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Résumé

Le recours systématique a des simulations fluides tridimensionnelles Navier-Stokes étant
trop exigeant en phase de conception de turbomachines, la simulation méridienne, bidimen-
sionnelle, plus simple et plus rapide, est utilisée de maniére intensive a I’échelle industrielle.
Cependant, sa limitation réside dans son besoin en information empirique pour reproduire
I’action des aubes et l'effet des composantes tridimensionnelles de ’écoulement, des élé-
ments d’ordre supérieur au méridien classique. Nous proposons de diriger le méridien vers
une diminution d’empirisme en obtenant cette information de maniére autonome.

L’obtention d’information d’ordre circonférentiel peut étre envisagée en résolvant toutes
le composantes de I’écoulement avec un code purement tridimensionnel ou en s’accommo-
dant d’une solution approchée avec un coiit numérique moindre, optique choisie dans cette
contribution. Pour ce faire, nous proposons d’étendre au cas circonférentiel la “méthode
harmonique non-linéaire” de He, éprouvée dans le cas de la reproduction approchée des
instationnarités.

L’adaptation de cette technique au modéle méridien passe par une reformulation de
la présence des aubages. En effet, I'usage de séries de Fourier nécessite une évolution cir-
conférentielle continue de I’écoulement, interdisant l'existence des conditions numériques
locales d’imperméabilité. Pour contourner cette particularité du cas circonférentiel, 1’ef-
fet des aubes est traduit par un champ de force suffisamment continu et formalisé par la
“méthode de frontiére immergée” de Peskin.

La validation de la nouvelle technique, issue de la combinaison novatrice des méthodes
harmonique et de frontiére immergée au sein d’'un code méridien, est réalisée sur le cas de
I’écoulement non-visqueux autour d’un cylindre. Elle illustre les capacités du méridien har-
monique a accéder a des informations d’ordre supérieur, qui permettent d’enrichir 1’écou-
lement moyen mais aussi de mettre a disposition les évolutions circonférentielles issues des
modes de Fourier résolus.

Enfin, le méridien harmonique est appliqué & un profil d’aube statorique puis & un
compresseur mono-étage. Il y est montré qu’aprés adaptation de la modélisation des parois
aux particularités géométriques de profils minces, il est possible d’accéder a I'information
d’ordre élevé. En particulier, le modeéle développé permet de capturer les caractéristiques
potentielles des non-uniformités circonférentielles sur l'entiéreté de la veine et visqueuses
aux abords des parois méridiennes.
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Introduction

La conception aérodynamique de composants de turbomachines est aujourd’hui prin-
cipalement basée sur l'usage de la CFD (Computational Fluid Dynamics). Grace a 1'aug-
mentation constante de la puissance de calcul ainsi qu’a ’amélioration des techniques de
résolution (robustesse, rapidité, précision), une procédure de design basée sur la simula-
tion numérique est devenue nettement moins cotiteuse que des campagnes expérimentales
systématiques. Il est aujourd’hui possible de résoudre des écoulements instationnaires tri-
dimensionnels en turbomachines multi-étages. Toutefois, I'innovation technologique des
conceptions aérodynamiques (traitement des écoulements secondaires, quantification de la
marge au pompage, optimisation des conceptions, interactions fluide-structure) et la com-
plexité des problémes numériques associés (précision recherchée, taille des problémes, simu-
lation multi-étages, recours a la simulation instationnaire) nécessitent encore aujourd’hui
des temps de restitution trop importants pour un usage intensif de codes tridimensionnels
instationnaires, ou méme stationnaires, en phase de conception. L’usage de codes de calcul
simplifiés plus rapides, résolvant un écoulement moyen, est dés lors nécessaire pour les
premiéres étapes de la conception d’un composant. Ces outils requiérent néanmoins des
informations d’ordre empirique, lesquelles peuvent étre fournies par une campagne d’essais
qui permet de valider les codes de calcul. Parmi ceux-ci, le code méridien (ou throughflow)
occupe une place importante.

Le méridien classique

La simulation méridienne consiste en la résolution dans un plan (le plan méridien),
d’un écoulement moyenné selon la circonférence de la machine. Son utilisation premiére
se situe dans une chaine de conception, ot il permet un accés rapide aux caractéristiques
principales de I’écoulement, aidant ainsi le concepteur a faire des choix quant & la géométrie
de la machine, sur base de performances souhaitées. D’autres applications peuvent aussi lui
étre attribuées : I'exploitation de résultats expérimentaux, la création d’un environnement
multi-étage pour une simulation tridimensionnelle d’une roue particuliére ou encore une
estimation des conditions de pompage.

Néanmoins, le prix a payer pour bénéficier d’un temps de calcul réduit par rapport a une
simulation tridimensionnelle est de recourir & un certain nombre d’informations empiriques,
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au travers de corrélations de pertes, obtenues sur base de résultats de campagnes d’essais
sur différentes géométries. Le probléme majeur de cette formulation est son manque de gé-
néralité. En effet, si ces corrélations sont acceptables pour des géométries bien connues et
des conditions de fonctionnement déterminées, le besoin d’une modélisation plus générale
apparait en cas de géométrie innovante ou de fonctionnement particulier (hors fonction-
nement nominal par exemple). C’est dans cette optique que Adameczyk [1, 2| a développé
une cascade de moyennes qui ménent au modeéle le plus général en turbomachines.

La cascade d’Adamczyk

Dans un esprit de formalisation des différents niveaux de modélisation en CFD et de
caractérisation de 'empirisme associé a chacun, Adamczyk a dérivé de maniére rigoureuse
un systéme d’équations obtenu par une cascade de trois moyennes : la moyenne d’ensemble
appliquée aux équations de Navier-Stokes tridimensionnelles turbulentes instationnaires, la
moyenne temporelle appliquée aux équations RANS (Reynolds Averaged Navier-Stokes) et
la moyenne apériodique appliquée aux équations stationnaires pour finalement obtenir le
systéme d’équations du canal moyenné (SECM). Ce dernier lie I’écoulement instationnaire
et turbulent d’un ensemble de roues aubées a un écoulement stationnaire dans un canal
inter-aubes. Ce modéle représente une unification et une généralisation de tous les modéles
existant précédemment, chacun d’entre eux étant un cas particulier du SECM, par la suite
d’hypothéses diverses. Du fait de la non-linéarité des équations, le processus de moyenne fait
apparaitre, a chaque étape de la cascade, des termes supplémentaires qu’il faut modéliser,
ce qui consiste a résoudre le probléme de la fermeture du systéme. La premiére moyenne
ameéne les tensions de Reynolds, la deuxiéme les tensions dites déterministes et la derniére
les tensions apériodiques. Ces termes supplémentaires témoignent respectivement de ’effet
moyen de la turbulence, de Iinstationnarité (interactions entre roues mobiles I'une par
rapport a l'autre) et de l'apériodicité entre canaux inter-aubes (interactions entre roues
immobiles 1'une par rapport a 'autre mais possédant un nombre d’aubes différent) sur le
SECM.

A ces moyennes, on peut ajouter une quatriéme : la moyenne circonférentielle. Cette
derniére méne au systéme d’équations méridien. De maniére identique, des termes supplé-
mentaires apparaissent : les tensions circonférentielles. Celles-ci représentent 1’effet moyen
sur le modéle méridien des non-uniformités azimutales. A ces tensions s’ajoutent des termes
reprenant les effets moyens des aubes. Tous ces termes additionnels requiérent une modé-
lisation externe.

Le concept de simulation d’ordre élevé

Par cet ensemble de moyennes, et par la hiérarchisation correspondante des niveaux
de modélisation, Adamczyk dresse un état des besoins en apports externes d’information
de chaque niveau de la cascade pour capturer un effet moyen des phénoménes qui ne sont



réellement simulables que par le niveau supérieur. Par exemple, pour qu'un modéle mé-
ridien soit capable de reproduire l'effet moyen des non-uniformités circonférentielles qui
apparaissent naturellement dans un modéle tridimensionnel stationnaire, plusieurs auteurs
(dont Sehra [131], Jennions [74], Simon [136]) ont montré qu'il est nécessaire de lui ad-
joindre les tensions circonférentielles, lesquelles traduisent notamment des effets physiques
tels que le mélange radial ou les tourbillons de bout d’aube. Ces apports externes d’infor-
mation peuvent étre d’ordre empirique ou, dans un objectif de généralité, provenir d’une
modélisation nouvelle capable de fournir une information d’un ordre supérieur correspon-
dant & la machine et aux conditions de fonctionnement étudiées. C’est dans cette optique
que le travail présenté ici s’inscrit.

