to the small set of landmarks. With a distributed approach, it is unrealistic to assume that no node in the
network will behave maliciously. Consequently, a mechanism to protect the nodes against the behaviour of
malicious nodes is necessary.
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Big-Bang Simulation (BBS) [75] models the network as a set of particles where each
particle is the image of a node in a geometric space. These particles move in that space
under the effect of potential force field. Each pair of particles is pulled or repulsed by
the field force induced between them depending on their embedding error. The main
drawback of BBS is that its model is much more complicated than a model proposed a
little bit later: Vivaldi.

Vivaldi [15] is probably the most successful ICS that has been proposed so far. It is
fully decentralized (it does not require any fixed network infrastructure, it makes no dis-
tinction between nodes and each node can compute its own coordinate independently),
its model is quite simple and it has been widely deployed and tested. Like BBS, Vivaldi
models the nodes of the network as a set of elements that interact in a geometric space.
But, where BBS uses a complicated model based on force fields, Vivaldi models the forces
between the elements by using simple springs. In Vivaldi, each node chooses a few refer-
ence points called its neighbors. The idea is that a node A is connected to each neighbor
B by a spring which has a rest length corresponding to the measured distance between
A and B (i.e. d(A,B)) and an actual length coresponding to the estimated distance in
the coordinate space between A and B (i.e. d̂(A,B)). The goal of a node is to have a
coordinate that minimizes the potential energy of the springs attached to it, i.e. each node
adapts its coordinate to have, for each spring, an actual length which is as near as possible
to the rest length. Thus, if d̂(A,B) is smaller than d(A,B), the spring between the node
A and its neighborB pushesA away fromB to increase its actual length. On the contrary,
if d̂(A,B) is bigger than d(A,B), the spring pulls the node towards its neighbor to reduce
its actual length. More details about Vivaldi’s mechanism will be given in section 3.3.

Decentralized Matrix Factorization (DMF) [42] is, like IDES and Phoenix, a mech-
anism based on matrix factorization. Like in Phoenix, a node in DMF can choose any
node in the network as reference point. But, unlike Phoenix, DMF get rid of the first
phase where a complete delay matrix between the early-entering nodes and a centralized
algorithm were required to compute the coordinates (incoming and outgoing vectors) of
these nodes: DMF is a fully distributed approach. In a first version of DMF [42], Liao et
al. solved this problem by initializing the coordinates of the nodes with random numbers.
Then, they use a least squares optimization algorithm to update the coordinates of the
nodes. They observed that DMF is insensitive to the random initialization and that the
coordinates of nodes converge progressively to good values.

Recently, Liao et al. proposed a new version of DMF called Decentralized Matrix
Factorization by Stochastic Gradient Descent (DMFSGD) [41, 40]. With this version,
they formulate the problem of network distance prediction as a matrix completion prob-
lem: the delay matrix contains the results of the measurements done between the nodes
and their reference points, but lots of delays are not measured and must be inferred from
the measured ones. Matrix completion is only possible if matrix entries are largely corre-
lated and this is the case for network distances2. The matrix completion process is done

2Intuitively, for two near nodes, the distances to the other nodes are similar: for a same destination,
these nodes use the same Internet paths. Consequently, the lines corresponding to these nodes in the delay
matrix are correlated.
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using a fully decentralized algorithm based on Stochastic Gradient Descent (SGD) [2].
More details about DMFSGD will be given in chapter 7.

Discussion

Distributed approaches are generaly more attractive than landmark-based approaches be-
cause they do not rely on a dedicated infrastructure. It has mainly two consequences. The
first one is that they are more robust: in case of outage or attack, a dedicated infrastructure
is a point of failure and can prevent the whole system to work. The second one is that
they are more scalable: with a distributed approach there is no problem of overloading of
the landmarks.

On the other side, distributed approaches are criticized for being more vulnerable to
security threats. Indeed, in a landmark-based approach, it is possible to ensure that all the
landmarks are reliable nodes and to ensure that each node uses reliable reference points to
compute its coordinates. In a distributed approach, it is difficult to ensure that each node
in the system is reliable. Consequently, some nodes can compute bad coordinates caused
by malicious nodes used as reference points.

Distributed approaches are also criticized for having worse prediction accuracy than
landmark-based approaches. However, implementations and deployements in the Internet
have shown that P2P applications and overlays relying on the notion of network proximity
can benefit from the estimations provided by distributed ICS. For example, using the
Azureus [80] BitTorrent network as a testbed (with about one million nodes), Ledlie et
al. [35] have shown that, even if the coordinates produced by Vivaldi give sometimes
large estimation errors when Vivaldi is used in the Internet, these coordinates achieve the
major goal they were designed for: deliver a reasonably accurate position for each node,
allowing quite reliable approximation of nodes proximity.

3.2.3 Choosing one suitable ICS to reach our objective
Since our main objective is to improve RON’s scalability, we need an ICS that is suitable
for a large scale deployment. So, we naturally tend to choose a distributed ICS. This
choice is reinforced by the fact that RON is, by definition, a distributed system (each
node is able to find an alternative path itself when it is necessary). So, using a centralized
measurement mechanism has no sense: this would only make the system more vulnera-
ble to outages and attacks. Among distributed ICS, Vivaldi seems to be a good choice.
Compared to other distributed approaches, choosing Vivaldi gives many advantages:

• Vivaldi has already been widely studied and tested (and not only in specific testbeds
like Planetlab). So, we know that it is able to provide quite accurate estimations,
even in networks composed of about one million nodes.
• Multiple improvements have been proposed for Vivaldi (see section 3.5). These

improvements can give better (or worse) results for our intended usage of the coor-
dinates.
• A simulator developed by the Vivaldi’s conceptors is publicly available and can be

used for experiments (see section 3.3.2).
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To benefit from all these advantages, we have choosen Vivaldi as estimation mechanism
to improve RON’s scalability.

However, the recent decentralized approach based on matrix factorization seems also
interesting. Indeed, following its conceptors, DMFSGD provides more accurate estima-
tions than Vivaldi and DMFSGD could be a better choice than Vivaldi to reach our goal.
Since that system was not available at the beginning of our work, it was not our primary
choice. Nevertheless, we will investigate the results obtained with that estimation mech-
anism and compare these results to those obtained with Vivaldi in chapter 7.

3.3 Vivaldi
Vivaldi [15] is a popular fully distributed ICS that does not require any particular network
infrastructure. In Vivaldi, each node computes its own coordinate by doing measurements
with a few other nodes called its neighbors. If m denotes the number of neighbors chosen
by each node (typicallym = 32), the measurement cost of Vivaldi in a network containing
n nodes is O(n×m). Since m is a very small value compared to n, this is better than the
measurement cost O(n2) obtained if all paths must be measured (like in RON).

3.3.1 Algorithm
As previously explained, Vivaldi simulates a spring between each pair of nodes (A,B)
where B is a neighbor of A. The rest length of the spring placed between the node A and
its neighborB is equal to the measured RTT (RTT (A,B)) for the pathAB and its current
length is equal to the estimated RTT EST (A,B) for the path AB (computed using the
coordinates of the nodes). The potential energy of the spring is equal to zero when its
actual length is equal to its rest length. In other words, the potential energy of a spring
is equal to zero when the estimation error of the corresponding path is equal to zero. In
such conditions, each node adjusts its coordinate to minimize the potential energy of the
springs placed between it and its neighbors in order to minimize the estimation errors in
the network. An identical Vivaldi procedure runs on every node.

Basic principle

Let ~F (A,B) be the force applied on node A by the spring placed between node A and its
neighbor B. Following Hooke’s law, we have

~F (A,B) = (RTT (A,B)− EST (A,B))× u(~xA − ~xB)

where ~xA is A’s coordinate, ~xB is B’s coordinate, EST (A,B) = ‖~xA − ~xB‖ is the
estimated RTT for the path AB and u(~xA − ~xB) is a unit-length vector that gives the
direction of the force. The total force experienced by A is:

~F (A) =
∑

B∈N(A)

~F (A,B)
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where N(A) is the set containing A’s neighbors. To simulate the spring network evolu-
tion, each node starts with a coordinate located at the origin of the space3 and the mech-
anism considers small intervals of time. At each interval, the mechanism computes the
force experienced by each node and moves each node in the space of a small distance
depending of the force experienced by the node. At the end of a time interval of size δ,
the coordinate of a node A is modified using the following formula:

~xA = ~xA + (~F (A)× δ)

This mechanism converges progressively towards a situation that minimizes the potential
energy of the springs (i.e. the estimation errors in the network).

Finding an appropriate value for δ is important in the design of Vivaldi. If that value
is too big, the nodes will move on long distances at each step and it could finally be
impossible for them to find a good position in the geometric space. On the other hand, if
that value is too small, the system will take a long time to converge.

Simple algorithm

Based on this principle, the designers of Vivaldi proposed a first simple algorithm. In their
approach, a node updates its coordinate after each measurement with one of its neighbors.
When node A measures the RTT with its neighbor B (and learns B’s current coordinate
during the process), A updates its coordinate using the following rule:

~xA = ~xA + δ × (RTT (A,B)− EST (A,B))× u(~xA − ~xB)

where δ is a constant timestep. Algorithm 1 gives an example of a procedure called when
a measurement is done between a node and one of its neighbors. The intensity of the
force (i.e. the absolute estimation error (AEE) of the sample) is computed in line 4, the
direction of the force is computed in line 5, the force vector is computed in line 6 and the
local node’s coordinate is updated in line 7.

Algorithm 1 Simple_Vivaldi (rtt, ~xremote)
Require: A RTT measurement has been done between the node and one of its neighbors.

1: {~xlocal is the coordinate of the local node}
2: {~xremote is the coordinate of the neighbor}
3: {rtt is the measured RTT}
4: int = rtt− ‖~xlocal − ~xremote‖
5: dir = u(~xlocal − ~xremote)
6: f = dir × int
7: ~xlocal = ~xlocal + δ × f

The main drawback of that simple algorithm is that it is biased towards more recent
samples. For example, if a node has already a good position in the geometric space

3Since all the nodes start at the same location, Vivaldi must find a way to separate them. For this purpose,
Vivaldi defines u(0) as a unit-length vector in a randomly chosen direction.
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with regard to all its neighbors excepting one of them and if it does a measurement with
that problematic neighbor, then the algorithm moves the node in the geometric space with
respect to the estimation error of the last sample without considering the previous samples.
To circumvent this problem, each node could maintain a list of every samples received so
far and consider all these samples during the coordinate update process. However, since
the nodes are constantly updating their coordinates, old samples can be outdated and
maintaining such a list is not scalable. The solution proposed by Vivaldi is to add a notion
of confidence in the coordinates and to use an adaptive timestep instead of a constant one.

Timestep’s value

Vivaldi uses an adaptive value for the timestep δ. The timestep is computed during each
coordinate update and it depends of two values:

The node’s error (local error): If the confidence of the node in its coordinate is low, the
node can make important moves in the geometric space in order to reach quickly a
more accurate position. In other words, if the local error is high, then the coordinate
update must use a big value for the timestep. Reversely, if the confidence of the node
in its coordinate is high, it has only to refine its coordinate: its global position in the
geometric space considering the positions of its neighbors is already quite good. In
such situation, the node must only do small moves in the geometric space. In other
words, if the local error is low, then the timestep must be a small value.

The neighbor’s error (remote error): If the neighbor used for the coordinate update has
a low confidence in its coordinate, the node must moderate the impact of the cor-
responding sample (in particular if the node has a high confidence in its current
coordinate). Consequently, if the remote error is high and the local error is low,
then the timestep must be a small value.

To take all these cases into account during the coordinate update process, Vivaldi
defines the weight of the sample as the ratio w = local error/(local error+remote error).
The adaptive timestep is computed using the following formula where cc < 1 is a constant
positive value:

δ = cc× local error
local error + remote error

Estimating the local error

To compute the adaptive timestep, the node requires an estimation of its local error. Vi-
valdi updates the local error of a node after each measurement with one of its neighbors.
Using the measured RTT and the neighbor’s coordinate, the node can compute the sample
error which is the estimation error for the path between him and its neighbor. For the
node A and its neighbor B, we have:

es = |REE (A,B)| = |RTT (A,B)− EST (A,B)|
RTT (A,B)
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If the sample error is high (resp. low), the node can reduce (resp. increase) its confidence
in its coordinate, i.e. it can increase (resp. reduce) its local error. To do this, each node
maintains a weighted average of all the sample errors computed so far and the result of
the average is the local error of the node. Obviously, the impact of the last sample error on
the average must depend of the weight of the sample. For example, for a node with a low
local error, if a sample reveals a high estimation error with a neighbor which has a low
confidence in its coordinate, then the impact of the high sample error on the average must
be moderated: since the position of the node is accurate with regard to the positions of the
other neighbors, the high estimation error observed for this sample is probably caused by
a bad current position of the probed neighbor. To update the node’s local error, Vivaldi
uses the following formula where ce < 1 is a positive constant:

local error = es × (ce× w) + local error× (1− (ce× w))

Vivaldi’s algorithm

Algorithm 2 is the Vivaldi algorithm. A node calls this procedure each time it does a
measurement with one of its neighbors. The weight of the sample is computed in line
6, the error of the sample is computed in line 8, the local error is updated in line 9, the
adaptive δ is computed in line 10, the force vector is computed in lines 11 to 13 (like in
the simple version of the algorithm) and the local coordinate is updated in line 14 (using
the adaptive timestep).

Algorithm 2 Vivaldi (rtt, ~xremote, eremote)
Require: A RTT measurement has been done between the local node and one of its

neighbors.
1: {~xlocal is the coordinate of the local node}
2: {~xremote is the coordinate of the neighbor}
3: {elocal is the node’s local error}
4: {eremote is the neighbor’s local error (the remote error)}
5: {rtt is the measured RTT}
6: w = elocal/(elocal + eremote)
7: est = ‖~xlocal − ~xremote‖
8: es = |rtt− est|/rtt
9: elocal = es × (ce× w) + elocal × (1− (ce× w))

10: δ = cc× w
11: int = rtt− est
12: dir = u(~xlocal − ~xremote)
13: f = dir × int
14: ~xlocal = ~xlocal + δ × f
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3.3.2 P2PSim simulator
The P2PSim simulator [64] is a discrete-event simulator which comes with an implemen-
tation of the Vivaldi system. We have used that simulator to conduct our experiments. The
implementation of Vivaldi proposed by this simulator has been created by F. Dabek and
R. Morris that are two of the authors of the Vivaldi reference paper (i.e. [15]). However,
we have noticed two small differences between that implementation and the theoretical
algorithm presented in section 3.3.1.

The first difference between the implementation in the simulator and algorithm 2 ap-
pears during the update of the local error: in line 6 of the algorithm, instead of computing
w, the implementation computes w′ with

w′ =
e2local

e2local + e2remote

In other words, the implementation uses squared errors to compute the weight of the
sample instead of using the errors. The consequence of that modification is only that the
weight of the sample will be higher when it must be high and it will be lower when it
must be low (see example 1).

Example 1. Let’s first consider the case where the local error is small and the remote
error is big. For example, elocal = 0.1 and eremote = 0.8. In such situation, the weight
of the sample must be low: since the node is confident in its actual coordinate while the
neighbor is not, the reference point is not reliable and the impact of the sample on the
node’s coordinate must be small. We have

w =
0.1

0.1 + 0.8
= 0.111 w′ =

0.12

0.12 + 0.82
=

0.01

0.01 + 0.64
= 0.015

As intended, the value of w is small and the value of w′ is even smaller. Now, consider the
case where the local error big and the remote error is small. For example, elocal = 0.8
and eremote = 0.1. In such situation, the weight of the sample must be high: since the
node is not confident in its actual coordinate while the neighbor is, the reference point
is reliable and the impact of the sample on the node’s coordinate must be important. We
have

w =
0.8

0.8 + 0.1
= 0.889 w′ =

0.82

0.82 + 0.12
=

0.64

0.64 + 0.01
= 0.985

As intended, the value of w is big and the value of w′ is bigger.

The second difference between the implementation in the simulator and algorithm 2
appears while δ is computed. Like in algorithm 2, the implementation computes δ =
cc× w (to compute δ, the implementation uses w and not w′) but the difference is that w
is computed by the implementation after the update of the local error (i.e. between line 9
and line 10 in algorithm 2). Consequently, the variable elocal used to compute w has the
updated error as value in the implementation while it has the error before the update as
value in algorithm 2. Using the updated error instead of the error before the update can
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be justified. Indeed, on one side, if the local error is reduced (resp. increased) during the
update process, then the weight computed by the implementation will be smaller (resp.
bigger) than the weight computed in algorithm 2. On the other hand, if the local error
is reduced during the update process then, the estimation error of the path between the
node and its neighbor is already quite small. Consequently, having a smaller value for
the weight and doing only a small move in the metric space to keep approximatively the
same estimation is a good behavior. Reversely, if the local error is increased during the
update process then, the estimation error of the path between the node and its neighbor is
important. In such situation, having a bigger value for the weight and doing a large move
in the metric space to improve the estimation is a good behavior.

As conclusion, even if there are differences between the theoretical algorithm and the
implementation in the simulator, the implementation has the same general philosophy as
the theoretical algorithm. So, these differences are acceptable. But the question is, are
they necessary? It is difficult to answer this question. To our knowledge, there is no
paper on that subject and there is no comments in the implementation to explain those
modifications. We have done some small experiments and we have not observed major
differences between the results obtained with the P2PSim implementation of Vivaldi and
the results obtained with an exact implementation of the Vivaldi algorithm. However, that
does not mean that there are no cases where these modifications are necessary to obtain
good estimations. Since the creators of Vivaldi (who have implemented it in the P2PSim
simulator) know their algorithm better than us, they had probably a good reason to do
these modifications and we will take their implementation as it is for our own experiments.

3.3.3 The embedding space
The Vivaldi algorithm uses the concept of coordinate without defining exactly what is a
coordinate. Actually, Vivaldi works with any coordinate system that supports the opera-
tions used by the algorithm: coordinate subtraction, vector norm and scalar multiplication
operations.

Definition 9. In geometry, a coordinate system is a system which uses one or more num-
bers (or coordinates) to uniquely determine the position of a point.

To allow the definition of the operations required by Vivaldi, the coordinate system
must be defined on a metric space.

Definition 10. A metric space is an ordered pair (M,d) whereM is a set and d is a metric
on M .

Definition 11. A metric d on a set M is a function d : M ×M → R such that for any x,
y, z ∈M , the following holds:

1. Non-negativity: d(x, y) ≥ 0

2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)
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Type of spaces

There exist many types of metric spaces that can be used with Vivaldi. Since Vivaldi
simulates a real-world spring system (i.e. a system working in a three dimensional Eu-
clidean space), a natural choice is to use a d-dimensional Euclidean space for Vivaldi.
The definitions in the Euclidean space of the operations used by the algorithm are the
following:

(x1, · · · , xd)− (y1, · · · , yd) = (x1 − y1, · · · , xd − yd)
‖(x1, · · · , xd)‖ =

√
x21 + · · ·+ x2d

α× (x1, · · · , xd) = (αx1, · · · , αxd)

Some people tried to use Vivaldi with other types of coordinates hoping to obtain a
better prediction accuracy. Since the distances that Vivaldi tries to embed in the metric
space are obtained from paths that are on the surface of the Earth (i.e. a sphere) another
natural choice is to use Vivaldi with spherical coordinates. Dabek et al. [15] observed
that the estimation errors obtained with Vivaldi are bigger with spherical coordinates than
with simple 2D-Euclidean coordinates. Using their measurement results, Ledlie et al.
[35] showed that the Internet is a "flat" world and not a sphere because most of the traffic
between Europe and Asia flows through North America. Consequently, putting European
nodes on one side of a Euclidean space, Asian nodes on the opposite side and American
nodes in the middle gives better estimations than putting the nodes on a sphere.

It has also been proposed to use Vivaldi with a Euclidean space augmented with a
height. In such space, each node has a coordinate [~x, xh] where ~x is the coordinate of
the node x in a Euclidean space and xh is the height of the node x. A packet sent from
one node to another must travel the source node’s height, then travel in the Euclidean
space and, finally, travel the destination node’s height. Intuitively, the height of a node
represents the latency of the node’s access link to the Internet and the distance in the
Euclidean space represents the latency in the Internet between the source’s access point
and the destination’s access point. The defintions of the operations used by Vivaldi are
the following:

[~x, xh]− [~y, yh] = [(~x− ~y), xh + yh]

‖[~x, xh]‖ = ‖~x‖+ xh

α× [~x, xh] = [α~x, αxh]

Dabek et al. [15] observed that Vivaldi with a two dimensional Euclidean space aug-
mented with a height provides slightly more accurate estimations than Vivaldi with a
three dimensional Euclidean space. However, with that type of space, Vivaldi tends to
over-estimate small RTTs. This happens mainly for two reasons. The first one is linked
to the intuitive idea itself. Indeed, to travel from one node to another, it is not always
necessary to travel through the access links of these nodes (e.g. if the two nodes are in
the same LAN). However, in such situation, the estimation considers the height of the
two nodes and over-estimates the RTT. The second reason is that the height must be a
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strictly positive value but can become negative or equal to zero with the Vivaldi algo-
rithm: typically, if the node is too far from its neighbor, the intensity of the force vector
(line 11 in algorithm 2) is negative and can lead to a negative value for the height of the
local node after the coordinate update. If the height of a node is negative at the end of a
coordinate update, node’s height must be set to an arbitrary positive value to avoid future
problems. Even if that positive value is small, the operation is opposed to the behavior
of the algorithm. Indeed, in such situation, the algorithm modifies the coordinate of the
node to make it closer to its neighbor. Resetting manualy the height to a positive value
when it is negative or equal to zero means putting the node farther from its neighbor (and
even possibly farther than it was before the coordinate update). Consequently, Vivaldi
has difficulties to estimate small RTTs when it uses a Euclidean space augmented with a
height vector.

Shavitt and Tankel [76] tried to embed RTTs in a hyperbolic space and obtained, with
BBS, a better prediction accuracy than when they used a Euclidean space. In their pa-
per Dabek et al. [15] cite this possibility as a future work and they said that their model
consisting in an Euclidean space augmented with a height is already a rough approxima-
tion of an hyperbolic space. To our knowledge, they have never written a paper presenting
such results. Later, Lumezanu and Spring [52] tried to use Vivaldi with hyperbolic coordi-
nates. They compared that model to the Euclidean model and observed that the hyperbolic
model performs better in some situations while the Euclidean model performs better in
other situations.

Choice of a Euclidean space

Our choice is to use a pure Euclidean space for our experimentations. Since spherical
coordinates provide worse estimations, we can ignore that possibility. Since our goal is
to use the estimations to find routing shortcuts, we intend to use the estimations to find
the smaller RTTs. Consequently, having a coordinate system that tends to over-estimate
small RTTs is not interesting and we do not choose the Euclidean augmented with a height
model. So, we have to choose between the Euclidean model and the hyperbolic model.
Since these models are quite equivalent in terms of prediction accuracy, we finally prefer
the Euclidean model for its simplicity.

We will use Vivaldi with a d-dimensional Euclidean space but we still need to choose a
value for d. Since Vivaldi simulates springs working in a 3-dimensional space, choosing a
3-dimensional Euclidean space would be natural. The principal component analysis con-
ducted by Tang and Crovella [79] on small datasets also suggests that a 3-dimensional Eu-
clidean space is sufficient but, using the large amount of data collected through Azureus,
Ledlie et al. [35] found that four or five dimensions is more appropriate for an Internet-
scale system. The goal of these studies was to find a tradeoff between prediction accuracy
and the communication overhead required by the prediction mechanism. Our goal is a lit-
tle bit different. Even if our initial objective is to reduce the communication and measure-
ment overheads of RON’s approach, we mainly want to demonstrate that this is feasible
using the prediction provided by a coordinate system. Consequently, we want as much
prediction accuracy as possible and we allow the use of a little bit more dimensions than
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what is recommended by these studies. Moreover, as long as d≪ n, the communication
overhead of an estimation based approach will be smaller than RON’s communication
overhead (which is O(n3)). Indeed, since n nodes will have to send their coordinate to
n other nodes, the number of messages is O(n2). If the size of a coordinate is O(d), the
total communication overhead with an estimation based approach is O(n2 × d).

To choose a value for d, we simulated Vivaldi in a d-dimentional Euclidean space with
different values for d. For these simulations, we used the RTT matrix provided with the
P2PSim simulator which contains the RTTs measured in the Internet between 1740 nodes
(more information about that matrix can be found in section 3.4). Except the value of
d, all the parameters are identical for each simulation. In particular, each node uses the
same set of 32 neighbors. At the end of each simulation, we computed the estimation of
each RTT using the coordinates and we computed the relative estimation error (REE - see
definition 8 page 25) for each RTT. Figure 3.2(a) gives the CDFs (Cumulative Distribution
Functions) of the REEs obtained with different values of d.
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Figure 3.2: Impact of parameters variations on Vivaldi’s estimation errors. The left figure
represents the CDFs of the REEs obtained by running Vivaldi in a d-dimensional Euclidean space
with 32 neighbors for different values of d. The right figure represents the CDFs of the REEs
obtained by running Vivaldi in a 10-dimensional Euclidean space with m neighbors for different
values of m.

Figure 3.2(a) confirms the results obtained by Ledlie et al.: using a 5-dimensional space
seems sufficient to ensure a good preduction accuracy. For example, with a 5-dimensional
space, figure 3.2(a) shows that there are 75% of the RTTs which have a REE smaller or
equal to 0.2. As comparison, in a 3-dimensional (resp. 2-dimensional) space, there are
only 70% (resp. 65%) of the RTTs which have a REE smaller or equal to 0.2. It is still
possible to get a little accuracy improvement by using a 10-dimensional Euclidean space.
In such space, there are 77% of the RTTs which have a REE smaller or equal to 0.2.
However, going above ten dimensions is clearly useless: for example, in figure 3.2(a),
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we see that the CDF obtained by running Vivaldi in a 20-dimensional Euclidean space is
almost the same than the CDF obtained in a 10-dimensional Euclidean space.

In order to avoid as much as possible prediction inaccuracies caused by the choice
of the space, we choose to conduct all our experiments in a 10-dimensional Euclidean
space. However, we keep in mind that this is a "security" choice and that we should
probably obtain similar results by using only a 5-dimensional Euclidean space (i.e. with
a communication overhead divided by two).

3.3.4 Neighbors

Another parameter of the Vivaldi algorithm that has an large impact on the estimation
accuracy is the neighbors used by the nodes to compute their coordinates: the number of
neighbors used by the nodes and the way they are selected are important.

Neighbors selection strategy

In [14], Costa et al. have shown that the way the neighbors are chosen has a large impact
on the estimation accuracy. They implemented three different strategies to choose the m
neighbors of a given node A:

Random: Select the m neighbors randomly in the set of nodes participating in the ICS.
Closest: Select the m nodes participating in the ICS that are the closest to A.
Hybrid: Select some neighbors randomly and others as in the closest strategy.

Their experiments have shown that the closest strategy leads to coordinates that give
good estimations for short distances but also large estimation errors for long distances.
Such neighbors selection strategy is interesting for applications that require essentially
accurate estimations for short distances: finding the closest server, finding the nearest
node in a P2P network, etc. This is not a good choice in our case because we require also
quite accurate estimations for long distances.

The random neighbors selection strategy, is the opposite. With that strategy, there is
only a small probability to have a significant number of A’s neighbors that are close to A
in the topology and A computes its coordinate essentially with neighbors that are far from
it. It leads to a good global position in the space for node A (i.e. small estimation errors
for long distances) but it leads also to a rough position with respect to the nodes that are
close to it (i.e. large estimation errors for short distances).

The hybrid strategy is the best choice. It benefits from the advantages of the closest
strategy (good estimations of short distances) and the advantages of the random strategy
(good estimations of long distances). It remains to choose the percentage of neighbors
that are respectively chosen as in the random strategy and as in the closest strategy. Dabek
et al. [15] have shown that even when only 5% of the neighbors are distant nodes, it is
possible to avoid the bad global positioning problem experienced with the closest strategy.
However, with only a small percentage of distant nodes in the neighbors sets, Vivaldi
converges slowly to accurate coordinates. When half of the neighbors are distant/random
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nodes and half of the neighbors are the closest nodes, Vivaldi converges quickly towards
coordinates that allow good estimations for long and short distances.

In conclusion, for our experiments, we will use the hybrid neighbors selection strategy
with half of the neighbors that are the closest nodes and half of the neighbors that are
distant/random nodes.

Number of neighbors

We will now choose the number of neighbors m that will be used by each node. There is
one constraint on m: if Vivaldi runs in a d-dimensional Euclidean space, each node must
use at least d+ 1 neighbors to compute its coordinate. If m does not meet that condition,
the nodes have not enough information to find their optimal position in the space. The
problem is illustrated in figure 3.3 for a 2-dimensional Euclidean space. Figure 3.3(a)
illustrates the situation with one neighbor and figure 3.3(b) illustrates the situation with
two neighbors. In these situations, there exist many optimal coordinates with respect
to the coordinates of the node’s neighbors but it is impossible to know which of these
coordinates is optimal with respect to the coordinates of all the other nodes. If the node
uses at least three neighbors to compute its coordinate (figure 3.3(c)), there is only one
optimal coordinate with respect to the coordinates of its neighbors (and, with respect to
the coordinates of all the other nodes). Since we work with a 10-dimensional space, we
nead at least 11 neighbors per node.

A

RTT(N,A)

(a) One neighbor

A

RTT(N,A)

B

RTT(N,B)

(b) Two neighbors

A

RTT(N,A)

B

RTT(N,B)

C

RTT(N,C)

(c) Three neighbors

Figure 3.3: Lower bound on the number of neighbors. In a 2-dimensional space, if a node N
uses only one neighbor A to compute its coordinate (figure 3.3(a)), it can select any coordinate
located at a distance RTT (N,A) of A’s coordinate. If it uses two neighbors (figure 3.3(b)), it has
still two optimal coordinates with respect to the coordinates of its neighbors. If it uses (at least)
three neighbors (figure 3.3(c)), the node N has only one optimal coordinate with respect to the
coordinates of its neighbors.

Using a 3-dimensional space and a hybrid neighbors selection strategy, Dabek et al.
[15] observed that Vivaldi’s prediction accuracy increases rapidly until about 32 neighbors
and does not improve much with more neighbors. Since we intend to use more than three
dimensions, we repeated their experiments using a 10-dimensional space and a hybrid
neighbors selection strategy. The CDFs of the REEs obtained using different numbers
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of neighbors are given in figure 3.2(b) page 38. In this figure, we see that 32 neighbors
is also a good choice with a 10-dimensional space. It is still possible to obtain a small
improvement by using 64 neighbors but it multiplies the measurement costs by two. It is
clear that going above 64 neighbors is useless. For example, the figure shows that using
a very big number of neighbors (1024 on the 1739 nodes available) does not improve a
lot the prediction accuracy compared to simulations with 32 or 64 neighbors. Regarding
those results, we choose to conduct our experiments using 32 neighbors.

3.3.5 Other Vivaldi parameters

In order to run the Vivaldi algorithm, it is still necessary to choose values for the param-
eters cc and ce. In their paper, Dabek et al. [15] stated that a cc value of 0.25 yields both
quick convergence to accurate coordinates and low coordinate oscillations. A few years
later, Elser et al. [19] stated that the optimal value for the constant cc is 0.005. However,
considering their graphs, using cc = 0.25 seems a quite good choice and, even if using
smaller values for cc improves the stability of the coordinates, it also increases signifi-
cantly the convergence time. Since we intend to use Vivaldi to improve RON’s approach,
having a small convergence time is crucial to have a system reacting quickly to network
topology changes. Consequently, for our experiments, we will use cc = 0.25.

For the ce value, Dabek et al. do not give any value in [15]. In the P2PSim simulator,
they used ce = 0.05. In [19], Elser et al. observed that ce has a very small impact on the
prediction accuracy and the stability of the coordinates. Following these observations, we
will use the default ce value proposed by the simulator for our experiments.

3.4 Data sets used in simulations

Remember that our main goal is to demonstrate that it is possible to improve the routes in
the Internet (like RON does) in a scalable manner by using an estimation-based approach
(instead of the RON’s measurement-based approach). We intend to evaluate the efficiency
of the estimation-based approach by using the P2PSim simulator which provides an im-
plementation of the Vivaldi algorithm. To run simulations, we need a description of a
topology. Since Vivaldi estimates RTTs, that description must provide the RTTs between
the nodes of the topology. For this purpose, a simple n × n square matrix M such that
M [i][j] = RTT (nodei, nodej) is sufficient to describe a topology composed of n nodes.
For a given simulation, the simulator simply uses as inputs the elements M [i][j] of M
such that nodej is a neighbor of nodei (and it ignores the other elements of M since its
goal is to estimate them).

So, we need RTT matrices as inputs for our simulations. But we do not want any
RTT matrix. Since our goal is to demonstrate that an estimation-based approach can
improve routing efficiency at Internet-scale, we need large matrices obtained by doing real
measurements in the Internet. We used the P2PSim data (1740 nodes) [64] and Meridian
data (2500 nodes) [83] to model Internet latency. These data sets have been obtained
following the King [23] measurement technique. King is a technique (similar to ping)
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that estimates the latency between arbitrary end hosts by using recursive DNS queries.
We will also use a third RTT matrix obtained by doing measurements between 180 nodes
in the Planetlab [69] research network. Since the Planetlab data set is not representative
of the situation in the Internet4 and describes only a small topology compared to the other
two data sets, we will essentially focus on the P2PSim and the Meridian data sets for our
experiments and use the Planetlab data set as comparison when it is necessary.

Even if P2PSim and Meridian have been both obtained by doing measurements in
the Internet, there are large differences between the characteristics of these data sets.
Meridian describes a topology containing very long RTTs (with a maximum of 3 seconds)
but where most of the RTTs are small (90% of the RTTs are smaller than 150ms). The
topology described by the P2PSim data set contains less "anomalies" (the biggest RTT is
800ms) and the RTTs are more distributed among small and middle values (85% of the
RTTs are smaller than 300ms). For comparison, even if Planetlab nodes are all over the
world, the biggest RTT in that topology is 300ms and 96% of the RTTs are smaller than
200ms (see figure 3.4).
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Figure 3.4: Distribution of the RTTs in the topologies. That figure gives the CDF of the RTTs
(in milliseconds) for the three topologies we will use to conduct our experiments.

3.5 Vivaldi’s improvements

Over the years, many improvements have been proposed for Vivaldi hoping to obtain
more accurate coordinates. We have already discussed some of these improvements (e.g.

4The Planetlab research network is composed of nodes mainly located in universities or large compa-
nies. Lots of these institutions are interconnected through research dedicated networks like GEANT rather
than being interconnected through the public Internet. Consequently, routes between these nodes are less
dependent of BGP economic rules and can generally be more optimal than corresponding routes in the
public Internet.
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working with particular coordinate spaces) and we will not come back to these small mod-
ifications of Vivaldi. However, some people proposed deeper modifications of Vivaldi.
Among, these modifications, we can cite the algorithm modifications and the attempts to
give a structure to Vivaldi.

3.5.1 Algorithm modifications

An example of modification of Vivaldi’s algorithm has been proposed by de Launois et
al. [16]. With SVivaldi, they propose a method for stabilizing coordinates: they introduce
a loss factor in the algorithm which represents the energy lost at each oscillation of springs
and allows the springs to progressively rest in a local minimum. The timestep is computed
the following way:

δ = cc× w × (1− loss)
The loss variable starts with a value equal to 0 (no impact on the timestep computation)
and grows progressively. While this factor mitigates coordinate oscillations in a fixed
network and allows more accurate estimations, it prevents the algorithm from adapting to
changes in the topology5. This is a real drawback for us: we need a coordinate system
reacting as fast as possible to network changes and not only to big network changes.

Another modification of the algorithm has been proposed by Wang et al. [82]. In their
paper, they state that simply applying a non-linear transformation to the RTTs before
trying to embed them in the metric space leads to more accurate estimations. We will
investigate that idea in chapter 6.

3.5.2 Structured Vivaldi

We have investigated the possibility to define a hierarchical structure among the nodes
in order to improve the prediction accuracy [29]. Chen et al. have done the same and
proposed Pharos [11]. These systems are based on a clustering of the nodes to propose a
two-layer model for Vivaldi. Each node maintains two coordinates: it computes a local
coordinate using neighbors in its cluster (the lower level of the hierarchical structure) and
it computes a global coordinate using neighbors that are inside and outside its cluster (the
upper level of the hierarchical structure). The global coordinates are the same as the co-
ordinates computed by a classical Vivaldi and are used to compute estimations between
nodes that are not belonging to the same cluster. The local coordinates are used to com-
pute estimations between nodes belonging to the same cluster. The studies have shown
that intra-cluster estimations are more accurate using the local coordinates than using the
global coordinates. Recently, an improved version of Pharos called Tarentula [12] has
been proposed. Tarentula uses a more sophisticated clustering technique than the simple
two-layer model in order to improve the prediction accuracy. The hierarchical approach
for Vivaldi will be investigated in chapter 8.

5de Launois et al. state that when a significant change is observed for the measured RTT with a neighbor,
the loss factor can be reset to zero in order to let the node move again. But, what is a "significant change"?
It is difficult to define a threshold.
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3.6 Conclusion
In this chapter, we have described existing RTT estimation mechanisms and we have
chosen one of them (Vivaldi) to develop our estimation-based overlay routing service.
Vivaldi has interesting properties: it is fully distributed, it consumes only a small amount
of resources to compute its estimations and it has been successfully tested at the scale of
the Internet. Moreover, a network simulator called P2PSim provides an implementation of
Vivaldi and is publicly available. We will use that simulator for our experiments. We have
also discussed Vivaldi’s parameters (neighbors, type of embedding space and algorithm’s
parameters) and we have chosen one value that seems suitable for each of them.

Using an estimation mechanism like Vivaldi should allow us to design a scalable over-
lay routing mechanism. Indeed, with an estimation-based approach, the measurement cost
is only O(n × m) (compared to O(n2) with RON) where n is the number of nodes and
m ≪ n is the number of neighbors used by each node. The communication cost is a lit-
tle bit more difficult to estimate. For our experiments, we simply consider that each node
sends its coordinate to all the other nodes (like each node sends its measurements results
to all the other nodes in RON). With such simple communication strategy, we have a num-
ber of messages O(n2) and a size of message O(d) where d is the number of dimensions
of the embedding space. So, the total communication cost is O(n2 × d). Since d ≪ n,
this is better than RON’s communication cost (which is O(n3)), but it is still O(n2) and
it is not really scalable. However, it should be possible to reduce it using strategies like
the one presented in [77] for RON. We have not considered in detail the problem of data
dissemination during our study and this is still a future work.

So, we have an RTT estimation mechanism and we intend to use it to find good al-
ternative routes in the Internet. A basic solution, could be to replace the measurements
by estimations in RON’s approach of the problem. In other words, if we want to find an
one-hop routing shortcut for a path AB, then, instead of checking if

RTT (A,C) +RTT (C,B) < RTT (A,B)

for each potential relay node C, a simple solution could be to check if

EST (A,C) + EST (C,B) < EST (A,B)

where EST (X, Y ) is the estimated RTT between the nodesX and Y . If that would work,
we would have a way to find routing shortcuts with a small measurement cost compared
to RON’s approach (we need only the few measurements done by Vivaldi to compute the
estimations). However, this is not so simple and we will see in next chapter that it is
impossible to find routing shortcuts in this way.



Chapter 4

Triangle Inequality Violations and ICS

Abstract

In this chapter, we will study the well-known problem of triangle inequality violations
(TIVs) encountered by Vivaldi and the other classical ICSs. Each ICS that tries to embed
RTTs in a metric space make the assumption that the triangle inequality rule holds for
RTTs in the Internet. Unfortunately, we will see that this is a wrong assumption and
that TIVs have a significant impact on the behavior of Vivaldi and on the accuracy of
the estimations produced by Vivaldi. Following these observations we developed some
criteria to detect TIVs by analysing the behavior of Vivaldi and we will discuss these
criteria at the end of the chapter.

4.1 Triangle Inequality Violations (TIV)

4.1.1 Definition

In the previous chapter, we have seen that Vivaldi (and most Internet coordinate systems)
embeds RTT measurements into a metric space and assigns a coordinate in this space to
each node of the network in order to enable accurate and cheap RTT predictions between
any pair of nodes in the network. That operation requires a metric space, where, by
definition, the triangle inequality holds (see definitions 10 and 11 page 35): for any x, y,
z belonging to a metric space we have

d(x, z) ≤ d(x, y) + d(y, z)

where d() denotes the distance in the space. Since the distances between nodes in the
metric space represent RTTs between nodes in a network, the triangle inequality must
hold for the RTTs in the network. If it is not the case, the RTTs are not embeddable in
a metric space. So, in this thesis, we will focus on the triangle inequality violations by
the RTTs in networks. Let A, B and C be three nodes. A Triangle Inequality Violation
(TIV) exists between these nodes when the triangle inequality does not hold for the RTTs

45
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between these nodes, i.e. when

RTT (A,B) > RTT (A,C) +RTT (C,B)

or RTT (A,C) > RTT (A,B) +RTT (C,B)

or RTT (C,B) > RTT (A,B) +RTT (A,C)

In order to simplify this definition, we introduce the concept of triangle. A triangle ACB
is a set of three nodes A, B and C, where, by convention, AB is the longest edge of the
triangle. With that convention, it is enough to consider the inequality with respect to the
longest edge AB of the triangle and the definition of a TIV becomes

Definition 12. Let ACB be a triangle. If

RTT (A,B) > RTT (A,C) +RTT (C,B)

then ACB is called a Triangle Inequality Violation (TIV).

Definition 13. A path AB is a TIV base if and only if there exists at least one node C
such that ACB is a TIV.
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C
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(a) A triangle ACB

C

BA

9 ms 4 ms

16 ms

(b) A TIV ACB

Figure 4.1: Examples of triangle and TIV. Figure 4.1(a) shows a triangle ACB: AB is the
longest edge and the triangle inequality holds (16ms < 9ms+9ms). Figure 4.1(b) shows a TIV
ACB: AB is the longest edge and the triangle inequality is violated (16ms > 9ms+ 4ms).

4.1.2 TIVs and estimation errors
Since an ICS maps RTTs measured in a network to distances in a metric space, an exact
mapping of the RTTs requires that the triangle inequality holds for the RTTs. If it is
not the case, it is impossible to map the RTTs to distances in the metric space without
estimation errors. The problem is illustrated by example 2 for 2-dimensional Euclidean
space, but this is true for any metric space.

Example 2. First consider the topology presented in figure 4.2. The topology is composed
of three nodes A, B and C and the RTTs between these nodes do not violate the triangle
inequality. Since the RTT between A and B is 16ms, (0, 0) and (16, 0) are possible
adequate coordinates (among others) for A and B because the distance in the space
between these coordinates is equal to 16. For node C, we have RTT (A,C) = 9ms and
RTT (C,B) = 9ms. So, an adequate coordinate for node C must be at a distance 9
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Figure 4.2: Example of embedding without TIV. If the triangle inequality holds for RTTs, it is
possible to find one coordinate for each node such that the distance between the nodes correspond
exactly to the RTTs.

of A’s coordinate (i.e. somewhere on the circle drawn around A’s coordinate) and at a
distance 9 of B’s coordinate (i.e. somewhere on the circle drawn around B’s coordinate).
Since there are two points of intersection between these circles, there are two adequate
coordinates, and we can choose (8, 4.12). As explained in section 3.3.4, to know which
of these two coordinates is adequate with respect to the coordinates of all the nodes of
the topology (not represented in figure 4.2), we need at least one more measurement.
However, this is not the problem in this example: we just want to show that, in general,
when the triangle inequality holds for RTTs, it is possible to find coordinates providing
RTT estimations that correspond exactly to the measured RTTs.
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RTT(AC)
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?

Figure 4.3: Example of embedding with a TIV. If the triangle inequality does not hold for RTTs,
it is impossible to find coordinates for the nodes that do not generate estimation errors.

Now, consider figure 4.3. The topology is still composed of three nodes A, B and C
but the triangle inequality is violated by the RTTs measured between these nodes. Indeed,
we have RTT (A,B) > RTT (A,C) + RTT (C,B). Like in figure 4.2, we try to find a
good coordinate for each node. The coordinates (0, 0) and (16, 0) are still a good choice
for the nodes A and B. The problem appears when we try to find a coordinate for node
C. We have RTT (A,C) = 9ms and RTT (C,B) = 4ms. So, an adequate coordinate
for node C must be at a distance 9 of A’s coordinate (i.e. somewhere on the circle drawn
around A’s coordinate) and at a distance 4 of B’s coordinate (i.e. somewhere on the
circle drawn around B’s coordinate). The problem, is that these two circles are disjoint:
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if we put a distance of 16 between A’s coordinate and B’s coordinate, it is impossible to
find a coordinate for C which is, in the same time at a distance 9 of A’s coordinate and
at a distance 4 of B’s coordinate. In other words, if the triangle inequality does not hold
for the RTTs, estimation errors are unavoidable.

Example 2 shows that violations of the triangle inequality automatically leads to esti-
mation errors. So triangle inequality violations are a real problem for Vivaldi and lots of
other Internet coordinate systems. The impact of TIVs on the quality of the estimations
will be discussed in section 4.4.

4.1.3 Other sources of estimation errors
It is well known that TIVs is a source of embedding errors for ICSs [37, 47] but this is
not the only one. In this section, we will investigate three possible sources of estimation
errors for Vivaldi which can appear even in topologies where the triangle inequality holds.

Node blocked in a local minimum

Remember that Vivaldi adjusts the coordinate of each node to minimise the estimation
errors for the paths between the node and its neighbors. At each round, a node chooses
randomly one of its neighbors, performs a RTT measurement with that neighbor and calls
algorithm 2 to update its coordinate: depending of the current estimation error (computed
thanks to the measurement result and the coordinates), the node will make a small step
towards its neighbor or away from its neighbor in order to reduce the estimation error.
Remember also that the initial state of Vivaldi is the chaos: all the nodes are located at
the origin of the metric space and move in random directions before finding an accurate
position in space with respect to the coordinates of their neighbors. So, Vivaldi includes
random choices and particular sequences of random choices can lead to situations where
a node is blocked in position corresponding to a local minimum for the estimation error.
A simple example of such problem is given in example 3.

Example 3. In the first part of example 2, we have seen in figure 4.2 that there are two
good positions in the space for C with respect to A’s and B’s positions and that (at
least) a third neighbor is required to decide which coordinate is the best coordinate for C
between (8, 4.12) and (8,−4.12). As shown in figure 4.4, we add a third neighbor D that
indicates that the best coordinate for C is (8,−4.12). Even though the best position for
C is (8,−4.12), particular sequences of random choices in Vivaldi can push C towards
(8, 4.12). For example, suppose that the initial random moves push C above the line
formed by A and B. Then, if the random selection mechanism of a neighbor at each
round uses essentially A and B to compute C’s coordinate, there is a probability that C’s
coordinate converges towards (8, 4.12). Indeed, once C’s coordinate is approximately
(8, 4.12) and once C has done a few measurements with A and B, its local error will be
low and the algorithm’s adaptive timestep becomes a small value. Consequently, each
time C does a measurement with D, it will make a small step towards (8,−4.12) but it
is not sufficient to push C on the other side of the line. So, each next measurement with
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A or B will push C immediately back towards (8, 4.12). In such case, C is blocked with
coordinates that minimizes the estimation errors with respect to A’s andB’s positions but
not with respect to D’s position. In other words, it is a local minimum but not a global
minimum.

C

BA

RTT(AC) RTT(BC)

D

RTT(CD)

Figure 4.4: Example of node blocked in a local minimum. The position of node C is correct
with respect to the positions of its neighbors A and B but not with respect to the positions of its
neighbor D and of all the other nodes in the topology.

The scenario presented in example 3 has only a small probability to happen1 but it
can happen. A solution to reduce the probability of such a scenario is to take more than
the minimum number of neighbors required for a d-dimensional space (d+ 1 neighbors).
Indeed, in example 3, if C uses, for example, 10 neighbors instead of 3 neighbors, the
probability of choosing only A and B for the first updates of C’s coordinate is reduced:
since there are more neighbors, there are more chances to choose a neighbor other than A
or B that would indicate that C is located on the wrong side of the line formed by A and
B.

Bad selection of neighbors

A bad initial selection of neighbors (when the node selects the set of nodes it will use
as neighbors), can also lead to bad coordinates. Indeed, in section 3.3.4, we stated that
at least d + 1 neighbors are required to define a unique position for each node in a d-
dimensional space. As shown in figure 4.5, we should have mentioned that these neigh-
bors must have linearly independent coordinates: in figure 4.5, even if C uses three neigh-
bors (A, B and D) in a 2-dimensional space, it has not enough information to discover its
optimal coordinate. Using more than the minimum number of neighbors reduces also the
probability of such problems.

1It requires a bad situation at the end of the initial chaos and a bad sequence of neighbors used to update
the coordinate.
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Figure 4.5: Example of bad neighbor selection. If C uses A, B and D as neighbors, C has
not enough information to find its best coordinate because its neighbors have linearly dependent
coordinates.

Non embeddable TIV-free topologies

We have seen that it is impossible to embed a topology in a metric space if the triangle
inequality does not hold for the RTTs in that topology. There exist also non-embeddable
topologies where the triangle inequality holds. A simple example is given in example 4.

Example 4. A simple example of a TIV-free topology that is impossible to embed in a
given space is a topology where all the RTTs between the nodes are identical. It is clear
that a topology where all the RTTs are equal toX contains no TIV. However, depending of
the number of nodes it contains, such topology is not embeddable in every metric space.
Figure 4.6 shows the problem for a 2-dimensional space. Figure 4.6(a) gives one possible
embedding if the topology contains three nodes. This figure shows also that adding a
fourth node is impossible because there is no intersection between the three circles of
diameter X . In particular, figure 4.6(b) shows that building a square is not an accurate
solution (it produces estimation errors for the paths AD and CB). The only solution to
add a fourth node at a distance X of the three others is to add a third dimension to space
and to build a tetrahedron. But, in a 3-dimensional space, it will be impossible to add a
fifth node at a distance X of the others.

If we want to generalize the problem presented in example 4, we can say that an n-
dimensional space is required to embed a topology of n+1 nodes where all the RTTs are
identical. We have discussed the problem of identical RTTs but it is easy to understand
that Vivaldi will also have difficulties to embed topologies where all the RTTs are similar.
We will see in chapter 6 that being aware of such potential embedding problems is quite
important.

4.2 TIVs and Routing shortcuts
By definition, a one-hop routing shortcut is a TIV: a triangle ACB is a TIV if and only
if C is a shortcut for the path AB. Consequently, the simple solution proposed in the
conclusion of the previous chapter to find routing shortcuts using estimations does not
work. Indeed, even if C is the shortcut for a path AB, the inequality

EST (A,C) + EST (C,B) < EST (A,B)



4.3. TIVS IN THE INTERNET 51

C

BA

X ms

X ms

X ms

(a)

C

BA

X ms

X ms

X ms

D
X ms

more than

X ms

(b)

Figure 4.6: Example non-embeddable TIV-free topology. In this example, we try to embed a
topology where all the RTTs are equal to X in a 2-dimensional space. Figure 4.6(a) shows that
it is impossible to embed more than three nodes because there is no suitable position for a fourth
node. In particular, figure 4.6(b) shows that building a square does not provide perfect estimations.

will never hold since estimated RTTs are distances in a metric space for which the triangle
inequality always holds. In other words, discovering routing shortcuts using estimations
only is impossible in a metric space. We will investigate routing shortcuts detection meth-
ods combining estimations and measurements in chapter 5. In the current chapter, we will
focus only on estimations. Indeed, we know that routing shortcuts (i.e. TIVs) will gener-
ate unavoidable estimation errors. So, it could be interesting to know if these estimation
errors have specific properties. If they have such properties, it could be possible to detect
routing shortcuts by analysing the estimation errors. That is what Lumezanu et al. pro-
posed to do in [48]. We performed a similar study at the beginning of our work and our
results are presented in section 4.4.

4.3 TIVs in the Internet

Before doing anything else, it is important to know if TIVs are common in the Internet or
if they are rare and negligible. It is important for ICSs (to know if the embeding problem
caused by TIVs is negligible or not) but, it is especially important for our overlay routing
research: if there are only a few TIVs in the Internet, that means that overlay routing is
useless because there are only a few routing shortcuts in the Internet. Since previous stud-
ies (e.g. [73]) have demonstrated that overlay routing can significantly improve routing
performance, we already know that the number of TIVs in the Internet is not negligible.
In section 4.3.1, we analyse why there are TIVs in the Internet. Then, in section 4.3.3 we
study the distributions of TIVs existing in the Internet, and we characterize their severity
using different metrics.
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4.3.1 Sources of TIVs in the Internet
In this section, we try to explain why there are TIVs in the Internet. A few years ago,
Zheng et al. [85] have shown that TIVs are not measurement artifacts but a natural conse-
quence of Internet routing policies. Through examples based on real measurements, they
explain how Internet routing policies generate TIVs.

In section 2.1.1, we have seen that intra-domain routing consists in finding shortest
paths with respect to configured link weights. If these weights do not correspond to the
RTTs, the path with the smallest RTT is not necessarily selected as the default Internet
path and TIVs are created. However, since ISPs try to optimize the routing inside their
own networks, weights and RTTs are generally somewhat correlated. Thus, TIVs caused
by intra-domain routing policies are generally negligible compared to the TIVs caused by
inter-domain routing policies.

BGP routing policies have been discussed in section 2.1.2. Many things in the BGP
behavior may lead to situations where the triangle inequality is violated. Zengh et al. [85]
showed that, in specific situations, TIVs can be caused by hot potato routing, by interac-
tions between inter-domain and intra-domain routing, by the fact that BGP considers only
AS paths and does not make any difference between large ASes and small ASes, etc. But
an important source of TIVs is the commercial relationships between ASes. Example 5
illustrates that problem.

Example 5. To illustrate how commercial relationships between ASes can lead to TIVs,
we take the example of network used in chapter 2. That network is represented in fig-
ure 4.7. In this figure, the symbol "$" denotes a customer-provider relationship between
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Figure 4.7: Example of TIV caused by economic relations between ASes. If we simply con-
sider that each Internet link has an RTT of 1ms, then ACB is a TIV.

two ASes (the arrow indicates who is the provider) and the symbol "=" denotes a peer-
ing relationship between two ASes. The routes chosen by BGP depend of the commercial
relationships:

• Since AS4 is a customer of AS1, it is easy to see that the route between node A and
node C uses the corresponding customer-provider link (route composed of 3 hops).
• In the example, AS4 and AS3 are both customers of AS2 but a peering link is

established between these two ASes. By definition, that link can only be used for



4.3. TIVS IN THE INTERNET 53

traffic generated by a source located in AS3 (resp. AS4) or one of its customers (if
any) and destined for a node located in AS4 (resp. AS3) or one of its customers
(if any). So, the path between node C and node B uses the peering link (route
composed of 4 hops).
• The path between node A and node B cannot go through AS4. Indeed, AS4 is a

customer of AS1. By definition, a provider can send traffic to one of its customers
only if the traffic is destined for this customer (or its customers thereof, if any).
Since AS3 is not a customer of AS4, AS1 cannot send to AS4 the traffic destined
for AS3. Since AS1 and AS3 are both customers of AS2, the route between node A
and B will go through AS2 (route composed of 10 hops).

For the example, simply consider that making 1 hop takes 1ms. Then ACB is a TIV
because

RTT(A,B) = 20 ms
RTT(A,C) = 6 ms
RTT(C,B) = 8 ms



⇒ RTT (A,B) > RTT (A,C) +RTT (C,B)

Example 5 shows that even in simple topologies with four ASes, commercial rela-
tionships between ASes can cause TIVs. It is a small TIV and the corresponding routing
shortcut is not really interesting: the alternative path betweenA andB is only 6ms shorter
than the default path. But it is a small example where AS1 and AS3 are customers of the
same provider. So, it was not necessary to go high in the ASes hierarchy to find a route
between AS1 and AS3. If we consider topologies at the scale of the Internet, there are
some cases where it is necessary to go very high in the hierarchy to find a route between
two points. In such cases, finding routing shortcuts can be a lot more interesting.

In situations like the one presented in example 5, C is a routing shortcut for the path
AB but using C as relay to go from A to B is a violation of the routing policies. Indeed,
that means that traffic between A and B is routed through AS4 and that is forbidden by
the peering relationship established between AS4 and AS3. So, overlay routing may lead
to situations where the alternative routes violate the rules established by the ISPs. Con-
sequently, it is clear that ISPs have only a low interest in participating to such overlay
(the only one being the improvement of their customers’ satisfaction). However, a re-
cent study [49] performed by Lumezanu et al. has shown that, even if TIVs are caused
by suboptimal route choices, a significant part of the alternative routes corresponding to
shortcuts do not violate the routing policies. These routes are simply considered as less
efficient by the routing protocols and are not chosen as the default Internet route. Conse-
quently, both end-users and ISPs could take advantage of paths improvements: in many
cases, it is thus possible to reduce the delays experienced by the users without violating
the routing policies.

4.3.2 Severity metrics
Previous studies [74, 85, 37] have reported characteristics of TIVs in the Internet delay
space by triangulation ratio distribution and the fraction of triangles that suffer from TIVs.
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We do something similar and we propose two basic characterizations of the severity of
TIVs. The first one is the relative gain and is defined as follows:

Definition 14. Let ACB be a TIV. The relative gain provided by the TIV is

Gr =
RTT (A,B)− (RTT (A,C) +RTT (C,B))

RTT (A,B)
(4.1)

Gr ranges from 0 (minimum severity) to 1 (maximum severity). The relative gain is an
interesting metric, but it may be argued that, for small triangles, a high relative gain may
not be so critical. For example, for a path AB with RTT (A,B) = 20ms, Gr = 10%
represents only an improvement of 2ms. Therefore we also define a second metric called
the absolute gain, which is defined as follows:

Definition 15. Let ACB be a TIV. The absolute gain provided by the TIV is

Ga = RTT (A,B)− (RTT (A,C) +RTT (C,B)) (4.2)

Ga ranges from 0ms (minimum severity) to the diameter of the network (i.e. the maximal
RTT between any two points in the network).

In the sequel, we will refer to specific severity thresholds and select TIVs whose
severities are above them. We can select all TIVs such that Gr ≥ thr, or Gar ≥ tha,
or even when both thresholds are exceeded. This way, we can ignore TIVs which do not
provide an important gain: if the difference between the direct path and the alternative
path is small, TIVs do not interest us for two reasons. Firstly, from an ICS point of view,
they are "almost" embeddable and they do not generate large estimation errors. Secondly,
from overlay routing point of view, they are not interesting shortcuts.

Since our goal is to eliminate all the negligible TIVs, considering simultaneously both
thresholds is important. Indeed, we know that it is difficult to define a threshold on the
relative gain to decide if a TIV is negligible or not because a high relative gain may
not be critical for small triangles. That is why we introduced the absolute gain. But,
with the absolute gain, it is also difficult to define a threshold: a threshold suitable for
small triangles will not be suitable for large triangles. For example, a TIV providing an
absolute gain of 20ms is not negligible for a path of 100ms, but it is negligible for a path
of 1 s. Considering simultaneously both thresholds solves the problem: small triangles
are constrained by the threshold on the absolute gain and large triangles are constrained
by the threshold on the relative gain.

4.3.3 Analysis of triangle inequalities in the Internet
In this section, we study through different metrics the violations of the triangle inequal-
ity in the Internet, and we characterize their severity and distribution according to path
lengths. To model Internet latencies, we used the P2PSim and the Meridian data sets
described in section 3.4. We first define some notations. Let K be the total number of
triangles in the two data sets. For the P2PSim data set, we found K = 854, 773, 676, of
which 105, 329, 511 (representing 12%) are TIVs. For the Meridian data set, we found
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K = 2, 598, 842, 308 where 23.5% of these triangles are TIVs. We divide the whole range
of RTTs in the P2PSim (resp. Meridian) data set into 160 (resp. 600) equal bins of 5ms
each. Let Ki be the number of triangles in the ith bin. By convention, we say that triangle
ACB is in bin i if its longest edge AB is in that bin. Let K ′i be the number of TIVs in the
ith bin.

We begin our analysis by showing the proportion of TIVs is each bin, namely K ′i/Ki,
for different severity thresholds. Figure 4.8(a) (resp. figure 4.9(a)) only considers relative
TIV severities (as tha = 0ms) for the P2PSim (resp. Meridian) data set. In figure 4.8(b)
(resp. figure 4.9(b)), we filter out TIVs whose absolute severity is below tha = 20ms
(resp. tha = 15ms) for the P2PSim (resp. Meridian) data set. All these curves have
basically the same shapes. We can see clearly that large triangles (say above 400ms) are
more likely (severe) TIVs.
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Figure 4.8: Proportion of TIVs in each bin for various TIV severity levels for P2PSim data set.
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Figure 4.9: Proportion of TIVs in each bin for various TIV severity levels for Meridian data set.
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Let Pi the probability for a triangle ACB, chosen at random in the data set, to be (a)
in the bin i and (b) to be a (severe) TIV, namely:

Pi =
K ′i
Ki

∗ Ki

K
=
K ′i
K

(4.3)

Obviously, Pi is simply the number of TIVs in the bin i divided by the total number of
triangles. The distribution of TIVs in the P2PSim (resp. Meridian) data set is depicted in
figure 4.10 (resp. figure 4.11). As expected, figure 4.10 is less conclusive than figure 4.8,
but it still shows that few severe TIVs are found in small triangles, that is below 100ms.
A similar behavior can be observed in figure 4.11 where the edges shorter than 60ms
cause slight violations. Moreover, the TIV severity of edges has an irregular relationship
with their lengths. For instance, in figure 4.11 the TIV severity has a peak for the edges
around 80− 100ms.
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Figure 4.10: Distribution of TIVs in P2PSim data set for various severity levels.

These observations have motivated our hierarchical approach of Vivaldi (see chap-
ter 8). If we create clusters whose diameters do not exceed too much 100ms, we may
expect much fewer severe TIVs in each cluster, which is likely to improve the accuracy
of intra-cluster coordinate systems. However, so far, we only know that TIVs are not neg-
ligible in the Internet. Their impact on the coordinate embedding remains hypothetical.
We will quantify this impact on Vivaldi in section 4.4.

4.3.4 Triangle inequality variations in the Internet
As major part of the studies on TIVs, our study has been made on aggregated latency data
sets that combine measurements taken at different times over long periods. Such data sets
do not capture the variations of triangle inequalities: depending on the way they are built,
such data sets may contain TIVs which were temporary in the network or, reversely, they
may miss some long-lived TIVs. That problem has been recently studied by Lumezanu
et al. [50]. That study essentially shows that TIVs are not illusions of measurements (it
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Figure 4.11: Distribution of TIVs in Meridian data set for various severity levels.

confirms the results presented in [85] and [49]) and it shows that TIVs vary with time in
the Internet.

They compared the TIVs obtained in their measurement results over a long period
of time to the TIVs existing in an aggregated latency matrix computed using the median
of the measurements. They observed that, at no point during the measurement process,
the number of TIVs has been lower than the number of TIVs in the aggregated data set.
That means that median values reveal fewer TIVs than there are in the network. They
also observed that scenarios where median values create a TIV that does not exist in
the measurements is extremely infrequent. These observations show that our data sets
do not represent exactly the Internet: in reality, there are more TIVs than expected by
analysing the P2PSim data set2. Since our data sets do not model exactly the Internet,
these observations may invalidate the results presented in section 4.3.3. However, there is
no problem with the other results that will be presented in this thesis: even if these data
sets do not represent exactly the Internet, they still represent large networks containing a
large number of TIVs. So, they represent a "real" situation. We have just to keep in mind
that the Internet may contain even more TIVs than that.

Another interesting result presented in [50] is that a significant part of the TIVs are
long-lived and 18% of them have even a longevity of more than 5 hours. That observation
is interesting for overlay routing because it implies that it will not be necessary to change
shortcuts frequently to improve the routing efficiency. Note that this observation is logi-
cal: previous studies have shown that TIVs are mainly caused by bad inter-domain route
choices and, since these routes are quite permanent, the TIVs are also quite permanent.
However, some short-lived TIVs may still be caused by temporary congestions or other
problems.

2The major part of the results presented by Lumezanu et al. are only valid for the P2PSim data set.
The P2PSim data set has been computed using the median values of RTTs observed over a long period of
time. The Meridian data set does not. The Meridian data set has been computed using the minimum of the
RTTs observed over a long period of time. The article briefly investigates other methods than the median to
compute aggregated data sets but the results are less detailed.
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4.4 Impact of TIVs on Vivaldi

In this section, we present the results of an extensive simulation study of the Vivaldi
system. For the simulation scenarios, we used the P2PSim discrete-event simulator [64],
which comes with an implementation of the Vivaldi system. The choices of parameters for
Vivaldi have been discussed in chapter 3. The only difference with the choices presented
in chapter 3 is that we used a 2-dimensional Euclidean space instead of the 10-dimensional
Euclidean space used for the other results presented in this thesis. There is no particular
motivation to use a low-dimensional space for these experiments. The explanation is
simply that these results have been obtained at the beginning of our research, when we
had still not made the choice to work with a 10-dimensional space3.

In order to observe the impact of TIVs on Vivaldi nodes, and particularly on the em-
bedding performance, we could define the notion of TIVs involvement through different
considerations. We consider a node to be more or less involved in TIVs by counting the
number of times it belongs to a TIV. The more node C appears in TIVs AiCBj , the more
C is considered involved into TIVs situations.
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Figure 4.12: Impact of TIV severity on the embedding for P2PSim and Meridian data set.

In figure 4.12(a), considering the P2PSim and Meridian data sets, we plot the Cumu-
lative Distribution Function (CDF) of the average relative error (ARE) of the top 100
nodes involved in TIVs. We compare such distribution to the CDF of all nodes’ relative
errors in a Vivaldi system. Note that the ARE is computed for each node as the average
prediction errors (with respect to all the nodes) yielded by the Vivaldi system at the last

3Even though we have not performed the preliminary study presented here in a high dimensional space,
we can ensure that the impact of TIVs on Vivaldi is roughly the same in a 10-dimensional space as in
a 2-dimensional space. Indeed, in section 4.6, we will propose TIV detection mechanism based on the
observations reported here (TIVs cause estimation errors, coordinate oscillations, etc.), and these detection
mechanisms have been tested successfully using a 10-dimensional space.
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tick of our simulations.

ARE(A) =

∑
(B 6=A)∈S

|RTT (A,B)−EST (A,B)|
RTT (A,B)

|S| − 1

where S is the set of all nodes in the system. Figure 4.12(a) shows that, while for the
distribution of errors on all the nodes of the system, more than 90% of P2PSim nodes
(resp. 70% Meridian nodes) have an ARE less than 0.3 (resp. 0.5), this percentage falls
down to only 50% (resp. 20%) when considering the most involved nodes in TIVs. The
coordinate computations at the level of these involved nodes is spoiled out.

It is also worth observing the variation of coordinates in the Vivaldi system. In fact,
even though the system converges in the sense that the relative errors at each node stabi-
lizes, these errors could be so high that a great variation of the coordinate of a node barely
affects the associated error. We can define such coordinates oscillation as the distance
between any two consecutive coordinates. The average oscillation values are computed
as the average of the oscillations during the last 500 ticks of our Vivaldi simulation. Fig-
ure 4.12(b) shows the CDF of these average oscillations, comparing again the distributions
through all nodes and of the top 100 nodes involved in TIVs. We clearly see that the im-
pact of TIVs can be considered as very serious with nodes involved in more TIVs seeing
a large increase in their average oscillations values.

In light of these observations on the serious impact of TIVs on the coordinates embed-
ding, we oriented our research on two paths. Firstly, we proposed a hierarchical structure
of Vivaldi to mitigate the impact of most severe TIVs [7, 29, 6]. In this way, nodes would
perform a more accurate embedding at least in restricted spaces (i.e. with small distance
coverage). The hierarchical approach for Vivaldi will be discussed in chapter 8 of the
thesis. Secondly, since TIVs have a serious impact on the embedding, we tried to detect
these TIVs by observing the characteristics of the estimations [43, 28]. These results are
presented in section 4.6.

4.5 Detecting TIVs
From the overlay routing point of view, it is interesting to be able to detect triangles ACB
that are TIVs. That is what Lumezanu et al. try to do in the overlay routing mechanism
named Peerwise [48]. Their detection criterion is based on the assumption that, since
a TIV is not embeddable, there will be estimation errors. This is correct but they also
make the assumption that the estimation error is systematically distributed among all the
edges of the triangle. As indicated in figure 4.13, they suppose that the TIV base is a
little bit under-estimated and that the short edges are a little bit over-estimated in order to
embed the nodes in the metric space with a small estimation error on each path. Following
that assumption, they consider that ACB is a TIV if EST (AB) is under-estimated and
EST (AC) +EST (CB) is over-estimated. We do not agree with the second part of their
assumption mainly for two reasons:
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Figure 4.13: Lumezanu’s assumption about estimation errors caused by TIVs. Numbers
in parentheses represent estimation errors. They consider that the embedding error is distributed
among all the edges: the short edges are over-estimated (dotted lines) and the base under-estimated
(compressed line).

TIVs have effect on the other TIVs’ impacts: Our first argument is that the impact of a
TIV on the embedding error does not depend only of the TIV itself. It depends also
of the other TIVs in the network. For example, add a fourth node D in figure 4.13
and suppose that ADC is also a TIV. Following Lumezanu’s assumption, the path
AC is over-estimated because it is a short edge in the TIV ACB. But, it is also
under-estimated because it is the base of the TIV ADC. Obviously, that is impossi-
ble to be simultaneously over-estimated and under-estimated. So, what happens in
such situation? It is difficult to say and it leads us to our second argument.

TIV’s impact depends of what is measured: Our second argument is that Vivaldi does
not try to minimize the estimation errors for all the paths but only for the paths
it measures (i.e. the paths between the nodes and their neighbors). Thus, the im-
pact of a TIV depends on which edges are measured. Simple examples are given
in figure 4.14. For these examples, we suppose that ACB is the only TIV in the
topology and that Vivaldi does not monitors all the edges of the triangle (bold val-
ues in the figures are measured). Since there are no other TIV than ACB in the
topology, it should be possible to find coordinates for A, B and C so that there is no
estimation errors for the measured paths. Indeed, if at least one of the edges of the
TIV is not measured, its length is infered from the measurements and Vivaldi gives
it a "logical" value as estimation: it cannot guess that the path which is not mea-
sured is abnormally long or short (i.e. that ACB is a TIV). Figure 4.14(a) shows
a possible embedding when the two short edges of the TIV are measured but its
base is not measured. In such case, nodes find good positions with respect to their
neighbors positions and Vivaldi should embed the measured edges without errors.
Consequently, only the estimation of the base is impacted by the TIV. Figure 4.14(b)
shows a possible embedding when one short edge and the base are measured. In
such case, Vivaldi infers a logical value for AC from the measurements and AC is
highly over-estimated.

Our simulation results confirm our conjecture about Lumezanu’s assumption. In
P2PSim and Meridian data sets, more than 70% of the TIV bases are under-estimated
but only about 50% of the TIVs’ short edges are over-estimated. So, even if the under-
estimation seems to be a quite good TIV bases detection criterion (see section 4.6), rely-
ing on over-estimations to decide if C is a shortcut for a given path AB will give results
similar to a random choice (the probability to take the good decision is only of 50%).
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Figure 4.14: Example of embeddings with partially measured TIVs. If a TIV is only partially
measured, it is impossible to guess that this is a TIV. So, since Vivaldi tries to minimize the errors
for the edges that are measured, the embedding error appears mainly on the edges that are not
measured.

Moreover, even if their assumption was correct their approach is quite strange. The
objective of using a coordinate system to find routing shortcuts is to avoid performing too
many measurements. But, they do not only use estimations, they use estimation errors: to
know if a node Ci is a shortcut for a pathAB, they need to check if the pathACiB is over-
estimated. The problem is that computing estimation errors requires measurements. So, to
find the best shortcut for a path AB, they need to perform a measurement between A and
each Ci and between B and each Ci. If these measurements are available, the coordinate
system is useless: it is more reliable to use directly the measurements to decide if a node
Ci is a shortcut or not rather than using estimation errors.

Like Lumezanu et al., we tried to detect TIVs by observing Vivaldi’s behavior. But,
our conclusion is only that the impact of TIVs is very difficult to characterize, even in
small topologies where there are only a small number of TIVs. As indicated above, we
have noticed that TIVs’ impacts are themselves affected by other TIVs and that the im-
pact of one TIV depends of which paths are measured by Vivaldi. All of this makes the
detection of routing shortcuts very difficult if we are limited to the estimations provided
by an ICS. Even though the detection of routing shortcuts (i.e. of TIVs) is difficult, it
seems possible to detect TIV bases by observing the behavior of the ICS. For example,
we have seen that the under-estimation of a path AB is a quite reliable indication that AB
is a TIV base. We will investigate that (and other indicators) in section 4.6.

4.6 Detecting TIV bases
Detecting TIV bases means being able to say if a given path AB is a TIV base or not. In
other words, for a given path AB, we intend to be able to say if there exists at least a node
C that is a shortcut for AB. Since, we do not know exactly which node is that node C, the
detection of TIV bases is not a answer to our main problem of finding routing shortcuts.
However, such mechanism can still be useful:
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Overlay routing: If we have a simple way to know if there exists at least one shortcut
or not for a given path AB, we can avoid testing each potential C to know if it is a
shortcut for AB. In large networks, there can be thousands of potential shortcuts to
consider. So, being able to answer directly that there is no shortcut when this is the
case is interesting.

Excluding TIVs from the neighbor relationship: Wang et al. [81] propose to improve
the accuracy of the embedding by avoiding to select a neighbor for one node if the
path between these two nodes is a TIV base. Obviously, such work also requires a
reliable TIV base detection mechanism.

4.6.1 Methodology
We intend to compare multiple TIV base detection criteria. These criteria are based on
the characteristics (estimation error, etc.) of the estimations provided by Vivaldi. For
the simulation scenarios, we used the P2PSim discrete-event simulator [64]. During our
simulations of Vivaldi, each node computes its coordinate in a 10-dimensional Euclidean
space using 32 neighbors. For each path, the characteristics used by the TIV base de-
tection criteria are computed based on the coordinates provided at the end of the Vivaldi
simulations. Using these characteristics we performed detection tests with multiple detec-
tion thresholds (when it is relevant) for each detection criterion. To compare the detection
results, we need a way to characterize the performance of a detection test and a convenient
way to compare the performance of different detection tests.