Ce probléme de fermeture (i.e. de modélisation des termes d’ordre élevé), se pose égale-
ment en simulation tridimensionnelle stationnaire pour obtenir une image moyenne des ins-
tationnarités, autrement dit des interactions rotor-stator. Ceci a fait I’objet de nombreuses
recherches ces derniéres années. Parmi tous les modéles, la fermeture dite “harmonique” de
He et Ning [61] s’est révélée supérieure. Cette méthode consiste en la résolution, dans le
domaine fréquentiel, d'un systéme d’équations linéarisées aux perturbations. Sa capacité a
reconstruire les tensions déterministes, et méme une partie de I’écoulement instationnaire,
a été illustrée par plusieurs auteurs (Chen [23], Stridh [143], Vilmin [164]). Dans la méme
lignée, Hall [60] a développé une technique qu’il nomme “I’équilibre harmonique” (ou har-
monic balance technique), qui consiste a résoudre les équations RANS non-linéaires dans
le domaine fréquentiel.

Notre travail

Nous proposons dans cette contribution d’analyser et de développer la possibilité d’af-
franchir la simulation méridienne d’une part de I'empirisme qui lui est associé au travers
de I'obtention autonome des tensions circonférentielles, termes d’ordre supérieur, par I’ex-
tension d’une méthode de résolution harmonique, ayant prouvé son efficacité dans le cas
tridimensionnel stationnaire, au cas spatial circonférentiel. A cette fin, le travail sera orga-
nisé de la maniére suivante.

Dans le premier chapitre, nous détaillerons la cascade d’Adamczyk et la physique liée
aux termes supplémentaires apparaissant en son sein. Nous exprimerons le point de vue de
plusieurs auteurs quant a l'intérét de ces termes supplémentaires et illustrerons ces dires
dans le cas du CME2, un compresseur mono-étage basse vitesse, cas qui nous suivra tout
au long de cette contribution.

Le deuxieme chapitre, avec en ligne de mire I'utilisation d’une méthode spectrale pour
reconstruire les tensions circonférentielles, aura pour but de prouver qu’une reconstruction
harmonique est adaptée a la modélisation des non-uniformités considérées. L’étude des
caractéristiques fréquentielles du CME2 permettra d’établir de premiéres différences entre
les cas circonférentiel et déterministe.
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Le troisiéme chapitre sera consacré a la description de la méthode harmonique non-
linéaire de He et Ning [61], qui a prouvé son efficacité a reproduire une information d’ordre
supérieur au sein d'un code tridimensionnel stationnaire. Nous y envisagerons la possibilité
d’appliquer celle-ci au cas du modéle méridien et soulignerons la différence fondamentale
entre les cas circonférentiel et déterministe : la présence de conditions limites d’ordre su-
périeur au sein du domaine de calcul.

Le quatriéme chapitre apportera une solution a la problématique des conditions limites
témoignant de la présence de 'obstacle solide dans le domaine de résolution. Cette solution
est le recours a la méthode de frontiére immergée (“Immersed Boundary Method”), qui
reformule la présence d’un solide dans un écoulement. Nous présenterons cette méthode de
maniére historique et générique en en soulignant les différentes formes résultant d’évolutions
proposées par plusieurs auteurs.

Le cinquiéme chapitre sera consacré a ’application mathématique de la philosophie de
He au cas circonférentiel. Nous y détaillerons la dérivation des systémes moyen et auxiliaire.
Le premier sera établi sous forme non-linéaire tandis que le deuxiéme sera présenté dans un
formalisme linéarisé permettant sa résolution dans le domaine fréquentiel. Les différentes
approximations relatives a l’approche harmonique seront soulignées.

Le sixieme chapitre détaillera les aspects numériques de I'implémentation de la méthode
harmonique développée. Nous y présenterons d’abord le formalisme du code volumes-finis
initial. Nous aborderons ensuite les différents aspects numériques de la fonctionnalité har-
monique ajoutée. Nous terminerons en exposant les caractéristiques numériques de la mé-
thode de frontiére immergée dans un contexte volumes-finis harmonique.

Le septieme chapitre constituera ’étape de validation du méridien harmonique et re-
latera I’étude de ses différentes propriétés au travers du cas de ’écoulement non-visqueux
autour d’une cascade de cylindres. Nous y critiquerons 1'utilisation de la méthode de fron-
tiere immergée dans un contexte fréquentiel et établirons les conditions idéales d’utilisation
de la méthode développée. Nous montrerons la capacité du code implémenté a fournir les
termes d’ordre supérieur et l'utilité de ceux-ci dans le cas test pré-cité.

Le dernier chapitre sera dédié a I'application du méridien harmonique au cas du com-
presseur CME2. Nous y montrerons que ce genre de configuration aérodynamique constitue
un domaine délicat d’utilisation de la méthode développée, ne satisfaisant pas aux condi-
tions idéales présentées. Nous apporterons deux modifications en vue de permettre 'usage
de la méthode pour ce genre d’application. Nous illustrerons ensuite, sur un cas d’écou-
lement non-visqueux autour d’un profil d’aube statorique puis sur ’étage de compresseur
complet, que le méridien harmonique fournit une image réaliste de I’écoulement et donne
accés aux termes d’ordre supérieur.

Enfin, nous conclurons le travail en synthétisant les points marquants et discuterons la
méthode développée dans cette contribution.



Chapitre 1

Origine et effet des tensions
circonférentielles

Sommaire
1.1 Lacascade d’Adamczyk . . . . . . ... ... ..., 6
1.1.1 La moyenne circonférentielle . . . . . . . . .. .. ... ... ... 9
1.2 Physique liée aux tensions circonférentielles . .. .. ... .. 12
1.2.1 Meécanismes de création des tensions circonférentielles . . . . . . 12
1.2.2  Fermetures empiriques . . . . . . . . . ... 14
1.3 Le méridien d’ordre élevé . . . . . . . ... ... oo 15
1.3.1 Présentationducastest . . . .. ... ... ... ... ...... 16
1.3.2 L’écoulement moyenné . . . . . . .. .. ... 18
1.3.3 Simulation méridienne . . . . . .. .. ... ... L. 22

Une procédure de conception aérodynamique d’'un composant de turbomachine est
aujourd’hui principalement basée sur 'outil numérique. En effet, grace a I’augmentation
constante de la puissance de calcul ainsi qu’au développement des techniques de résolution
numérique, le recours a la CFD (Computational Fluid Dynamics) est devenu, d’une part,
moins cotiteux en temps que les tests en soufflerie et, d’autre part, d’'une qualité de descrip-
tion de I’écoulement suffisante pour permettre I'innovation technologique. Ainsi, une chaine
d’outils numériques met a disposition du concepteur des codes de calculs allant du plus
simple et rapide au plus complet. Une simulation unidimensionnelle permet par exemple, en
des temps de calcul trés faibles (quelques secondes), de déterminer une évolution moyenne
de la veine (i.e. du chemin d’écoulement du fluide). Il est ainsi possible de fixer le nombre
d’étages nécessaire au composant pour se conformer aux performances requises, c’est-a-
dire de faire des choix rapides dans une phase précoce du projet. Les outils de simulation
bidimensionnels arrivent ensuite. Ils donnent acces aux évolutions transversales de 1’écou-
lement et permettent une analyse plus fine, avec un temps de restitution raisonnable pour
une utilisation intensive (quelques secondes a quelques minutes). Ces outils permettent au
concepteur d’aller plus avant dans la compréhension et le design du composant, en mo-
difiant la géométrie des pales par exemple. Les étapes suivantes consistent & recourir aux
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simulations tridimensionnelles stationnaires, voire instationnaires. Ces outils étant carac-
térisés par des temps de restitution plus importants (quelques heures a quelques jours), ils
sont utilisés en fin de chaine, pour analyser des phénoménes locaux comme les écoulements
en bout d’aube, vérifier la conception ou quantifier les marges de stabilité notamment.