Characterizing the performance of a detection test

To characterize the performance of our detection tests, we use the classical false/true
positive/negative indicators. Specifically, a negative is a non-TIV base, which should
therefore not be reported in the set of suspects that we derive. A positive is a TIV base,
which should therefore be suspected by the test. The number of negatives (resp. positives)
in the population of paths is PN (resp. PP ).

A false negative is a TIV base that has been wrongly classified by the test as negative,
and has therefore been wrongly unsuspected. A false positive is a non-TIV base that has
been wrongly suspected by the test. True positives (resp. true negatives) are positives
(resp. negatives) that have been correctly reported by the test and therefore have been
rightly suspected (resp. unsuspected). The number of false negatives (resp. false posi-
tives, true negatives and true positives) reported by the test is TFN (resp. TFP , TTN and
TTP ).

We use the notion of false negative rate (FNR) which is the proportion of all TIV
bases that have been wrongly reported as non-TIVs by the test, and FNR = TFN/PP .
The false positive rate (FPR) is the proportion of all the non-TIV bases that have been
wrongly reported as positive by the test, so FPR = TFP/PN . Similarly, the true positive
rate (TPR) is the proportion of TIV bases that have been rightly reported as TIVs by the
test, and we have TPR = TTP/PP . A good detection mechanism must be able to provide
a high TPR and, simultaneously, a low FPR.
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Comparing the performance

Since a good detection mechanism must be able to provide a high TPR and a low FPR, a
convenient way to compare detection results is to plot the result of a detection test as a pair
(FPR,TPR) in a 2-dimensional Euclidean space. Obviously, the closer to the upper left
corner of the graph a point is, the better it is: such points correspond to high true positive
rates (i.e. a high proportion of positives being reported as such by the test) for low false
positive rates (i.e. a small proportion of negatives incorrectly reported as positives). So,
the test generating the point which is the closer to the upper left corner of the graph is the
test providing the best result.

A criterion requiring a detection threshold will generate one point in the graph for
each value of the threshold. These points compose a curve called Receiver Operating
Characteristic (ROC) curve. The point of that curve which is the closest to the upper left
corner of the graph is the best value for the threshold.

4.6.2 Detection based on estimation errors

Developing a TIV base detection criterion based on estimation errors is not a new idea.
Wang et al. [81] showed that there exist a relation between the estimation error and the
TIV severity. They observed that if a path AB is a TIV base, it is probably shrunk in
the metric space. By comparing the RTTs of our two delay matrices to the estimations
obtained with Vivaldi, we found the same trend. Indeed, according to the P2PSim and
Meridian data sets, more than 70% of TIV bases are under-estimated (i.e. they have a
negative estimation error). For each delay matrix, we clusterize paths into two groups:
the TIV bases, and the non-TIV bases. Based on the P2PSim (resp. Meridian) data set,
figures 4.15(a) and 4.16(a) (resp. figures 4.15(b) and 4.16(b)) show the distributions of
paths with respect to their AEE and REE (see definition 8 page 25). We divide the whole
range of AEE (resp. REE) into bins equal to 10ms (resp. 0.05).
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Figure 4.15: Distribution of the paths in function of AEE.
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Figure 4.16: Distribution of the paths in function of REE.

According to figures 4.15 and 4.16, we can see that a criterion based on the estimation
errors (as the one proposed in [81]) has a serious drawback: even if the figures confirm
that TIV bases are more under-estimated than non-TIV bases, the overlapping of the two
curves is important in each case. So, it would be difficult to discriminate the TIV bases.

In order to evaluate the efficiency of a detection based on the under-estimations of
the paths, we used multiple detection thresholds based on AEE and REE. For AEE, we
consider thresholds varying from 0 ms to −200 ms by steps of 10 ms and for REE the
thresholds vary from 0 to−1 by steps of 0.05. The ROC curves obtained are presented on
figures 4.17(a) and 4.17(b) respectively for the P2PSim and the Meridian data sets. Note
that these results are obtained by considering all the paths of the delay matrices (this will
not be the case in section 4.6.4). Each point on the ROC curves determines the TPR and
the FPR obtained with a given detection threshold. For instance, considering the curves
obtained with the detection thresholds based on AEE (resp. REE), the first point from
the right corresponds to 0 ms (resp. 0), the second corresponds to −10 ms (resp. 0.05),
etc. We can see that better results are obtained with a detection threshold based on AEE.
Nevertheless, the main drawback of the AEE, is the fact that it depends on the underlying
network: if there are only small RTTs the detection threshold should be a small value and,
inversely, if there are lots of high RTTs, the detection threshold should be a higher value.
According to the relative error metric, we do not have such drawbacks. For this reason,
we will only consider REE in the sequel of this study.

These figures confirm also that a criterion based only on under-estimations has a seri-
ous limitation: even if we consider all the under-estimated paths (threshold equal to 0 for
AEE or REE), we are unable to detect more than 70% of the TIV bases. Moreover, even
with a threshold equal to 0, figure 4.17 shows that we still have a low FPR (especially with
the Meridian data set). This indicates that we can generalize the detection criterion based
on under-estimations and define a detection criterion based on estimation errors (i.e. we
will consider positive values for the threshold). The results obtained with such criterion
will be presented in section 4.6.4 where it is compared to other detection criteria.
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Figure 4.17: ROC curves for the underestimation detection criterion.

4.6.3 Detection based on REE variance
Since a detection criterion based on the basic AEE and REE parameters cannot give satis-
factory results, we take into account another parameter. Instead of considering the relative
estimation error at a fixed time, a simple alternative is to observe its evolution. For in-
stance, the variance is a metric that can characterize the evolution of the REE with respect
to time. To implement a TIV base detection criterion, we compute the REE variances
of node pairs during the last 100 ticks of our simulation. Considering the P2PSim (resp.
Meridian) data set, figure 4.18(a) (resp. figure 4.18(b)) shows the CDF of the REE vari-
ances of the TIV bases and the non-TIV bases. The first observation is that most TIV
bases have small REE variances compared to non-TIV bases.
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Figure 4.18: CDF of the REE variance.

These findings lead to an easy TIV base detection criterion: if a path has a low REE
variance, it is likely to be a TIV base. Since the non-TIV base curve has a gentle slope
on figure 4.18(b), such criterion is expected to give very good results (high TPR and
low FPR) on the Meridian data set. On the P2psim data set, the results should be less
satisfactory. Indeed, we can see on figure 4.18(a) that about 25% of the non-TIV bases
have small REE variances. This will probably lead to false positives with a detection
criterion based on the REE variance.
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In the light of these observations, we propose methods based on REE variance to
detect TIV bases. Since these methods require the variance computation, they require the
monitoring over a significant period of time of the path for which we want to know if it
is a TIV base or not. So, it is very costly to provide a detection mechanism that can be
applied to any path in a network. It should be more convenient to restrict the set of paths
for which we are able to provide an answer to the paths that are permanently monitored
by Vivaldi (i.e. the paths between the nodes and their neighbors). Thus, in the sequel
of this study, the population of paths concerned by the detection process is limited to
the paths monitored by Vivaldi. Since it cannot provide an answer for any given path in
the network, such a detection criterion is unsuitable as a first filter for our overlay routing
system. However, it can still be useful to improve the selection of the neighbors in Vivaldi
like Wang et al. [81] propose to do.

So, we consider that each node is maintaining a sliding window (history) of the REE
of each path to its Vivaldi neighbors. Each node then computes variances of such REE
and ends up, at each embedding step, with a variance vector ~v of m entries (m being the
number of neighbors used by the node to compute its coordinate). The basic idea behind
our detection methods is to differentiate variances of TIV bases from variances of non-
TIV bases. We aim at creating two separate sets of variances and the set that leads to the
minimum mean is likely to contain variances of TIV bases.

Detection by ARMA models

In this first approach, our objective is to cluster the variances of the REE using the change
point detection method. The key idea is to consider a vector ~v of sorted variances as a time
series v(t), to model such series, and then to detect data discontinuities using the model
predictions. One of the most suitable models, frequently used in system identification
and change point detection is the ARMA (AutoRegressive Moving Average) model [46].
An important advantage of the ARMA model is its ability to analyse the time series by
breaking them into homogeneous segments, if there are apparent discontinuities in the
time series. The algorithm used for this study follows the approach presented in [39,
46]. In this thesis, we do not want to flood the reader with unnecessary mathematical
considerations and we will consider the algorithm as a black box. Just consider that it
takes a time series as input and that it indicates the change points it detects in the time
series. Interested readers can find more details about how the change points are computed
in [28].

Each time the algorithm indicates a change point, we log the instants when such a
change occurs. Recall that we consider such time series as series of variances of REE.
Hence, when a change occurs at "time" τ , we will consider all v(t), t < τ as variances of
the REE of TIV bases. Obviously, changes may be multiple, but to differentiate variances
of TIV bases from variances of non-TIV bases, a node will consider only the first change
point detected by the model.
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Detection by GMM clustering

With this second approach, rather than modeling the series of variances, we aim at clus-
tering the REE variances into classes where variances in one cluster are close to each
other, and clusters are far apart. In such a way, we would be able to identify the cluster
that contains the variance with low mean, and report its elements as variances of the REE
of TIV bases. Gaussian Mixture Models (GMMs) [55] are among the most statistically
mature methods for clustering, and may be more appropriate than other clustering tech-
niques such as K-means, especially because clusters of variances may have different sizes
and correlations between them. As for ARMA models, we do not want to go into unnec-
essary complex mathematical descriptions and we consider the algorithm as a black box:
it takes a variance vector ~v of m entries as input and it builds clusters of near values with
these entries. The interested readers can find more details about how the clusters are built
in [28].

Although we still need to look for a differentiation between two main clusters (TIV
variances and non-TIV variances), we could distinguish more than two clusters, say k.
This allows the GMM clustering to create more accurate clusters, from which we choose
the cluster that is more likely to contain TIV variances. Let µi be the mean value of all
values in the cluster i (with 1 ≤ i ≤ k). To select the cluster we suspect to contain
variances of TIV bases, we look for the cluster corresponding to mini µi.

4.6.4 Detection results
The plot in figure 4.19 shows the points corresponding to the false positive rates along
the x-axis and to the true positive rates along the y-axis, with one point per method used
to detect TIV bases, for both data sets with respect to 10 simulation results. By consid-
ering ARMA and GMM models we do not need to set any detection threshold. So, for
each simulation of Vivaldi, we have only one point (FPR,TPR) in figure 4.19 and the 10
points generated with the 10 simulation results are independent (they do not form a ROC
curve). On the other hand, for the detection criterion based on REE, there is one thresh-
old and the points obtained with different values of the threshold for the same simulation
results form a ROC curve. For comparison, the ROC curves obtained with different de-
tection thresholds based on REE for one simulation result are presented on figures 4.19(a)
and 4.19(b) respectively for the P2PSim and Meridian data sets. We consider different
thresholds varying from −1 to 1 by steps of 0.05. The reader should notice that the re-
sults obtained for a same value of the threshold are not the same in figure 4.19 and in
figure 4.17. This happens because the population on which the REE detection criterion is
applied is not the same on both figures: in figure 4.19 we try to detect TIV bases among
the paths monitored by Vivaldi (to have something that can be compared to the GMM and
ARMA results) while we tried to detect TIV bases among all the paths in figure 4.17.

The first observation on figure 4.19 is that the REE thresholds which give high TPR
with low FPR are different for the P2psim and Meridian data sets. The better REE thresh-
olds, when we consider the P2PSim data set (resp. the Meridian data set), vary from 0 to
0.15 (resp. 0.2 to 0.35). In other words, a good REE threshold depends on the used data
set, and thus, it will be difficult to fix it a priori.
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Figure 4.19: Performance of TIV base detection techniques.

We observe that both ARMA and GMM detection methods perform very well for the
P2PSim dataset (figure 4.19(a)) comparatively to the ROC curve based on REE detection
threshold which is the method proposed in [81]. Note that the ARMA model gives better
results than GMM model. Furthemore, the two points that are located at the right of the
ROC curve (figure 4.19(a)) represent the detection of TIV bases based on GMM model.
The same trend is observed on figure 4.19(b) where all the detection of TIV bases based
on GMM model are located on the right-hand side of the ROC curve. Nevertheless, the
ARMA model can be considered to be excellent in the case of the Meridian data set. In
summary, the detection of TIV bases based on ARMA model gives good performance
with up to 85% of TIV bases detected, while suspecting non-TIV bases in rare situations
(less than 2%). The reason that ARMA model outperforms the GMM model is probably
due to the fact that the REE variances do not follow a gaussian distribution.

However, these results have been computed considering simulations of Vivaldi: in
practice the RTTs are not constant and the detection results could be mitigated. More-
over, in ICS applying such detection criteria on the same set continuously can lead to a
degradation of the detection performance. Indeed, this criterion is based on the assump-
tion that TIVs are measured in the ICS and that they impact the ICS behaviour. If we
use the result of the detection criterion to optimize the selection of neighbors to reduce
the impact of TIVs (like Wang et al. propose to do in [81]) we will modify the behavior
of the ICS. Consequently, the FPR can increase while the TPR can decrease at the same
time. To avoid such drawback, one solution is to ignore the results of detection if most
node pairs are considered as TIV bases.
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4.6.5 Finding a discriminative TIV indicator by supervised learning
In section 4.6.4, we have shown that a TIV base detection based on the REE variance can
provide better detection results than a criterion based on the REE. But there exist perhaps
more discriminative variables than the REE variance for TIV base detection. Testing all
possible variables like we have done with the REE variance would take too much time. To
solve this problem, Yongjun Liao proposed to extend our work using supervised learning.
She collected training data from Vivaldi, she extracted as many variables of different kinds
as possible and she applied a classical supervised learning method (namely, a decision
tree) to find the most discriminative variable. Her results have been published in [43] and
we will summarize them here.

Variables considered

As in section 4.6.3 simulations of Vivaldi have been run on the P2PSim and the Meridian
data sets and we consider the coordinates of the nodes during the last K simulation ticks.
We worked essentially with K = 100. From the coordinates, we computed the estimated
RTTs for the paths between the nodes and their neighbors (as in section 4.6.3 we try
only to detect the TIV bases among these paths). For a given path AB, we denote the
measured distance by d (i.e. d = RTT (A,B)) and the estimated distance by d̂ (i.e.
d̂ = EST (A,B)). Thus, for each path between a node and one of its neighbors, we have
K +1 values: d, d̂1, d̂2,. . . , d̂K . For the K estimated values, we calculated some statistics
including

d̂max = max{d̂1, d̂2, . . . , d̂K}
d̂min = min{d̂1, d̂2, . . . , d̂K}
d̂mean = mean{d̂1, d̂2, . . . , d̂K}
d̂median = median{d̂1, d̂2, . . . , d̂K}

d̂std = standard_deviation{d̂1, d̂2, . . . , d̂K}

Based on these values, we defined 64 variables on which a detection criterion can be
developed. A few examples of these variables are:

d̂max − d̂min
d

d̂mean − d̂median
d

d̂mean − d
d̂max

d̂mean

d̂std

d̂K
d

d̂std
d

· · ·

Note that the variable d̂K/d is equivalent to the variable used by the criterion based on
REE (see section 4.6.2) and that the variable d̂std/d is equivalent to the variable used by
the criterion based on REE variance (see section 4.6.3).

Supervised learning and Decision Tree

Generally speaking, supervised learning methods take N input/output pairs (x1, y1), . . . ,
(xN , yN) where xi is the vector of the input variables and yi is the output value, and try
to reveal the relationships between the inputs and the outputs. In other words, the goal
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of supervised learning is to learn a function f(x) from a set of training data that predicts,
at best, the output y for any new unseen input x. In our case, for each path, we have the
variables described above as inputs and a label saying if the path is a TIV base or not as
output.

Decision Tree is one of the most popular supervised learning algorithms. Each deci-
sion tree is a classifier in the form of a tree structure, where each interior node specifies
a binary test carried on a single input variable and each terminal node is labeled with the
value of the output. In the learning phase, a decision-tree builder recursively splits the
training samples with binary tests, trying to reduce as much as possible the uncertainty
about the output classification in the resulting subsets of the samples. The splitting of a
node is stopped when the output in it is homogeneous or some other stopping criterion
is met. During learning, a byproduct is the ranking of the input variables according to
their importance, which is often used to find discriminative variables. In the classification
phase, we start from the root of the tree and move through it until a terminal node, where
the classification result is provided.

We learned our decision trees using a data mining software called PEPITO [67] which
integrates most popular machine learning algorithms. The training data collected through
simulations of Vivaldi was randomly divided into disjoint learning and test sets of roughly
equal size. In other words, we used half of the data (i.e. the variables computed for half
of the paths) to build the trees and the other half to evaluate the trees. The trees obtained
for the P2PSim and the Meridian data sets are shown in figure 4.20.

(a) P2PSim data set (b) Meridian data set

Figure 4.20: Top three levels of the decision trees built on P2PSim and Meridian data sets. The
colour in the rectangular boxes reflects the proportions of TIV and non-TIV bases.

The most discriminative variable: OREE

By examining the root nodes of both trees in figure 4.20, it can be seen that the first test
is on the same variable, (d̂std − d)/d̂mean, which appears to be the most discriminative.
We name this variable OREE because it represents oscillation and relative estimation
error: the variable is composed of two parts, d̂std/d̂mean which corresponds to a relative
oscillation measure, and d/d̂mean which corresponds to a relative error measure. On both
trees, when the value of OREE is smaller than the cut point, the edge is more likely a TIV
base, and vice versa.
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Figure 4.21 shows the TIV and non-TIV distributions of P2PSim and Meridian data
sets with respect to OREE. The first observation is that there is less overlapping between
the two curves when we use OREE as variable (see figure 4.21) than when we use REE
as variable (see figure 4.16 page 64). Consequently, OREE seems to be a more discrim-
inative variable than REE. It can also be seen that the overlap of the two distributions in
P2PSim (figure 4.21(a)) is much larger than in Meridian (figure 4.21(b)), which implies
that the TIV bases detection using OREE will probably give better results on the Meridian
data set than on the P2PSim data set.
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Figure 4.21: TIV and non-TIV bases distributions in P2PSim and Meridian with respect to OREE.

TIV base detection using OREE

A solution to detect TIV bases using OREE is to define thresholds on the OREE value
(like we did with the REE variable) and to consider that all the paths which have an
OREE smaller than the threshold are TIV bases. Figures 4.22(a) and 4.22(b) compare
the ROC curves of OREE, REE and std_REE (i.e. the REE variance) on the P2PSim and
the Meridian data set respectively. These curves have been obtained by thresholding the
values of the corresponding variables.

We see that the ROC curve of OREE is consistently the highest while the other two
variables perform inconsistently: REE is more discriminative on P2PSim but less on
Meridian than std_REE. Figure 4.22 shows also a ROC curve named "Decision Tree".
That curve has been obtained considering the whole detection process described by the
decision tree4 and by varying the threshold of the probability of TIV. Obviously, that curve
is better than the "OREE" curve because considering more levels than only the first level
(i.e. the OREE level) in the decision tree allows to refine the detection results. Never-
theless, on both Meridian and P2PSim data sets, there is only a small difference between
the "Decision Tree" curve and the "OREE" curve. This suggests that the other variables
provide little extra information so that their corresponding nodes in the trees can be safely
pruned with no performance degradation.

4For the "OREE" curve we consider only the first node of the decision tree.
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Figure 4.22: ROC curves for OREE, REE and std_REE obtained by thresholding the values of
the corresponding variables. The "Decision Tree" ROC curve has been obtained considering the
whole detection process described by the decision tree.

The problem with OREE is that the decision trees in figure 4.20 have non-negligible
variations. Even for the two root nodes that correspond to the same variable, a shift is
found between the optimal cut points in them, which introduces errors when the threshold
for OREE learned on one data set is applied to another. Moreover, even if we can collect
data and learn a specific classifier for each network, the TIV distribution in the network
often evolves in time due to, for example, changes in routing or network upgrade.

Another possibility to detect TIV bases using OREE is to work like we did with the
REE variance: for each node, we can consider the 32 neighboring paths, rank these paths
in increasing order following their OREE value and consider that the n first paths in the
ranking (i.e. the n paths which have the smaller OREE value) are TIV bases. This way,
the detection criterion uses a threshold on the value of n rather than a threshold defined
directly on the value of OREE. Experiments have revealed that the best choice for the
value of the threshold is somewhere around n = 10 for the P2PSim data set. With such
threshold, the detection criterion provide a TPR around 80% for a FPR smaller than 20%.
On the Meridian data set, with the same threshold, we obtain a TPR around 75% and a
very small FPR (smaller than 5%). These results are satisfactory for Meridian but this is
not the best choice for the threshold on this data set. On Meridian, the best choice for the
threshold seems to be somewhere around n = 15. This gives a TPR around 98% with
a FPR smaller than 10%. But the threshold n = 15 is unsuitable for the P2PSim data
set because it generates a FPR bigger than 35%. So, it is as difficult to find a threshold
on n suitable for all data set than finding a threshold on the value of OREE. However,
in practice, it is easier to choose a trade off value for the threshold on n than for the
threshold on OREE because (1) n has a fixed range of [1, 32] while the value of OREE
is theoretically unbounded and (2) the detection results are influenced by n more evenly
than by the value of OREE.
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4.7 Conclusion
In this chapter, we have seen that routing shortcuts situations are in fact TIV situations.
Such situations are common in the Internet and are a well-known problem for an ICS like
Vivaldi. Indeed, situations where three nodes A, B and C are such that

RTT (A,B) > RTT (A,C) +RTT (C,B)

are not embeddable in a metric space (where the triangle inequality must hold) and will
generate unavoidable estimation errors. It has as consequence that the simple solution
proposed in the conclusion of the previous chapter to detect routing shortcuts using esti-
mations only is inefficient: since estimations are distances in a metric space, for two given
nodes A et B, there exists no node C such that

EST (A,B) > EST (A,C) + EST (C,B)

Since TIVs are not embeddable in a metric space, they have an impact on the ICS’s be-
haviour. Like Lumezanu et al. [48], we tried to detect the TIVs (i.e. the routing shortcuts)
by observing the behaviour of Vivaldi. However, we did not obtain satisfactory results
mainly because the impact of a TIV depends of what is measured by the ICS, and because
that impact is also affected by other TIVs. So, it is very difficult to characterize the impact
of the TIVs on the ICS in order to propose a criterion to detect them and combining a few
measurements with the estimations seems necessary to provide a suitable routing shortcut
detection mechanism. We will investigate this in chapter 5.

Even if detecting TIVs using only Vivaldi’s estimations seems very difficult, we found
several ways to detect TIV bases by observing Vivaldi’s behaviour. We saw that a TIV
base detection criterion based on REE (proposed in [81]) can provide quite accurate de-
tection results but we showed that a criterion based on the REE variance or on the variable
OREE can provide better detection results. A TIV base detection criterion could be useful
as a preliminary filter for our overlay routing mechanism: if we are able to directly know
that there exists no shortcut for a given path AB, we can avoid testing each potential relay
C to know if it is a shortcut or not and, thus, spare resources. But none of the criteria pre-
sented in the chapter are suitable for this purpose: criteria on OREE and REE variance are
not able to provide an answer for any path AB (they provide answers only for the paths
between Vivaldi neighbors) and the criterion on REE is not accurate5 enough. So, we will
not use such filter in chapter 5. However, such criterion is not completely useless. For
example, it can be used to improve the selection of neighbors in order to mitigate TIV’s
impact on the estimations as proposed in [81] (and the criteria presented in this chapter
have been developed for this purpose).

5For a first filter, we need essentially a criterion which returns always "true" when there exists a routing
shortcut (otherwise there will be many cases where we will not search shortcuts while some exist). In other
words, we need a very high TPR. The FPR is less critical: if the criterion returns "true" when there exists
no shortcut, we will simply waste resources to test each potential shortcut. With a criterion based on REE,
to obtain a very high TPR, we need a threshold that will also provide a very high FPR (especially on the
P2PSim data set). In other words, such filter will return "true" for almost all the paths and is therefore a
useless filter.
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Finally, in the light of our observations about the TIVs in the Internet and their impact
on Vivaldi, we propose a hierarchical structure of Vivaldi to mitigate the impact of most
severe TIVs on the quality of the estimations. The hierarchical approach for Vivaldi will
be discussed in chapter 8 of the thesis.



Chapter 5

Routing shortcut detection using an ICS

Abstract
In the previous chapter, we have seen that detecting TIVs using only estimations is impos-
sible because routing shortcuts cannot be embedded in the metric space. Since routing
shortcuts generate estimation errors, we tried to detect them by observing the behaviour
of the ICS. But we observed that the impact of the TIVs on the ICS is very difficult to
characterize and we were only able to suspect the existence of shortcuts for a given path
AB without being able to find which node C is a shortcut. In the current chapter, we will
combine estimations with a few measurements in order to allow TIV detection. Even if
such detection criteria are not able to detect all the shortcuts in the network, we will see
that they are at least able to provide an interesting shortcut for lots of paths. Most of the
results presented in this chapter were published in [8].

5.1 Combining estimations and measurements
In the previous chapter of this thesis, we have seen that using only the estimations pro-
vided by an ICS to find the one-hop shortcuts in a network is impossible: for a given path
AB, it is impossible to find a node C such that

EST (A,B) > EST (A,C) + EST (C,B) (5.1)

So, we have to combine estimations with measurements in order to obtain a shortcut
detection criterion. But, our primary objective is to provide a scalable service and we
want do as less measurements as possible. With this in mind, we consider that we can
obtain the following measurement results:

• First, if we look for a shortcut for the path AB, we assume that RTT (A,B) can
be measured. If we search routing shortcuts for a given path AB it consists only
of one measurement. What we want absolutely to avoid is to do measurements
between A and each potential relay C and between B and each potential relay C.
Requiring the measurement of the path for which we search a shortcut becomes

75
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problematic only if we want to optimize routes in the whole network. Indeed, if
we want to find routing shortcuts for every path of the network, then we have to
measure every path in the network, i.e. exactly what we want to avoid. However,
it has been shown [30] that trying to improve the routing in the whole network can
finally lead to a degradation of the performance and we stated in section 2.3 that
we do not intend to improve the whole network in order to avoid such problems.
Thus, following our objective, requiring the measurement of the direct path is not
a problem. Nevertheless, the possibility to detect routing shortcuts for a given path
AB without measuring RTT (A,B) will be investigated in section 5.7.
• Secondly, we assume that we can obtain Vivaldi’s measurement results between the

nodes and their neighbors. These measurements are available and using them will
only imply a small additional communication cost to exchange these measurement
results between the nodes (in addition to the coordinates).

5.2 Two basic one-hop shortcut detection criteria
For a given path AB, given the measurements described in section 5.1 and estimations,
we want to find criteria that provide a set of C nodes that are probably one-hop shortcuts
for that path. As such criteria can provide a potentially large set of nodes, we need also a
way to rank the C nodes in order to find the best shortcuts as fast as possible.

5.2.1 Detection criteria definitions

In the previous chapter, we observed that more or less 80% of the paths for which there
exists at least one significant shortcut are under-estimated by the ICS. The following cri-
teria are based on that observation. Indeed, if the estimation of the alternative path is
reliable and if the path AB is significantly under-estimated, we will restore the TIV by
replacing EST (A,B) by RTT (A,B) in equation (5.1). This is illustrated in example 6.

Example 6. Consider the TIV on figure 5.1. The right part of the figure gives a possible
embedding for that TIV. Obviously, C does not appear to be a shortcut for AB if we use
the estimations: we have EST (A,C) + EST (C,B) = 75 ms, EST (A,B) = 70 ms
and 70 < 75. Now, consider that we have the measurement result for RTT (A,B). If
we replace EST (A,B) by RTT (A,B) in equation (5.1), we have 100 > EST (A,C) +
EST (C,B) and C appears to be a shortcut for AB (the TIV is restored).

C

BA

20 ms 30 ms

100 ms

C

BA
70 (-30)

35 (+15) 40 (+10)

Figure 5.1: Example of TIV embedding. If we replace the estimation of the TIV base by its
measurement, we restore the TIV and C can be considered as a shortcut for the path AB.
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For this example we made the assumption that the short edges of the TIV are over-
estimated. In section 4.5, we saw that the short edges are not always over-estimated
(the probability of over-estimation for the alternative path is around 50%). However,
considering an over-estimation of the alternative path is the worst case in our situation.
Indeed, if the alternative path is under-estimated, it appears even shorter that it is and the
TIV restoration will be easier.

In example 6, we used the estimations provided by the ICS to approximate the RTT of
the alternative path. But, there are other possibilities for that approximation. In this sec-
tion, we will describe two detection criteria (namely, EDC and ADC) which use different
ways to approximate the RTT of the alternative path.

Estimation Detection Criterion (EDC)

EDC is our first criterion. To decide if a node C is a shortcut for a path AB, this criterion
compares the measured RTT of the direct path between A and B and the estimated RTT
of the alternative path using C as relay (as we did in example 6). Formally, a node C is
considered as a shortcut for the path AB if

RTT (A,B) > EST (A,C) + EST (C,B) (5.2)

The potential problem with that criterion is that it uses the values of the estimations
provided by the ICS as if there were no estimation error. However, we know that there
are estimation errors and, in particular, that these errors cannot be avoided if node C is a
shortcut for the pathAB. In example 6, we saw that an under-estimation of the alternative
path in not a problem and will allow a detection of C as a shortcut using EDC. Reversely,
a too large over-estimation of the alternative path can be problematic and can prevent a
detection of C as a shortcut. Anyway, estimation errors may be problematic when we
will have to rank the C nodes detected as shortcuts by EDC in order to select the best
one. Thus, using directly the values of the estimated RTTs to approximate the RTT of the
alternative paths is not necessarily a good idea.

Moreover, in practice, the estimations provided by an ICS are generally not used for
their exact values because it is well known that there are unavoidable estimation errors.
In most cases, the estimations are used to obtain a rough delay prediction: even if there
are estimation errors, the estimations allow a node to estimate if another node is far or
near. Using such information, coordinates can be used, for example, to build overlay
topologies where overlay links are established between nearly nodes, to find the server
that is the nearest to one given node, etc. Our second criterion follows that principle and
relies only on estimations to decide if a node is near another given node.

Approximation Detection Criterion (ADC)

ADC is our second criterion. For a path AB and a node C, we define CA (resp. CB)
as C’s nearest node among A’s (resp. B’s) Vivaldi neighbors according to the estimated
RTTs. Since A and CA (resp. B and CB) are neighbors, we assume that RTT (A,CA)
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(resp. RTT (B,CB)) is known and can be used by the criterion to approximate the RTT
of the alternative path: a node C is considered as a shortcut for the path AB if,

RTT (A,B) > RTT (A,CA) +RTT (CB, B) (5.3)

5.2.2 Ranking of the detected C nodes
We have two criteria which, for a given path AB, are able to return a set of C nodes that
are probably shortcuts for that path. The problem with such criteria is that they do not
provide a set of nodes containing only the best shortcuts: they provide a possibly large
set of nodes containing nodes that are important shortcuts, nodes that are less important
shortcuts and even nodes that are not shortcuts (detection errors). So, we need a way to
rank the C nodes of a set in order to find quickly and easily the best shortcuts in that
set. Since we want to find the node C providing the smallest RTT for a path between
A and B, we will rank the C nodes by order of provided gain. As stated respectively in
definitions 15 and 14 page 54, for a path AB, the absolute gain (Ga) and the relative gain
(Gr) provided by a node C are

Ga = RTT (A,B)− (RTT (A,C) +RTT (C,B)) Gr =
Ga

RTT (A,B)

If C is a shortcut for the path AB, then Ga and Gr will have positive values and the
most interesting shortcut is the one that provides the highest value for these parameters.
However, we cannot compute Ga and Gr for all C nodes. Indeed, generally, we do not
know the real RTT of the alternative path that uses node C: we only have Vivaldi’s es-
timations for that path. As we have used an estimation/approximation for the RTT of
the alternative path in the shortcut detection criteria, we will also use that estimation/ap-
proximation in the ranking criteria. The values used to rank the C nodes of a set will be
denoted estimated absolute gain (EGa) and estimated relative gain (EGr). The defini-
tions of these values depend on the shortcut detection criterion used to obtain the set of C
nodes:

EGa = RTT (A,B)− (ERTT (A,C) +ERTT (C,B)) EGr =
EGa

RTT (A,B)
(5.4)

where ERTT (X, Y ) is the value used by the detection criterion to estimate the RTT of
the path XY .

For a pathAB, we will rank the C nodes of the set selected by a shortcut detection cri-
terion in decreasing order of their estimated gain. If the nodes with the highest estimated
gains are also those with the highest (real) gains then we will find the nodes providing the
most interesting shortcuts in the top of the ranking.

5.3 Performance evaluation
To model Internet latency, we used the three delay matrices described in section 3.4
page 41: P2PSim, Meridian and Planetlab. In these matrices, the percentage of paths
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for which there exists at least one shortcut is respectively 86%, 97% and 67%. Since a
shortcut is not necessary useful1, we define the notion of interesting shortcut.

Definition 16. Let A, B and C be three nodes. The node C is an interesting shortcut for
the path AB if it provides at least an absolute gain of 10ms and a relative gain of 10%.

The percentage of paths for which there exists at least an interesting shortcut in our matri-
ces is respectively 43%, 83% and 16%. So, searching shortcuts in the networks modelled
by these matrices can provide a significant delay improvement for many paths.

We have simulated the behaviour of Vivaldi on these three networks by using the
P2PSim [64] discrete-event simulator. As discussed in chapter 3, each node has com-
puted its coordinates in a 10-dimensional Euclidean space by doing measurements with
32 neighbors. Then, we simply applied our detection criteria using the estimated delay
matrices computed with the coordinates obtained at the end of the simulations. We will
now evaluate the quality of the sets of detected nodes provided by our criteria.

5.3.1 Shortcut detection
To evaluate the performance of our detection criteria, we first use the classical true positive
rate and false positive rate indicators. For a path AB, a good shortcut detection criterion
must detect a node C as a shortcut if it is a shortcut for the path AB (i.e., if it is a positive)
and must reject a node C if it is not a shortcut for the path AB (i.e., if it is a negative).
The percentage of positives detected as shortcuts is the true positive rate (TPR) and the
percentage of negatives detected as shortcuts is the false positive rate (FPR). We also
define the interesting true positive rate (ITPR) as the percentage of interesting shortcuts
detected as shortcuts by the criterion. A good detection criterion must provide a high
(I)TPR and a low FPR.

EDC ADC
TPR ITPR FPR TPR ITPR FPR

P2PSim 53% 83% 2% 65% 84% 9%
Meridian 54% 64% 9% 70% 76% 25%
Planetlab 37% 75% 1% 60% 81% 5%

Table 5.1: EDC and ADC shortcut detection results

The true positive rates and false positive rates obtained with our criteria are given in
table 5.1. We see that the percentage of interesting shortcuts detected as shortcuts (ITPR)
is good in most of the cases for both criteria. Furthermore, the percentage of non-shortcuts
detected as shortcuts (FPR) is generally quite low. So, these results are satisfactory and,

1For example, for a path AB such that RTT (A,B) = 100ms, a node C such that RTT (A,C) +
RTT (C,B) = 99ms is a shortcut that provides an absolute gain of 1ms and a relative gain of 1%. Since
using C as relay for sending data from A to B will add an additional forwarding delay, such shortcuts are
useless in practice.
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considering these results, EDC seems to perform better than ADC: although ADC is al-
ways able to detect slightly more shortcuts than EDC, it also gives more false positives.

5.3.2 Detection of the best shortcuts

Being able to detect lots of the shortcuts in a network is one thing, but what matters
most is to detect the most interesting shortcuts (those that provide the most important
gain). Considering only the paths for which there exists at least one interesting shortcut,
the percentage of paths for which the most interesting shortcut is detected in the matri-
ces P2PSim, Meridian and Planetlab is respectively 36%, 41% and 49% with the EDC
criterion and 68%, 80% and 70% with the ADC criterion.

Regarding those results ADC seems to be a better criterion than EDC. Indeed, EDC is
able to find the best shortcut for 40% of the paths (on average) while the ADC is able to
find the best shortcut for more than 70% of the paths in each matrix. However, we must
perhaps moderate our conclusion. Firstly because ADC returns large sets of C nodes
(including a non-negligible number of false positives) compared to EDC. At the limit, a
criterion that would detect as shortcut all C nodes will obviously detect the best shortcut
for each path but is completely useless. So, if we choose to use ADC, we absolutely
need a criterion2 to rank the C nodes of a set in order to keep only a subset of the nodes.
Moreover, EDC can give better results than we think. Indeed, even if a criterion cannot
find the best shortcut for a path, it may be able to find another shortcut that provides
almost the same gain. We will investigate that during the evaluation of the quality of the
ranking of the C nodes.

5.3.3 Ranking of the detected nodes

For a given matrix and a given detection criterion, we proposed in section 5.2.2 to rank the
C nodes of each path on the basis of the EGr they provide. We will now evaluate whether
this gives a ranking with theC nodes providing the bestGr in the first positions and allows
us to find easily the best shortcuts among the detected C nodes. For this evaluation, we
only consider the paths for which there exists at least one interesting shortcut.

Theoretical correlation computation

A ranking based on estimated values (denoted as estimated ranking in the sequel) is suit-
able only if it corresponds to the ranking obtained with the real gains (denoted as real
ranking in the sequel)In other words, we need a correlation between the two rankings.

Definition 17. In statistics, a rank correlation is the relationship between different rank-
ings of the same set of items. A rank correlation coefficient measures the degree of similar-
ity between two rankings, and can be used to assess its significance. (source: Wikipedia)

2Such criterion can also be useful for EDC because, even if the sets of C nodes are generally smaller
than those returned by ADC, they can contain tens or hundreds of nodes.
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In statistics, one of the most popular rank correlation coefficients is the Spearman’s
rank correlation coefficient denoted by ρ. Consider that we have two variables X and Y
where Xi and Yi are two values corresponding to a same observation. In our case, Xi and
Yi are the real gain and the estimated gain provided by the node Ci for the path AB. Let
xi (resp. yi) be the position of the value Xi (resp. Yi) in the ranking. If di = xi − yi
denotes the difference between the ranks of each observation of the variables (i.e. each
Ci), then ρ is given by

ρ = 1− 6×∑i d
2
i

n× (n2 − 1)
(5.5)

If the ranking based on X and Y are identical, then ρ is equal to 1. More generally, if
Y tends to increase when X increases, then ρ is a positive value. If the ranking based on
Y is reversed compared to the ranking based on X , then ρ is equal to−1. More generally,
if Y tends to decrease when X increase, then ρ is a negative value. If ρ = 0, then there is
no tendency for Y to increase or decrease when X increases (i.e. there is no correlation
between the rankings). Note that equation (5.5) is a simplified definition of ρ where it is
supposed that there are no ties. But, in our case, we can have ties: two nodes Ci and Cj
can provide a same (estimated) gain for a given path AB. There exists a general form of ρ
but, in order to avoid to be too optimist or pessimist about the correlation results, we will
manage the ties ourselves and we will consider, for each tie, the best case and the worst
case from the correlation point of view. Thus, we know that the result obtained in practice
will be somewhere between these two values.

To evaluate the correlation between the two rankings, we considered the C nodes
detected as shortcuts by EDC and ADC for each path for which there exists at least one
interesting shortcut. Then, we ranked these nodes by decreasing order of real gain on
one side (the real ranking) and by decreasing order of estimated gain on the other side
(the estimated ranking). This way, for each path, we can compute the Spearman’s rank
correlation coefficients between these two rankings: one best case coefficient and one
worst case coefficient depending on how we manage the ties. Finally, for each data set,
we computed the CDFs (the best one and the worst one) of the coefficients obtained for
the paths of the data set. Figure 5.2 provides the CDFs obtained using EDC or ADC as
criteria on the data set P2PSim (similar results have been obtained for the Meridian and
the Planetlab data sets but they are not presented here).

The first observation is that the worst case and the best case cannot be differentiated
with EDC. That means that there is only a small number of ties with that criterion. With
ADC, we have a significant difference between the "best" curve and the "worst" curve.
Having ties with ADC is logical because the alternative paths can only be approximated
using a limited number of values. Indeed, by definition of ADC, since each node uses 32
neighbors in Vivaldi, each alternative path is approximated by one value selected in a set
of 32×32 = 1024 values. Thus, the probability to obtain the same approximation for two
different C nodes is not negligible.

The second observation is that, considering EDC or ADC, there are almost no paths
which have a correlation coefficient smaller than −0.5 or bigger than 0.5. So, in most
of the cases there is no correlation (or only a little one) between the real ranking and the
estimated ranking. Consequently, ranking the detected nodes on the basis of their esti-
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Figure 5.2: Rank correlation results for the P2PSim data set.

mated gain does not seem to be a suitable solution to find the best shortcuts. However,
we do not require a complete correlation between the two rankings. To be able to detect
the best shortcuts, we just need that such shortcuts appear at the beginning of the esti-
mated ranking. In fact, we are not interrested in the ranking of the other detected nodes.
Particularly, the end of the estimated ranking can even be completely random. Thus, com-
puting a correlation on the whole ranking does not correspond to our requirements. But,
to our knowledge, there is no theoretical correlation computation that can represent our
particular needs.

Nevertheless, we have compared manually the two rankings obtained for many paths
and, most of the time, the best shortcuts with respect to the real gains appear in the first
part of the estimated ranking. In the light of these observations, we will evaluate the
quality of the ranking of the C nodes by considering that only the first k C nodes of the
estimated ranking are detected by the criterion (for several values of the parameter k).
This way, if a small value of k allows us to find good shortcuts most of the time, we can
consider that the estimated ranking is suitable.

Empirical evaluation

As discussed above, to evaluate the quality of the ranking, we consider for each path that
only the first k C nodes of the ranking are detected by the criterion (for several values of
the parameter k). For these subsets of C nodes we compute the difference between the
Gr provided by the best existing shortcut (denoted by Gbest(A,B)) and the Gr provided
by the best shortcut in the subset (denoted by Gdet(A,B)). If no shortcut is detected for
the path AB, we define Gdet(A,B) = 0. We thus obtain one value

Difference(A,B) = Gbest(A,B)−Gdet(A,B)

for each pathAB and we build the CDF of these values. The CDFs obtained with different
values of the parameter k are given in figure 5.3.

The curves named "no detection" in figures 5.3(a) and 5.3(b) give the CDF of the Gr

provided by the best existing shortcut for each path of the matrix. Indeed, if there is no
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Figure 5.3: Comparison of EDC and ADC. The figure shows the difference of Gr between the
best shortcut and the best detected shortcut.

detection criterion applied, there is no shortcut detected and the difference between theGr

provided by the best existing shortcut and the Gr provided by the best detected shortcut is
the Gr provided by the best existing shortcut. In other words, these curves represent the
potential improvement in the corresponding data set: by applying one shortcut detection
criterion, we will detect some shortcuts and, thus, reduce that difference (i.e. the potential
improvement) for some paths. Since the computed difference is smaller for more paths,
the CDF will rise faster on the graphs.

The curves named "all nodes - XDC" in the subfigures of figure 5.3 give the CDF
computed by considering all the nodes selected by the shortcut detection criterion XDC
(ADC or EDC). This is equivalent to using k = ∞. These are the best results that the
given detection criterion applied on the given matrix can provide. We can see that ADC
still gives better results than EDC considering those graphs. Indeed, with ADC, there are
only a small part of the paths for which the difference between the Gr provided by the
best existing shortcut and the Gr provided by the best detected shortcut is bigger than
0.2. That means that, for a small part of the paths AB, it is still possible to find another
shortcut C that would improve by more than 20% ofRTT (A,B) the gain provided by the
alternative path proposed by our shortcut detection criterion. This difference is generally
bigger with EDC.

Let us see the situation if we keep only the first nodes of the rankings. The graphs
named "k nodes - XDC" in the subfigures of figure 5.3 give the CDF computed by con-
sidering as detected only the first k nodes of the rankings obtained by using the shortcut
detection criterion XDC (ADC or EDC). The first thing we see is that even if we take
only a few nodes in the ranking (e.g., 10 nodes), we obtain already a good improvement
compared to the situation whithout shortcut detection. We also see that ADC gives bet-
ter results than EDC only if we keep a sufficient number of nodes: more than 50 nodes
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for Meridian, more than 20 nodes for P2PSim and more than 5 nodes for Planetlab3.
Moreover, if we keep a sufficient number of nodes (100 nodes for Meridian, 20 nodes
for P2PSim and 10 nodes for Planetlab), we obtain a result with ADC that is better than
what we can obtain by considering all the nodes with EDC. The number of nodes to keep
to obtain good results may seem important for Meridian but it represents only 4% of the
total number of nodes.

Given those results we can conclude that, with ADC, when considering only 5% of the
total number of nodes in each matrix (that represents 125 nodes for Meridian, 87 nodes
for P2PSim and 9 nodes for Planetlab), we are able to provide a significant improvement
of the RTT for lots of paths for which there exists at least one interesting shortcut.

5.4 Hybrid one-hop shortcut detection criterion
It is possible to obtain better results than those obtained with ADC. Indeed, if it is im-
possible to find some A’s (resp. B’s) Vivaldi neighbors near C, the approximation of
RTT (A,C) (resp. RTT (C,B)) by RTT (A,CA) (resp. RTT (CB, B)) can be very bad.
In such case, using the EDC criterion can provide more reliable detection results even if
there are estimation errors. So, we define a Hybrid Detection Criterion (HDC) by com-
bining our two basic criteria in order to exploit their advantages.

5.4.1 Criterion definition
Formally, let CA (resp. CB) be C’s nearest node among A’s (resp. B’s) Vivaldi neighbors
according to the estimated RTTs. We define

ERTT (A,C) =

{
RTT (A,CA) if EST (CA, C) < threshold
EST (A,C) otherwise

ERTT (C,B) =

{
RTT (CB, B) if EST (CB, C) < threshold
EST (C,B) otherwise

where threshold is a value used to decide if CA (resp. CB) is sufficiently near C to obtain
a quite good approximation of RTT (A,C) (resp. RTT (C,B)) by using RTT (A,CA)
(resp. RTT (CB, B)). To test the HDC criterion, we choose threshold equal to 10% of
RTT (A,B) when we search a shortcut for the path AB. A fine tuning of this parameter
must still be done but some small experiments have shown that 10% seems a good choice
compared to other values. Using these definitions, a node C is considered as a shortcut
for the path AB if

RTT (A,B) > ERTT (A,C) + ERTT (C,B) (5.6)

To rank the C nodes of the set provided by this criterion for a given path AB, we proceed
as described in section 5.2.2.

3Since there are only 180 nodes in the Planetlab matrix, the sets of C nodes returned by the criteria are
quite small and keeping all the detected nodes is not really a problem. So, the quality of the ranking is less
important for that matrix and we will not show the graphs here.
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5.4.2 Performance evaluation

For the evaluation of HDC, we consider again only the paths for which there exists at
least one interesting shortcut. Let us begin with the detection of the best shortcuts. The
percentages of paths for which the most interesting shortcut is detected with the HDC in
the matrices P2PSim, Meridian and Planetlab are respectively 64%, 71% and 74%. These
results are better than those obtained with EDC but are worse than those obtained with
ADC. So, HDC misses interesting shortcuts that ADC is able to find. Moreover, in figure
5.4, considering all the nodes detected by the criterion, we can see that ADC is potentially
able to provide a better improvement of the latencies in the network than HDC.
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Figure 5.4: Comparison of ADC and HDC: Difference of Gr between the best and the best de-
tected shortcut.

However, considering the quality of the ranking of the C nodes, we see in figure 5.4
(graphs named "k nodes - XDC") that HDC performs a lot better than ADC. Indeed, with
HDC, even if we take only the first node of the ranking, we obtain already a significant
improvement compared to the situation without shortcut detection. Furthermore, if we
only consider the first 5 nodes of a ranking, we obtain better results than if we consider
the first 50 nodes of the rankings with ADC. So, with HDC, we can provide a substan-
tial improvement of the RTT for lots of paths by considering only about 2% of the total
number of nodes (that represents only 50 nodes for Meridian, 34 nodes for P2PSim and 3
nodes for Planetlab).

5.5 Summary of the detection process

In summary, to find a good shortcut for a given path AB we will proceed as indicated in
algorithm 3. The computations in lines 5 and 6 depend of the detection criterion applied.
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With EDC, we have:

ERTT (A,C) = EST (A,C) ERTT (C,B) = EST (C,B)

If CA (resp. CB) is C’s nearest node among A’s (resp. B’s) Vivaldi neighbors according
to the estimated RTTs, with ADC, we have:

ERTT (A,C) = RTT (A,CA) ERTT (C,B) = RTT (CB, B)

Finally, with HDC, we have:

ERTT (A,C) =

{
RTT (A,CA) if EST (CA, C) < threshold
EST (A,C) otherwise

ERTT (C,B) =

{
RTT (CB, B) if EST (CB, C) < threshold
EST (C,B) otherwise

Between line 1 and line 12, we use one of our criteria (EDC, ADC or HDC) to build a
set S of candidates for the path AB. Thus, S contains the C nodes detected as shortcuts
by the criterion. If S contains no node, we stop the process at line 16 by returning B to
the application that searches a shortcut or the pathAB. Otherwise, through the operations
at lines 18 and 19, we keep in a set Sk the k candidates providing the most important gain
with respect to the estimations. Next, between line 22 and line 28, we check these k
candidates with measurements in order to find the best one among them. Let C be the
best shortcut among the k candidates. If C is really a shortcut, then the algorithm returns
C. Otherwise (i.e. if C is a false positive), the algorithm returns B. An implementation
of this shortcut detection mechanism has been realized by Pierre Lepropre during his
master’s thesis [38].

Notice that the value of k must be as small as possible because the algorithm requires
2×k RTT measurements at line 23. Following the results given in section 5.4.2, the value
of k depends of the network’s size. With HDC, we have seen that considering about 2% of
the total number of nodes allows a substantial improvement of the RTT for lots of paths.
That corresponds to k = 50 for Meridian, k = 34 for P2PSim and k = 3 for Planetlab.

5.6 Comparison to a random relay choice
Our criteria allow to find good alternative paths for lots of paths in our data sets but they
are not perfect. Indeed, they are not able to find the best shortcut for any given path
in the network while RON and its measurement-based variants guarantee to find these
best shortcuts. Facing a measurement-based approach, even if we are less efficient, we
can argue that our estimation based approach is a lot more scalable. But, are we more
efficient than a simple shortcut mechanism based on a random choice of relay nodes like
the one proposed by Gummadi et al. [22]? Since such approach is more scalable than
ours, we must be significantly more efficient. We will check whether it is the case in this
section.
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Algorithm 3 Generic algorithm for finding one shortcut for a given path AB
Require: N : set containing all nodes;A: path’s source;B: path’s destination; k: ranking

threshold.
Ensure: Returns the best detected shortcut or B otherwise.

1: Measure RTT (A,B)
2: S = ∅
3: for all C ∈ N do
4: if ((C 6= A) ∧ (C 6= B)) then
5: Compute a suitable approximation ERTT (A,C) for RTT (A,C)
6: Compute a suitable approximation ERTT (C,B) for RTT (C,B)
7: if RTT (A,B) > ERTT (A,C) + ERTT (C,B) then
8: EGa = RTT (A,B)− (ERTT (A,C) + ERTT (C,B))
9: S = S ∪ (C,EGa)

10: end if
11: end if
12: end for
13: {S contains the nodes detected as shortcuts by the criterion (i.e. the candidates).}
14: if S == ∅ then
15: {The criterion applied provides no candidate for the path AB.}
16: return B
17: end if
18: Sort the elements of S by decreasing order of EGa

19: Keep the first k nodes of the ranking in a set Sk
20: {Sk contains the best k candidates with respect to the estimations.}
21: S ′ = ∅
22: for all (C,EGa) ∈ Sk do
23: Measure RTT (A,C) and RTT (C,B)
24: Ga = RTT (A,B)− (RTT (A,C) +RTT (C,B))
25: S ′ = S ′ ∪ (C,Ga)
26: end for
27: Sort the elements of S ′ by decreasing order of Ga

28: Let (C,Ga) be the first element of the ranking
29: {C is the best shortcut among the k candidates.}
30: if Ga > 0 then
31: {The best candidate is a true positive.}
32: return C
33: else
34: {All the candidates are false positives.}
35: return B
36: end if
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5.6.1 Methodology
Our objective here is to compare the detection results obtained using our best criterion
(HDC) when we consider only the k first nodes of the ranking to a random "detection"
criterion (RDC). RDC simply selects randomly k nodes as potential shortcuts. In other
words, to obtain RDC, we replace the operations between lines 3 and 12 in algorithm 3
by a random selection of k nodes. To evaluate the quality of the detection results we
will proceed like in figures 5.3 and 5.4. For each path for which there exists at least one
interesting shortcut, we will compute the difference between the gain provided by best
existing shortcut and the gain provided by the best detected shortcut (i.e. the potential
improvement remaining after detection). Then, we will compute the CDF of the values
obtained for all the paths in the considered data set. Remember that the faster the obtained
CDF rises, the better it is because it indicates that, for lots of paths, there is only a small
potential improvement remaining after the detection process.

As for the previous figures, we will consider the estimations obtained with one sim-
ulation of Vivaldi. The difference is that RDC is not a deterministic process: applying it
multiple times with the same estimations as inputs can produce different detection results.
Thus, for each path, we will make 100 random selections of k nodes (for different values
of the parameter k) as potential shortcuts. Then, for each path, we will compute the mean
of the 100 values obtained by computing the potential improvement remaining after de-
tection for each selection. The curves presenting the detection results obtained with RDC
are the CDFs of these mean values. The curves presented in figures 5.3 and 5.4 can be
compared to the "average" curves computed for RDC.

5.6.2 Results
The CDFs obtained with different values of the parameter k are given in figure 5.5. The
curves named "k nodes - HDC" in the subfigures of figure 5.5 give the CDF computed
by considering as detected only the first k nodes of the rankings obtained with HDC. The
curves named "k nodes - RDC" give the CDF of the means computed by considering k
randomly selected nodes as detected. Recall that the "no detection" curves represent the
potential improvement of the corresponding data set before any shortcut detection (i.e.
the CDF of the Gr provided by the best existing shortcut for each path).

Let us start with P2PSim. We see in figure 5.5(a) that, on average, it is necessary to use
a bigger value of k with RDC than with HDC. For example, even if we select randomly
100 nodes with RDC, the improvement of the RTTs is, on average, worse than what
we obtain when we consider only the 5 first nodes of the ranking with HDC. Moreover,
considering only the first node of the ranking with HDC provides an improvement similar
to what we obtain when we select 20 nodes with RDC. This is not shown in figure 5.5(a)
but to reach (on average) the same improvement of the RTTs than what we obtain with
HDC and k = 20, it is necessary to select randomly 500 nodes with RDC. Since HDC
and RDC both require 2× k measurements to discover which is the best shortcut among
the k selected nodes, we can say that HDC performs a lot better than RDC on P2PSim.
Similar conclusion are obtained for Meridian and Planetlab. For example, with Meridian,
if we use RDC with k = 100, figure 5.5(b) shows that only about 50% of the path have
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Figure 5.5: Comparison of HDC and RDC: Difference of Gr between the best and the best de-
tected shortcut.

(on average) a potential improvement remaining after detection which is smaller than
30%. For comparison, with HDC and k = 50, about 85% of the paths have a potential
improvement remaining after detection which is smaller than 30%.

In conclusion, even if a random choice of potential relay nodes is more scalable than
our estimation-based approach, HDC allows us to focus on a very small number of C
nodes that are probably shortcuts. So, HDC requires significantly less measurements than
RDC to find an interesting shortcut for a given path AB: in order to obtain similar results
with HDC and RDC, it is necessary to consider respectively about 2% and 30% of the
total number of nodes as potential shortcuts. Nevertheless, HDC implies a measurement
cost O(n × m) and a communication cost O(n2) (that can probably be smaller) to run
Vivaldi and exchange coordinates among the nodes. Even if RDC does not induce similar
costs, two arguments play in favour of HDC:

• Vivaldi’s measurement and communication costs are constant costs: if the detection
mechanism is frequently used, these costs are distributed among the usages of the
mechanism and can become negligible compared to the measurements costs O(k)
generated by each shortcut search. So, if the detection mechanism is frequently
used, the estimation-based approach can finally consume less resources than RDC.
• Vivaldi is a generic tool that provides estimations for any path in the network. It is

independent from our detection mechanism and its estimations can be used for other
purposes. So Vivaldi’s measurement and communication costs can be distributed
among applications that use it.

In the light of these results we believe that the estimation-based approach is a good trade-
off between a simple random choice of relay nodes (which is scalable with a small value
of k but also, by definition, completely random in terms of quality of the results) and a
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measurement-based approach (which guarantees to find the best shortcut for any given
path but is absolutely not scalable).

5.7 Reducing the requirement of measurements
The process given in section 5.5 takes some time before providing an answer: if A wants
to find a shortcut between him and B, he must measure RTT (A,B), get Vivaldi’s mea-
surement results from B, check each potential relay C, keep the best k C nodes with
respect to the approximations and, finally, perform measurements to find the best shortcut
among these k nodes. All of this cannot be done instantaneously. Since we want to answer
as fast as possible to an application that requests a shortcut for a given path AB, making a
systematic anticipative shortcut search for each path could be a good idea. However, due
to the measurement done at line 1 in algorithm 3, making an anticipative shortcut search
for each path in the network using one of our criteria implies measuring the RTT for each
path in the network, i.e. exactly what we want to avoid. In this section, we will investigate
if it is possible to find shortcuts for a given path without measuring that path.

For a given path AB, RTT (A,B) is used by our criteria to decide if a given C node is
a shortcut or not for AB and to compute the estimated gains in order to rank the C nodes.
The first thing to understand is that RTT (A,B) is not necessary to rank the C nodes.
Indeed, by definition, the estimated gain for a given C node is computed as the difference
between an identical value for all the C nodes (i.e. RTT (A,B)) and the approximation
of the one-hop path ACB. Consequently, the first node of the ranking with respect to
the estimated gain is the C node for which the path ACB is the shortest with respect to
the approximations, etc. Thus, we can rank the C nodes even if RTT (A,B) is unknown.
Nevertheless, RTT (A,B) seems still useful to decide if a given node C is a candidate
or not for AB. But, is it necessary to do such preselection? A solution is to rank the
C nodes by increasing order of alternative path ERTT and to keep the first k nodes of
this ranking. We already know that the order of the ranking will be the same as with our
criteria. The only difference is that we will systematically consider k candidates while our
criteria consider at most k candidates. That can be a bad thing because the next phase of
the process (i.e. doing measurements to test the candidates) can consume more resources:
for each shortcut detection, we will have to do measurements to test exactly k candidates
instead of having to do measurements to test at most k candidates. On the other hand,
this can be a good thing because we can potentially detect more shortcuts: checking if the
approximation of the path ACB is smaller than RTT (A,B) can lead to false negatives4

that will not appear anymore if we skip that comparison.

5.7.1 Definition of the criteria without measuring RTT (A,B)

In this section, we define formally the "2.0" versions of our criteria where we do not use
RTT (A,B) to detect shortcuts for the path AB. We simply named these versions of our
criteria EDC2, ADC2 and HDC2.

4Considering that a C node is not a shortcut when it is.
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General detection process

The detection process is adapted from algorithm 3 and is given in algorithm 4. Since the
algorithm described here is common to all our criteria, the step where the approximation
of the alternative path is computed remains general and will be detailed later for every
criteria.

Algorithm 4 Finding one shortcut for a path AB without RTT (A,B) measurement.
Require: N : set containing all nodes;A: path’s source;B: path’s destination; k: ranking

threshold.
Ensure: Returns the best candidate (no guarantee that it is a shortcut).

1: S = ∅
2: for all C ∈ N do
3: if ((C 6= A) ∧ (C 6= B)) then
4: Compute a suitable approximation ERTT (A,C,B) for the path ACB
5: S = S ∪ (C,ERTT (A,C,B))
6: end if
7: end for
8: Sort the elements of S by increasing order of ERTT (A,C,B)
9: Keep the first k nodes of the ranking in a set Sk

10: {Sk contains the best k candidates with respect to the estimations.}
11: S ′ = ∅
12: for all (C,ERTT (A,C,B)) ∈ Sk do
13: Measure RTT (A,C) and RTT (C,B)
14: RTT (A,C,B) = RTT (A,C) +RTT (C,B)
15: S ′ = S ′ ∪ (C,RTT (A,C,B))
16: end for
17: Sort the elements of S ′ by increasing order of RTT (A,C,B)
18: Let (C,RTT (A,C,B)) be the first element of the ranking
19: {C is the best relay among the k candidates.}
20: return C

Among the k candidates, the C returned by algorithm 4 is the node that provides the
shortest alternative path with respect to the measured RTTs but there is no guarantee that
this node is effectively a shortcut. This is not really a problem since our objective here
is to perform an anticipative shortcut search. If an application requests a shortcut for the
path AB, it is still possible to measure RTT (A,B) at this time and, depending of this
measurement result, returning either C, or B. We will do that when we will evaluate the
performance of this algorithm. The reader should also notice that algorithm 4 still requires
measurements at line 13. These measurements are annoying because they are performed
during an anticipative search done for each path. However, the anticipative search phase
can be limited to the construction of Sk. Like checking if C is really a shortcut, finding
the best candidate among Sk’s elements can be done for the pathAB only when a shortcut
is requested for that path.
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Approximation of ACB in EDC2

As with EDC, we simply use the estimations provided by Vivaldi to approximate the RTT
of the alternative path with EDC2. Formally, we have:

ERTT (A,C,B) = EST (A,C) + EST (C,B)

Approximation of ACB in ADC2

For ADC2, we will also use the same approximation than ADC for the RTT of the alter-
native path. Formally, if CA (resp. CB) is C’s nearest node among A’s (resp. B’s) Vivaldi
neighbors according to the estimated RTTs, then

ERTT (A,C,B) = RTT (A,CA) +RTT (CB, B)

Approximation of ACB in HDC2

For HDC2, it is a little bit more complicated. Indeed, in HDC, we defined threshold as a
percentage ofRTT (A,B) when we search a shortcut for the pathAB. SinceRTT (A,B)
is unknown in HDC2, we must use another definition for threshold . A simple solution
is to define it as a percentage of EST (A,B). For our tests, we choose threshold equal
to 10% of EST (A,B). Apart from the modification of the threshold, the RTT of the
alternative path is approximated in HDC2 as it is in HDC. Formally, if CA (resp. CB)
is C’s nearest node among A’s (resp. B’s) Vivaldi neighbors according to the estimated
RTTs, then

ERTT (A,C) =

{
RTT (A,CA) if EST (CA, C) < threshold
EST (A,C) otherwise

ERTT (C,B) =

{
RTT (CB, B) if EST (CB, C) < threshold
EST (C,B) otherwise

ERTT (A,C,B) = ERTT (A,C) + ERTT (C,B)

5.7.2 Quality of the detection
In this section, we will consider the ability of these new criteria to find good shortcuts in
networks by computing the potential improvement remaining after the detection process.
For the P2PSim data set (resp. the Meridian data set), figure 5.6(a) (resp. figure 5.6(b))
shows the results obtained with EDC2, figure 5.6(c) (resp. figure 5.6(d)) shows the results
obtained with ADC2 and figure 5.6(e) (resp. figure 5.6(f)) shows the results obtained with
HDC2. As usually for this type of figure, we considered only the paths for which there
exists at least one interesting shortcut.

For EDC2, the first observation is that it significantly improves the detection results
compared to EDC: on P2PSim (figure 5.6(a)) and Meridian (figure 5.6(b)) we see that
the potential improvement remaining after the detection process is smaller when EDC2 is
applied with k = 50 than when EDC is applied with k = 50. On P2PSim, EDC2 applied
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Figure 5.6: Difference of Gr between the best existing shortcut and the best detected shortcut
with the criteria EDC2, ADC2 and HDC2.
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with k = 5 provides results similar to what we obtain when EDC is applied with k = 50.
On both data sets, the second observation is that EDC2 applied with k = 50 gives almost
the same results as HDC applied with k = 20. Thus, HDC remains our best one-hop
shortcut detection criterion.

For ADC2, we do not observe a significant improvement compared to the results ob-
tained with ADC: in P2PSim (figure 5.6(c)) and Meridian (figure 5.6(d)), we see that the
CDFs corresponding to ADC2 applied with k = 50 and ADC applied with k = 50 are
very similar. On P2PSim ADC2 applied with k = 50 performs a little bit better than
ADC applied with k = 50 but the improvement is negligible.

For HDC2, figures 5.6(e) and 5.6(f) show that HDC2 provide better detection results
than HDC on both data sets: when HDC2 is applied with k = 20, the potential im-
provement remaining after de detection process is significantly smaller than when HDC
is applied with k = 20. On both data sets the detection results obtained when HDC is
applied with k = 20 (our reference criterion) are similar to those obtained when HDC2 is
applied with k = 10. In the light of this observation, HDC2 seems to be our best detec-
tion criterion. However, we know that, for a same value of the parameter k, HDC2 will
perform more measurements than HDC: for each shortcut detection, HDC2 will have to
do measurements to test exactly k candidates while HDC has to do measurements to test
at most k candidates. In section 5.7.3 we will evaluate if applying HDC2 with k = 10
generates more measurements than applying HDC with k = 20.

5.7.3 Additional measurements

Being able to improve the RTT is one thing but we have already discussed the fact that
our new criteria can finally generate more measurements than our first criteria. If these
additional measurements allow to find more (interesting) shortcuts (i.e. if they increase
the (I)TPR), then they can be considered as useful5 and these additional measurements
are problematic only if they significantly increase the false positive rate (i.e. if they are
useless measurements). Particulary, this will be the case for the paths that are not TIV
bases. For such paths EDC, ADC and HDC can provide a very small (or an empty) list
of candidates, and can do only a small number of measurements (or no measurement) to
check if they are shortcuts or not. With EDC2, ADC2 and HDC2, k measurements will
systematically be done to discover that there exists no shortcut.

To evaluate if this problem is negligible or not, we will compute the FPR obtained with
the criteria. Note that the values computed here for EDC, ADC and HDC are different
from those computed in section 5.3.1. In section 5.3.1, we considered all the elements
from S as positives (i.e. k =∞). Here we will compute the FPR obtained with different
values of the parameter k and only the first k C nodes in the ranking are considered as

5Indeed, even if the detection process as it is presented here returns only the best shortcut detected, we
can imagine to return an ordered list of shortcuts. This way, the first element in the returned list was the
best one during the detection process and the application who asked a shortcut has available backup relay
nodes.
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positives6. The FPRs obtained with different values of k are given table 5.2 for P2PSim
and in table 5.3 for Meridian. Considering that we keep the first k positives only, the
(I)TPRs are not relevant any longer. Thus, (I)TPRs are not presented in the tables.

k = 1 k = 5 k = 10 k = 20 k = 50 k =∞
EDC 0.01 0.06 0.1 0.2 0.4 2.2
EDC2 0.04 0.2 0.5 1.0 2.5 —
ADC 0.06 0.3 0.5 1.0 2.2 9.2
ADC2 0.06 0.3 0.6 1.1 2.7 —
HDC 0.02 0.1 0.2 0.4 0.8 2.9
HDC2 0.04 0.2 0.4 0.9 2.4 —

Table 5.2: FPRs obtained for P2PSim with different values of k and different criteria (in %)

k = 1 k = 5 k = 10 k = 20 k = 50 k =∞
EDC 0.01 0.06 0.1 0.2 0.6 8.6
EDC2 0.03 0.1 0.3 0.6 1.5 —
ADC 0.04 0.2 0.4 0.7 1.8 24.7
ADC2 0.04 0.2 0.4 0.7 1.8 —
HDC 0.02 0.09 0.2 0.4 0.9 8.9
HDC2 0.02 0.1 0.2 0.5 1.5 —

Table 5.3: FPRs obtained for Meridian with different values of k and different criteria (in %)

Since the results presented in section 5.7.2 have shown that our best one-hop shortcut
detection criterion is either HDC, or HDC2, we will just compare these two criteria here.
On P2PSim, we see that HDC applied with k = 20 and HDC2 applied with k = 10
provide both a FPR equal to 0.4%. Thus, the number of useless measurements performed
by these criteria are identical and we have a tie between them on P2PSim. On Meridian,
we see that HDC applied with k = 20 provide a FPR equal to 0.4% while HDC2 applied
with k = 10 provide a FPR equal to 0.2%. Thus, on the Meridian data set HDC2 is a little
bit more efficient than HDC.

The fact that the additional measurements have less impact on the Meridian data set
than on the P2PSim data set is normal. Indeed, in Meridian, there exists a huge amount
of shortcuts (about 25% of the triangles are TIVs) and there exists a shortcut (resp. an
interesting shortcut) for 97% (resp. 83%) of the paths. Thus, considering systematically k
candidates generates only a small amount of false positives. On P2PSim, this is a little bit
different: there exists less shortcuts (about 12% of the triangles are TIVs) and there exists
a shortcut (resp. an interesting shortcut) for 86% (resp. 43%) of the paths. Obviously,
considering systematically k candidates generates more false positives on P2PSim than
on Meridian.

6Note that computing the FPR for k = ∞ is useless with EDC2, ADC2 or HDC2. Indeed, with these
criteria, the set S contains all the existing C nodes and using k = ∞ means considering all the nodes as
positives. Obviously that gives a TPR = 100% but also a FPR = 100%.
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In conclusion, choosing which is the best criterion between HDC and HDC2 is dif-
ficult. Both are good criteria. In the sequel of the thesis we will continue to use HDC
applied with k = 20 as reference. However, we keep in mind that HDC2 can provide sim-
ilar detection results and can be applied even in situations where measuringRTT (A,B) is
problematic (e.g. to optimize all the routes in the network or to do an anticipative search).

5.8 Reducing the constraint on the neighbors
As discussed in chapter 3, all the previous results have been obtained with a version of
Vivaldi using a hybrid neighbors selection scheme: for each node, half of the neighbors
are the nearest nodes and the other half of the neighbors are randomly selected nodes.
Even if that selection scheme is the one providing the best estimations, it is quite difficult
to obtain in practice. Particularly, it is impossible to have such neighbors at the beginning
for a node taking part in a Vivaldi system: since it has no measurement available and no
coordinate, a node can only start with randomly selected neighbors and it converges pro-
gressively towards hybrid neighbors. A node A can obtain such convergence by applying
the following procedure each time it has at least one measurement result with each of its
m current neighbors:

1. Sort A’s neighbors by increasing order of measured RTT
2. Keep the m/2 first neighbors of the ranking in a set N1 and discard the others
3. Choose randomly m/2 new neighbors and put them in a set N2

4. N = N1 ∪N2 is the new set of m neighbors used by A to update its coordinate

After that neighbors update process, A continues to update its Vivaldi coordinate using
the new set of neighbors N . When it will have done at least one measurement with
each neighbor in N , A will rerun the procedure in order to update its neighbors set and
the cycle restarts. Such neighbors update process does not require more measurements
than the measurements done by Vivaldi and, from cycles to cycles, N1 will progressively
converge toward the set of A’s m/2 nearest nodes. But, that convergence takes some
time and, at the beginning, a node has no other choice than computing its coordinate
with randomly selected neighbors. In this section, we will evaluate if running Vivaldi
with random neighbors instead of running it with hybrid neighbors has an impact on the
detection results.

To evaluate this, we will compute the potential improvement remaining after the de-
tection process. The only difference with the empirical study presented in section 5.3.2
is the way the coordinates are computed: in section 5.3.2, we used Vivaldi with hybrid
neighbors and, here, we will use Vivaldi with randomly selected neighbors. As usually
with a random choice, we repeated the study with different random inputs. Since the
results we obtained with these different random neighbors selections were very similar,
we present only one of them here. For the P2PSim data set (resp. the Meridian data set),
figure 5.7(a) (resp. figure 5.7(b)) shows the results obtained with EDC, figure 5.7(c) (resp.
figure 5.7(d)) shows the results obtained with ADC and figure 5.7(e) (resp. figure 5.7(f))
shows the results obtained with HDC.
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Figure 5.7: Difference of Gr between the best existing shortcut and the best detected shortcut
when the criteria are applied with estimations produced by a Vivaldi where neighbors are randomly
selected.
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The main observation in figure 5.7 is that, with every criterion, the detection results
obtained with Vivaldi applied using randomly selected neighbors are significantly worse
that the detection results obtained with Vivaldi applied using hybrid neighbors. For ex-
ample, with EDC on P2PSim (figure 5.7(a)), even if we consider all the C nodes in S as
potential shortcuts (i.e. k = ∞) when Vivaldi is applied with randomly selected neigh-
bors, the obtained results are worse than those obtained by considering k = 50 when
Vivaldi is applied with hybrid neighbors: with hybrid neighbors and k = 50, we have a
potential improvement remaining after the detection process which is smaller than 20%
of RTT (A,B) for about 85% of the paths AB while, with random neighbors and k =∞,
we have a potential improvement remaining after the detection process which is smaller
than 20% of RTT (A,B) for only about 70% of the paths AB.

In conclusion, working with Vivaldi using randomly selected neighbors is not a good
idea. Since we do not have the choice, we will deal with it at the beginning of a coordinate
computation but converging towards hybrid neighbors is mandatory to ensure reliable
shortcut detection results.

5.9 Suitable estimations for our criteria

In the previous section, we have compared two estimation mechanisms: on one side we
had Vivaldi applied with hybrid neighbors and, on the other side Vivaldi applied with
randomly selected neighbors. Even if it was Vivaldi on both sides, the estimations pro-
duced with different neighbors selection schemes have very different characteristics. We
saw that it has a significant impact on the quality of the results produced by our detection
criteria and, in the sequel, we will investigate the detection results obtained with other
estimation mechanisms. To choose an suitable estimation mechanism, we have to know
which characteristics the estimations must have in order to generate good detection results
with our criteria. This is what we will investigate now.

For a given path AB, with each criterion, estimations are only used to compute an ap-
proximation for every alternative paths ACB. The way the estimations are used depends
of the criterion. Consequently, good estimations for a given criterion will not necessar-
ily be good for the other criteria. Nevertheless, the estimations must always allow us to
detect the best shortcuts. Intuitively, a good shortcut for a path AB is a node C which is
simultaneously near A and near B. In other words, AC and CB are short edges. Thus,
in the following discussion, we will focus on the approximations obtained for the short
edges using the estimations.