Chacun de ces outils de simulation est donc caractérisé par un temps de restitution
et un niveau de description de ’écoulement. L’empirisme est présent dans chacun d’eux,
dans des mesures différentes. Des modéles résultant de l'expérience et de 1’observation
sont ajoutés dans ces codes de calcul pour en améliorer le niveau de conformation a la
physique, en minimisant 'impact sur le temps de calcul. Il est cependant trés important,
pour 'utilisateur ou le développeur, de savoir quelles hypothéses peuvent étre faites pour
aboutir a l'outil. C’est dans cette optique de caractérisation du niveau d’empirisme et
de liaison entre les modéles et la physique que Adamczyk [1] a développé le Systéme
d’Equations du Canal Moyenné (SECM), résultant d’une suite de moyennes. Ces différentes
moyennes, dont résultent notamment les tensions circonférentielles, composent la cascade
dite d’Adamczyk, que nous allons présenter dans la section suivante.

Nous dédierons la suite du chapitre aux tensions circonférentielles. Dans un premier
temps, nous présenterons la physique associée a celles-ci par des conclusions et résultats
tirés de la littérature. Dans un deuxiéme temps, nous introduirons le cas test utilisé pour
illustrer les affirmations précédentes; un compresseur basse vitesse mono-étage. Il sera
aussi repris dans le chapitre suivant pour investiguer la nature harmonique des tensions
circonférentielles.

1.1 La cascade d’Adamczyk

La cascade d’Adamczyk est représentée a la figure 1.1.

Au sommet de cette cascade se trouve le systéme d’équations tridimensionnelles ins-
tationnaires et turbulentes de Navier-Stokes. Il s’agit de la description la plus précise du
comportement d'un fluide, au sein d’une turbomachine notamment, et aussi la plus com-
plexe. Ce systéme est impossible a solutionner en écoulements internes tant les gammes
d’échelles de longueurs et de temps sont larges. Pour les résoudre entiérement, il faudrait
une densité de maillage par unité de volume proportionnelle au nombre de Reynolds élevé
a la puissance 9/4 [86]. Or un nombre de Reynolds caractéristique d’un écoulement en
turbomachine est de I'ordre d’un million. Ceci justifie 'utilisation de modéles simplifiés
résultant de moyennes. De ce fait, le besoin en puissance de calcul diminue tandis que le
besoin en modélisation augmente, comme nous allons le voir.

Ainsi, le modéle suivant est le systéme d’équations de Navier-Stokes auquel une moyenne
de Reynolds a été appliquée!. Elle consiste en une moyenne statistique, sur un nombre

1. Nous ne reproduisons pas ici les développements mathématiques, ils peuvent étre trouvés dans le
document original d’Adamczyk [2].
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Navier-Stokes turbulent
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Navier-Stokes moyenné | Tensions de Reynolds
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. . . Tensions déterministes

Navier-Stokes stationnaire
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circonférentiellement ) X
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FIGURE 1.1 — Cascade d’Adamczyk 2]

important d’échantillons, c¢’est-a-dire sur de multiples révolutions pour une machine tour-
nante. Son implication est le filtrage des phénomeénes non déterministes, comme la tur-
bulence. On obtient ainsi un systéme d’équations tridimensionnelles instationnaires (les
phénomeénes déterministes sont toujours présents) augmenté de certains termes supplé-
mentaires, les tensions de Reynolds, dont la signification physique est I'influence moyenne
de la turbulence. Ces tensions résultent de la moyenne opérée sur des termes non-linéaires.

En effet, si Pon définit, de maniére générale, la moyenne? d’une variable ¢ sur un
intervalle € par I'expression (1.1)

/Q 40

et si 'on définit la moyenne de Favre d’une variable ¢ comme une moyenne pondéree par
la masse volumique p par l'expression (1.2)

2. Les expressions (1.1) et (1.2) utilisent 'intégration dans un souci de généralité. Dans le cas de la
moyenne de Reynolds toutefois, 'opération est discréte et utilise donc une sommation.
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[ pan

g=Jo (12)

/de
Q

et les perturbations correspondantes

¢ =0—9 " =0—¢ (1.3)

alors la moyenne d’un triple produit incluant la masse volumique, comme en comprennent
les équations de Navier-Stokes, fait apparaitre, outre les composantes moyennes, des termes
supplémentaires.

pop = @ +  pey (1.4)

termes moyens  termes additionnels

Si les termes moyens peuvent étre calculés explicitement par la résolution du systéme
moyen, leurs homologues additionnels, constituant une information d’'un ordre supérieur,
sont inaccessibles et doivent étre modélisés. C’est a ce niveau qu’intervient l’empirisme.
Ainsi, dans le cas d’'une moyenne de Reynolds, ces termes portent le nom de tensions de
Reynolds et traduisent I'influence moyenne de la turbulence. Ils sont introduits dans une
simulation instationnaire déterministe par la résolution d’un modeéle de turbulence.

Le niveau suivant repris a la figure 1.1 est un systéme d’équations tridimensionnelles
stationnaires, résultant d’une moyenne temporelle. Celle-ci est équivalente a un filtrage
des roues aubées mobiles par rapport a la roue d’intérét, a l'origine des instationnarités.
Par le méme mécanisme, certains termes additionnels apparaissent. Parmi ceux-ci figurent
les tensions déterministes qui traduisent 'influence moyenne de l'instationnarité sur un
écoulement stationnaire. D’autres termes, qui traduisent ’effet moyen des roues filtrées,
découlent de la moyenne. Il s’agit de la force des aubes composant la roue mobile et des
termes d’énergie. Ils proviennent, physiquement, de I'action de la pression, des tensions de
cisaillement et des flux de chaleur sur les aubes des roues mobiles.

Le modéle obtenu décrit un écoulement tridimensionnel apériodique de canaux inter-
aubes en canaux inter-aubes. Pour obtenir un écoulement périodique, une troisiéme moyenne
est opérée. Elle consiste a filtrer les roues immobiles autres que la roue considérée. Comme
précédemment, des termes supplémentaires apparaissent : les tensions apériodiques, la
force des aubes et des termes sources d’énergie résultant de 'influence moyenne des roues
immobiles.
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Le modéle ainsi obtenu relie I’écoulement instationnaire et turbulent dans une machine
multi-étages a I’écoulement stationnaire au sein d’un canal inter-aubes, il s’agit du SECM
(Systéme d’Equations du Canal Moyenné). Il existe autant de systémes que de roues. Pour
chacune d’elles, un seul canal doit étre explicitement calculé, I'influence des autres roues
apparaissant au travers des termes additionnels apparus au cours des différentes moyennes.

Enfin, on peut ajouter une quatriéme opération de moyenne : la moyenne circonféren-
tielle. Celle-ci méne au systéme d’équation méridien, qui décrit un écoulement stationnaire
axisymétrique et qui constitue notre domaine d’'intérét. Pour cette raison, nous allons dé-
crire de maniére plus compléte ce dernier opérateur de moyenne.

1.1.1 La moyenne circonférentielle

La derniére moyenne consiste en un filtrage des non-uniformités azimutales dues a la
roue considérée elle-méme, génératrice de ces non-uniformités. La moyenne circonférentielle
consiste en une intégration de 1’écoulement de l'intrados d’une aube a l'extrados de l'aube
suivante, comme représenté a la figure 1.2, ou z est la direction axiale de la machine et 6
la direction azimutale.

FIGURE 1.2 — Domaine circonférentiel [136]

La moyenne d’une variable ¢ est définie par l'expression (1.5), o A représente la
portion de la circonférence d’un passage inter-aubes.

¢

1 S
A_Q/p ¢ do (1.5)

Définissant ensuite le facteur de blocage b comme le rapport de la portion de circonfé-
rence occupée par le fluide & la circonférence totale, la relation (1.6) est obtenue.
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I T
= 5— do .
o=y 0 (1.6

Selon cette définition et utilisant la régle de Leibnitz, la relation (1.7), exprimant la
moyenne de la dérivée d’une certaine variable ¢ de I’écoulement par rapport a une variable
spatiale s, est obtenue.

0p 10bp 1 { 007°
- (1.7
ds b 0Os %b ds |,
Comme précédemment, la moyenne de Favre est introduite
/ ppdf

/pd@
p

Utilisant ces relations, le systéme d’équations méridien est finalement obtenu et décrit
par les équations de conservation de la masse (1.9), de la quantité de mouvement (1.10)
et de I’énergie (1.11), ou les indices i et j reprennent les composantes et directions axiale,
azimutale et radiale. Ces équations mettent également en jeu les composantes de vitesse V;,
la pression statique p, les tensions visqueuses 7;;, 'enthalpie totale H et les flux de chaleur
qi-

1065V, 1 orbpV.,
b Ox rb  Or

10b <ﬁViVx +D 5m'> . 1 orb <ﬁV%Vr +D 5m'> _10b7, . 1 orbr
b oz rb or b Ox N Ib or e
Tor —PVoVe o DVoVo+p —Too

+ 591 + 57"i
T _r
1 abpv;// Vx// 1 8rpri”Vr”

b Oz rb or

~

perturbations
e AVa/AVa/ e \Va/AVel
PVe'V, PVo Ve

- . Opi + Ori

perturbations

+ Toi +  fui
N N

non-visqueux  visqueux
A o

(1.10)

Vv
force des aubes
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100pV,H 1 ortpV,H 1P (EV} —qT;) L1 Orb (W‘Z‘ —qT)
B rb

b Oz rb  Or b ox or
LObpVTH" 1 OrbpV/ H”
T3 0 b o
pertu;brations
L 1TV 1oy
b Ox rb  Or
pertu;lgations
+ e+ ey (1.11)
N~~~ ~~

non-visqueux  visqueux
7

NV
termes sources d’énergie

ou d;; est la fonction delta de Kronecker et ou les indices i et j représentent les 3 compo-
santes spatiales (7,0, ).

Les termes additionnels sont, cette fois, les tensions circonférentielles qui traduisent
I'effet moyen des non-uniformités azimutales sur ’écoulement moyen, la force des aubes
(parties visqueuse et non-visqueuse) et les termes sources d’énergie (parties visqueuse et
non-visqueuse) associés a la roue considérée elle-méme. Ainsi, dans le systéme méridien,
toutes les roues aubées de la machine multi-étages apparaissent sous forme d’un effet moyen,
elles sont assimilées a des roues dites fantomes et sont donc toutes équivalentes d’un point
de vue mathématique. De ce fait, il n’existe qu'un systéme d’équations méridiennes, le
méme pour toutes les roues, contrairement au SECM.

Les termes de perturbations présents dans les équations (1.10) et (1.11) peuvent étre
vus comme trés génériques. Méme s’ils ont été obtenus ici par ’application d’'une moyenne
circonférentielle et témoignent donc des effets non-uniformes azimutalement, ils ont ce-
pendant la méme forme que les termes de perturbations apparus au cours des moyennes
précédentes de la cascade d’Adamczyk. Ainsi, on peut assimiler ces termes a l'influence
moyenne de la turbulence, des roues mobiles, des roues statiques et de la roue considérée
sur un écoulement stationnaire axisymétrique. Il en est de méme pour la force des aubes
et les termes source d’énergie.

S’il est vu de cette maniére, ce systéme est d’une généralité et d’une rigueur totales. En
effet, aucune hypothése n’a été faite. Ce systéme ne contient cependant pas suffisamment
d’information pour étre résolu de maniére autonome, il s’agit d’'un systéme ouvert. Le
probléme de la fermeture consiste a apporter de l'information supplémentaire, de quelle
que maniére que ce soit, afin d’obtenir une solution. Pour ce faire, il est d’usage de poser
des hypothéses simplificatrices. C’est par ces hypothéses, qui peuvent étre de natures trés
différentes, que des modéles différents vont apparaitre. Néanmoins, dans tous les cas, ils
découlent de la cascade d’Adamczyk, qui constitue le modéle le plus général dans le domaine
des turbomachines.
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Dans la suite, nous concentrerons notre exposé sur le modéle méridien et 'influence des
non-uniformités circonférentielles uniquement. Ainsi, nous omettrons tout effet turbulent 3,
instationnaire ou apériodique. Cela revient a dire que nous ne considérons que les deux
derniers étages de la figure 1.1.

1.2 Physique liée aux tensions circonférentielles

Les tensions circonférentielles résultent, comme nous l’avons décrit, du processus de
moyenne d’un systéme non-linéaire caractérisé par un écoulement non-uniforme azimuta-
lement. La figure 1.3 présente la décomposition de I’écoulement en une partie moyenne et
une partie fluctuante dans le plan (z,0), soit le plan aube-a-aube. La section suivante est
consacrée a la description des mécanismes physiques créateurs de non-uniformité spatiale.

u(x,r)

u(z,r,0) u'(z,r,0)

0

L.

FIGURE 1.3 — Fluctuations spatiales

1.2.1 Meécanismes de création des tensions circonférentielles

Comme la cascade d’Adamczyk I’a montré, tout phénomeéne ne répondant pas a I'hy-
pothése d’axisymétrie perturbe 1’écoulement moyen au travers des termes additionnels que
sont les tensions circonférentielles. Il est possible de scinder les mécanismes de création en
deux catégories : bidimensionnels et tridimensionnnels.

Dans la premiére catégorie, Baralon [9] cite certains des points suivants :

e [’¢épaisseur de I'aube : une aube, méme alignée avec I’écoulement et sans cambrure,
génére un champ de pression non-uniforme.

3. En réalité, nous introduirons une part de cet effet puisque nous utiliserons un modéle de turbulence.
Cependant, il ne s’agit bien que d’une partie de cet effet puisque la turbulence sera déterminée sur base
d’un écoulement stationnaire axisymétrique.
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e [’angle de calage : I'angle que fait ’aube avec la direction axiale, est, s’il est différent
de I'angle de I’écoulement, lui aussi a 1’origine de perturbations.

e La cambrure de 'aube : une aube courbe va inévitablement modifier I’écoulement et
ce, de maniére non-uniforme.

e Les chocs : les chocs apparaissant dans les passages inter-aubes sont généralement
normaux a la direction de I’écoulement. Ainsi, pour une configuration d’aube non-
alignée avec 1’écoulement, un choc apparaitra comme non-uniforme azimutalement.

e Le sillage : lors de son parcours le long des parois de 'aube, le fluide développe des
couches limites visqueuses, a ’origine de perturbations. Celles-ci se propagent ensuite
hors de la zone aubée pour former un sillage, une zone de basse énergie.

Ces phénomeénes bidimensionnels peuvent étre observés dans la partie dite saine d’un
écoulement autour d’une aube, c’est-a-dire dans la partie située a mi-distance des parois
de la veine (i.e du carter et du moyeu), dans une zone ou I’écoulement est principalement
situé dans le plan aube-a-aube.

La deuxieme catégorie, par contre, apparait par la présence des parois de la veine,
qui générent des écoulements plus complexes, que 'on appelle généralement écoulements
secondaires. Ces phénomeénes locaux sont nommés ainsi parce qu’ils n’agissent pas dans
la direction axiale, la direction de I’écoulement principal. Ils ne sont pas souhaités mais
apparaissent notamment par la présence de parois. Une autre vision de ces écoulements
secondaires est possible. En effet, selon I'approche d’Adamczyk, tout ce qui n’est pas iden-
tifiable par une simulation moyenne, ou un écoulement moyen axisymétrique, c’est-a-dire
tout ce qui n’appartient pas a 1’écoulement principal, est une information d’ordre supé-
rieur. Autrement dit, Adamczyk nous indique que ces écoulements secondaires sont la
traduction physique des tensions circonférentielles apparues mathématiquement. Certains
de ces phénomeénes secondaires sont présentés ci-dessous, faisant clairement apparaitre une
non-uniformité circonférentielle.