5.9.1 Suitable estimations for EDC

With EDC, the RTT of an alternative path ACB is approximated by EST (A,C) +
EST (C,B). Consider that C is a shortcut for the path AB. If the alternative path ACB
is under-estimated by the estimation mechanism, there is no problem: since

RTT (A,B) > RTT (A,C) +RTT (C,B) > EST (A,C) + EST (C,B)
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C will be detected as a potential shortcut when EDC verifies inequation (5.2). If the
alternative path ACB is only a little bit over-estimated, then

RTT (A,B) > EST (A,C) + EST (C,B) > RTT (A,C) +RTT (C,B)

and C is still detected as a potential shortcut by EDC when it verifies inequation (5.2).
On the other hand, if the alternative path ACB is significantly over-estimated, then

EST (A,C) + EST (C,B) > RTT (A,B) > RTT (A,C) +RTT (C,B)

and C will not be detected as a potential shortcut by EDC. Defining exactly which level of
over-estimation becomes problematic is difficult because it depends of the gain provided
by the shortcut: a shortcut providing an important gain will admit a larger over-estimation
before inequation (5.2) rejects it. However, even a shortcut providing an important gain
can still be considered as a shortcut if it is significantly over-estimated, its estimated gain
will appear small in such situation. Thus, when we will rank the potential shortcuts with
respect to the estimated gain, this shortcut will probably not appear in the first positions
of the ranking and it will finally be discarded when we will consider only the first k
candidates of the ranking.

In conclusion, over-estimations of the alternative paths ACB where C is a shortcut
forAB are always problematic for EDC (either during the verification of inequation (5.2),
either during the ranking of the candidates). Since intuitively the best shortcuts for a path
AB are such that AC and CB are short edges, we conclude that a suitable estimation
mechanism for EDC, is an estimation mechanism that minimizes the over-estimation of
the small paths.

5.9.2 Suitable estimations for ADC
With ADC, the RTT of an alternative path ACB is approximated by RTT (A,CA) +
RTT (B,CB) where CA (resp. CB) is C’s nearest node among A’s (resp. B’s) Vivaldi
neighbors according to the estimated RTTs.

More than the quality of the estimations, the crucial point with ADC is the neighbors
selection scheme. In order to obtain a reliable approximation for ACB’s RTT there must
exist at least one of A’s (resp. B’s) neighbor that is near C. Since the best shortcuts C
for a path AB are intuitively such that AC and CB are short edges, we can conclude that
hybrid neighbors will provide best results with ADC than randomly selected neighbors.
Indeed, with randomly selected neighbors, there is a large probability that all A’s (resp.
B’s) neighbors are far from the node. Thus, when A (resp. B) will have to choose a node
CA (resp. CB) it will have no other choice than taking a node which is far from it. Since
the C nodes providing the best shortcuts are intuitively near A (resp. B), approximating
RTT (A,C) (resp. RTT (C,B)) byRTT (A,CA) (resp. RTT (B,CB)) in such conditions
will lead to large approximations for the paths ACB. Thus, the problem will be the
same as the problem experienced by EDC with over-estimations of the short edges: either
the best shortcuts will not be detected as candidates, or they will not appear in the first
positions of the ranking of the candidates. In both cases, the best shortcuts will not be
detected by ADC if the estimation mechanism works with randomly selected neighbors.
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Even though they are not the most important point for ADC, estimation errors can
also impact the detection results. Indeed, estimated RTTs are used to select CA (resp.
CB) among A’s (resp. B’s) neighbors. If there are estimation errors, then CA (resp. CB)
may be a node which is not C’s nearest node among A’s (resp. B’s) neighbors. This
leads to a bad approximation of ACB’s RTT and to bad detection results. For a given
path AB and a given node C, there are 32 possibilities for CA and 32 possibilities for CB.
For CA (resp. CB), among these 32 possibilities, ADC has to find C’s nearest node. In
other words, ADC has to find the smallest path among 32 CAC (resp. CBC) paths. To do
that, ADC ranks the paths by increasing order of estimated RTT and take the first path of
the ranking. If the path which has the smaller RTT has also the smaller estimated RTT,
then ADC chooses the good CA (resp. CB). Consequently, like EDC, ADC requires an
estimation mechanism that does not tend to over-estimate the small paths.

In conclusion, ADC requires two things to be able to detect the best shortcuts. First,
a hybrid neighbors selection scheme in order to have suitable CA and CB available for
the C nodes that are shortcuts. Secondly, an estimation mechanism that minimizes the
over-estimation of the small paths in order to be able to choose the most suitable CA and
CB for any given C.

5.9.3 Suitable estimations for HDC

HDC’s principle is, by default, to approximate AC and CB as ADC does. But, if it
is impossible to find a CA (resp CB) sufficiently near C, then HDC approximates AC
(resp. CB) as EDC does. Since HDC behaves by default like ADC, HDC’s requirements
about estimations are intuitively the same as ADC’s requirements. So, the most crucial
point with HDC is to work with hybrid neighbors. If this condition is satisfied, having an
estimation mechanism that minimizes the over-estimation of the small paths may improve
the detection results.

However, if the estimation mechanism works with randomly selected neighbors, HDC
can provide better results than ADC. Indeed, in such situation, we know that ADC gen-
erally fails to find suitable CA (resp. CB) for the C nodes that are the best shortcuts for
the path AB. It leads to an over-estimation of the alternative paths providing the best
shortcuts and it gives bad detection results. In such situation, HDC avoids ADC’s large
approximation errors because it switches to the EDC behaviour. So, if we have an esti-
mation mechanism working with randomly selected neighbors but which does not tend to
over-estimate the small paths, HDC can still provide good detection results. Nevertheless,
since HDC will behave like EDC when it has to decide if the best shortcuts are shortcuts
or not, it will give results similar to the one provided by EDC. In other, words HDC is
quite useless if we do not use a hybrid neighbors selection scheme and we can directly
apply EDC. In conclusion, to obtain good detection results, HDC’s requirements about
estimations are the same as ADC’s requirements.
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5.9.4 Impact of the neighbors choices on Vivaldi estimations
In the previous subsections, we have discussed the requirements of our criteria in order to
allow them to detect the best shortcuts. In summary, every criteria require as less as pos-
sible over-estimations of the small paths and, for ADC and HDC, working with hybrid
neighbors seems mandatory. In section 5.8, we have already compared the results ob-
tained with two estimation mechanisms: on one side, Vivaldi working with hybrid neigh-
bors and, on the other side, Vivaldi working with randomly selected neighbors. Figure 5.7
page 97 shows that the detection results obtained with Vivaldi using randomly selected
neighbors are systematically worse than those obtained with Vivaldi using hybrid neigh-
bors. These results confirm the fact that ADC and HDC require hybrid neighbors in order
to be able to provide accurate detection results.
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Figure 5.8: Characteristics of the bins for P2PSim and Meridian: the figure shows the distribution
of the shortcuts’ edges among the bins.

Since EDC does not worry about the neighbors selection scheme, we must analyse the
estimation errors. For this analysis, we divide the whole range of RTTs in the P2PSim
(resp. Meridian) data set into equal bins of 50 ms each. Figure 5.8 shows the distribution
of the shortcuts’ edges among the bins for the P2PSim and the Meridian data sets. With
Meridian, we see that about 75% of the shortcuts’ short edges belong to the first bin. For
this data set, it is clear that focussing on the estimation errors for the paths of the first bin
will cover a large part of the shortcuts’ short edges existing in the network. For P2PSim,
it is less clear because the first bin contains only 23% of the total number of shortcuts’
short edges. To cover more shortcuts’ short edges, we can extend our observations to the
first 3 bins. Thus, we cover more than 60% of the total number of shortcuts’ short edges.

For each bin, figure 5.9 gives a description of the over-estimations experienced by
the bin’s paths: figure 5.9(a) shows the percentage of bin’s paths that are over-estimated
and figure 5.9(b) shows the average of the |REE| observed for bin’s paths that are over-
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Figure 5.9: Over-estimations of the paths obtained with Vivaldi and, either a random, or a hybrid
neighbors selection scheme.

estimated. In figure 5.9(a) we see that, on both data sets, a random neighbors selection
scheme has a general tendency to over-estimate the small paths. If we focus on the paths
of the first bin, we see that 85% (resp. 79%) of the paths are over-estimated in P2PSim
(resp. Meridian) when Vivaldi uses such neighbors selection scheme. With a hybrid
neighbors selection scheme, the percentage of over-estimated paths is generally smaller.
For example, in the first bin, the percentage of over-estimated paths falls around 60% with
both data sets when a hybrid neighbors selection scheme is used. So, we know that more
small paths are over-estimated when a random neighbors selection scheme is used than
when a hybrid neighbors selection scheme is used. But, we do not know anything about
the degree of over-estimation: having 80% of the paths that are over-estimated is not a
problem if the over-estimation is small on average. Information about the degree of over-
estimation is given in figure 5.9(b). In this figure we see that, for the first bin’s paths, the
average |REE| is big when a hybrid neighbors selection scheme is used: we have means
that are about 55% for P2PSim and 95% Meridian. But, the average |REE| is huge
when a random neighbors selection scheme is used. With such neighbors, in P2PSim, the
average |REE| is bigger than 160% ! Since a small path of 40ms can be estimated at more
than 120ms and, since longer paths are less often and less strongly over-estimated, this
can be a real problem for EDC: using the estimations to approximate the alternative paths,
the smallest ones (i.e. the best shortcuts) appears longer than longer paths. Consequently,
EDC will be unable to detect the best shortcuts. Anyway, these observations confirm
that EDC provides better detection results with an estimation mechanism that tends to
minimize the over-estimation of the small paths.

5.10 Conclusion
In this chapter, we have presented three detection criteria based on Vivaldi’s estimations
that allow one-hop shortcuts detection in network: EDC, ADC and HDC. Since these
criteria are based on estimations, they make detection errors and are not able to detect the
best existing shortcut for any given pathAB. A measurement-based detection mechanism
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like RON guarantees to find the best existing shortcut for any given path AB, but our
approach is a lot more scalable and allows us to obtain a significant RTT improvement
for lots of paths. Compared to a simple random relay node selection, we have seen in
section 5.6 that our approach can provide much better RTT improvements. In conclusion,
we think that our estimation based approach is a good trade-off between scalability and
quality of the detection.

In the second part of the chapter, we also studied variants of our detection mechanism.
In section 5.7, we have seen that it is possible to obtain similar detection results without
measuring RTT (A,B). In section 5.8 we have seen that using estimations provided by
Vivaldi working with randomly selected neighbors does not provide as good detection
results as using the estimations provided by Vivaldi working with hybrid neighbors. Fi-
nally, in section 5.9, we discussed the estimations’ required characteristics in order to
obtain good estimation results with our criteria: every criterion requires as few as pos-
sible over-estimations of the small paths and, for ADC and HDC, working with hybrid
neighbors seems mandatory.

In the light of the results, other estimation mechanisms are perhaps more suitable
than a vanilla Vivaldi for our criteria. Since shortcuts are not embeddable in a metric
space, we should replace Vivaldi by an estimation mechanism that can deal with TIVs
(i.e. shortcuts). In the following chapters, we will investigate two ways to do that. A
first possibility has been proposed by Wang et al. [82]. Their idea is to apply non-linear
transformations to the delays before trying to embed them in a metric using Vivaldi. Since
non-linear transformations eliminate TIVs, a situation that was not embeddable initially
can become embeddable after the transformation. We will investigate that in chapter 6.
A second possibility is to use an estimation mechanism that has been developped to deal
with TIVs. In chapter 4, we have briefly presented one of these estimation mechanisms,
namely DMF [42, 40]. DMF sees the estimation problem as a matrix completion problem:
measurements between the nodes and their "neighbors" give a few values in the delay ma-
trix and DMF tries to infer the other values of the matrix from the measured values. This
way to proceed allows potentially DMF to produce an estimated delay matrix which is an
exact reproduction of the measured delay matrix. We will investigate that in chapter 7.
Finally, in chapter 8, we will present our hierarchical approach of Vivaldi [7, 29, 6]. That
structured approach of Vivaldi provides more accurate estimations for the small RTTs
and, in theory, that will generate better shortcuts detection results using our criteria.
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Chapter 6

Non-linear transformations

Abstract
Wang et al. [82] presented an interesting idea to allow Vivaldi to deal with TIVs. Their
idea consists in applying a non-linear transformation to the delays before trying to embed
them in a metric space. Since non-linear transformations allow us to eliminate TIVs, a
situation that was initially not embeddable can become embeddable after the transfor-
mation. If Vivaldi is able to accurately embed the transformed delays, then we should
restore the TIVs by applying the reverse transformation to the obtained estimations. If
that would work, we would not need any one-hop shortcut detection criteria any longer:
we would simply use the estimated delays to search the shortcuts exactly as we would do
with measured delays. In this chapter, we will investigate that idea. We will analyse the
quality of the estimations it generates and we will see if that idea can improve (or not)
the shortcut detection results we obtained with HDC using the estimations produced by a
vanilla Vivaldi. Most of the results presented in this chapter have been published in [9].

6.1 Improving the accuracy of an ICS using non-linear
transformations

6.1.1 Principle
The idea proposed in [82] consists in eliminating TIVs by applying non-linear transfor-
mations to the delays. This idea is based on the fact that a non-linear transformation can
stronger decrease long delays than short delays. In other words, for a given TIV ACB, it
can strongly reduce the RTT of the long edge (AB), while it applies a smaller reduction
to the RTTs of the small edges (AC and CB) Thus, as indicated in figure 6.1, non-linear
transformations allow us to eliminate TIVs.

For a given delay matrix, this approach allows potentially to obtain a transformed
matrix that contains no TIVs (or, at least, less TIVs than the initial matrix) and from
which it is possible to restore the initial matrix by applying the reverse transformation. In
the light of this observation, there could be a simple solution to improve the accuracy of
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           TIV :
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          No TIV :
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Figure 6.1: Example of TIV elimination using a non-linear transformation. In this figure
we can see how a simple non-linear transformation (in this case a square root) can transform a
non-embeddable situation in an embeddable situation.

the estimations obtained with a classical ICS. We saw in chapter 3 that the principle of an
ICS is to take a few measurements in a delay matrix, to try to embed these measurements
in a metric space and to infer the RTT of any given path from this embedding. In other
words, from a few elements taken in a Measured Delays matrix (MD matrix), it builds a
complete Estimated Delays matrix (ED matrix). But, rather than embedding the delays
of the MD matrix, the ICS can embed the delays of the Transformed Measured Delays
matrix (TMD matrix). Since the TMD matrix contains no TIVs (or only a small number
of TIVs compared to the MD matrix), the embedding should be easier for the ICS. Thus,
the Transformed Estimated Delays matrix (TED matrix) infered from the embedding of
the TMD matrix should provide an accurate estimation of the TMD matrix. Finally, if we
apply the reverse transformation to the TED matrix estimations, then we should obtain
an ED matrix which provides accurate estimations of MD matrix delays (including the
TIVs). The non-linear transformation approach is summarized in figure 6.2.

Measured Delays

matrix

y = x^(1/n)

Transformed

Measured Delays

matrix

Transformed

Estimated Delays

matrix

Estimated Delays

matrix

y = x^(n)

ICS

MD

TMD

ED

TED

TIVs TIVs

No TIVNo TIV

M = Measured E = Estimated

T = 

Transformed

Figure 6.2: Using a non-linear transformation to improve the accuracy of an ICS. In this
figure we can see the steps of a non-linear transformation-based approach for an ICS. If the ICS is
able to build a TED matrix which is an exact reproduction of the TMD matrix, then the ED matrix
is an exact reproduction of the MD matrix and we have an estimation mechanism that can deal
with TIVs.
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6.1.2 Eliminating TIVs using non-linear transformations
In figure 6.1, we have shown that it is possible to eliminate TIVs with a simple non-linear
transformation like a square root. However, in this example, the gain provided by the
TIV was small. To eliminate TIVs providing a more important gain (i.e. more interesting
shortcuts), it may be necessary to apply a non-linear transformation which is stronger
than a square root (see the example in figure 6.3). For this study, we will consider only
y = x1/n transformation functions (for different values of parameter n). Such functions
have many advantages. First, it allows us to eliminate lots of TIVs because big values are
much more reduced than small values by such function. Secondly, it can be easily reversed
to compute the ED matrix from the TED matrix. Finally, since it is a monotonically
increasing function, we have the guarantee that it will not generate new TIVs in the TMD
matrix. Indeed, for any triangle ACB, the longer edge AB is still the longer edge after
the transformation and, since big values are more decreased than the small values during
the transformation, it cannot generate new TIVs.

C

BA

9 ms 4 ms

36 ms

C

BA

3 ms 2 ms

6 ms

Square Root

TIV :

36ms > 9ms + 4ms

Still a TIV :

6ms > 3ms + 2ms

Figure 6.3: Example where a square root is not sufficient to eliminate a TIV. In this figure
we can see that stronger non-linear transformations than a square root are sometimes necessary to
eliminate TIVs.

In [82], Wang et al. illustrate their idea using the square root. We will now investigate
how such transformation can reduce the TIV ratio (i.e. the proportion of triangles that are
TIVs) in our matrices. In chapter 4, we have seen that the TIV ratio in our delay matrices
is respectively 12.3% for P2PSim, 23.5% for Meridian and 8.9% for Planetlab. Non-linear
transformations should reduce these values. Figure 6.4(a) shows, for each matrix, the TIV
ratio of the TMD matrices obtained with different y = x1/n transformation functions. In
this figure, we see that a square root eliminates lots of TIVs in our matrices but not all of
them: the TIV ratio in the TMD matrix obtained with a square root is 0.8% for P2PSim,
2.9% for Meridian and 0.2% for Planetlab. It is possible to eliminate more TIVs with
non-linear transformations stronger than a square root. The smallest value of n so that
the transformation y = x1/n eliminates all the TIVs of the matrix is n = 9 for P2PSim,
n = 11 for Meridian and n = 6 for Planetlab. For each matrix, we call the transformation
corresponding to that minimal value of n the "no TIV" transformation. But, the "no TIV"
transformation is really extreme and, in figure 6.4(a), we see that a cube root is generally
sufficient to eliminate most of the TIVs in every data set. With a cube root, the TIV
ratio in the TMD matrix is 0.1% for P2PSim, 0.5% for Meridian and less than 0.1% for
Planetlab.

Another important characteristic of a transformation function is the transformed val-
ues it generates. Indeed, in figure 6.4(b), we see that the curves corresponding to the
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Figure 6.4: Impacts of non linear transformations. Figure 6.4(a) shows the TIV ratios in the
TMD matrices obtained with different transformation functions. Figure 6.4(b) shows the types of
values obtained in the TMD matrices with different transformation functions.

stronger transformation functions have a very low slopes. Thus, even if these transforma-
tions allow us to eliminate all the TIVs, the delays in the obtained TMD matrix are values
that are very near each other: at the limit, with a very strong transformation, all the val-
ues in the TMD matrix are approximately equal to 1. This has two major consequences.
Firstly, even if the TMD matrix contains no TIVs (or only a few TIVs), the ICS will have
difficulties to embed its delays in a given metric space. Indeed, in example 4 page 50,
we have seen that a N − 1 dimensional Euclidean space is necessary to perfectly embed
a network composed of N equidistant nodes. Working with such embedding space is
not realistic for large networks. Consequently, we will obtain potentially large estimation
errors even if the TMD matrix contains no TIV. The second consequence is that small
estimation errors in the TED matrix can generate very large estimation errors in the ED
matrix. Let’s consider that we use y = x1/n as transformation function. To compute the
ED matrix from the TED matrix, we must apply the transformation x = yn. But, in the
TED matrix, there are estimation errors. Let ε be the relative estimation error experienced
by a given delay y. In other words, if y is the measured delay in the TMD matrix, then its
estimation in the TED matrix is equal to y(1 + ε). During the transformation applied to
obtain the ED matrix, this error becomes:

(y(1 + ε))n = yn(1 + ε)n ≈ yn(1 + nε) for ε≪ 1

Thus, at first approximation, the relative errors in the TED matrix are multiplied by n in
the ED matrix. Since our first observation was that the embedding of the TMD matrix
will not be as easy as it seems to be, we can finally obtain very large estimation errors in
the ED matrix.

6.2 Quality of the estimations
In this section, we will investigate if non-linear transformations allow to improve the
accuracy of the estimations obtained with Vivaldi. For this study, we will consider a few
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non-linear transformations. Since it is the transformation used in [82], we will consider
the square root (n = 2) as a reference. From the analysis of figure 6.4(a), we decided
to consider the "no TIV" transformation (n = 9 for P2PSim, n = 11 for Meridian and
n = 6 for Planetlab) and the cube root (n = 3) because it eliminates most of the TIVs in
every data set. We will also analyse the results obtained with two transformations that are
weaker than the square root: we will consider the TMD matrices obtained with n = 1.5
and n = 1.25.

Thus, for each MD matrix (i.e. P2PSim, Meridian and Planetlab), we build five TMD
matrices (one for each transformation function considered). Then, we try to estimate
these matrices using Vivaldi and we obtain five TED matrices for each data set. From the
TED matrices, we obtain ED matrices by applying the suitable reverse transformation.
For each MD matrix and each transformation function, we will compute two estimation
errors: the |REE| between the TMD matrix and the TED matrix and the |REE| between
the MD matrix and the ED matrix. In the following subsections, for each comparison,
we will give the average |REE| obtained for the paths and the CDF of the |REE| of the
paths.

6.2.1 Vivaldi using a Euclidean space

For our first tests, we tried to embed the TMD matrices in a 9-dimensional Euclidean
space. To compute its coordinate, each node uses 32 neighbors with a hybrid neighbors
selection scheme. Figure 6.5(b) gives the CDFs of the |REE| obtained for Meridian
paths when we compare ED to MD matrix delays (similar results have been obtained for
the other data sets but the curves are not presented here). Figure 6.5(a) (resp. 6.6(a)) gives
the average |REE| obtained for Meridian paths (resp. Planetlab paths) with different non-
linear transformations (similar results have been obtained for P2PSim but the figure is not
presented here). For each transformation, the white box gives the average |REE| obtained
when the TED matrix is compared to the TMD matrix and the black box gives the average
|REE| obtained when the ED matrix is compared to the MD matrix. The horizontal line
represents the average |REE| obtained without applying any transformation to the MD
matrix (i.e. the results obtained with a vanilla Vivaldi).

Let us begin with the observation of the estimation errors between the TED and the
TMD matrices (white boxes on figures 6.5(a) and 6.6(a)). A general trend is that Vivaldi
makes smaller estimation errors when it works with the transformed matrices than when
it works with the original matrix (without applying any transformation). For P2PSim and
Planetlab, the estimations in the TED matrix are more accurate with weak transformations
(i.e. small values of n) than with strong transformations. As discussed in section 6.1.2,
the strongest transformations produce TMD matrices where all the values are contained
in a small interval and such TMD matrices are more difficult to embed.

Since the estimation errors observed in the TED matrices are quite small, we hope that
the ED matrices obtained using non-linear transformations provide better estimations than
the ED matrices obtained with a vanilla Vivaldi. According to figures 6.5(a) and 6.6(a),
this is effectively the case: for the weaker transformations, the black boxes indicate values
that are smaller than what we can obtain with a vanilla Vivaldi (the horizontal line). But,
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Figure 6.5: Quality of the estimations obtained for Meridian paths using a 9D Euclidean
space. Figure 6.5(a) gives the average |REE| obtained for Meridian paths before and after trans-
formations. Figure 6.5(b) compares the estimations of the ED matrices to the delays of the MD
matrix and gives the CDFs of the obtained |REE|.

this is not with the strongest transformations that we obtain the best results. With P2PSim,
we obtain the best estimations with n = 1.25: the average |REE| is 1.2% smaller than
with a vanilla Vivaldi. For Meridian, according to figure 6.5(a), the best results seem to be
obtained with a square root. However, if we analyse the CDFs in figure 6.5(b), we see that
the square root CDF is worse than the CDF obtained without applying any transformation
for about 85% of the paths. In the light of this observation, we consider that the best
choice for Meridian is to use a non-linear transformation with n = 1.5. For Planetlab,
according to figure 6.6(a), using n = 1.5 seems the best choice: the average |REE| is
reduced of 12.6% compared to what we obtain with a vanilla Vivaldi.

In summary, we have observed that non-linear transformations allow to reduce the
average |REE| compared to what we obtain with a vanilla Vivaldi. For P2PSim, we
have only a very small improvement (1.2%) while we have a large improvement with
Planetlab (12.6%). For Meridian, the improvement is significant but the average |REE|
obtained using non-linear transformations is still important: with n = 1.5, we have an
improvement of 6% but the average |REE| is still equal to 36%.

6.2.2 Vivaldi using a space augmented with a height

In section 6.2.1, we have seen that the weakest transformations provide the best results in
a Euclidean space. However, since a N − 1 Euclidean dimensional space is required to
allow a perfect embedding for a topology composed of N equidistant nodes, strong trans-
formations cannot provide good results with a Euclidean embedding space. Other types
of spaces may be more suitable to embed matrices where all the delays are approximately
the same. Dabek et al. [15] have proposed a type of space that seems suitable for this
purpose: a Euclidean space augmented with a height. We have described this space in
section 3.3.3. In such space, each node has a coordinate [~x, xh] where ~x is the coordinate
of the node x in a Euclidean space and xh is the height of the node x. A packet sent from
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Figure 6.6: Quality of the estimations obtained for Planetlab paths. Figure 6.6(a) (resp. 6.6(b))
gives the average |REE| obtained for Planetlab paths before and after transformations when a 9D
Euclidean space (resp. a 8D Euclidean space augmented with a height) is used.

one node to another must travel the source node’s height, then travel in the Euclidean
space and, finally, travel the destination node’s height. Consequently, it is easy to embed
a topology ofN equidistant nodes in such type of space: if there is a delay d between each
pair of nodes, we have just to give the same Euclidean coordinate to each node and to give
them a height equal to d/2. This is not so simple in practice1, but, anyway, it should be
possible to obtain smaller estimation errors with the strongest transformations if we use a
space augmented with a height rather than a simple Euclidean space.

For the three strongest non-linear transformations for each data set (square root, cube
root and "No TIV"), we will try to use a Vivaldi working with a 8D+h embedding space
to compute the TED matrix. To compute its coordinate, each node still uses 32 neighbors
with a hybrid neighbors selection scheme. Figure 6.6(b) gives the average |REE| of
the ED matrices obtained with such embedding space for the Planetlab data set. Similar
results have been obtained for our other data sets but the figures are not presented here.
The observations and the conclusions for P2PSim and Meridian are the same as those
obtained for Planetlab.

Our main observation is that the estimations in the TED matrices are generally more
accurate when a 8D+h embedding space is used than when a 9D Euclidean space is used.
Nevertheless, the accuracy improvement is not sufficient to compensate the factor n ap-
plied to the error when the ED matrix is computed from the TED matrix. Moreover, even
if the results obtained with strong transformations and a 8D+h space are better than those
obtained with strong transformations and a 9D space, they are still worse than those ob-
tained with weak transformations and a 9D space. Thus, in the sequel of the chapter, we
will work with a classical Euclidean space.

1Indeed, we know that the height model has constraints in order to perform correctly. Among these
constraints, there is one which states that a node cannot have exactly the same Euclidean coordinate as one
of its neighbors. So, our simple solution to embed a topology of equidistant nodes will not perform as well
as we hope.
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6.3 Shortcut detection
In section 6.2, we have seen that non-linear transformations may improve the accuracy
of the estimations obtained with an ICS but, unlike what is stated in [82], this does not
seem to be the magical solution that allows Vivaldi to deal with TIVs. Anyway, basically,
non-linear transformations are a principle that allows us to eliminate TIVs before the
embedding and to generate an ED matrix that contains TIVs. In section 6.3.1, we will see
if the TIVs in the ED matrix are the same as those existing in the MD matrix, i.e. we will
see if searching one-hop routing shortcuts among ED matrix’s estimations can provide
better results than searching these shortcuts using our detection criteria.

6.3.1 Searching shortcuts among the estimated delays
To obtain an ED matrix which contains exactly the same TIVs as the MD matrix, it is nec-
essary to have a TMD matrix which contains no TIV and the TED matrix must contain
no estimation error. Following the results presented in section 6.2, we are far from that.
However, Wang et al. state in [82] that using the square root as tranformation function al-
lows them to generate an ED matrix with a TIV ratio similar to the MD TIV ratio. Indeed,
with Meridian (the matrix used in [82]), the TIV ratio in the ED matrix obtained using
a square root is equal to 28.3%. This is quite similar to the MD TIV ratio (i.e. 23.5%).
Nevertheless, the observation is not the same with P2PSim and Planetlab. With these data
sets, using a square root as transformation function generates ED matrices where the TIV
ratio is respectively equal to 29.6% (rather than 12.3%) and 25.2% (rather than 8.9%).
Since the TIVs that are not eliminated during the transformation can, in theory, not be
restored in the ED matrix and, since the TIVs eliminated by the transformation can only
be restored if the TED contains no estimation errors, we conclude that the good results
presented in [82] for the Meridian data set cannot be generalized. Moreover, the TIV ratio
only indicates that the percentage of triangles that are TIVs in the ED matrix is similar
to the percentage of triangles that are TIVs in the MD matrix. Nothing indicates that
they are the same TIVs. To check if the TIVs in the ED matrix are the same as the TIVs
in the MD matrix, we introduce a new shortcut detection criterion called SDC (Simple
Detection Criterion). With SDC, a node C is considered as a shortcut for the path AB if

EST (A,B) > EST (A,C) + EST (C,B) (6.1)

It is worth mentionning that this criterion can only detect shortcuts/TIVs if the ED matrix
contains TIVs. Applying SDC with the estimations computed with a vanilla Vivaldi (as
in chapter 5), returns systematically "there exists no shortcut" for any given path AB.
However, the detection results obtained with SDC can be directly compared to the results
obtained with the other criteria presented in chapter 5.

For each pair of MD and ED matrices, the columns labelled "TPR" (True Positive
Rate) in table 6.1 give the percentage of TIVs ACB existing in the MD matrix that are
TIVs in the ED matrix. In other words, it represents the percentage of MD TIVs that
can be discovered by searching TIVs in the ED matrix. On the other hand, the columns
labelled "FPR" (False Positive Rate) give the percentage of triangles ACB which are not
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TIVs in the MD matrix and that are TIVs in the ED matrix. In other words, it represents
the percentage of triangles ACB that are wrongly considered as TIVs when we search
TIVs in the ED matrix. Obviously, a good detection criterion provides simultaneously a
low FPR and a high TPR.

P2PSim Meridian Planetlab
TPR FPR TPR FPR TPR FPR

n = 1.25 10.3% 1.4% 8.7% 1.3% 19.9% 0.8%
n = 1.5 21.9% 4.1% 18.6% 3.4% 38.7% 2.7%
n = 2 34.1% 8.8% 31.7% 7.5% 49.9% 7.1%
n = 3 41.6% 15.8% 40.9% 14.1% 50.5% 15.3%
No TIV 42.9% 28.6% 40.1% 29.5% 48.6% 25.2%

Table 6.1: Detection results using SDC

In table 6.1, we see that simply searching TIVs in the ED matrix allows rarely to detect
more than 50% of the TIVs existing in the MD matrix. Moreover, it is difficult to obtain a
good TPR without having a significant FPR. These bad detection results show that the ED
matrices obtained using non-linear transformations do not contain all the TIVs existing
in the corresponding MD matrix and that these ED matrices also contain TIVs which are
not existing in the corresponding MD matrix. Finally, we notice that the results obtained
with SDC using non-linear transformations are clearly worse than those obtained with the
criteria presented in chapter 5 applied using the estimations provided by a vanilla Vivaldi.
For example, with EDC on P2PSim, we saw in section 5.3.1 that the TPR is equal to
53% and the FPR is equal to 2%. Following the values presented in table 6.1, there exists
no non-linear transformation that provides such results. If we focus on the ITPR (i.e.
the percentage of interesting shortcuts detected as shortcuts), the conclusion is the same.
Indeed, figure 6.7(a), we see that the ITPR obtained by using SDC applied with non-linear
transformations is systematically lower than the ITPR obtained with EDC applied with a
vanilla Vivaldi.

6.3.2 Searching shortcuts using our detection criteria
In section 6.3.1, we have seen that SDC applied with estimations computed using non-
linear transformations is not able to provide as good detection results as our criteria pre-
sented in chapter 5 applied with estimations computed using a vanilla Vivaldi. But, in
section 6.2, we have seen that non-linear transformations are sometimes able to slightly
improve the accuracy of the estimations compared to the estimations provided by a vanilla
Vivaldi. Consequently, our criteria applied with estimations computed using non-linear
transformations could provide better detection results than our criteria applied with esti-
mations computed using a vanilla Vivaldi. We will now investigate that.

Figure 6.8(a) (resp. 6.8(b)) shows the ITPR (resp. FPR) obtained with EDC applied
with or without non-linear transformations. We observe that non-linear transformations
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Figure 6.7: Comparison between SDC and EDC. Considering different detection criteria com-
bined with different estimation mechanisms, figure 6.7(a) gives the ITPR and figure 6.7(b) gives
the FPR.

improve the detection results. On Meridian, EDC applied with n = 1.5 (resp. with a
vanilla Vivaldi) generates an ITPR equal to 79% (resp. 64%) and a FPR equal to 13%
(resp. 9%). On Planetlab, EDC applied with n = 1.5 (resp. with a vanilla Vivaldi)
generates an ITPR equal to 94% (resp. 75%) and a FPR equal to 3% (resp. 1%). Thus, on
both data sets, EDC applied with non-linear transformations (compared to EDC applied
with a vanilla Vivaldi) increases significantly the TPR while it increases only slightly the
FPR. With P2PSim, we have not been able to increase the quality of the detection results
using non-linear transformations.
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Figure 6.8: EDC applied with non-linear transformations. Considering EDC combined with
different estimation mechanisms, figure 6.8(a) gives the ITPR and figure 6.8(b) gives the FPR.

In conclusion, using non-linear transformations could really improve our detection
results in some cases (but not in all cases). However, since non-linear transformations are
difficult to parameterize in practice (the optimal value of n depends of the data set) and,
since it does not improve the detection results in all data sets, we have chosen to stop our
investigations here. Thus, in the sequel, we will still use the detection results obtained
with a vanilla Vivaldi as reference.
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6.4 Conclusion

In this chapter, we have observed the advantages and the disavantages of the approach
proposed in [82] when simple y = x1/n non-linear transformations are applied. On one
side, it is clear that applying non-linear transformations to the delays before trying to
embed them eliminates TIVs and increases the accuracy of the estimations. In some cases,
the average |REE| can be reduced of more than 10% compared to estimations obtained
without transformations. Another important observation is that eliminating all the TIVs
is not the best solution. Indeed, we obtained the best results with weak transformations,
e.g. n = 1.5 or n = 1.25. Applying a stronger transformation generates a TMD matrix
that contains less TIVs, and, consequently, a TED matrix that contains generally smaller
estimation errors. Nevertheless, TIVs are not the only source of estimation errors and,
even if the TMD matrix contains no TIV, the TED matrix contains unavoidable estimation
errors. Moreover, if we apply the transformation y = x1/n, we established that the relative
estimation error is multiplied by nwhen the ED matrix is computed from the TED matrix.
Thus, for strong transformations (i.e. big values of n), small errors in the TED matrix
become large errors in the ED matrix.

On the other hand, unlike stated in [82], this approach does not generate ED matrices
that are exact reproductions (TIVs included) of the corresponding MD matrix. At least,
we observed that it is not possible with non-linear transformations of the type y = x1/n,
and, obviously, not with a square root as stated in [82]. To generate an ED matrix which
is an exact reproduction of the MD matrix, it is necessary to generate a TMD matrix that
contains no TIV and to obtain a TED matrix without estimation errors. Since the TIVs are
not the only source of estimation errors, the probability to obtain a TED matrix without
estimation errors is very small. However, other types of transformation functions could
provide better results than y = x1/n. But we did not investigate it further.

Another problem with non-linear transformations is that they are quite difficult to pa-
rameterize in practice. Indeed, we have seen that they allow us to improve the accuracy of
the estimations but the transformation to apply vary from one topology to the other. For
example, with Planetlab and Meridian, we obtained the best results with n = 1.5. But,
with P2PSim, n = 1.5 generates worse estimations than those obtained with a vanilla
Vivaldi and the best results are obtained with n = 1.25. Moreover, the improvement vary
significantly from one topology to the others: with Planetlab we observed a big improve-
ment, with Meridian a significant improvement and, with P2PSim, a very small improve-
ment. On other data sets it could even generate worse estimations than a vanilla Vivaldi.
All of this makes a general estimation mechanism based on non-linear transformations
difficult to parameterize and to justify in practice.

Finally, form the point of view of shortcuts detection, we have seen that simply search-
ing shortcuts in the ED matrix (SDC) gives worse detection results than those obtained
when our criteria are applied with the estimations produced by a vanilla Vivaldi. How-
ever, since non-linear transformations slightly increase the quality of the estimations they
may improve the quality of our detection results: we have seen that applying EDC with
estimations generated using non-linear transformations can, in some cases, provide better
shortcuts detection results than applying EDC with estimations generated by a vanilla Vi-
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valdi. Nevertheless, as indicated above, a transformation function that is suitable for one
topology is not necessary suitable for another topology and we were not able to obtain
improvements for all our data sets. Thus, we stopped our investigations on that subject.

In conclusion, non-linear transformations are clearly not the magic solution to allow
Vivaldi to deal with TIVs. Another solution to obtain an ED matrix which restore the TIVs
existing in the MD matrix is to use an estimation mechanism that has been developed with
the TIVs in mind (unlike Vivaldi). In the next chapter, we will try to use one of these
estimation mechanisms: DMF.



Chapter 7

Decentralized matrix factorization

Abstract

In chapter 5, we have presented three detection criteria (EDC, ADC and HDC) that are
able to find interesting shortcuts for lots of paths in networks. These criteria use the esti-
mations provided by an ICS, namely Vivaldi, to detect the shortcuts. But, it is well known
that shortcuts (i.e. TIVs) generate unavoidable estimation errors with a classical ICS like
Vivaldi. Our criteria take this into account and, in section 5.9, we have investigated which
characteristics the estimation errors must have in order to provide good detection results
(i.e. to be able to detect good shortcuts for most of the paths). But another way to detect
shortcuts using estimations is to have estimations where the shortcuts are accurately esti-
mated. DMF [42, 40] is an ICS that has been designed to naturally deal with TIVs (unlike
Vivaldi). In this chapter, we will investigate if we can obtain better detection results with
DMF than with Vivaldi.

7.1 Network delay prediction by matrix factorization

In the previous chapter, we investigated a way to allow Vivaldi to deal with TIVs. In
the current chapter, instead of focusing on Vivaldi, we will observe the results obtained
with an ICS, namely DMF, that has been developed to naturally deal with TIVs. We
have already introduced DMF in chapter 3. Unlike Vivaldi and lots of other ICSes, DMF
does not try to embed the delays into a metric space. With DMF, the problem of network
distance prediction is seen as a matrix completion problem: the delay matrix contains
the results of the measurements done between the nodes and their neighbors but lots of
the delays are not measured and must be inferred from the measured ones. As shown in
figure 7.1, DMF resolves the problem by matrix factorization.

Assume a network composed of n nodes. DMF builds a measured delay matrix D
where some delays are measured (the delays between the nodes and their neighbors) and
others are not. Then, it tries to fill in the holes existing in the matrix D in order to build
a full estimated matrix D̂. The main observation about delay matrices is that they can
generally be approximated by matrices of low rank [79]. Intuitively, for two near nodes,
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the delays to the other nodes are similar because, for a given destination, these nodes
probably use the same Internet path. Thus, the lines corresponding to these nodes in the
delay matrix are correlated. In the light of this observation, if D̂ is of low rank r, then
it can be factorized into a product of two smaller matrices D̂ = XYT . Thus, DMF’s
objective is to build X and Y from the information provided in D.

25 20 32 23

25 27 20 25 31

23 25 27 33

20 27 20 10

20 18 21 29

27 21 33

31 18 19 39

43 31 33 39

D

≈ X

︷︸︸︷r columns

× Y T =

26 39 19 35 25 28 41

24 29 6 18 6 23 30

39 29 27 19 33 13 30

19 6 24 19 6 18 34

35 18 19 20 20 25 16

23 6 25 6 20 19 34

28 23 13 16 25 22 44

41 30 30 34 16 34 44

D̂

Figure 7.1: Network delay prediction by matrix factorization. Since D̂ is of low rank r, the
objective is to use the information provided in D in order to compute two small matrices X and Y
from which it is possible to compute D̂.

7.1.1 Overview

In DMF, D denotes the measured matrix and D̂ denotes the estimated matrix. D’s and
D̂’s elements are respectively denoted by dij and d̂ij . Obviously, DMF does not know the
whole matrixD. As in Vivaldi, each node performs measurements with a few other nodes
(its neighbors) and only these values are known in D. W denotes a matrix where wij = 1
if dij is known and wij = 0 otherwise. Given these notations, we can say that DMF tries
to compute D̂ from D by minimizing the following function under the constraint that D̂
is of low rank r:

n∑

i,j=1

wij (dij − d̂ij) (7.1)

We already know that delay matrices are generally of low rank. Thus, a possible
approach to build D̂ from D is to constrain the rank of D̂ (e.g., Rank(D̂) = r) in order to
have enough constraints to solve the matrix completion problem given in equation (7.1).
However, solving such problem is difficult. To simplify the problem, DMF proposes to
factorize D̂ into the product of two smaller matrices D̂ = XYT . If D̂ is of rank r (with
r ≪ n), these matrices can be limited to r columns (and n lines). If D̂ is replaced
by XYT in equation (7.1), then DMF compute X and Y by minimizing the following
function under the constraint that D̂ is of low rank r:

n∑

i,j=1

wij (dij − xiyTj ) (7.2)
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where xi (resp. yi) is X ’s (resp. Y’s) ith row and xiy
T
j = d̂ij . If D were complete,

solutions to the problem could be found by using singular value decomposition (SVD).
With missing entries, the problem can be solved using iterative optimization methods such
as Gradient Descent.

Matrix completion by matrix factorization suffers from a well-known problem called
overfitting in the field of machine learning: the obtained D̂ matrix contains no or small
errors on the d̂ij for which dij is measured and large errors on the d̂ij for which dij is
unknown. To solve that problem, DMF introduces a regularization coefficient λ that pe-
nalizes the norms of the solutions. With that coefficient, DMF computes X and Y from
D by minimizing the following function:

n∑

i,j=1

(
wij (dij − xiyTj )

)
+ λ

n∑

i=1

(
xix

T
i

)
+ λ

n∑

j=1

(
yjy

T
j

)
(7.3)

To solve equation (7.3), we need information about the measurements performed by
all the nodes. Thus, a centralized algorithm seems required to solve the problem. How-
ever, as DMF’s "D" stands for "decentralized", DMF obviously proposes a decentralized
resolution of equation (7.3).

In DMF, each node has two "coordinates": the x coordinate and the y coordinate. For
node i, the x coordinate is xi (i.e. X ’s ith line) and the y coordinate is yi (i.e. Y’s ith line).
Like in Vivaldi, each node computes locally its own coordinates. To compute xi and yi
locally, node i probes and gets the coordinates of m other nodes in the network called
its neighbors. Thus, DMF’s basic behaviour is exactly the same as Vivaldi’s behaviour.
Using these information, DMF computes xi and yi by minimizing the following functions:

n∑

j=1

(
wij(dij − xiyTj )

)
+ λxix

T
i (7.4)

n∑

j=1

(
wij(dji − xjyTi )

)
+ λyiy

T
i (7.5)

where wij represents the neighboring relationship of node j to node i, i.e. wij = 1 if
node j is a neighbor of node i and wij = 0 otherwise. Thus, DMF addresses the large-
scale optimization problem defined in equation (7.3) by decomposing it into a number
of subproblems in equations (7.4) and (7.5). These subproblems can be solved locally at
each node by using only local measurements.

A first version of DMF [42] proposed to find solutions to equations (7.4) and (7.5)
using Alternating Least Squares (ALS). The algorithm performs correctly and converges
quickly to accurate coordinates but it has a significant drawback: it requires each node
to do measurements with its k neighbors simultaneously to update the coordinates. Thus,
even if ALS performs well in simulations, it is impractical when deployed in real appli-
cations. In [40], a new version of DMF has been proposed under the name DMFSGD.
This version is based on Stochastic Gradient Descent (SGD) instead of ALS. Unlike ALS,
SGD processes measurements one by one and one at a time. This makes the system more
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flexible. We do not describe here how ALS or SGD can find solutions to equations (7.4)
and (7.5). The interested reader can refer to [42] and [40] to find more information on the
subject.

7.1.2 Advantages of DMF
Compared to Vivaldi and other classical ICSes, DMF has many advantages. In this sec-
tion, we will investigate a few of them that can be useful when the estimation mechanism
is used to find routing shortcuts.

Capacity to deal with TIVs

In our case, DMF’s main advantage is its capacity to deal with TIVs. Indeed, since there
is no embedding in a metric space, DMF does not require that the triangle inequality
holds for the delays. In other words, DMF can provide an estimated matrix where TIVs
are correctly estimated. Thus, we can potentially find routing shortcuts using SDC (see
chapter 6) instead of using more sophisticated criteria like EDC, ADC or HDC. However,
as Vivaldi used with non-linear transformations, DMF can provide estimations where
TIVs are correctly estimated but, currently, we have no guarantee that this is the case. We
will check this in section 7.2.

Capacity to estimate one way delays

In Vivaldi, the estimation between two nodes is the distance in the metric space between
the coordinates of the nodes. Consequently, the estimation obtained for the path AB is
exactly the same as the estimation obtained for the path BA. Thus, it is impossible to
estimate metrics like one-way delays with Vivaldi because the one-way delay measured
between the node A and the node B can differ from the one-way delay measured between
the node B and the A. With DMF, dij must not necessary be equal to dji. The only major
constraint with DMF is that the measured matrices must be approximately of low rank.
We already know that this is the case for RTTs matrices, but [42] and [40] state that this
is also the case with one-way delay matrices.

Capacity to estimate other metrics than delays

If the only major constraint with DMF is that the matrices must be of low rank, then it
can estimate one-way delays, but it should also be able to estimate other metrics. For
example, Liao et al. showed in [41] that it is possible to use DMF to obtain rough band-
width estimations. With Vivaldi, estimating metrics like bandwidth is difficult to imagine.
Indeed, intuitively, estimating delays by distances in a space seems logical since the phys-
ical distance between two nodes is an important component of the delay between these
nodes. But it is absolutely not the case with metrics like bandwidth. In fact, we do not
know if Vivaldi is able to estimate such metrics. We have not tried to do that. But, to our
knowledge, there exists no popular results on the subject: some people proposed to do
that in their future work but nobody seems to have proposed interesting results.
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7.1.3 Parameters of DMF
Like with Vivaldi, we have to choose values for the parameters if we want to use DMF to
conduct experiments. DMF has mainly three parameters: the regularization coefficient λ,
the rank r and the number of neighbors m used by each node to compute its coordinates.

Rank

Intuitively, r corresponds to the number of unknown variables in each coordinate. In
Vivaldi, it corresponds to the number of dimensions of the embedding space. In [40],
Liao et al. observed that they obtained better results with values of r smaller or equal to
10. They also indicate that larger values of r accentuate the overfitting phenomena. Since
we ran our experiments with Vivaldi in a 10-dimensional Euclidean space we choose to
run our experiments with DMF using r = 10.

Regularization coefficient

As stated above, the regularization coefficient λ reduces the overfitting problem. The
designers of DMF have observed that using λ = 1 is a good choice most of the time.
However, with big values of r, a bigger value of λ is also necessary to avoid overfitting
problems. Since we choose to use r = 10, using λ = 1 is good choice. Note that using
λ = 1 and r = 10 is DMF’s default configuration but it is not guaranteed to be the optimal
choice for every situation. They have just observed empirically that this parameter setting
leads to a good prediction accuracy for a large variety of data.

Number of neighbors

Intuitively, the number of neighbors m corresponds to the amount of data that is used to
estimate each unknown variable in a coordinate. In [40], Liao et al. state that, according to
the theory of matrix completion, using a value of m proportional to r× log(n) guarantees
a decent prediction accuracy. Following this statement, using m = 32 like with Vivaldi
seems a good choice for DMF. Indeed, with the P2PSim data set, r× log(n) = 32.41 and,
with the Meridian data set, r × log(n) = 33.98.

Even if r = 10 and m = 32 seem to correspond to Vivaldi’s 10 dimensions and 32
neighbors, DMF will consume more resources than Vivaldi with these parameters. In-
deed, like in Vivaldi each node will perform measurements and exchange 10-dimensional
coordinates with 32 neighbors. But, in DMF each node has two coordinates. Thus, the
communication traffic is multiplied by two compared to the traffic generated by Vivaldi.

Neighbors selection scheme

In section 5.9, we have seen that, for ADC and HDC, using a hybrid neighbors selection
scheme is the best choice to obtain good detection results. With Vivaldi, a hybrid neigh-
bors selection scheme was also the best choice to obtain accurate estimations. Since this
choice improved both the accuracy of the estimations and the accuracy of the detection of
shortcuts, it can be recommended to the users.
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With DMF, things are different. Intuitively, using systematically the m/2 nearest
nodes as neighbors for every node will provide a significant amount of redundant infor-
mation that is not necessary for matrix completion while useful information is missed.
Indeed, if B is A’s nearest node, there is a strong probability that A belongs to the set of
B’s m/2 nearest nodes. Thus, A will use B as neighbor and B will use A as neighbor,
and they will both measure RTT (A,B). Thus, more useful information is available to
solve matrix completion problems when the measurements are randomly distributed in
the matrix (especially when the available measurements are sparse, like in our situation).
Nevertheless, we tested DMF with random neighbors and with hybrid neighbors. The
CDF’s of the |REE| obtained with the different neighbors selection schemes are given in
figure 7.2.
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Figure 7.2: CDF of the absolute REEs obtained using DMF and different neighbors selection
schemes.

Figure 7.2(a) gives the CDFs of the absolute REEs obtained with the P2PSim data
set. In this figure, we see clearly that Vivaldi applied with hybrid neighbors gives better
results than Vivaldi applied with randomly selected neighbors: for example, 77% of the
paths have an |REE| smaller than 0.2 with hybrid neighbors, while only 71% of the paths
have an |REE| smaller than that value with randomly selected neighbors. We see also
that DMF applied with randomly selected neighbors provides more accurate estimations
than Vivaldi applied with hybrid nieghbors. The last observation is that DMF applied
with hybrid neighbors is the estimation mechanism that provides the worst estimations.
For example, when DMF is applied with randomly selected neighbors, 81% of the paths
have an |REE| smaller than 0.2 while only 57% of the paths have an |REE| smaller than
that value when DMF is applied with hybrid neighbors. In figure 7.2(b) we see that the
conclusions are similar with Meridian. With that data set, it is difficult to decide what
is the best choice between a hybrid neighbors selection scheme and a random neighbors
selection scheme for Vivaldi. This is probably due to the fact that most of the paths are
small paths in Meridian. Thus, selecting random neighbors automatically leads to select
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near nodes and using a hybrid neighbors selection scheme is less critical for this data set.
Nevertheless, even if the neighbors selection scheme is not critical with Vivaldi, it remains
important with DMF: DMF with random neighbors still provides the best estimations
while DMF with hybrid neighbors still provides the worst estimations. This indicates that
having well-distributed measurements in the matrix to be completed is crucial for DMF.

In conclusion, there is a big difference between Vivaldi and DMF: with DMF the
neighbors selection scheme that is the most suitable for our shortcut detection criteria is
not the most suitable for the estimation mechanism. In section 7.2, we will try to detect
shortcuts using both neighbors selection schemes but we must keep in mind that we cannot
recommend the users to run DMF with hybrid neighbors1.

7.2 Shortcut detection using DMF estimations

7.2.1 Error analysis

From section 5.9, we know that a good estimation mechanism for our criteria must min-
imize the over-estimation of the small paths and, for ADC and HDC, it must also use
hybrid neighbors. We already know that using hybrid neighbors leads to bad estimations
with DMF. Thus, using ADC and HDC with DMF seems difficult. In this section, we
will evaluate if DMF tends to over-estimate the small paths or not in order to know if our
detection criteria will be efficient using these estimations.

Like in section 5.9.4, we divide the whole range of RTTs in the P2PSim (resp. Merid-
ian) data set into equal bins of 50 ms each. Then, for each bin, we compute the percentage
of paths that are over-estimated (see figure 7.3(a)) and the average of the |REE| observed
for bin’s paths that are over-estimated (see figure 7.3(b)). Since our criteria require an
estimation mechanism that minimizes the over-estimation of the small paths, we must
have as less as possible over-estimated small paths (i.e. the values in figure 7.3(a) must
be as small as possible for the first bins) and, for the over-estimated small paths, the over-
estimation must be as small as possible (i.e. the values in figure 7.3(b) must be as small
as possible for the first bins).

In figure 7.3, dotted lines depict the results obtained with the Meridian data set and
the solid lines depict the results obtained with P2PSim data set. Let us begin with the
analysis of the percentage of paths that are over-estimated. In figure 7.3(a), we see that,
on both data sets, DMF used with random neighbors over-estimates more the small paths
than Vivaldi used with hybrid neighbors. For instance, with the P2PSim data set, the
percentage of over-estimated paths in the first bin is equal to 64% when Vivaldi is used
with hybrid neighbors while it is equal to 81% when DMF is used with random neighbors.
Thus, DMF used with random neighbors has not the most suitable neighbors selection
scheme for our criteria and it tends to over-estimate the small paths. It is not promising
for our shortcuts detection results. Nevertheless, figure 7.3(a) indicates that DMF used
with hybrid neighbors can potentially provide better detection results than those obtained

1Remember that the ICS is independent from our shortcuts detection mechanism and its estimations can
be used by other applications. Thus, it must provide as accurate estimations as possible.
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Figure 7.3: Over-estimations of the paths obtained with DMF and, either a random, or a hy-
brid neighbors selection scheme. Results obtained with Vivaldi and a hybrid neighbors selection
scheme are also given to allow comparison with figure 5.9 page 102.

when Vivaldi is used with hybrid neighbors. Indeed, on both data sets, the percentage of
over-estimated paths when DMF is used with hybrid neighbors (given by the bold lines
in the figure) is always the smallest (at least for the first bins). For example, with the
Meridian data set, the percentage of over-estimated paths in the first bin is equal to 63%
when Vivaldi is used with hybrid neighbors while it is only equal to 34% when DMF is
used with hybrid neighbors.

We will now have a look at the degree of over-estimation. For each bin, figure 7.3(b)
gives the average |REE| obtained for the over-estimated paths. On both data sets, in the
first bins, we see that the average |REE| of the over-estimated paths when DMF is used
with hybrid neighbors is similar to the one obtained when Vivaldi is used with hybrid
neighbors. A second observation is that DMF used with random neighbors over-estimates
significantly the small paths. For example, with the P2PSim data set, the average |REE|
of the over-estimated paths belonging to the first bin is somewhere around 150% when
DMF is used with random neighbors while it is equal to 53% when DMF is used with
hybrid neighbors.

As conclusion, since its neighbors selection scheme is not suitable and, since it tends
to over-estimate the small paths, DMF used with random neighbors should not give very
good detection results with our detection criteria. Nevertheless, in the light of the results
presented in this section, DMF used with hybrid neighbors should provide significantly
better shortcuts detection results than those obtained when Vivaldi is used with hybrid
neighbors.

7.2.2 DMF with randomly selected neighbors
In the current section, we try to detect one-hop routing shortcuts using the estimations pro-
vided by DMF applied with randomly selected neighbors. Since DMF is able to provide
estimations containing TIVs, we will first try to search shortcuts among these estima-
tions (i.e. we will try to apply the SDC criterion described in chapter 6) before searching
shortcuts using our detection criteria.



7.2. SHORTCUT DETECTION USING DMF ESTIMATIONS 125

To evaluate the quality of detection results obtained using a given criterion we will
compute the potential improvement2 remaining after the detection process as we did in
chapter 5. In the sequel of the current section, DMF denotes "DMF applied with randomly
selected neighbors" and Vivaldi denotes "Vivaldi applied with hybrid neighbors".

Searching shortcuts among the estimations

Figure 7.4 gives the CDFs of the potential improvement remaining after the detection
process for different values of the parameter k when we use SDC as detection criterion
with the estimations provided by DMF. Figure 7.4(a) gives these results for the P2PSim
data set and figure 7.4(b) gives these results for the Meridian data set.
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Figure 7.4: SDC applied with DMF used with random neighbors: Difference of Gr between the
best and the best detected shortcuts.

On both data sets, we see that, even if we consider all the shortcuts provided by the
estimated matrix, the detection results obtained with SDC and DMF are worse than those
obtained with HDC and Vivaldi. With P2PSim, the difference between the best result
obtained with SDC and our reference point is large. With HDC and Vivaldi, around 95%
of the paths have a potential improvement after the detection process which is smaller than
0.2 while, with SDC and DMF, only 65% of the path have a potential improvement after
the detection process which is smaller than that value. With Meridian, DMF is able to
restore more shortcuts than with P2PSim. Thus, the detection results obtained with SDC
and DMF are closer of those obtained with HDC and Vivaldi. Anyway, HDC applied with
k = 20 and Vivaldi’s estimations remains our reference point.

2Remember that this indicator is computed, for a given path, as the difference between the relative
gain provided by the best existing shortcut and the relative gain provided by the best detected shortcut.
To illustrate the quality of the detection results on a given data set, we draw the CDF of these differences
computed for every path for which there exists at least one interesting shortcut. The faster such CDF rises,
the better it is.
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Shortcut detection using our criteria

The detection results obtained with our different criteria using the estimations provided
by DMF are given in figure 7.5. Let us start with EDC. With the P2PSim data set, we
see in figure 7.5(a) that EDC with DMF gives slightly worse detection results than EDC
with Vivaldi. Indeed, with DMF, even if we consider all the nodes detected as shortcuts
by EDC (i.e. k = ∞), the potential improvement remaining after the detection is bigger
than the one remaining when we apply EDC with k = 50 and Vivaldi. Obviously, if
using EDC with DMF does not improve the detection results obtained using EDC with
Vivaldi, these results are also worse than those obtained using HDC and Vivaldi. With the
Meridian data set, the situation is quite different. With Meridian, we saw in section 7.2.1
that the characteristics of the DMF estimations are similar to the characteristics of the
Vivaldi estimations. Thus, we concluded that the detection results obtained with these
estimation mechanisms should be equivalent. In figure 7.5(b), we see that using EDC with
DMF slightly improves the detection results obtained using EDC with Vivaldi. Indeed,
the potential improvement remaining after the detection process when we use EDC with
Vivaldi and k = 50 is similar to the potential improvement when we use EDC with DMF
and k = 20. However, these results are still worse than our reference (i.e. HDC with
Vivaldi and k = 20).

Let us continue with the detection results obtained with ADC and HDC. Since the
version of DMF used here does not use hybrid neighbors, we concluded in section 7.2.1
that ADC and HDC applied with DMF estimations should not provide good detection
results. Figures 7.5(c) and 7.5(d) confirm this. With both data sets, we see that, when
ADC is applied with k = 50, the detection results obtained with DMF are significantly
worse than those obtained with Vivaldi. For HDC, figures 7.5(e) and 7.5(f) lead to the
same conclusion if we compare the CDF obtained with k = 20.

In conclusion, DMF applied with randomly selected neighbors fails to provide better
detection results than those obtained with Vivaldi applied with hybrid neighbors. Our best
detection results remains those obtained with HDC, k = 20 and Vivaldi estimations. In
the next section, we will investigate if using DMF applied with hybrid neighbors improves
these detection results.

7.2.3 DMF with hybrid neighbors
To analyse the quality of the detection results obtained when DMF is applied with hybrid
neighbors, as usual, we will compute the potential improvement remaining after the de-
tection process. Before trying to apply our criteria EDC, ADC and HDC, we will try to
detect shortcuts by using the TIVs existing in the estimated matrix. In the sequel of the
current section, DMF denotes "DMF applied with hybrid neighbors" and Vivaldi denotes
"Vivaldi applied with hybrid neighbors".

Searching shortcuts among the estimations

Figure 7.6 gives the potential improvement remaining after the detection process when
the criterion SDC is used.
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Figure 7.5: Difference of Gr between the best existing shortcut and the best detected shortcut with
the criteria EDC, ADC and HDC using the estimations provided by DMF applied with randomly
selected neighbors.
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Figure 7.6: SDC applied with DMF used with hybrid neighbors: Difference of Gr between the
best and the best detected shortcuts.

With the P2PSim data set, we see in figure 7.6(a) that DMF is able to reproduce
a large part of the TIVs in its estimations: if we consider all the TIVs existing in the
estimated matrix, the shortcuts detection results (represented by the CDF named "SDC -
All nodes") are similar to those obtained when HDC is applied with k = 20 and Vivaldi’s
estimations. This is a quite good result. However, this indicates also that DMF does
not reproduce all the shortcuts and, particularly, that it does not reproduce all the best
shortcuts3. Moreover, the best shortcuts in the measured matrix do not always appear
as the best shortcuts in the estimated matrix. For example, if we consider only the best
shortcut with respect to the estimations for each path, the detection mechanism does not
detect lots of interesting shortcuts. Indeed, if we look at the CDF named "SDC - 1 node",
we see the potential improvement remains very important after the detection process. To
obtain good detection results, we must consider large values of k. Anyway, with a same
value of the parameter k (e.g. k = 20), we see that HDC applied with Vivaldi provides
better detection results than SDC applied with DMF.

We have similar conclusions in figure 7.6(b) with the Meridian data set. Even if SDC
detects interesting shortcuts (it works even better than on the P2PSim data set), HDC
applied with k = 20 and Vivaldi’s estimations remains our reference point. To obtain
similar results when SDC is applied with DMF, we must consider k = 50 to obtain the
same quality of detection results. This implies doing twice more measurements to find
the best shortcuts among the candidates. That is not negligible.

Searching shortcuts using EDC

The detection results obtained when we use EDC to detect shortcuts with DMF estima-
tions are given in figure 7.7.

3If this were the case, the potential improvement after the detection should be equal to 0 for every path.
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Figure 7.7: EDC applied with DMF used with hybrid neighbors: Difference of Gr between the
best and the best detected shortcuts.

The fact that DMF does not over-estimate the small paths seems to be really a good
thing for EDC. If we consider all the candidates detected by EDC (CDFs named "EDC -
All nodes"), we see that the potential improvement remaining after the detection process
is very small for lots of paths. For example, with P2PSim, EDC is able to find the best
shortcut for more than 75% of the paths and the potential improvement remaining after
the detection process is smaller than 0.1 for 95% of the paths. However, these very good
detection results are obtained when we consider k =∞. If we take small values for k, the
detection results are not as good. But we can see that EDC applied with DMF estimations
gives better results than EDC applied with Vivaldi estimations. Indeed, on both data
sets, using EDC with k = 20 and DMF estimations provides better detection results than
using EDC with k = 50 and Vivaldi estimations. Nevertheless, even if replacing Vivaldi
by DMF improves the detection results obtained with EDC, this modification does not
allow to beat the results obtained when HDC is used with k = 20 and Vivaldi estimations.
Indeed, on both data sets, we see that the CDF obtained when EDC is applied with k = 20
and DMF estimations is worse than the CDF obtained when HDC is applied with k = 20
and Vivaldi estimations. Thus, HDC applied with k = 20 and Vivaldi estimations remains
our reference.

Searching shortcuts using ADC

Figure 7.8 illustrates the quality of the detection results when ADC is used. The con-
clusion is roughly the same as when EDC is used. Indeed, if we consider all the nodes
detected by ADC (i.e. if we use k = ∞), we obtain very good detection results. But,
if we limit k to small values the results are mitigated and they are worse than what we
obtain when HDC is applied with k = 20 and Vivaldi estimations.
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Figure 7.8: ADC applied with DMF used with hybrid neighbors: Difference of Gr between the
best and the best detected shortcuts.

Even though we concluded in section 7.2.1 that DMF applied with hybrid neighbors
generates estimations having suitable characteristics for our detection criteria, with ADC,
the results obtained with DMF estimations are slightly worse than those obtained with
Vivaldi estimations (see the curves named "ADC - 50 nodes" for both estimation mecha-
nisms). Since considering all the nodes detected by the criterion allows us to find the best
shortcut for most of the paths, the results presented here confirm that DMF estimations
allow ADC to detect the best shortcuts (i.e. the best shortcuts are generally candidates).
But, the problem is that most of the paths (not only the small ones) are under-estimated
with large estimation errors. Consequently, the best shortcuts are not necessarily at the
beginning of the ranking and, thus, using small values of k, ADC applied with DMF esti-
mations fails to detect one of the best shortcuts for lots of paths. In section 5.3.3, we have
already seen that ADC has more difficulties than EDC to rank the candidates. Thus, even
though the large estimation errors do not prevent EDC from providing better results with
DMF estimations than with Vivaldi estimations, they amplify ADC’s ranking difficulties.

Searching shortcuts using HDC

The detection results obtained using HDC to detect shortcuts with DMF estimations are
given in figure 7.9. Following the results presented in section 7.2.1, with DMF, HDC
should be roughly equivalent to ADC. Indeed, since lots of the paths are under-estimated,
in most of the cases HDC will be able to find one of A’s (resp. B’s) neighbors that is
sufficiently near C with respect to the threshold. Thus, HDC will switch to EDC only a
few cases and it will essentially behave like ADC. Figure 7.9 confirms that: the CDFs are
slightly better than the CDFs obtained with ADC in figure 7.8. However, this improve-
ment is small and the quality of the detection results are far from what we can obtain by
using HDC with Vivaldi estimations.
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Figure 7.9: HDC applied with DMF used with hybrid neighbors: Difference of Gr between the
best and the best detected shortcuts.

7.3 Conclusion

In this chapter we investigated the possibility to use the DMF estimations to detect short-
cuts. In theory, this estimation mechanism is promising because it has been developed to
deal with TIVs and it provides better estimations than Vivaldi. In practice, this estimation
mechanism is not suitable for our shortcut detection criteria. The main problem is that
such an estimation mechanism requires random neighbors to provide good estimations.
Thus, it is not suitable for ADC and HDC. The second problem is that it has a tendency
to over-estimate the small paths more than Vivaldi (at least, on the P2PSim data set).
Thus, it is not suitable for EDC either. We tried anyway to apply our detection criteria
using estimations provided by DMF applied with random neighbors and the results were
systematically worse than what we obtain using the Vivaldi estimations.

We tried to run DMF with hybrid neighbors but we faced another problem. With
this neighbor selection scheme, DMF does significant estimation errors and has a signif-
icant tendency to under-estimate all the paths. In theory, an estimation mechanism that
under-estimates the small paths is good for our detection criteria: it allows our criteria
to detect the best shortcuts and to consider them as potential shortcuts. However, with a
hybrid neighbors selection scheme, DMF under-estimates significantly the major part of
the paths. Thus, a large amount of nodes are considered as potential shortcuts. If we add
the estimation errors to this, it is easy to understand that our criteria have difficulties to
accurately rank the potential shortcuts. Thus, the criteria require big values of k to detect
the best shortcut in most of the cases and the results are finally worse than those obtained
with Vivaldi.

Notice that DMF applied with hybrid neighbors allows us to improve the results ob-
tained with EDC compared to those obtained with Vivaldi. Even if the detection results
obtained with EDC and DMF are worse than the results obtained with HDC and Vivaldi,
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these results could finally be considered as the best. Indeed, HDC is a little bit more
complex than EDC mainly because it requires that the nodes exchange the results of the
measurements they perform with their neighbors. Thus, if we consider the additional
communication cost required by HDC, EDC applied with DMF estimations could finally
be a better choice than HDC applied with Vivaldi estimations. However, DMF applied
with hybrid neighbors has a major drawback: it is less accurate than DMF applied with
randomly selected neighbors (and, than Vivaldi applied with hybrid neighbors). Since
the coordinate system is an external component of our shortcut detection mechanism, its
estimations could be used by other applications and they must naturally be as accurate as
possible. Thus, imposing this estimation mechanism to all the applications is impossible.
In conclusion, for the sequel of this thesis, HDC applied with Vivaldi estimations remains
our reference result.

In the next chapter, we will try to use an estimation mechanism that reduces the es-
timation errors of the small paths (required for our criteria) and the global estimation
error (required to be suitable for other applications). This estimation mechanism is our
hierarchical version of Vivaldi.



Chapter 8

Hierarchical Vivaldi

Abstract
In chapter 4, we have seen that routing policies or path inflation can give rise to violations
of the triangle inequality with respect to RTTs in the Internet. With Internet coordinate
systems like Vivaldi, such TIVs introduce inaccuracy, as nodes in this particular case
cannot be embedded into a metric space. Thus, we studied the TIVs existing in the Internet
and we observed that the short paths are generally not involved in severe TIVs. In the
light of this observation, we propose a Two-Tier architecture (opposed to a flat structure)
of Vivaldi that mitigates the effect of TIVs on the quality of the estimations. These results
have been published in [7, 29, 6] and we will summarize them in the current chapter. Since
the Two-Tier Vivaldi tends to reduce the estimation errors on the small paths compared to
a flat Vivaldi, these estimations should be suitable for our shortcut detection criteria. We
will investigate this in the last part of the chapter.

8.1 Two-Tier Vivaldi
In section 4.3.3, we have observed that small triangles are less often (severe) TIVs than
big triangles. In summary, we observed that few severe TIVs are found in triangles whose
bases are smaller than 100ms in the P2PSim data set and smaller than 60ms in the
Meridian data set. These observations motivate our hierarchical approach of Vivaldi. We
intend to create clusters whose diameters do not exceed too much 100ms (resp. 60ms)
for the P2PSim data set (resp. the Meridian data set). Then, we will run different local
Vivaldi instances limited to the nodes belonging to a same cluster. Since we may expect
much fewer severe TIVs in each cluster, the hierarchical Vivaldi is likely to improve the
accuracy of intra-cluster estimations.

8.1.1 Overview

Since small triangles are less often (severe) TIVs, any 3 edges with small RTTs should
not violate too much the triangle inequality rule and should be more easy to embed in a

133
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metric space. Put simply, short paths are more embeddable than long paths that tend to
create severe TIVs. We exploit such property to limit the impact of TIVs on coordinates,
by proposing a Two-Tier Vivaldi approach. The main idea is to divide the set of nodes
into clusters and to run an independent Vivaldi in each cluster. Clusters are composed of
nodes within a given coverage distance.

Since Vivaldi instances running on each cluster are independent, nodes are collecting
latency information from only a few other neighbors located within the same cluster. In
this way, coordinates of nodes belonging to different clusters cannot be used to estimate
the RTT between these nodes. We keep then running a Vivaldi system at a higher level
(i.e. the whole set of nodes) in order to ensure that coordinates computed between any
two nodes belonging to different clusters ’make sense’. Coordinates computed at the
lower (resp. higher) level of the architecture are called local coordinates (resp. global
coordinates).

Each node need not necessary belong to a cluster. A node that does not belong to a
cluster just takes part in the higher level of the Two-Tier Vivaldi and just computes its
global coordinate (GC). On the other hand, nodes belonging to a cluster have to compute
two coordinates: the global coordinate (GC) and the local coordinate (LC). The way the
coordinates are used to compute estimations is illustrated in figure 8.1. To compute an
estimation between two nodes belonging to the same cluster (e.g., node 1 and node 2 in
figure 8.1), we use the local coordinates. To compute an estimation between nodes be-
longing to different clusters (e.g., node 3 and node 5 in figure 8.1) or between a node that
does not belong to any cluster and any other node (e.g., node 4 and node 6 in figure 8.1),
we use the global coordinates.

Cluster 1

Estimated using local coordinates (LC)

Estimated using global coordinates (GC)

1

(LC1, GC1)

2

(LC2, GC2)

3

(LC3, GC3)

4

(LC4, GC4)

5

(LC5, GC5)

6

(GC6)

Cluster 2

Figure 8.1: Usage of the coordinates to compute estimations with the Two-Tier Vivaldi.

An important thing to understand is that the higher level of the architecture is a clas-
sical "flat" Vivaldi. Indeed, every node takes part in the higher level and can choose
any node as neighbor to compute its global coordinate. Thus, global coordinates will
provide the same accuracy as the coordinates computed using an ordinary Vivaldi (i.e.
non-hierarchical). At the lower level, each node that belongs to a cluster participates in
a Vivaldi limited to its cluster. Since there should be no, or few TIVs between the nodes
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belonging to a given cluster, the embedding of the delays in a metric space should be
easier for the local Vivaldi running in that cluster. Thus, local coordinates should pro-
vide more accurate estimations for intra-cluster distances than a flat Vivaldi. In summary,
our Two-Tier Vivaldi should improve the accuracy of the estimations of small paths (i.e.,
intra-cluster paths) without degrading the accuracy of the other paths.

Next, we describe how we set up the clusters we experimented with to illustrate our
results on the Two-Tier Vivaldi structure. We built the clusters manually for our experi-
ments but a self-organized clustering scheme will be presented in section 8.2.

8.1.2 Clustering method
We have based our clustering method on the coordinates obtained by running a flat Vi-
valdi. As already shown by Dabek et al. [15], 2-dimensional Euclidean coordinates lead
to five major clusters of nodes for the P2PSim data set. We took the three most populated
clusters as our main clusters. Nodes that have not been selected in any cluster are then
considered at the higher level of the architecture only, and they compute their global coor-
dinate only. However, this first step in our cluster selection is only based on the estimated
RTTs (as predicted by the flat Vivaldi) and not on the actual RTTs between nodes. In
fact, according to their relative errors, some nodes can be misplaced by the flat Vivaldi
and some clusters could have a larger diameter than expected. Our second step has then
consisted in a cross-checking of our preliminary clustering using the delay matrix. We
proceed in a recursive way as follows: for any two nodes belonging to the same cluster,
the cluster constraint is that the distance between these two nodes should be smaller than
the cluster diameter. We then begin by verifying this cluster constraint, testing it on all
the pairs of each cluster according to their actual distance provided by the delay matrix.
Afterwards, we remove the top node that causes more violations of the constraint1. We
then recursively check the cluster constraint until no more pairs inside the cluster violates
the cluster constraint. Following this clusters selection method, we obtained the clusters
described in figure 8.2(a) for the P2PSim data set.

Even if our tests have been mainly done using the P2PSim data set, clusters can also be
built for the Meridian data set. Indeed, for the Meridian data set, 2-dimensional Vivaldi’s
coordinates give also three major clusters and the clusters obtained after the removal of
the misplaced nodes are given in figure 8.2(b).