La figure 1.4 décrit les phénomeénes secondaires apparaissant classiquement en tur-
bomachines. Parmi ceux-ci on peut citer les tourbillons de coin au moyeu et au carter,
I’écoulement existant dans le jeu entre le bout de pale et le carter, le tourbillon en fer a
cheval qui remonte la pale coté extrados. Selon Adkins et Smith [5], Pamplitude de ces
écoulements secondaires est proportionnelle au taux de chargement de la machine et le
taux de pénétration dans 1’écoulement principal de ces phénoménes secondaires est pro-
portionnel a ’écart inter-aubes. Or la tendance actuelle est a 'augmentation de ces deux-ci
(Hiernaux et al [68]). Il en découle que les composants aérodynamiques futurs présenteront
un haut degré de non-uniformité. Il est donc important de s’atteler a leur prise en compte.

Ces écoulements secondaires géneérent des perturbations de vitesse dont la structure est
complexe. Leur modélisation en simulation méridienne en est donc rendue difficile, ce qui
en fait un sujet de recherche particuliérement riche.
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FIGURE 1.4 — Ecoulements secondaires [136]

1.2.2 Fermetures empiriques

Comme nous I'avons vu au travers des équations (1.9) a (1.11), le modeéle méridien
comporte des termes d’un ordre qui lui est supérieur, autrement dit des termes inconnus.
Sous I’hypothése que ces termes peuvent étre connus avec exactitude, le systéme d’équa-
tions présenté décrit le modéle méridien le plus complet, prenant en compte tous les effets
secondaires. La détermination de ces inconnues constitue la fermeture du systéme. Celle-ci
est généralement résolue partiellement et de maniére empirique.

Ainsi, pour obtenir une solution représentative, il est nécessaire de déterminer la force
des aubes (parties visqueuse et non-visqueuse), les termes sources d’énergie (parties vis-
queuse et non-visqueuse) et les produits de fluctuations. Dans un méridien classique, les
tensions circonférentielles telles qu’apparaissant dans les équations (1.10) et (1.11) sont
négligées. Elles sont en réalité réintroduites indirectement au moyen de modéles censés
reproduire les phénoménes physiques a 'origine de celles-ci.

En méridien classique, la force des aubes est déduite de corrélations. Celles-ci ont été
élaborées sur base de résultats d’essais. De tels résultats sont notamment détaillés par
Cetin et al [20]. Ces corrélations ont pour but de reproduire les pertes et les déviations*
correspondant aux pales étudiées. Ainsi, ils relient ces pertes® aux caractéristiques géomé-
triques des aubes et aux conditions d’écoulement en amont de celles-ci. Sur base de ces
informations, la force des aubes (parties visqueuse et non-visqueuse) est déduite par résolu-
tion d’une équation supplémentaire (Bardoux [10], Simon [136]). Ces pertes sont d’origine
bidimensionnelle. Ainsi, elles ne prennent en compte que 1’écoulement en zone dite saine.

4. La déviation est ’écart entre la direction du fluide et I'aube & la sortie du passage inter-aubes.
5. Dans la suite, le terme “perte” inclut aussi bien les pertes visqueuses que les déviations puisque ces
derniéres constituent un manque a gagner en terme de travail des aubes.
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Pour compléter la physique, des corrélations déterminant des pertes dites tridimension-
nelles sont inclues afin de déterminer 'influence des écoulements secondaires apparaissant
dans les zones proches des parois (Roberts et al [124]-[125]). Cet ensemble de corréla-
tions doit donc déterminer la force des aubes résultant de mécanismes bidimensionnels et
tridimensionnels.

Cette force des aubes apparait au sein des équations sous forme de termes sources
appliqués uniquement au droit des pales. Les phénoménes de pertes et de redistribution
radiale de celles-ci s’étendent cependant & toute la zone fluide. Ainsi, il est nécessaire de
rajouter, au travers de modéles, l'effet de phénomeénes négligés. Un effet majeur est le
mélange radial. Il consiste en une redistribution des pertes générées principalement dans
les régions proches des parois vers la zone saine qu’est la région intermédiaire. La prise
en compte de ce phénomeéne est particuliérement importante dans les machines multi-
étages ol une redistribution radiale des pertes permet aux derniers étages de ne pas subir
d’accumulation de pertes aux parois et donc des gradients trop importants, leur permettant
ainsi de fonctionner correctement. Sa formulation est donc essentielle pour une bonne
prédiction des performances réelles d’'un composant aérodynamique. Plusieurs auteurs se
sont concentrés sur sa modélisation, formulant différentes hypothéses, certains le voyant
comme un phénomeéne résultant d’un gradient de pression radial (Adkins et Smith [5]),
d’autres comme un phénoméne de diffusion analogue a la diffusion turbulente (Gallimore
et Cumpsty [39]-[40]).

Le point commun entre tous ces modéles est qu’ils reposent sur une analyse empirique
de phénoménes physiques observés sur certaines configurations de machines. Ils résultent
tous d’hypothéses et manquent tous de généralité. Ce que nous proposons dans la suite
est de suivre I'approche d’Adamczyk en introduisant la force des aubes et les tensions
circonférentielles en tant qu’étres mathématiques traduisant fidélement les phénomeénes
physiques.

1.3 Le méridien d’ordre élevé

Dans cette section, nous allons considérer un méridien d’ordre élevé, c’est-a-dire ne
comportant plus de fermeture empirique, comme dans le méridien classique, mais bien une
fermeture répondant au formalisme d’Adamczyk, en considérant explicitement les tensions
circonférentielles.

Au cours des derniéres décennies, plusieurs auteurs ont investigué I’existence de termes
traduisant les effets tridimensionnels moyens. Un des premiers auteurs a en parler est Smith
[139] lors de la formulation de 'équation d’équilibre radial en turbomachines. Il les traite de
maniére approximative en supposant une évolution linéaire des grandeurs de 1’écoulement
dans la direction circonférentielle. Il finit par conclure qu’elles sont d’un ordre d’importance
faible, en tout cas en fonctionnement nominal de la machine.
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Sehra et Kerrebrock [131] analysent I'importance des tensions circonférentielles, qu’ils
appellent tensions apparentes, sur la prédiction de I’écoulement moyen. Ils utilisent un code
de calcul bidimensionnel résolvant 1’écoulement dans le plan aube-a-aube pour déterminer
les non-uniformités azimutales qu’ils utilisent ensuite dans un code méridien. Ils arrivent a
la conclusion que la prise en compte de ces termes est importante pour prédire correctement
les profils radiaux de ’écoulement, notamment de ’entropie.

Jennions |74] montre que la prise en compte des non-uniformités circonférentielles est
nécessaire pour assurer la consistance entre un calcul aube-a-aube et un méridien, pour la
qualité de prédiction de son code et pour la capture des gradients radiaux de pression. Par
une comparaison des amplitudes des différents termes de 1’équilibre radial, il montre aussi
que les perturbations peuvent étre du méme ordre de grandeur que les autres termes, a
I’exception de la force des aubes. Il situe I'effet des perturbations principalement dans les
régions proches des parois.

Perrin [116] montre que les tensions circonférentielles sont méme plus importantes que
les tensions visqueuses, excepté aux parois ou elles sont du méme ordre. Il montre aussi
que les tensions circonférentielles sont trés importantes dans 1’équation radiale et qu’elles
sont & 'origine du gradient de pression radial, et donc du mélange dans cette direction.

Baralon [9], quant a lui, a examiné les différentes composantes du tenseur circonféren-
tiel et les a rapprochées des phénomeénes secondaires apparaissant aux parois, mentionnés
précédemment.

Récemment, Simon [136] a extrait les tensions circonférentielles sur base d’une simula-
tion tridimensionnelle pour ensuite les inclure dans une simulation méridienne. Par 14, il a
montré que leffet moyen des écoulements secondaires comme le décrochage de coin (voir
figure 1.4) ou encore le mélange radial étaient trés bien reproduits par ces termes.