Nodes Diameter
Cluster 1 565 140 ms
Cluster 2 169 100 ms
Cluster 3 93 60 ms

(a) P2PSim data set

Nodes Diameter
Cluster 1 560 80 ms
Cluster 2 563 80 ms
Cluster 3 282 70 ms

(b) Meridian data set

Figure 8.2: Characteristics of the clusters used for our experiments

1This node is likely to have a high embedding error
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8.1.3 Two-Tier Vivaldi algorithm

As presented in section 8.1.1, the Two-Tier Vivaldi is composed of completely indepen-
dent instances of Vivaldi running in the clusters and one instance of Vivaldi running at
the higher level of the architecture. It can be run this way but this will generate useless
additional costs compared to a classical Vivaldi. Indeed, if it works this way, the Two-Tier
Vivaldi will generate about twice more measurements than the flat Vivaldi because each
node belonging to a cluster will do measurements with m neighbors to compute its lo-
cal coordinate and with m other neighbors to compute its global coordinate. Thus, simply
running two instances of Vivaldi (see algorithm 2 page 33) with different sets of neighbors
on each node is not an optimal solution.

A simple solution to reduce the measurement costs of the Two-Tier Vivaldi is to reduce
the number of neighbors used for the local Vivaldi instances. Indeed, in section 3.3.4,
we have seen that m = 32 neighbors are necessary to obtain accurate estimations with
large topologies like P2PSim (1740 nodes) and Meridian (2500 nodes). But the clusters
where the local instances of Vivaldi are running contain less nodes: our biggest cluster
contains only about 570 nodes. Thus, with such smaller topologies, working with less
neighbors should not degrade the accuracy of the estimations. We did the test with the
P2PSim cluster 1 and we observed no difference between the quality of the estimations
obtained withm = 16 and the quality of the estimations obtained withm = 32. However,
decreasing m to 8 gives significantly worse estimations. Thus, if the Vivaldi instance
running at the higher level of our architecture works with m = 32 neighbors, we can run
the Vivaldi instances of the lower level of our architecture with m/2 neighbors.

This simple approach allows us to reduce the costs induced by the Two-Tier Vivaldi
but it remains more costly than the flat Vivaldi. This additional cost is due to the fact that
each node uses two distinct sets of neighbors to compute its local coordinate and its global
coordinate. To have the same measurement cost for the Two-Tier Vivaldi and for the flat
Vivaldi, each node must use the same set of neighbors for the two coordinates. Since, the
local coordinate requires less neighbors than the global coordinate, there a simple way to
reach such result. Indeed, them/2 neighbors used to compute the local coordinate are not
sufficient to compute the global coordinate (it requires also neighbors outside the cluster)
but they can be used for this purpose. Thus, if each node computes its global coordinate
using the m/2 "local" neighbors and m/2 additional neighbors (not necessarily chosen
inside the cluster), the Two-Tier Vivaldi can compute two coordinates with a unique set of
m neighbors. This way, the Two-Tier Vivaldi has the same measurement cost as Vivaldi.

Consequently, instead of running two distinct instances of the Vivaldi algorithm on
each node, we will run one instance of a specific 2tier-Vivaldi algorithm on each node.
With the 2tier-Vivaldi algorithm, the node has two coordinates: its local coordinate ~l and
its global coordinate ~g. Like in the Vivaldi algorithm, the node computes the confidence
it has in its coordinate through an estimation of its local error. Since the node has two
coordinates, it has two error estimations: el, the error for the local coordinate and eg,
the error for the global coordinate. Finally, each node must know the identifier of the
cluster it belongs to. This information is stored in a variable c. If the node does not
belong to a cluster, its variable c is equal to −1 and its local coordinate is not used (as
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well as the corresponding error el). Each time a node performs a measurement with
one of its neighbors, it receives the neighbor’s cluster ID and the neighbor’s local and
global coordinates (and the corresponding errors el and gl). With these information, the
procedure presented in algorithm 5 can be run.

Algorithm 5 2tier-Vivaldi (rtt, ~lremote, ~gremote, elremote, egremote, cremote)
Require: A measurement has been done between the node and one of its neighbors

1: {clocal is the node’s cluster ID (-1 if it does not belong to a cluster)}
2: {cremote is the neighbors’s cluster ID (-1 if it does not belong to a cluster)}
3: {~llocal is the local coordinate of the local node}
4: {~glocal is the global coordinate of the local node}
5: {~lremote is the local coordinate of the neighbor}
6: {~gremote is the global coordinate of the neighbor}
7: {ellocal is the node’s local error on the local coordinate}
8: {eglocal is the node’s local error on the global coordinate}
9: {elremote is the neighbor’s error on the local coordinate}

10: {egremote is the neighbor’s error on the global coordinate}
11: {rtt is the measured RTT}
12: w = eglocal/(eglocal + egremote)
13: est = ‖~glocal − ~gremote‖
14: es = |rtt− est|/rtt
15: eglocal = es × (ce× w) + eglocal × (1− (ce× w))
16: δ = cc× w
17: int = rtt− est
18: dir = u(~glocal − ~gremote)
19: f = dir × int
20: ~glocal = ~glocal + δ × f
21: if ((clocal 6= −1) ∧ (clocal == cremote)) then
22: w = ellocal/(ellocal + elremote)

23: est = ‖~llocal −~lremote‖
24: es = |rtt− est|/rtt
25: ellocal = es × (ce× w) + ellocal × (1− (ce× w))
26: δ = cc× w
27: int = rtt− est
28: dir = u(~llocal −~lremote)
29: f = dir × int
30: ~llocal = ~llocal + δ × f
31: end if

This procedure is very similar to the procedure presented in algorithm 2 page 33.
Whatever the neighbor is, we update the global coordinate (between line 12 and line 20).
The operations are exactly the same as in algorithm 2. Then, if the node and its neighbor
belong to the same cluster, we also update the local coordinate (between line 22 and line
30) using the same operations as in algorithm 2.
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8.1.4 Neighbors selection
In section 8.1.3, we decided that each node must choose m/2 neighbors inside its cluster
and m/2 other nodes (that can be inside or outside its cluster). The m neighbors are used
to compute the global coordinate and the local coordinate is computed only with the first
m/2 neighbors. In the current section, we define exactly how the neighbors are chosen.

We know that Vivaldi provides better estimations with a hybrid neighbors selection
scheme than with randomly selected neighbors. With the Two-Tier Vivaldi, we have also
a natural tendency to choose hybrid neighbors. Indeed, the m/2 neighbors chosen in
the cluster are, by definition, near nodes (but not necessarily the nearest), while the m/2
other neighbors can be randomly chosen in order to obtain something similar to a hybrid
neighbors selection scheme. Thus, with the Two-Tier Vivaldi, we can legitimately ask if it
is necessary to work with a complicated hybrid neighbors selection scheme, while simply
choosing randomly m/2 neighbors in the cluster and m/2 neighbors in the whole set of
nodes should generate a similar result. We investigate this using the P2PSim data set. We
worked with m = 32 neighbors and we considered two neighbors selection schemes:

1. A hybrid neighbors selection scheme that works as follows:

(a) For a node that belongs to a cluster:

• Take the 8 nearest nodes inside the cluster
• Choose randomly 8 other nodes inside the cluster
• Choose randomly 16 nodes among those that are not already selected

(b) For a node that does not belong to any cluster:

• Take the 16 nearest nodes
• Choose randomly 16 nodes among those that are not already selected

2. A random neighbors selection scheme that works as follows:

(a) For a node that belongs to a cluster:

• Choose randomly 16 nodes inside the cluster
• Choose randomly 16 nodes among those that are not already selected

(b) For a node that does not belong to any cluster:

• Choose randomly 32 nodes

We applied Two-Tier Vivaldi on the P2PSim data set with the clusters defined in fig-
ure 8.2(a). Figure 8.3 gives the CDFs of the |REE| obtained with both neighbors se-
lection schemes. The main observation on that figure is that Two-Tier Vivaldi applied
with hybrid neighbors performs significantly better than Two-Tier Vivaldi applied with
randomly selected neighbors. Thus, using the hybrid scheme is really important to obtain
good estimations. In the light of this observation, we will use a hybrid neighbors selection
scheme in the sequel.

In figure 8.3, we can also see that the Two-Tier Vivaldi applied with randomly selected
neighbors performs significantly better than Vivaldi applied with random neighbors. That
is logical since a Two-Tier Vivaldi with random neighbors is somewhat similar to a flat
Vivaldi with a hybrid scheme. If we compare Two-Tier Vivaldi applied with hybrid neigh-
bors to Vivaldi applied with hybrid neighbors, there is an improvement but it is quite
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Figure 8.3: Comparison of neighbors selection schemes for the Two-Tier Vivaldi. The experi-
ments have been carried out with the P2PSim data set and the clusters defined in figure 8.2(a)

small. This happens because the Two-Tier Vivaldi improves only a small part of the total
number of estimations. Indeed, it can only improve the estimations of intra-cluster paths.
For the P2PSim data set, with the values given in figure 8.2(a), we have:

Number of paths in cluster 1 =
565× 564

2
= 159 330

Number of paths in cluster 2 =
169× 168

2
= 14 196

Number of paths in cluster 3 =
93× 92

2
= 4 278

⇒ Total number of intra-cluster paths = 159 330 + 14 196 + 4 278 = 177 804

Total number of paths =
1740× 1739

2
= 1 512 930

⇒ Percentage of paths that are intra-cluster paths =
177 804× 100

1 512 930
= 11.75%

Thus, the Two-Tier Vivaldi can only improve the estimations obtained for 11.75% of
the paths in the P2PSim data set. Consequently, the global improvement compared to
Vivaldi estimations cannot be huge. That is why, in the next section, we will evaluate the
performance of Two-Tier Vivaldi by focusing on the intra-cluster paths.

8.1.5 Performance evaluation of Two-Tier Vivaldi
To evaluate it, we ran Two-Tier Vivaldi on our data sets using a 2-dimensionalEuclidean
space, hybrid neighbors and the clusters defined in figure 8.2. First, we use the relative
error as our main performance indicator. We compute the ARE (Average Relative Error
- see section 4.4 page 58) over all nodes to represent the accuracy of the overall system.
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Figure 8.4: Comparison of relative errors for P2PSim data set using a 2-dimensional space: Flat
Vivaldi versus Two-Tier Vivaldi.

Figures 8.4(a) and 8.4(b) represent the CDFs of the ARE computed for the nodes
belonging to our three clusters. We clearly see that the relative errors computed using the
local coordinates are smaller than the relative errors computed using Vivaldi coordinates.
For instance, in cluster 2, more than 90% of the nodes have an ARE smaller than 0.3
when they use the Two-Tier Vivaldi local coordinates to predict intra-cluster distances.
With the Vivaldi coordinates, over half of the nodes belonging to cluster 2 have an ARE
bigger than 0.5 for the estimation of intra-cluster paths. Worse cases (for Vivaldi) are
observed with cluster 3. As depicted in figure 8.4(b), the flat Vivaldi system collapses
with very high effective relative errors for more than 70% of the nodes. With the Two-
Tier architecture, nodes are clearly performing much better. We observed the same trend
for the Meridian data.

It is worth noticing here that cluster 3 is the smallest cluster in terms of diameter.
The observation of the embedding relative errors in this cluster confirm then our findings
related to the effect of edges lengths on the TIVs severity and thus on their impact on the
embedding. More generally, improvements inside these clusters is explained by the fact
that intra cluster nodes, when computing their local coordinates select only nearby nodes
as their neighbors. This constraints the node-to-neighbor edge lengths and thus reduces
the likelihood of selecting severe TIVs. When encountering severe TIVs that cause high
absolute errors, a node updates its coordinate, by jumping back and forth across its actual
position. When limited to TIVs of low absolute severity, a node converges ’smoothly’
towards an approximation of its correct position, then would stick to such position, and
oscillate much less. In essence, it gains confidence in its local error faster and performs
more accurate embedding.

Limiting the neighborhood inside the cluster should then limit the high oscillations
due to long and severe TIVs. In a second step, we then observed the coordinates’ oscilla-
tion of nodes belonging to our three clusters. Like in chapter 4, we consider the average
oscillation values as the average oscillations during the last 500 ticks of our simulations.
We can observe that the three curves representing the CDF of the Two-Tier architecture
oscillations are the highest one in figure 8.5(a) and figure 8.5(b). This clearly shows that
local coordinates of nodes inside our clusters oscillate with less amplitude. For instance,
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Figure 8.5: CDF of coordinates oscillations for flat Vivaldi and Two-Tier Vivaldi.

in figure 8.5(a) more than 80% of the average oscillations are less than 3ms when nodes
are computing local coordinates, whereas, only 40% of nodes in flat Vivaldi have, their
oscillations less than this value. For Meridian data (figure 8.5(b)), nodes oscillate over
large ranges. More than 50% of nodes in flat Vivaldi have their oscillations superior to
5ms. Using the Two-Tier Vivaldi reduces this amplitude.

The results presented above have been computed before we decided to work with a
10-dimensional Euclidean space in order to avoid as much as possible prediction inaccu-
racies caused by the choice of the space (see section 3.3.3). However, working with 10
dimensions instead of working with 2 dimensions does not change the conclusions. Fig-
ure 8.6 shows that, for the P2PSim data set, intra-cluster paths are better estimated using
Two-Tier Vivaldi’s local coordinates than using flat Vivaldi’s coordinates.
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Figure 8.6: Comparison between Two-Tier Vivaldi and flat Vivaldi with a 10-dimensional space.
The graphs give the CDFs of the |REE| computed for intra-cluster paths. The experiment has
been done with the P2PSim data set using the clusters defined in figure 8.2(a).
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8.2 A self-organized clustering scheme

In section 8.1, we evaluated the performance of the Two-Tier Vivaldi using manually
built clusters. To be usable, the Two-Tier Vivaldi requires a clustering scheme that is
autonomous and distributed. In [6], we proposed a self-organized clustering scheme and
we will summarize these results in the current section.

With the self-organized clustering scheme, our goal is twofold. Firstly, we address the
problem of constructing efficient clusters in an autonomous way by building on an existing
ICS system. Secondly, our clustering scheme aims at providing a self-managed clustering
structure to overlay-based applications, to allow both topology awareness and scalability
of these applications. The novelty of our approach lies in simultaneously relying on the
partial knowledge of coordinates of nodes involved in ICS operations, and on a distributed
clustering algorithm based on adaptive back-off strategy, to construct efficient topology-
aware clusters in a load-balancing way. The main idea is to allow each node to identify
a set of clusters in the network, using its own knowledge of a set of nodes’ coordinates
(as provided by the ICS in which it is involved), and to verify the validity of such clusters
using a few measurements towards the identified cluster heads. The distributed algorithm
is scheduled using an exponential back-off strategy, where nodes plan their own wake-
up time to verify the existence of clusters in their proximity or not. Our main objective
behind this strategy is to load balance the clustering process, while adapting to previous
clusters creation, and hence optimize the maintenance and measurements overhead.

It is worth noticing that the notion of awakening used here is only related to the cluster-
ing algorithm. Indeed, in the Two-Tier architecture, every node participates permanently
in the coordinate system for its coordinate(s) computation and, periodically, its clustering
process wakes up to discover if it can join an existing cluster (or create a new one). Even
though only the clustering process wakes up and goes back to sleep, for more simplicity,
we will denote this as a node awakening in the sequel.

We provide two variants of our distributed algorithm: a first variant, called Coop-
erative, aims at reducing the expected time to construct clusters for the whole network.
This approach induces some overhead to inform other nodes that they are likely to be-
long to a newly created cluster. A second Selfish variant is also introduced, where nodes
are more selfish and can only form and/or join clusters when they wake up, without any
assistance (or guidance) from other nodes that woke up earlier. In both cases nodes use
only knowledge provided by a subset of other nodes, in some neighborhood as explained
later, and obtain the needed pieces of information (coordinates, existing cluster heads) by
piggybacking them in the messages exchanged by the ICS system.

8.2.1 QT (Quality Threshold ) clustering algorithm

Clustering is defined as a process of partitioning a set of elements into a number of groups
based on a measure of similarity between the data (distance-based approaches) or rely-
ing on the assumption that the data come from a known distribution (model-based ap-
proaches). For our self-clustering process, we aim at exploiting nodes’ coordinates as a
first approximation of the inter-node distances existing in the actual network topology.
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As nodes’ coordinates do not follow any a priori distribution, we will focus on distance-
based clustering. Moreover, since we aim at providing a self-clustering process that is
performed in a distributed way among all the nodes of the network, the optimal number
of clusters that can be created is not known in advance. Approaches that set a constraint
on the number of clusters to be formed (such as K-means, C-Means Fuzzy Clustering,
etc.) are thus inappropriate.

Having in mind these facts, we choose to use the Quality Threshold algorithm (QT-
clustering) to propose our self-organized clustering scheme. This algorithm has been
initially proposed by Heyer et al. [25] for genetic sequence clustering. It is based on
the unique constraint of the cluster diameter, as a user-defined parameter. For the QT-
clustering and for the remainder of the current chapter we define the cluster diameter as
the maximal distance existing among any two members of the cluster. The QT-clustering
is an iterative algorithm and starts with a global set that includes all the elements (e.g.
nodes coordinates) of the data set, and then returns a set of clusters that respects the
quality threshold. Such threshold is defined in terms of the cluster diameter.

Initially, a candidate cluster seeded with the first element of the data set is formed.
Then, elements are iteratively added to the cluster. Each iteration adds the element that
minimizes the increase in cluster diameter. The process continues until no element can be
added without surpassing the diameter threshold. A second candidate cluster is formed
by starting with the second element of the data set and repeating the procedure. Note that
all elements are made available to the second candidate cluster. That is, the elements from
the first candidate cluster are not removed from consideration. The process continues for
all elements. At the conclusion of this stage, we have a set of candidate clusters. The
number of candidate clusters is equal to the number of elements, and many candidate
clusters overlap. At this point, the largest candidate cluster is selected and retained. The
elements it contains are removed from consideration and the entire procedure is repeated
on the smaller set. A possible termination criterion is when the largest remaining cluster
has fewer elements than some specified threshold.

8.2.2 Self-Clustering process

In this section we describe how we exploit the QT-clustering algorithm to provide a dis-
tributed self-organized clustering process, based on the knowledge of a subset of nodes’
coordinates in a metric space, resulting from running a positioning system to estimate
network distances. We will denote by (direct) neighbors the set of peer nodes that are
used as neighbors in the ICS for the purpose of coordinate computation. We will also
denote by long-sight neighbors, the union of these (direct) neighbors and the neighbors’
neighbors (i.e., node’s 2-hop neighbors). For instance, if a node has 32 neighbors in order
to compute its coordinate, its long-sight neighbors will be formed by at most 1024 nodes.

Description

The general idea of our clustering algorithm is to distribute the clustering tasks among
nodes in the network relying not only on measurements towards a potential existing clus-
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ter, but also on their knowledge of the coordinates of their long-sight neighbors. In other
words, if a node wakes up and does not find directly an existing cluster it may belong to, it
tries to construct such cluster based on the coordinates as provided by the ICS it is running.
In such a way, nodes that do wake up earlier try to create clusters that their peers waking
up later may join. Put simply, nodes perform trailblazing of the network conditions, to
construct the clusters in a distributed way, while optimizing the needed overhead. Three
main advantages could then be considered. Firstly, nodes do not need global knowledge of
nodes in the network, nor distances between these nodes, nor a common landmark/anchor
infrastructure. Secondly, the network is not overloaded by measurements performed to
obtain the cluster structure. And, thirdly, the network is able to self-construct the clusters
that may exist.

During the cluster forming phase, nodes are initially in a waiting mode. Each node
waits for an initiator timer according to an exponential random distribution. The clus-
tering process follows the procedure presented in Algorithm 6 and can be described as
follows: each time a node wakes up, it gets the list of existing cluster heads in the net-
work. Although such information could be obtained by requesting the set of long-sight
neighbors that the node is aware of, we choose to perform this information retrieval by
exploiting the communication already established at the level of the ICS. Existing cluster
heads are propagated in the network by simply piggybacking in the classical ICS mes-
sages the identity of the cluster head(s) of cluster(s) a node belongs to. Considering these
already existing clusters, each node verifies its membership to one of them. If the mea-
surement towards the cluster head satisfies the cluster diameter, say D, meaning that such
distance is less than D/2, the node simply joins such cluster by sending a "join" message
to the cluster head. In section 8.1, we have seen that natural clusters for our data sets
have diameters smaller than 140ms. Following this observation, for our simulations, we
set the upper bound of the cluster diameter D to 140ms. Finding a way to adapt auto-
matically this upper bound to the network is still one of our future work. Depending on
the maximum number of clusters a node can join, say k, such "join" procedure could be
repeated with other cluster heads.

Nevertheless if none of the distances to existing cluster heads satisfies the clustering
criterion, the node starts the QT-clustering algorithm on the basis of the coordinates of its
long-sight neighbors. It is worth noticing that this clustering is just a first approximation.
Indeed coordinates may be subject to distance estimation errors, resulting from inaccu-
racies in coordinates. However this gives the node an approximate view of its neighbors
positions, and in particular of the clusters that could be formed from this approximation.
This first coordinate-based clustering phase allows the node to identify a set of clusters in
the metric space of the ICS. This set of clusters is then subject to a verification according
to direct measurements.

When a node has verified that its distance to an identified cluster head satisfies the
clustering criterion, it decides to inform this potential cluster head that it should create a
cluster, and waits for a confirmation. The cluster creation is conditioned by the acceptance
of the requested cluster head. In fact, a potential cluster head could refuse to lead a cluster
because of load constraints, or more specifically because its actual distance to an already
existing cluster head has been considered too short. To this end, when a node is informed
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Algorithm 6 Self-organized clustering: Procedure when a node wakes up
1: if The node is already in at least one cluster then
2: The node goes back to sleep;
3: else
4: The node gets the list of existing cluster heads known by its long-sight neighbors;
5: The node measures RTTs to all existing cluster heads;
6: Let C be the list of existing cluster heads within a range RTT < D/2;
7: if C 6= ∅ then
8: The node joins at most the k nearest clusters whose heads are in C;
9: else

10: Let S be the list of coordinates of the node’s long-sight (1-hop and 2-hop) neigh-
bors;

11: The node runs a QT-Clustering on S ⇒ This returns a set of clusters;
12: if The node is in none of these clusters then
13: The node goes back to sleep;
14: else
15: The node selects a cluster head in its cluster;
16: The node measures the RTT to this new potential cluster head;
17: if RTT > D/2 then
18: The node goes back to sleep;
19: else
20: The node freezes all of its long-sight neighbors (by sending them a mes-

sage);
21: if A neighbor answers that it is already frozen by another node then
22: The node goes back to sleep;
23: else
24: The node notifies the selected cluster head and waits for confirmation;
25: if Confirmation is positive then
26: The node joins the cluster;
27: else
28: The node goes back to sleep;
29: end if
30: end if
31: end if
32: end if
33: end if
34: end if

that it is a potential cluster head, it measures its distance to the list of cluster heads it is
aware of. If at least one of these distances is less than α × D/2, for some 1 < α < 2,
distance between the two cluster heads is considered too short to construct a new cluster,
and the request is refused. In this case, the node that identifies this cluster head is informed
of this refusal and goes back to sleep. Otherwise, i.e. if the cluster is created, nodes that
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wake up later follow this decision and consider the cluster head among the list of existing
cluster heads.

The algorithm relies on self-organization of nodes. When a node decides to join a
cluster, two variants could drive the process of nodes joining the identified clusters.

The cooperative variant: The first variant, with the main goal of speeding up the clus-
tering process, is to inform all identified nodes in a cluster of their potential mem-
bership to such cluster, and let them check this fact with direct measurements.

The selfish variant: The second variant trades off the speed of cluster creation against
a reduced measurement overhead. In this case nodes never inform others that they
may belong to a newly created cluster, and let them discover this fact when they
wake up.

Finally, it is worth noticing that the wake-up procedure allows also some adaptation to
changes in the network. Since distances in the network may evolve over time, including
the distances of nodes towards their identified cluster head(s), a node should not stick
to any cluster, and should also verify its membership to additional clusters due to new
network conditions. Waking up from time to time, following the distributed scheduling as
presented below, allows them to check their membership to existing clusters, and thereby
adapt to changes in network conditions.

Distributed Scheduling of wake-up timers

During the cluster forming phase, nodes are initially in a waiting mode. Each node waits
for an initiator timer according to an exponential random distribution, i.e.

f(ti) = λie
−λiti

where
λi = λ0

ni
Ni

ni being the number of non already clustered nearby neighbors, and Ni being the total
number of known long-sight nearby neighbors. By nearby nodes we refer to nodes whose
coordinates indicate that they are (likely to be) within some specified range. To set the
timer according to an exponential random distribution, we set pt = random(0, 1), com-
pute λi as described above and let

ti =
−1
λi

ln(1− pt)

The wake-up timer could then be computed as timer = min(ti,MAX _Timer). From the
expression of ti it is obvious that the timer decreases when λi increases. Therefore such
timer will ensure that the nodes with more residual non-clustered neighbors have more
opportunities to (re)initiate the clustering algorithm, since their timer is more likely to
elapse before other nodes. The main idea behind this exponential backoff scheduling is to
load-balance the clustering process as initiated by nodes in the network, while optimizing
the time needed to construct and join the clusters.
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We can also expect that in one MAX _Timer period enough nodes initiate the clus-
tering algorithm. To this end the selection of λ should satisfy the following inequation:

Prob(t > MAX _Timer) ≤ 1− p
where p is the expected percentage of nodes initiating the algorithm. Therefore, in such a
case ∫ +∞

MAX _Timer

f(t) dt ≤ 1− p ⇒ λ ≥ −
(

ln(1− p)
MAX _Timer

)
(8.1)

Based on (8.1) we can calculate λ needed to ensure that a percentage of nodes initiate the
algorithm, at least in the initial state, when nodes are not clustered yet. From (8.1) we can
conclude that

λmin = −
(

ln(1− p)
MAX _Timer

)

is sufficient to ensure this.

8.2.3 Analysing the Clusters
In this section we present the results of an extensive simulation study of the self-organized
clustering process. We performed a set of simulations using the P2PSim data set and
Meridian data set. In our simulations, we allowed nodes to join at most two clusters (k =
2) and we set the expected maximum cluster diameter D to 140ms for the P2PSim dataset
and to 80ms for the Meridian dataset. The maximal timer for a sleeping node is set to 5
minutes and the minimum distance between any two cluster heads is fixed to 3/2×D/2
(i.e. α = 3/2). As we used coordinates as provided by an ICS in the first step of our
self-organised clustering, we deployed the Vivaldi system as a prominent representative
of purely P2P coordinate systems. Each node runs the Vivaldi system, setting the number
of its neighbors to 32 and our results are obtained for a 2-dimensional coordinate space.
We choose not to illustrate our results by using more accurate coordinates, for ease of
deployment and low computing loads, at the cost of some loss in clusters accuracy.

We evaluate the performance of our clustering algorithm with respect to three main in-
dicators. (i) The clusters quality: it is the deviation between the expected cluster diameter
and the actual diameter. (ii) The convergence time: it is the time needed by our distributed
algorithm to cluster 95% of the nodes in the system. This allows us to differentiate be-
tween the initial phase of the algorithm, when clusters are yet in the construction process,
and the steady state, when nodes continue to manage their membership to already con-
structed clusters. Finally, we measured (iii) the overhead: it is the number of exchanged
messages and the number of measurements performed. We can further split the overhead
during the initial phase and during the steady state. We compare the two variants of our
algorithm, and when needed we compare our distributed self-clustering algorithm to a
centralized approach.

Clusters Quality

We can evaluate the cluster quality according to the deviation between the expected cluster
diameter, as we set it in the QT-clustering and the actual diameter as obtained after our
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Figure 8.7: CDF of the RTT of the intra-cluster paths.

self-organized clustering process reaches its steady state. However, the cluster size is also
an important parameter we should mention. A cluster populated with only a few nodes,
even though its diameter is optimal, may be of little use.

To evaluate the clustering quality in terms of cluster diameter, figures 8.7(a) and 8.7(b)
show the Cumulative Distribution of the actual delays (RTTs) between the members of
the same identified cluster (called intra-cluster RTTs). In other words, these figures show,
for both data sets, the proportion of nodes that actually violate the diameter constraint. We
compare the proportion of these violations for the two variants of our clustering algorithm
and for a centralized approach. In this case, a centralized approach consists in emulating
a centralized entity that collects the coordinates of all nodes in the system, computes in a
centralized way clusters resulting from these coordinates using the QT-clustering and then
informs all nodes of the identified cluster heads. These nodes verify their membership to
these clusters, and join clusters if the diameter constraint with their cluster heads is veri-
fied. The main reason why we compare our algorithm to such a centralized algorithm is
to evaluate how partial knowledge of neighborhood and coordinates impact our clustering
performance.

Figure 8.7(a) shows that more than 85% of the intra-cluster links satisfy the cluster
diameter constraint, with an RTT smaller than the expected diameter. The same trend is
observed in figure 8.7(b) for the Meridian dataset, with more than 95% of clustered nodes
scattered in delimited clusters, respecting the expected cluster diameter. We also note that
both variants achieve the same performance, which is actually not surprising, since the
main difference between our two variants is when nodes join a cluster, and not how they
join it. The centralized approach creates slightly more accurate clusters. However, this
little difference is overwhelmed by onerous cost induced by a centralized approach that
needs global knowledge of both coordinates and nodes in the system.

Performing a QT-clustering based on coordinates of long-sight neighbors gives us a
first approximation of nodes positioning. Even though nodes measure network distances,
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as RTTs, towards identified cluster heads, this does not prevent some mutual distances
between cluster members to be above the expected diameter, due to TIVs. Using coor-
dinates reduces the proportion of diameter violations, but since coordinates only provide
distance estimations, errors may always exist. Example 7 illustrates the problem.

Example 7. Consider a cluster head C and two nodes A and B. These nodes and dis-
tances between them are represented in figure 8.8. Suppose that the clustering process
works with a diameter D = 100ms. If node A (resp. node B) wants to join C’s cluster, it
measures the RTT with the cluster head and obtains an RTT equal to 30ms (resp. 40ms).
Since that value is smaller than the diameter, the two nodes consider that they can join
C’s cluster. However, ACB is a TIV and RTT (A,B) violates the diameter constraint.
The problem is that a node does not perform maesurements with all the nodes in its cluster
before joining it.
Even during the QT-clustering phase, such problem can appear. Indeed, the clustering is
based on estimations of the paths. In chapter 4, we have seen that TIV bases are generally
under-estimated by Vivaldi. Thus the 160 ms path between A and B can be estimated to
a smaller value. For instance, if AC and CB are correctly estimated, then 60 ms is a
possible estimation forAB because the triangle inequality rule holds. WithAB estimated
at 60ms, the QT-clustering algorithm wrongly considers that A and B can belong to the
same cluster.

C

BA

30 ms

< D/2

40 ms

< D/2

160 ms > D

Cluster Head

Figure 8.8: Example of clustering inaccuracies caused by TIVs. Nodes A and B consider both
that they can join C’s cluster. But, since ACB is a TIV, the path AB is longer than the diameter.

As shown in table 8.1, the number of clusters identified by our algorithm ranges from
9 to 11 for both variants. However, we can in both cases consider 3 main clusters, with
an average population of 700 nodes each for the P2PSim dataset, and 1260 nodes as an
average population of each cluster in the Meridian dataset. The percentage of nodes that
have not been clustered is roughly 3.8%. The bottom part of table 8.1 will be presented
later.

Convergence time

To separate the initial phase from steady state, we analyse the evolution of the number
of clustered nodes versus the number of awakenings (and hence versus the number of
clustering process calls) for both variants. As depicted in figures 8.9(a) and 8.9(b), the
curves labeled "Selfish Variant" follow linear evolutions. Such observation is expected
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Cooperative Variant Selfish Variant
P2PSim Meridian P2PSim Meridian

Number of clusters 9 9 11 9
Number of unclustered nodes 67 81 68 102
Total Number of pings 11116 17003 20125 18075
Total Number of messages (excluding pings) 1582 2300 843 246
Convergence time (seconds) 1875 1658 1658 2300
Ping rate before convergence (pings/s) 4.48 8.05 9.95 6.45
Before convergence:
Mean ping rate (pings/node×s) 0.0026 0.003 0.0057 0.0026
Max ping rate (pings/node×s) 0.027 0.038 0.0398 0.023
Mean msg rate (msg/node×s) 0.0005 0.0006 0.0003 4 10−5

Max msg rate (msg/node×s) 0.403 0.635 0.23 0.049
After convergence:
Mean ping rate (pings/node×s) 0.0002 0.0002 0.0002 0.0002
Max ping rate (pings/node×s) 0.03 0.032 0.034 0.022
Mean msg rate (msg/node×s) 10−6 6 10−7 3 10−7 6 10−7

Max msg rate (msg/node×s) 0.0007 0.0003 0.0002 0.0005

Table 8.1: Characteristics of the clustering process

since at most one node can join a cluster at each awakening, and then the growth of the
number of clustered nodes can be at best linear. Clusters in the "Cooperative" variant may
cumulate node membership with each node’s awakening, because information of potential
membership to a newly created cluster is sent by the creator of a cluster to identified
members. In the curves labeled "Cooperative approach", we can then observe for both
data sets the steps corresponding to a set of nodes joining simultaneously a defined cluster.
Such steps allow this variant to cluster more than 95% of nodes in 1210 awakenings for the
P2PSim dataset and in 1854 awakenings for the Meridian dataset, whereas the "Selfish"
takes more occurrences, up to 2749 awakenings. Such faster clustering comes at the
expense of costs of spreading information and exchanged messages, as we will discuss in
the following section.

Let us consider that our system is in the steady state if at least 95% of existing nodes
have been clustered. Although such parameter relies on our a priori knowledge of the
number of nodes that cannot be clustered in the system, it gives us however a suitable
way to separate the initial phase from the steady state. It is important to notice that the
convergence time, although different in terms of number of awakenings, is roughly the
same in real time (in seconds) spent to cluster 95% of the nodes, as shown in table 8.1.
This confirms our choice of the exponential-backoff strategy to set timers. Remember that
our algorithm will ensure that the greater the λ is, the lower the timer is, giving hence more
opportunity to (re)initiate the clustering algorithm. This guarantees a higher probability
to initiate the clustering algorithm in an "area" populated by nodes that have not been
clustered yet. This gives a way to adjust the awakening rate according to the number of
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Figure 8.9: Evolution of the number of clustered nodes.

clustered nodes independently from the number of nodes existing in the system. Such
trend is emphasized in the "Cooperative variant" where the convergence time is less than
2000 seconds for both data sets. Next we discuss the cost of the self-clustering algorithm.

Overhead

To observe the control messages and measurement overhead, we differentiate between the
two states of the system: the initial phase (when clusters are built) and the steady state.
We observe the induced overhead as the number of measurements performed, but also as
the number of exchanged messages during the clustering process. Figure 8.10(a) depicts
the cumulative number of exchanged messages versus time (up to one hour). We do not
consider the "join" messages sent by clustered nodes to their cluster heads, but focus on
the difference that may exist between the two variants of the algorithm.

The sharp rise of the curves in the initial phase is due to the fact that, at the beginning
of the algorithm, nodes have the same probability to wake up, since all nearby neighbors
are not clustered yet. We manage to resolve such potential conflictual situation using the
"freeze" messages, sent to the long-sight neighbors, when a node identifies a cluster head,
and waits for its confirmation. We are more likely to encounter such situations at the
beginning of the algorithm. Moreover as very few nodes are clustered in the initial phase,
more clusters are created, leading to more exchanged messages and measurements.

We can observe from figure 8.10(a) that, as expected, the cumulative number of mes-
sages sent by the "Selfish variant" is less important than the cumulative number of mes-
sages sent by the "Cooperative variant". It is however important to observe that the num-
ber of exchanged messages induced by newly created clusters is very low after the initial
phase. Once the system reaches the steady state, no more messages, are exchanged. The
low message exchange rate observed during the initial phase is confirmed by our results in
table 8.1 with very low message rates of the scale of 10−4 per node per second as average
values, and a maximum of 0.635 message/node×second.
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Figure 8.10: Induced overhead: exchanged messages and performed measurements.

In figure 8.10(b) we observe the cumulative number of measurements performed to-
wards the identified cluster heads (typically ping messages). We see again that the major
overhead is induced during the initial phase. We observe more pings initially, when nodes
initiate their clustering process, with a maximum ping rate of 0.034 ping/node×second.
Such very low overall ping rate per node is promising for large scale deployment of our
clustering scheme.

8.2.4 Conclusion

In this section, we have shown that Vivaldi’s estimations can be exploited to construct ef-
ficient clustering schemes in a distributed way. Indeed, the proposed clustering process is
based on a first approximation of node positioning using coordinates, along with an adap-
tive back-off strategy that allows load-balanced construction of clusters. We presented
two variants of such clustering process that trade off the convergence time against the
induced overhead. However, the two variants have been shown to be effective, enjoying
good clustering performance, while achieving a good trade-off between scalability and
convergence time. Indeed, nodes are able to identify and join their clusters in a reason-
able amount of time and they still do not trigger too frequent measurements.

The reader should note though, that we do not yet consider churn situations, when
nodes join and leave the system running the Internet Coordinate System in an asyn-
chronous way. If we consider highly-dynamic networks, the differentiation between the
initial phase and the steady state may fade away. However, our clustering process would
adapt to situations when only few nodes are existing in the system, by simply not creating
clusters if they are "useless". Basically, by setting a minimum number of nodes per cluster
at the level of the QT-clustering, low populated clusters could be avoided. Finally, even
if we do not address the problem of clusters maintenance, we note that different solutions
to such issues have been proposed elsewhere (e.g. [45, 21]).
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8.3 Shortcut detection using the Two-Tier Vivaldi

In section 8.1, we have seen that the hierarchical version of Vivaldi improves the qual-
ity of the estimations compared to a classical flat Vivaldi. In the current section, we will
evaluate if the Two-Tier Vivaldi estimations are more suitable than flat Vivaldi estimations
for our one-hop routing shortcuts detection criteria. The self-organized clustering scheme
presented in section 8.2 could build clusters for the Two-Tier Vivaldi but, in the current
section, we will work with the clusters defined in figure 8.2(a). We have made this choice
mainly for simplicity. Indeed, the clusters obtained with the technique presented in sec-
tion 8.2 require a version of Two-Tier Vivaldi where each node can manage multiple local
coordinates (one for each cluster it belongs to). Even if the Two-Tier Vivaldi implementa-
tion can be easily adapted to work with multiple local coordinates, the fact that nodes can
have multiple coordinates introduces new problems. For example, if two nodes A and B
both belong to a cluster c1 and a cluster c2, we must decide which local coordinates (those
computed in c1 or those computed in c2) will be used to estimate the path AB. Since
our goal is just to evaluate if the Two-Tier Vivaldi estimations can improve the detection
results compared to what we obtained using Vivaldi estimations, we want to avoid such
problems and we forbid overlapping clusters. We can obtain such constraint by choosing
k = 1 in the parameters of the self-organized clustering technique. However, the clus-
ters obtained with such constraint are similar to those defined in figure 8.2(a). Thus, it is
simpler to directly use the clusters defined in figure 8.2(a).

8.3.1 Characteristics of the estimation errors

We begin with an analysis of the characteristics of the estimation errors in order to know
if the Two-Tier Vivaldi is a suitable estimation mechanism for our criteria. Following the
discussion in section 5.9, remember that EDC requires essentially an estimation mech-
anism that minimizes the over-estimation of the small paths. For ADC and HDC this
characteristic is of minor importance. The most important feature for these criteria is to
work with a hybrid neighbors selection scheme.

To check the quality of the estimation of the small paths, we divide the whole range
of RTTs in the P2PSim data set into equal bins of 50 ms each. For each bin, figure 8.11
gives a description of the over-estimations experienced by the bin’s paths: figure 8.11(a)
shows the percentage of bin’s paths that are over-estimated and figure 8.11(b) shows the
average of the |REE| observed for bin’s paths that are over-estimated.

In figure 8.11(a), we see that, with Two-Tier Vivaldi applied with hybrid neighbors
(resp. randomly selected neighbors), less small paths are over-estimated than with Vivaldi
applied with hybrid neighbors (resp. randomly selected neighbors). However, Two-Tier
Vivaldi applied with randomly selected neighbors over-estimates more small paths than
Vivaldi applied with hybrid neighbors. In figure 8.11(b), we see that the over-estimated
small paths are less over-estimated with Two-Tier Vivaldi applied with hybrid neighbors
(resp. randomly selected neighbors) than with Vivaldi applied with hybrid neighbors
(resp. randomly selected neighbors).
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Figure 8.11: Over-estimations of the paths obtained with the Two-Tier Vivaldi.

In the light of these observations, we conclude that using the Two-Tier Vivaldi esti-
mations (computed with hybrid neighbors) should give better detection results than using
Vivaldi estimations (computed with hybrid neighbors). We can also say that Two-Tier
Vivaldi estimations computed with randomly selected neighbors should not give good de-
tection results. These conclusions are at least valid for EDC. For ADC and HDC, it is
clear that Two-Tier Vivaldi applied with randomly selected neighbors is not suitable due
to its neighbors selection scheme. On the point of the neighbors selection scheme, Two-
Tier Vivaldi applied with hybrid neighbors and Vivaldi applied with hybrid neighbors are
tied. However, we should have a small improvement of the detection results when using
Two-Tier Vivaldi estimations since the quality of the estimations of the small paths is also
important.

8.3.2 Shortcut detection results

Since it is clear that Two-Tier Vivaldi applied with randomly selected neighbors is not
suitable for our shortcuts detection criteria, we will focus here on Two-Tier Vivaldi ap-
plied with hybrid neighbors. The detection results obtained with that estimation mech-
anism are illustrated in figure 8.12. As usually, the quality of the detection results is
expressed as the potential improvement remaining after the detection process for each
path. In other words, for each path (for which there exists at least one interesting short-
cut), we compute the difference between the gain provided by the best existing shortcut
and the gain provided by the best detected shortcut. The curves in figure 8.12 represent
the CDFs of these differences. Remember that the faster such CDF rises, the better it is
because it indicates that lots of paths have a small potential improvement remaining after
the detection process (i.e. we were able to detect the best shortcut or, at least, one of the
best shortcuts for lots of paths).

In figure 8.12(a), we see that EDC produces better detection results with Two-Tier
Vivaldi than with Vivaldi. The first observation is not encouraging because EDC applied
with Two-Tier Vivaldi and k = 50 does not produce significantly better results than EDC
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Figure 8.12: Difference of Gr between the best existing shortcut and the best detected shortcut
when the criteria are applied with estimations produced by a Two-Tier Vivaldi. These results have
been computed using the P2PSim data set.

applied Vivaldi and k = 50: the remaining potential improvement is smaller than 0.2
for 86% of the paths with the first one while it is smaller than that value for 82% of the
paths with the second one. However, we can also see that EDC applied with Two-Tier
Vivaldi and k = 10 produces almost the same detection results (in terms of quality) than
EDC applied with Vivaldi and k = 50. Thus, to reach the same level of quality, working
with Two-Tier Vivaldi requires to check with measurements five times less candidates
than when we work with Vivaldi. This is a significant improvement but HDC applied
with Vivaldi and k = 20 still provides better results than what we can obtain with EDC
applied with Two-Tier Vivaldi. Thus, HDC applied with Vivaldi and k = 20 remains our
reference point.

With ADC and HDC, we see respectively in figures 8.12(b) and 8.12(c) that the im-
provement obtained by replacing Vivaldi by Two-Tier Vivaldi is really small. Generally,
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when Vivaldi is replaced by Two-Tier Vivaldi, there a small improvement in terms of re-
maining potential improvement but it is smaller than 1%. This is due to fact that both
estimation mechanisms use a suitable neighbors selection scheme for the criteria and pro-
duce quite accurate estimations allowing to select the right node when ADC searches
C’s nearest node among A’s (resp. B’s) neighbors. For this search, accurate estimations
for the small paths may help. However, since Two-Tier Vivaldi (in the form used here)
only improves a small part of the paths (less than 12% of the paths), the impact of the
estimations accuracy improvement on the detection results obtained with ADC and HDC
appears finally negligible .

In conclusion, HDC applied with k = 20 is still our best detection criterion. Follow-
ing the results presented in figure 8.12(c), HDC can be applied either with Vivaldi, or with
Two-Tier Vivaldi. However, if more paths can be estimated as intra-cluster paths2 using
the Two-Tier Vivaldi, this estimation mechanism can potentially improve the estimation
accuracy of a large amount of paths compared to Vivaldi. In such conditions, the quality
of the detection results obtained using the Two-Tier Vivaldi estimations should be signif-
icantly better than the quality of the detection results obtained using Vivaldi estimations.

8.4 Conclusion
After two failed attempts3 at replacing Vivaldi by another estimation mechanism to im-
prove the shortcut detection results we propose Two-Tier Vivaldi. This estimation mech-
anism defines clusters of near nodes and runs a local Vivaldi system in each cluster. The
coordinates computed by such local Vivaldi can only be used to estimate intra-cluster
paths but, since the clusters have a limited diameter, the clusters only contain a small
number of TIVs and intra-cluster path estimations are more accurate than the estimations
obtained when all the nodes participate in the same Vivaldi. The local Vivaldi instances
form the lower layer of Two-Tier Vivaldi while the upper layer is composed of a Vi-
valdi where all the nodes participate (just like a classical Vivaldi) in order to be able to
estimate inter-cluster paths. Thus, Two-Tier Vivaldi is able to improve the accuracy of
intra-cluster paths (i.e. small paths) estimations without degrading the accuracy of long
paths estimations. Moreover, thanks to a particular neighbors selection scheme, Two-Tier
Vivaldi does not consume significantly more resources than Vivaldi: the only difference
is that the nodes have to exchange two coordinates (the local one and the global one) and
the ID of the cluster they belong to, instead of just one coordinate.

For the shortcut detection problem, replacing Vivaldi estimations by Two-Tier Vivaldi
estimations improves the detection results with EDC and slightly improves the detection
results with ADC and HDC. However, our tests have been performed with only three

2Such goal can be reached by defining more clusters than the three clusters we used for the results
we presented here. Following the observations presented in section 8.1, these three clusters are the only
natural major clusters obtained for the Vivaldi data set. Thus, estimating more paths as intra-cluster paths
seems difficult without considering overlapping clusters. To obtain such clusters, we can use the clustering
procedure presented in section 8.2.

3Non-linear transformations failed at improving the quality of the estimations and DMF improved the
accuracy of the estimations but did not work with the suitable neighbors selection scheme.
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clusters and the intra-cluster paths represent only 12% of the total number of paths. Thus,
if we consider the whole network, Two-Tier Vivaldi only improves the accuracy for a
small percentage of the total number of estimations and the impact of the improvement on
the detection results is obviously limited (particularly with ADC and HDC for which the
accuracy of the small paths estimations in not the most crucial point). However, defining
more clusters and authorizing the clusters to overlap may increase the percentage of paths
that can be estimated as intra-cluster paths and, thus, increase Two-Tier Vivaldi’s positive
impact.

All the results presented in this chapter have been obtained using manually built clus-
ters. In order to keep the self-organized and distributed Vivaldi’s important characteris-
tics we proposed a self-organized clustering scheme. We proposed two variants of the
algorithm and both variants have been shown to be effective, enjoying good clustering
performance, while achieving a good trade-off between scalability and convergence time.

Finally, even with Two-Tier Vivaldi, HDC applied with k = 20 remains our best
shortcuts detection criterion. With that criterion, the results obtained with a basic imple-
mentation of Two-Tier Vivaldi (without overlapping clusters) are similar to those obtained
with a classical Vivaldi.
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Chapter 9

Future Work

Abstract
In this chapter, we will present some possibilities to improve or extend the work presented
in this thesis. Obviously, the main improvement for our estimation-based approach is to
find a way to reduce its communication cost. This problem will be discussed in section 9.1.
Then, in sections 9.2 and 9.3 we will discuss extensions of our work. these extensions are
respectively considering other metrics than delays and considering multihop shortcuts.
Finally, in section 9.4 we will discuss the possibility to replace RON’s peer-to-peer ap-
proach (overlay nodes are end-hosts) by an approach where nodes can also be routers.

9.1 Reducing the communication costs
In its current state, the main drawback of our approach is the communication cost. As
discussed previously, compared to a measurement-based approach, we reduce drastically
the measurement costs (O(n ×m) with m ≪ n instead of O(n2)) but our communica-
tion costs are still important. Indeed, even if they are O(n2) instead of O(n3), O(n2) is
not really scalable. Finding a way to reduce these communication costs would be a big
advantage for our estimation-based approach. During this thesis, we have not extensively
studied this problem but we will discuss some elements in the current section.

9.1.1 Ensuring the knowledge of every coordinate for every node

In the current version of our routing shortcut detection mechanism, we consider that each
node A must know the coordinate of every node in the overlay in order to be able to
estimate AC and CB for any destination B and any potential shortcut C. To obtain such
result, after an update of its coordinate, each node sends its new coordinate to every nodes
in the overlay. It represents a permanent O(n) communication traffic per node. Thus, we
have a total communication cost that is O(n2).

If we want to keep the requirement stating that a node must permanently have a local
copy of the current coordinate of every overlay node, it seems difficult to do better than

159
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O(n2). Indeed, if each node must permanently get the coordinates of n − 1 other nodes,
then the incoming traffic at each node will obviously beO(n) and the total communication
cost will be O(n2). Thus, we will probably have to deal with a partial knowledge of the
coordinates.

9.1.2 Partial knowledge
Partial knowledge of the coordinates is not really a problem for our shortcut detection
mechanism. If a node A must search a shortcut between itself and a given destination B,
it just requires its own coordinate and B’s coordinate. If the coordinate of a given node C
is unknown, this node will simply not be considered as a potential shortcut. Thus, the only
consequence of a partial knowledge of the coordinates is that we may miss some shortcuts.
In fact, the most important is to ensure the knowledge of the coordinates of the nodes that
are potential shortcuts. For instance, a node A does not need the coordinate of a node C
that is far from him since this node will probably never be the most interesting shortcut for
any given path AB. Consequently, we can consider solutions like sending the coordinate
to the nearest neighbors of the node with these neighbors relaying the coordinate to their
own nearest neighbors, etc. Such solution can provide enough information to provide
good detection results with a communication cost smaller than the basic "everybody sends
its coordinate to everybody". Since we have not studied the impact of a partial knowledge
of the coordinates during this thesis, this remains hypothetical and should be investigated
as a future work.

9.1.3 Partial knowledge with the advantages of a full knowledge
In sections 9.1.1 and 9.1.2 we considered that the search of a shortcut for a given path AB
is done by the source of that path, i.e. A. Since that node has to do the search alone, it
has to know the coordinate of every1 node in the network in order to be able to decide, for
each node, if it is an interesting relay or not. But, the shortcut search for a given path AB
can be distributed among multiple computing nodes. If each C node is known by at least
one of these computing nodes, then computing nodes can deal with partial knowledge of
the coordinates without missing potential shortcuts.

Sontag et al. [77] proposed to do something similar to reduce RON’s communication
cost. Their approach allows each node to find an optimal one-hop path to any other node
with a communication cost O(n2×√n) instead of O(n3). To distribute the measurement
results among nodes, Sontag et al. propose to put the n nodes in a grid of size

√
n×√n

as indicated in figure 9.1. For the node in position (i, j), we define its rendezvous node
set as the set of all the nodes in row i and in column j. For instance, in figure 9.1, the
rendezvous node set for node 1 (resp. for node 9) is {2, 3, 4, 7} (resp. {3, 6, 7, 8}). This
way, every pair of node shares at least one rendezvous node. If every node sends its
measurements results to its rendezvous nodes, for every path AB, there exists at least one
rendezvous node that has the results of the measurements performed by A and the results
of the measurements performed by B. This rendezvous node is able to find a shortcut for

1Or, at least, it has to know the coordinate of as many nodes as possible.
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the path AB. For instance, in figure 9.1, node 3 and node 7 are both able to find a shortcut
for the path between node 1 and node 9. Thus, if every node sends its measurement
results to its rendezvous nodes (the total number of messages is O(n×√n) with a O(n)
message size) and if a node sends a request to all its rendezvous nodes when it wants to
find a shortcut towards a given destination, the system is able to find the best shortcut for
any given path AB.

1 2 3

4 5 6

7 8 9

Figure 9.1: Communication cost reduction with the approach proposed in [77]. Example of grid
for 9 nodes.

We can do something similar with an estimation-based approach. Indeed, if each node
sends its coordinate to its rendezvous nodes, we generate a communication traffic that is
O(n × √n). Since, for a given path AB, the coordinate of each C node is known by at
least one A’s rendezvous node, we can imagine the following mechanism. When a node
A wants a shortcut towards a destination B, A measures RTT (A,B) (as indicated in line
1 of algorithm 3 page 87) and gets B’s coordinate simultaneously. Then, it gives these
information to its rendezvous nodes and it asks them their k best candidates (among the C
nodes they know) for the path AB. Thus, A receives k candidates from each rendezvous
node and it can rank these candidates with respect to the estimated gain they provide.
Node A keeps the k best candidates and checks them through measurements in order to
find the best shortcut among them. This way, the result should be exactly the same as the
result obtained using algorithm 3 but our communication costs are O(n×√n) instead of
O(n2). Testing such an approach is also a future work.

9.2 Considering more metrics than the RTT
In this thesis we focused only on the RTT as path performance indicator. Thus, we are
able to find routing shortcuts with respect to RTTs but not with respect to other metrics.
Considering only RTTs is sufficient for lots of applications (e.g. Voice over IP, online
video games, etc.) but, for other applications, the RTT is an important metric but not the
only one. For instance, a video-conference application requires simultaneously small de-
lays and large bandwidth. Thus, for such applications, just focusing on RTTs to describe
the performance of a given path is not sufficient.

At the beginning of the thesis, coordinate systems were limited to delay estimations
and estimating other metrics was always announced as a future work. Thus, limiting
our work to RTTs was a natural choice. Today, things are different and some estimation
mechanisms like DMF [41] and Sequoia [71] have been recently proposed to provide
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bandwidth estimations. Analysing the characteristics of these estimations2 in order to find
a way to use them to detect routing shortcuts with respect to other metrics is a possible
extension of the work presented in this thesis.

However, before doing this analysis, the first thing to do is to establish if searching
shortcuts with respect to a given metric is relevant or not. Indeed, if we consider the
RTTs, the performance of a given path is the sum of the delays experienced on that path.
Thus, modifying the path followed by the packets inside the network changes the result
of the sum and, finding a path providing better performance than the default Internet path
is possible. Consider now the bandwidth as performance indicator. The performance
of a given path is the minimum available bandwith experienced on links used by that
path. But, nowadays, bandwidth bottlenecks are generally customers’ Internet access
link. In such situation, using a relay node to modify the Internet path does not improve
the performance. Indeed, even if the path in the Internet is modified, the customer still
uses its Internet access link and the minimum available bandwith remains the same. In
conclusion, searching routing shortcuts with respect to any given metric will not always
be relevant.

9.3 Extending to multihop routing shortcuts

We have already said in chapter 2 that previous studies (e.g. [51]) concluded that limiting
alternative routes to one intermediate hop is sufficient to solve many performance failures.
Nevertheless, considering multihop shortcuts rather than only one-hop shortcuts can obvi-
ously improve the gains provided by the shortcuts. To quantify how big this improvement
is, for each path, we can compare the relative gain provided by the best shortcut, namely
Grbest, and the gain provided by the best one-hop shortcut, namely Grbest1hop. Consider-
ing every path for which there exists at least one shortcut, figure 9.2 gives the CDF of the
differences between these two values.

In figure 9.2, we see that considering multihop shortcuts provides better shortcuts than
when we consider only-hop shortcuts because the difference is not equal to zero for most
of the paths. However, in most cases, the improvement is not huge. For instance, the dif-
ference is bigger than 20%, for about 40% of the paths in P2PSim, about 30% of the paths
in Meridian and almost no path in Planetlab. Thus, for most of the paths, just considering
one-hop shortcuts can provide already a good delay improvement and considering multi-
hop shortcuts only allows us to improve slightly more the delays. Moreover, the delays
computed to build the curves presented in figure 9.2 just take into account the RTTs of
the paths composing the alternative paths. We did not consider the processing times in-
troduced by the relays. If a multihop alternative path uses, for instance, 5 relays to reach
the destination, the processing times would become important compared to a one-hop
shortcut and many multihop "shortcuts" can finally be detours.

2With delays, we have seen that simply replacing the measurements by Vivaldi estimations does not
work. We based our detection criteria on an analysis of the characteristics of the RTT estimations. There
could be similar problems with other metrics, and an analysis of their estimations should be necessary to be
able to find good shortcuts.
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Figure 9.2: Difference between the relative gain provided by the best shortcut and the relative gain
provided by the best one-hop shortcut for every path for which there exists at least one shortcut.

The reader should also notice that extending the shortcut search to multihop shortcuts
also increases the complexity of the shortcut search. Indeed, if we focus only on one-hop
shortcuts, when A wants to find a shortcut towards a given destination B, it has only to
consider a number of alternative paths which is O(n) (where n is the number of nodes in
the network). Considering multihop shortcuts will increase the computation costs and the
time before being able to provide an answer to the application that asked for a shortcut.
Since the improvement in quite small for most of the paths, the disavantages perceived by
the users can finally be bigger than the advantages.

9.4 Bringing the shortcut finder inside the network

In this thesis, we investigated the feasibility of an estimation-based overlay routing mech-
anism. We proposed some shortcut detection criteria using estimations as inputs and we
showed that these criteria can improve the delays for lots of paths in the Internet. These
criteria use the concept of overlay node: the nodes share information and a node is able
to decide if another node is a shortcut towards a given destination. In a basic view of the
problem, overlay nodes are end-hosts because deploying a new service on such nodes is
easy (the agreement of the ISPs is not required) and justifiable (the users generally have
benefits in taking part in the overlay network). Basically, our shortcut detection mech-
anism is a peer-to-peer mechanism: it has been designed to be deployed on end-hosts
between the applications and the TCP/IP stack.
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Even if considering that overlay nodes are only end-hosts is the easiest solution, other
approaches can provide better results. For instance, figure 9.3 shows that using routers
as overlay nodes should allow better shortcut findings. Indeed, in this example, the al-
ternative path ACB crosses two times the link between C ′ and C: one time to go from
C ′ to the relay C and, the other time, to come back from the relay to the network. In
such situation, using C ′ as relay provides a better alternative path than using C as relay.
However, C ′ is not an end-host and we must find a way to bring our shortcut detection
mechanism inside the network instead of doing all the operations at the network edge.

A

B

C

C’

Suboptimal !

Figure 9.3: Suboptimality of the P2P approach. With a P2P approach a relay C is an end-host.
Thus, C’s Internet access link is crossed two times (once in each direction). If the router C ′ is an
overlay node the alternative path AC ′B provides a smaller delay than the path ACB.

Since our detection criteria can be directly applied even if overlay nodes are not end-
hosts, the question is not to decide how we detect shortcuts. The problem is to know
how the system would work. With the P2P approach, answering this question was easy:
if A wants to send a packet to a given destination B, A searches a shortcut towards that
destination and A manages the indirect sending to the destination B through the relay
C. When nodes can also be routers, answering this question is more or less difficult
depending of the approach used.

The most simple approach to bring the shortcut detection mechanism inside the net-
work is to consider routers as normal overlay nodes: they compute their coordinates and
they share their coordinates with the other nodes. With such an approach there is no
difference compared to the P2P approach. Each node continues to perform its own short-
cut searches and it will simply have routers among the C nodes to consider as potential
shortcuts. The major drawback of this approach is the lack of incentives for the ISPs to
take part in the overlay. Indeed, even if Lumezanu et al. [49] have shown that there are
many cases where shortcuts do not violate routing policies, the ISPs have no control on
the shortcuts actually used with this approach. Moreover, this approach adds some com-
putation tasks to the routers (computing the coordinate, sharing the coordinate,. . . ) and
these additional tasks can have a bad impact on router performance.
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To avoid these drawbacks, another approach is to deploy a dedicated infrastructure for
the computation of router coordinates (to reduce their computation load) and to let this
infrastrucure manage the shortcut searches (to allow the ISPs to keep the control on the
shortcuts used). Basically, each ISP can deploy a Coordinate Server (CS in short) and
this CS computes the coordinates of the ISP routers. Thus, when they receive a request
from the CS, the routers just have to perform measurements towards their neighbors and
to return the measurement results to the CS. To allow ISPs to select the best shortcuts
without violating the routing policies, CSes are also responsible for the shortcut searches.
Thus, the end-hosts are not responsible for the shortcut searches any longer and the short-
cut search process becomes more complicated. A possible shortcut search process is
described in figure 9.4. When an ISP edge-router A receives a packet that must be routed
using the shortest path with respect to delays, it requests a shortcut for that packet to its
CS. If the CS finds a shortcut, it returns the information to A. Then, A sends the packet
to the shortcut and the shortcut forwards the packet to its destination.

Even if the shortcut search process described in figure 9.4 seems feasible and more
efficient than the P2P approach, there are some problems for which we have currently
no solution (or only simple and inefficient solutions). Answering the following questions
(and others that will probably appear with further investigations) is a future work:

How can A discover if a given packet must be routed through a shortcut? A first so-
lution is to add a flag in the packet (TOS byte, DSCP byte) to indicate if the packet
is delay sensitive or not. This flag can be activated by the application generating
the packet (thus, by A1 in figure 9.4). To have a complete transparency for the end-
hosts, another solution is to analyse the traffic at the edge-routers to differentiate
delay sensitive traffic from normal traffic.

For which path does CSA search a shortcut? When A requests a shortcut, it is for the
path between itself and B1. But B1 is not an overlay node and has no coordinate. In
figure 9.4, we consider that CSB, i.e. the CS of B1’s ISP, is able to propose one of
its overlay node to represent B1. However, having only information about B1, we
do not actually know how to find node B.

What happens if A1’s (resp. B1’s) ISP does not participate in the overlay? The most
efficient solution is to allow A1 (resp. B1) to take part in the overlay using the
P2P approach: A1 (resp. B1) will compute its coordinate and will search its own
shortcuts. From CS viewpoints, A1 (resp. B1) will appear as being simultaneously
a CS and an overlay node but it should not be a problem.

What about node addresses? With a P2P approach, nodes were end-hosts. Thus, each
node had generally only one IP address and there was no problem. If nodes are
routers, things are different. Indeed, a router has multiple addresses and each ad-
dress can be used to send data to the router. As shown in figure 9.5(a), depending
of the address used to reach a router, the path followed can be different. Thus, mea-
surement results can be different and conclusions about shortcuts can be different.
For instance, in figure 9.5(a), if R1 uses 1.1.3.1 to reach R2 and, if R1’s routing
table indicates that R3 is the next hop for 1.1.3.0/24, then measurements between
R1 and R2 are measurements of the path R1R3R2 and R2 can never be perceived
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Figure 9.4: Possible shortcut search process with nodes inside the network. When an ISP’s
edge-router receives a packet that must be routed through a shortcut, it sends a request to its CS
to obtain a shortcut for the packet’s destination, and it is responsible for the management of the
indirect routing through the shortcut.
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as a shortcut for the path R1R3. On the other hand, if R1 uses 1.1.2.2 to reach
R2, then measurements between R1 and R2 are measurements of the direct path
between these nodes and R2 can potentially be considered as a shortcut for the path
R1R3. To avoid such problem, a simple solution is proposed in figure 9.5(b). It sim-
ply consists in attaching a virtual /30 network3 to every router and to address each
router using its virtual interface. For instance, in figure 9.5(b), we have added an
interface to R2 with 1.1.255.1 as address. Since 1.1.255.0/30 can only be reached
through R2 we are sure that the packets will cross R2 to reach that destination.
Thus, from any source in the network, packets will follow the shortest path to R2

to reach 1.1.255.1 and our problem is solved. However, that solution "uselessly"
consumes IP addresses and it should be possible to find a more convenient way to
solve that problem.
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(a) Problem
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(b) Simple Solution

Figure 9.5: Problems with nodes’ addresses. Figure 9.5(a) shows that, depending of the address
used, different paths to reach a same node can be used. In order to solve the problem, figure 9.5(b)
proposes to add virtual interfaces to the nodes and to use these interfaces to address packets to the
nodes.

9.5 Conclusion
In this chapter, we investigated four big potential improvements for the work presented
in this thesis: finding a way to reduce the communication costs, considering other met-
rics than the RTTs, extending the shortcuts search to multi-hops shortcuts and, finally,
replacing the classical peer-to-peer approach by an intra-network approach. These are, in
our mind, the four most important improvements/extensions for our work. But that list
is not exhaustive and some other elements can be investigated. For instance, we should
consider the concept of mutual advantage proposed by Lumezanu et al. [51, 48] in order
to improve the incentive for the nodes to take part in the overlay.

3If it does not generate routing problems, we can even use /31 virtual networks for this purpose.
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Finally, future work can also include detection tests with other detection criteria and/or
other estimation mechanisms. In this thesis, we performed tests with some detection
criteria (EDC, ADC, HDC, SDC, etc.) and some estimation mechanisms (Vivaldi, DMF
and Two-Tier Vivaldi, each time with different neighbors selection schemes). Our best
detection results have been obtained using Vivaldi (or Two-Tier Vivaldi) with HDC and
k = 20. These results allow us to conclude that finding shortcuts using an estimation-
based detection mechanism is feasible but these results can potentially be improved by
using other detection criteria and/or estimation mechanisms.



Chapter 10

Conclusion

In this thesis, our main goal was to investigate the feasibility of an estimation-based ap-
proach of overlay routing to replace RON’s unscalable measurement-based approach. We
showed that, for any given path AB, using only the RTT of that path and the information
available in an ICS (namely, Vivaldi), it is possible to select a small set of nodes con-
taining very likely an interesting one-hop shortcut (but not necessarily the best one) when
shortcuts exist for that path. We obtained the best results with our shortcut detection crite-
rion called HDC. With that criterion we are able to limit the number of potential shortcuts
for any given path AB to about one or two percents of the total number of nodes in the
network. So, to improve significantly the latency between A and B, we will only have
to perform measurements between A, B and these few candidate nodes to know if they
are really shortcuts and which of them is the best shortcut. These results are encourag-
ing and it should be possible to obtain better detection results with a fine tuning of the
parameters or even with other estimation-based detection criteria and/or other estimation
mechanisms.

The estimation-based approach proposed in this thesis is significantly more scalable
than RON’s measurement-based approach. RON’s solution has a global measurement cost
which is O(n2) and a global communication cost which is O(n3) where n is the number
of nodes participating to the overlay. With our estimation-based approach, these costs be-
come respectivelyO(n×m) andO(n2) wherem is the number of neighbors used by each
node to compute its Vivaldi coordinate (m≪ n). Even if our estimation-based approach
is more scalable than a measurement-based approach, its communication cost can still be
problematic at very large scale. Even if this problem has not been deeply investigated in
the thesis, we have already proposed some solutions to reduce the communication cost.
For instance, with a solution similar to what is proposed by Sontag et al. in [77], it should
be possible to reduce the communication cost to O(n×√n) without any loss of accuracy
for the shorcut detection. Nevertheless, finding and testing a solution to reduce the com-
munication cost is still required in order to obtain a routing shortcut detection mechanism
which is really scalable.

Compared to a measurement-based approach, we are aware that our estimation-based
approach has several shortcomings. The main problem is that we have no guarantee to find
the best shortcut for any given path in the network. However, our tests have shown that,
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even if we cannot always detect the best shortcut, we are able to significantly reduce the
RTT for most of the paths AB. The second problem is that we have less reactivity to de-
lay changes than with a measurement-based approach. Indeed, with an estimation-based
approach, when delays change, it is necessary to wait a small time period before the esti-
mations reflect these new delays. However, such small problems seem to be the price to
pay to obtain a scalable overlay routing mechanism because none of RON’s improvements
proposed over years is able to reduce the costs of overlay routing as our estimation-based
approach does.

Trying to detect routing shortcuts with an estimation-based mechanism and doing ex-
periments with different estimation mechanisms and different detection criteria was the
main part of our work but not the only one. In the first part of our work we extensively
studied shortcuts/TIVs in the Internet and their impact on Vivaldi. The first observation
was that larger triangles are more likely (severe) TIVs, with respect to the distribution of
RTTs in the Internet. In the light of this observation, we proposed a Two-Tier architec-
ture to mitigate the impact of TIVs on the estimations. This architecture is based on a
clustering of the nodes. Within their cluster, nodes use more accurate local coordinates to
predict intra-cluster distances, and keep using global coordinates when predicting longer
distances towards nodes belonging to foreign clusters. Using Vivaldi, we have shown
that estimations of intra-clusters distances are significantly better with the Two-Tier ar-
chitecture than with a classical flat architecture. It is worth noticing that although we
focused on Vivaldi for measurements and experimentations, the Two-Tier architecture we
proposed is independent from the embedding protocol used. Our proposed method would
then be general enough to be applied in the context of coordinates computed by Internet
coordinate systems other than Vivaldi.

A second observation done during our study of shortcuts/TIVs is that they have a real
impact on Vivaldi. We observed that TIV bases are generally underestimated and that
they have usually a small REE variance. Following that, we clusterized the REE variance
of node pairs using GMMs and ARMA models. We obtained satisfactory results with up
to 85% of TIV bases detected, while suspecting non-TIV bases in rare situations. Using
machine learning techniques, an even more discriminative variable to establish whether a
given path is a TIV base or not could be found. This variable, named OREE, combines
information about estimation error and REE variance in order to provide an answer for a
given path AB. However, even if these TIV base detection techniques have a very high
probability of success, they also require a monitoring of the path AB over a quite long
period of time before providing an answer for that path. Thus, it is impossible to use these
detection techniques in order to know if it is useful or not to check every potential relay
node C for a given path AB (i.e. as a first step for a general shortcut detection process).
Nevertheless, such TIV base detection techniques can be useful in specific situations as,
for instance, managing Vivaldi’s neighbors in order to avoid the use of TIV bases as
neighboring links.

The main part of the results presented in this thesis were based on Vivaldi. Due to its
properties, this estimation mechanism seemed to be the best choice at the beginning of
our work. However, some solutions to allow estimation mechanisms to deal with TIVs
have been proposed after we had made this initial choice. We considered two of these so-
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lutions. The first one was proposed to allow Vivaldi to provide accurate estimations even
in case of shortcut/TIV. The idea was to apply non-linear transformations to the delays
before trying to embed them in the metric space. Unlike what was stated by the designers
of this solution, it is not the miracle solution to TIV problems. Indeed, in order to remove
all TIVs, we observed that it is necesary to apply very strong non-linear transformations.
Even if the transformed delays obtained this way can potentially be accurately estimated,
small estimation errors are unavoidable with Vivaldi. Moreover, even if the estimation
errors on transformed delays are small, they become very large once the reverse strong
non-linear transformation is applied in order to obtain estimations of the original delays.
Thus, estimation errors are finally bigger than what we obtain without transformation.
Even if non-linear transformations are not the miracle solution to allow Vivaldi to deal
with TIVs, we observed that applying small transformations allows, in some cases, to
slightly improve the estimation accuracy compared to a classical approach of Vivaldi. We
also considered an estimation mechanism, named DMF, that has been developed to natu-
rally deal with TIVs. We observed that DMF is able to provide more accurate estimations
than Vivaldi. Nevertheless, we also observed that the DMF estimations have less suitable
properties than Vivaldi estimations for our shortcut detection criteria. Thus, DMF did not
allow us to improve our shortcut detection results.

In conclusion, the work presented in this thesis is a first step towards a scalable
estimation-based one-hop routing shortcut detection mechanism. Even if we showed that
detecting shortcuts using estimations instead of measurements is feasible, some work is
still required to obtain a scalable solution which is fully operational (essentially finding a
way to reduce the communication cost). Working on some potential improvements for the
estimation-based approach should also be very rewarding: considering other metrics than
delays, considering multihop paths, etc. However, even if there is still a lot of work on the
subject, stopping our work somewhere is mandatory. The current state of our work seems
suitable for this purpose because it already provides an answer to our initial question.
Indeed, we are convinced that the estimation-based approach is a promising approach for
overlay routing that provides a good trade-off between scalability and quality of the de-
tection results. We hope that the results presented in this thesis have also convinced the
reader.
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List of abbreviations

ADC Approximation Detection Criterion
AEE Absolute Estimation Error
AEE (X, Y ) AEE computed for the path XY
ALS Alternating Least Squares
ARE Average Relative Error
ARE (X) ARE computed for node X
ARMA AutoRegressive Moving Average
AS Autonomous System
BBS Big-Bang Simulation
BGP Border Gateway Protocol
CDF Cumulative Distribution Function
CS Coordinate Server
DMF Decentralized Matrix Factorization
DMFSGD Decentralized Matrix Factorization by Stochastic Gradient Descent
ED Estimated Delays (matrix)
EDC Estimation Detection Criterion
EGa Estimated Absolute Gain (provided by a TIV)
EGr Estimated Relative Gain (provided by a TIV)
EGP Exterior Gateway Protocol
ERTT (X, Y ) Approximation used by the shortcut detector for the path XY
EST (X, Y ) Estimation provided by the ICS for the path XY
FPR False Positive Rate
Ga Absolute gain (provided by a TIV)
Gr Relative gain (provided by a TIV)
GC Global Coordinate
GMM Gaussian Mixture Model
GNP Global Network Positioning
HDC Hybrid Detection Criterion
ICS Internet Coordinate System
IDES Internet Distance Estimation Service
IGP Interior Gateway Protocol
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174 LIST OF ABBREVIATIONS

ISP Internet Service Provider
ITPR Interesting True Positive Rate
LC Local Coordinate
MD Measured Delays (matrix)
NMF Non-Negative Matrix Factorization
NPS Network Positioning System
P2P Peer-to-Peer
PIC Practical Internet Coordinates
RDC Random Detection Criterion
OREE Oscillation and Relative Estimation Error
QoS Quality of Service
REE Relative Estimation Error
REE (X, Y ) REE computed for the path XY
ROC Receiver Operating Characteristic
RON Resilient Overlay Network
RTT Round Trip Time
RTT (X, Y ) RTT measured for the path XY
SDC Simple Detection Criterion
SGD Stochastic Gradient Descent
SVD Singular Value Decomposition
TED Transformed Estimated Delays (matrix)
TIV Triangle Inequality Violation
TMD Transformed Measured Delays (matrix)
TPR True Positive Rate
VoIP Voice over IP
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