Dans la suite, nous allons reprendre cette derniére philosophie. Nous allons présenter
les résultats d'une simulation® tridimensionnelle d'un étage de compresseur. A partir de
ce résultat, les tensions circonférentielles seront extraites. Elles seront ensuite introduites
dans un code de calcul résolvant les équations (1.9) a (1.11).

1.3.1 Présentation du cas test

Le cas test est une simulation recourant a la technique du plan de mélange. Celle-ci
consiste a ne transférer d’une roue a 'autre que I’écoulement moyenné selon la direction
azimutale. Cette moyenne est effectuée a l'interface des deux roues, soit le plan de mélange,
négligeant donc toute interaction instationnaire entre roues ”. La comparaison entre la solu-

6. Pour cette simulation, nous utilisons un code de calcul commercial. La simulation méridienne sera
quant & elle effectuée par notre code de calcul.

7. Selon le formalisme d’Adamczyk, cela signifie que les tensions déterministes sont omises. En faisant
cela, la comparaison de 1’écoulement dans le plan aube-a-aube avec sa moyenne donnera les tensions
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tion 3D et sa moyenne circonférentielle fournira deés lors les seules tensions circonférentielles
associées a chacune des roues.

Les performances globales de ce compresseur sont reprises au tableau 1.1. Y figurent
également les performances correspondant a un point de fonctionnement proche du point de
rendement maximum, & 90% du débit nominal, caractérisé¢ par un degré de non-uniformité
circonférentiel plus important.

Conditions nominales Cas test

Expérimental | CFD 3D | CFD 3D
Débit |kg/s] 11 11 9,9
Rapport de pressions 1,14 1,14 1,16
Rendement 0,92 0,909 0,921

TABLE 1.1 — Performances globales du compresseur CME2

Une vue méridienne du domaine de calcul est représentée a la figure 1.5. Le jeu de bout
de pale rotorique équivaut a 0,5 % de la hauteur de veine.

Rotor Stator

L.

T
FIGURE 1.5 — Vue méridienne du domaine de calcul

Le maillage dans le plan aube-a-aube & mi-hauteur de veine est représenté a la figure
1.6. Il est composé d’un million de points par roue. Un maillage de peau en O est utilisé
autour des aubes pour un meilleur contréle du stretching dans la direction normale a la
paroi. La taille de la premiére cellule de peau est telle que sa grandeur adimensionnelle y*
soit inférieure & I'unité pour capturer de maniére précise la couche limite visqueuse.

Le code de simulation tridimensionnelle travaille sur maillage structuré. Pour notre
application, les équations “Reynolds-Averaged Navier-Stokes” (RANS) stationnaires sont
considérées. La méthode numérique est basée sur une intégration temporelle explicite et
sur une approche volumes finis de type “cell-centered”.

Le modéle de turbulence de Baldwin-Lomax [8] a été retenu pour cette simulation
tridimensionnelle pour des raisons de compatibilité avec notre code méridien puisque ce
modeéle y est aussi implémenté.

circonférentielles associées & chaque roue uniquement.
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FIGURE 1.6 — Maillage dans le plan aube-a-aube a mi-hauteur de veine

1.3.2 L’écoulement moyenné

Nous allons, dans ce qui suit, présenter I’évolution moyenne de 1’écoulement le long de
la veine, ainsi que le niveau de non-uniformité. Les moyennes circonférentielles effectuées
sont conformes aux expressions (1.6) et (1.8) présentées antérieurement.

En pratique, un maillage méridien est généré avec une densité plus importante aux
bords d’attaque et de fuite des aubes pour capturer les évolutions rapides de I’écoulement
dans ces régions. Le maillage est aussi densifié aux parois de la veine. La figure 1.7 montre
le maillage résultant.

BRI
[T

FIGURE 1.7 — Maillage méridien

Des arcs de cercle sont ensuite générés, pour chaque nceud, par une extrusion azimu-
tale. Les grandeurs de ’écoulement correspondant a la simulation tridimensionnelle sont
ensuite interpolées trilinéairement sur ces nceuds. La moyenne circonférentielle est alors
effectuée sur ces arcs par la régle du trapéze, les perturbations étant ensuite déduites et
éventuellement moyennées.

Attachons-nous a présent & I’analyse du degré de non-uniformité au sein de cet écoule-
ment. Pour ce faire, il est nécessaire de définir un indicateur de cette non-uniformité. On a
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recours, pour cela, a I’énergie cinétique moyenne des perturbations azimutales, définie en
(1.12), qui contient la trace du tenseur circonférentiel.

PVIVE 4+ pVIVy 4 pVIVE

k= —
2p

(1.12)

L’évolution de cette énergie cinétique est présentée a la figure 1.8 en pourcentage de
I’énergie cinétique totale locale de I'écoulement.

I15.

FIGURE 1.8 — Champ d’énergie cinétique moyenne des perturbations & en pourcentage de
I’énergie cinétique totale locale de I’écoulement

Considérons d’abord I’évolution de I’énergie cinétique & mi-hauteur de veine, ou les
non-uniformités sont principalement d’origine bidimensionnelle. Cette évolution est reprise
a la figure 1.9 (gauche).

4ebt

2ebt

3ebt |
lebt 3

00560 0.5 000 085wl

FIGURE 1.9 — Evolutions axiales & mi-hauteur de veine de 1’énergie cinétique moyenne des
perturbations (gauche) et de la composante tangentielle non-visqueuse de la force (droite)

Premiérement, un pic d’énergie cinétique est localisé au bord d’attaque du rotor (repéré
par la premiére ligne discontinue sur la figure). Cette augmentation d’énergie cinétique, qui
débute avant le bord d’attaque, est un effet purement potentiel (i.e. non-visqueux) da au
contournement de 1’aube.

Deuxiémement, la zone située aprés le bord d’attaque est encore riche en non-uniformités.
Celles-ci proviennent du chargement de ’aube, principalement situé dans cette région
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comme en témoigne la figure 1.9 (droite) qui reprend I’évolution de la composante tan-
gentielle non-visqueuse de la force (fiy).

Les perturbations sur la seconde partie de I'aube sont principalement la conséquence
de phénomeénes visqueux. En effet, le chargement de I’aube est moindre dans cette zone et
les couches limites se développent sur les parois de 'aube. Les perturbations augmentent
ensuite jusqu’au bord de fuite (repéré par la deuxiéme ligne discontinue sur la figure) en
méme temps que 1’épaisseur des couches limites.

Au bord de fuite, un second pic est observé. Il est di a la réorganisation locale des
écoulements provenant des deux cotés de I'aube. Cette réorganisation de ’écoulement est
suivie par une dissipation visqueuse et un sillage.

Notons également que la position du plan de mélange est aisément identifiable par
I’absence de non-uniformité circonférentielle.

Intéressons-nous a présent aux régions pariétales, ou se situent les plus hauts niveaux
de non-uniformité. Les perturbations les plus importantes se rencontrent dans le jeu de
bout de pale au niveau de la roue rotorique, le rapport d’énergie cinétique y excédant les
15 %. Ceci est a mettre en relation avec le tourbillon de bout de pale qui se développe a
proximité du bord d’attaque. Ceci est illustré par la figure 1.10 qui reprend le module de
la vorticité en deux plans aube-a-aube, I'un & 2,5 % de la hauteur de veine, l'autre a 97,5

%.

Ce tourbillon de bout de pale impacte 'intrados de l'aube suivante puis se diffuse.
Ce phénomeéne, combiné avec la couche limite au carter, génére 'entropie illustrée a la
figure 1.10 (milieu). La région du moyeu implique moins de pertes suite a 1’épaississement
progressif de la couche limite.

Les non-uniformités dans les zones pariétales du stator sont de moindre importance.
Elles sont la simple conséquence de la couche limite, excepté prés du moyeu, dans la région
du bord de fuite, ot un décrochage de coin semble naitre, comme la figure 1.10 (bas)
le montre. Notons que la modélisation du moyeu est simplifiée puisqu’aucun jeu n’y est
considéré.

A ce point, nous venons d’établir le lien entre les phénoménes physiques a 1'origine
de non-uniformités et les termes mathématiques que sont les tensions circonférentielles.
Dans ce qui suit, nous allons montrer qu’en impliquant ces termes mathématiques addi-
tionnels dans un code de calcul méridien, ses capacités de reproduction de la physique sont
clairement améliorées.
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FIGURE 1.10 — Module de la vorticité dans les régions pariétales du rotor (haut), entropie
dans des plans axiaux de la zone rotorique (milieu) et entropie dans des plans axiaux de
la zone statorique (bas).
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1.3.3 Simulation méridienne

Dans les codes méridiens classiques, les termes de perturbation apparaissant aux équa-
tions (1.10) et (1.11) sont négligés, leur effet étant en partie pris en compte par les cor-
rélations et modeles physiques. Nous allons montrer ici quelle est leur influence. Pour ces
simulations, aucune corrélation de perte ou de déviation ne sera utilisée, puisqu’elles com-
portent une certaine part, inconnue, des tensions circonférentielles résultant de la moyenne
azimutale réalisée sur les résultats expérimentaux, dont les corrélations sont tirées. Ceci
implique que tous les termes additionnels des équations (1.10) et (1.11) doivent étre ex-
traits de la simulation réalisée, c’est-a-dire la force des aubes, les termes sources d’énergie
et les tensions circonférentielles. En pratique, ceci signifie que la pression et les tensions
visqueuses agissant sur 'aube sont extraites en plus des non-uniformités circonférentielles.
La formulation de la composante azimutale de la force des aubes est décrite par I’expression
ci-apres. Les expressions des autres composantes sont reprises a ’annexe A.

N-1 N-1 s
o 1 pis - 1 00 00 Too
Joo = Z 27h [ r] ’ Joo = Z 27h [ T09r ~ o * r

n=0 P n=0 p

La résolution numérique est basée sur une méthode volumes-finis & maille centrée a
laquelle est associée une intégration temporelle explicite. Le modéle de turbulence utilisé
est celui de Baldwin-Lomax [8]. Les conditions limites a l'entrée et le débit massique sont
imposées aux valeurs reprises au tableau 1.1 vu précédemment.

Avant d’exposer les résultats, quelques mots sont nécessaires pour décrire le modéle
de jeu de bout de pale que nous avons implémenté dans le code méridien. Afin d’étre
compatible avec un solveur 3D et de reproduire la physique assez complexe de ’écoulement
au sein du jeu, une fonctionnalité doit étre ajoutée au code.

Considérer une simple zone libre d’aube est inapproprié. Ceci est dii au niveau im-
portant d’interaction entre la couche limite et la structure fortement tridimensionnelle de
I’écoulement dans cette région. Ce besoin en modélisation ne va pas a ’encontre de notre
volonté de réduire I’empirisme au sein du code. Le modéle de jeu est générique. Ce n’est
pas non plus le signe d’une incapacité des tensions circonférentielles a reproduire des effets
tridimensionnels, comme les résultas en attesteront. La source de ce besoin d'un modéle de
jeu est plutot a trouver dans la structure complexe de tensions de cisaillement dans cette
région. En réalité, les seuls effets visqueux pris en compte dans le méridien proviennent des
parois des aubes au travers de la composante visqueuse de la force f, et des couches limites
au moyeu et au carter, ce qui est une hypothése communément admise en turbomachine.
Le modéle de jeu de bout de pale est basé sur les considérations suivantes.

Le champ de pression dans le jeu n’est pas trés différent de celui rencontré en bout de
pale, comme cela a été expérimenté par Dring [36] sur un compresseur basse vitesse a 2
étages. Il est aussi connu que la pression varie peu a travers la couche limite visqueuse. Pour
ces raisons, il devrait exister un mécanisme capable de maintenir un champ de pression
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réaliste et de reproduire le transport de ’écoulement de bout de pale dans sa direction de
rotation. La conclusion de ces observations est qu’une force tangentielle doit exister dans
le jeu et peut étre basée sur une extrapolation constante de la pression du bout de pale
vers le carter.

La figure 1.11 illustre les évolutions axiales & mi-hauteur de veine du nombre de Mach
absolu (1.13) et de l'entropie (1.14).

M = (1.13)
\/7R’f
§=C, In(T) — R In(P) (1.14)

Ces évolutions proviennent de quatre simulations :

1) tridimensionnelle de référence moyennée par la masse volumique,
2) méridienne augmentée des termes non-visqueux de force des aubes et d’énergie (fy,ep),

3) méridienne augmentée des termes visqueux et non-visqueux de force des aubes et d’éner-
gle (fb?f’l)?eb76v)a

4) meéridienne incluant tous les termes additionnels, y compris les tensions circonférentielles

(fb,fv,eb,ev, pVi”Vj”,ij”H”)-

La courbe correspondant a la moyenne de la simulation 3D (courbe noire) consiste en la
prédiction que fournirait une simulation méridienne exacte. En effet, puisque cette courbe
provient d’une simulation d’un ordre supérieur, elle inclut naturellement les phénoménes
associés. Nous la considérerons comme notre solution de référence.

Quelques remarques peuvent étre faites concernant cette figure. Les termes non-visqueux
sont responsables de 1’évolution générale de 1’écoulement, comme nous pouvions nous y at-
tendre puisqu’ils correspondent a l’effet principal des aubes. L’ajout des termes visqueux
déplace la courbe vers une augmentation de pertes, sans modification de forme. Pour la plu-
part des grandeurs de ’écoulement analysées, la derniére courbe, correspondant a I’ajout
des tensions circonférentielles, permet de reproduire assez bien l’allure de la courbe de
référence, en modifiant localement 1’écoulement. L’évolution du nombre de Mach est repré-
sentative de cette situation. L’amélioration de la qualité de description due a ces derniers
termes semble méme étre plus importante que celle apportée par les termes visqueux. Plus
particuliérement, I’ajout des tensions circonférentielles permet de reproduire 'effet poten-
tiel en amont des aubes, ainsi que la réorganisation de 1’écoulement en aval du bord de
fuite.
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M
0.35+ 3D
Jot+ fo + pv"0"
fb + fv
0.30 +
0.25+
-
0.20 0.25 x
3
24k
1 €

FIGURE 1.11 — Evolutions axiales & mi-hauteur de veine du nombre de Mach absolu (haut)
et de lentropie (bas) dans quatre cas : 3D moyenné par la masse volumique (noir), f,-+e

(bleu), fy+f,+epte, (rouge) et Jot fotepte,tpvivi+pvi b (vert).

Concernant I’évolution de I’entropie, il est notable que la simulation d’ordre élevé n’ap-
proche pas aussi bien la courbe de référence, méme si la forme de la courbe est trés similaire.
Tout se passe comme si un phénomeéne d’amplitude progressivement croissante le long du
canal inter-aubes était omis. Selon Simon [136], ce genre de comportement pourrait étre
expliqué par la non prise en compte des tensions visqueuses dans le plan aube-a-aube.
Une autre composante de l’explication est probablement une perte de précision lors de
I'interpolation effectuée pour extraire les informations de la simulation tridimensionnelle.

Au niveau de I'entropie toujours, il apparait un comportement étonnant puisque celle-
ci diminue & certains endroits, en aval des aubes, violant apparemment le second principe
de la thermodynamique, comme ’a remarqué Bardoux [10] précédemment. Simon [136] a
ensuite expliqué mathématiquement 'origine de ce phénomeéne, lié au type de moyenne.
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En effet, pour analyser les pertes de charge et les différentes grandeurs en turbomachines,
il est nécessaire de moyenner par le débit massique, non par la masse volumique. Ainsi,
une moyenne physiquement acceptable serait définie par (1.15).

_ [ oo
p

b=
/andQ
p

ou V,, est la norme du vecteur vitesse normal au plan de moyenne azimutale.

(1.15)

Dans le cas contraire, I’entropie augmente et diminue en fonction de 1’évolution des non-
uniformités circonférentielles. Ainsi, a la figure 1.11, 'entropie croit jusqu’au bord de fuite,
avec les non-uniformités (voir figure 1.8) pour décroitre ensuite. Ceci explique 'appellation
de tensions pour ces termes additionnels (Sehra [131] les appelait tensions apparentes). En
effet, tout comme les tensions visqueuses font augmenter le niveau d’entropie, ces tensions
apparentes, les tensions circonférentielles, en font de méme. La différence majeure est que
cette augmentation d’entropie est fictive et réversible. Elle traduit en fait une perte d’éner-
gie de I’écoulement moyen vers I’écoulement d’ordre élevé (i.e. I’écoulement non-uniforme).
Lorsque la non-uniformité disparait, cette énergie est rendue a I’écoulement moyen, dimi-
nuant ainsi le niveau d’entropie.

Cependant, cette formulation d’entropie apparente est la seule disponible dans le sys-
téme d’équation du canal moyenné d’Adamczyk. Hirsch [69] propose, pour résoudre ce
probléme, d’utiliser des coefficients de blocage fictif en plus du coefficient de blocage maté-
riel représentant les aubes afin de résoudre un écoulement moyenné par le débit et non plus
par la masse volumique. Bardoux [10] quant a lui, dérive '’expression de passage des gran-
deurs moyennées par la masse volumique a celles moyennées par le débit, laquelle implique
la connaissance d’une corrélation supplémentaire par grandeur.

Une autre critique, soulignée également par Bardoux [10], est la différence de compor-
tement entre la moyenne de I'entropie calculée sur base de grandeurs non-moyennées et la
reconstruction de ’entropie sur base de grandeurs moyennées. Cette différence provient de
la non-linéarité de I’expression de l’entropie (1.16). Ainsi, la moyenne du logarithme d’une
variable quelconque est différente du logarithme de la moyenne de cette variable.

—_~

§=C, In(T) — RIn(P) # C, In(T) — R In(P) (1.16)

Il en est de méme pour toutes les grandeurs nécessitant 1'utilisation d’une expression
non-linéaire pour leur reconstruction, comme le nombre de Mach, la pression totale et la
température totale. Néanmoins, comme les seules informations fournies par la résolution du
systéme méridien sont des informations moyennes, il faut se contenter de cette formulation.
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Intéressons-nous maintenant aux champs méridiens complets. La figure 1.12 reprend le
champ d’entropie pour les quatre situations de calculs énoncées précedemment.

a
@

FIGURE 1.12 — Champ d’entropie dans quatre cas du haut vers le bas : (1) 3D moyenné,
(2) for (3) fot-fu and (4) fy+ futpr"0”.

Nous pouvons tirer, a 1’échelle globale, les mémes conclusions que pour I’étude a mi-
hauteur d’aube. Les termes non-visqueux dictent la structure générale de I’écoulement. Les
termes visqueux augmentent les niveaux de pertes sans modification de I’allure générale.
L’addition des tensions circonférentielles permet d’obtenir un bon accord avec la solution
3D moyennée, dans 1I’écoulement principal ainsi que dans les régions pariétales.

Examinons plus avant ces derniéres. Nous observons que les tensions circonférentielles
meénent & une trés bonne reproduction de la couche limite au carter, résultant des interac-
tions entre le tourbillon de bout de pale et I’écoulement pariétal. Les tensions circonféren-
tielles modifient I’écoulement au bord d’attaque, épaississant rapidement la couche limite,
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et ménent a une représentation fidele de I’écoulement, au niveau de la génération d’entropie
comme pour la distribution de Mach.

La couche limite au moyeu est également assez bien représentée. Si nous regardons la
distribution du nombre de Mach & la figure 1.13, nous observons que les tensions semblent
revitaliser la couche limite avec pour conséquence son amincissement.
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FIGURE 1.13 — Champ de nombre de Mach dans quatre cas du haut vers le bas : (1) 3D
moyenné, (2) fy, (3) fot fu and (4) fytfotpu7or.

Pour conclure cette section, nous avons vu que l'inclusion des termes additionnels en
tant que tels fournit une qualité de prédiction de I’écoulement analogue & une simulation
d’ordre supérieur, traduisant des phénomeénes physiques importants. Les tensions circonfé-
rentielles permettent de reproduire I'influence moyenne des écoulements secondaires comme
le décrochage de coin ou encore le mélange radial, expliqués précédemment. Ainsi, ceci jus-
tifie 'intérét porté a ces informations d’ordre élevé en simulation méridienne, d’autant plus
que, comme mentionné précédemment, leur importance a tendance & augmenter dans les
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conceptions modernes.

Le cas test utilisé ayant démontré sa valeur quant & la prise en compte des effets non-
axisymétriques, nous allons le réutiliser dans le chapitre qui suit. Il va nous permettre d’aller
plus avant dans la compréhension des fluctuations spatiales, en évaluant leur caractérisation
harmonique.



Chapitre 2

Modélisation harmonique des tensions
circonférentielles
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Le probléeme de la prise en compte d’effets d’un ordre supérieur ne se pose pas unique-
ment en modélisation méridienne. En effet, il est également présent en simulation insta-
tionnaire, au travers de la turbulence, et en simulation stationnaire tridimensionnelle par
les tensions déterministes, relatives aux interactions instationnaires entre roues aubées.

Le premier a proposer une solution a ce dernier probléme est Adamczyk [2]|. Sa méthode
consiste a calculer chaque roue séparément et a les rendre compatibles en imposant que
les écoulements méridiens vus par chacune des roues soient égaux. En effet, il n’existe
qu'un seul écoulement méridien au sein d’une machine, contrairement au SECM qui est
caractéristique d’une roue particuliére.

Rhie et al [123] proposent ensuite d’utiliser des maillages recouvrant pour transférer
les tensions déterministes d’une roue & 'autre. Ainsi, pour considérer les interactions de
sillage d’une roue amont sur une roue aval, il étend le maillage de cette derniere, calculée
explicitement, & la roue amont pour y obtenir I'information cherchée.

Perrin [117] puis Charbonnier [21]-[22] ont essayé de développer un modéle de transport,
analogue a ce qui se fait en turbulence, pour calculer les tensions déterministes. Il est apparu
cependant que les mécanismes physiques a 1’origine du champ fluctuant et la nature méme
de celui-ci (réversibilité, faible création de tensions par le champ moyen), marquent des
différences importantes par rapport au cas turbulent.

29
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Par la suite, une catégorie différente de modélisations a émergé, par He [61] d’abord
puis Hall [60]. Ces méthodes consistent & résoudre, dans le domaine fréquentiel, un sys-
teme aux perturbations temporelles dans le cas du premier auteur mentionné, le systéme
instationnaire complet dans le cas du second. Ces méthodes ont montré une précision et
une efficacité en temps de calcul remarquables. Non seulement elles permettent d’obte-
nir les tensions déterministes, mais elles vont jusqu’a reproduire une approximation de
I’écoulement instationnaire lui-méme. Ces techniques sont classées sous la dénomination
de méthodes harmoniques car elles ont recours & une décomposition de I’écoulement en sé-
rie de Fourier. Nous discuterons ces méthodes plus amplement dans les chapitres suivants.
Toutefois, I’hypothése commune a toutes ces méthodes est que I’écoulement est de nature
harmonique, autrement dit, qu’il peut étre reconstruit efficacement par une série de Fourier
tronquée.

Ainsi, pour espérer appliquer une de ces méthodes, qui ont fait leurs preuves, au cas
méridien, il est impératif de vérifier la validité de cette hypothése. Pour ce faire, nous allons
analyser, dans la suite, la possibilité de reconstruire efficacement 1’évolution azimutale de
I’écoulement et, en conséquence, les tensions circonférentielles. Nous investiguerons éga-
lement la capacité de tensions reconstruites, et donc approchées, a reproduire les effets
observés au chapitre précédent au sein d’une simulation méridienne. Pour tout ce qui suit,
nous utilisons le cas test décrit précédemment.

2.1 Analyse spectrale locale

Lors d’une premiére étape, nous étudions la possibilité de reconstruire, par une série de
Fourier tronquée, I’évolution circonférentielle de I’écoulement en certaines sections carac-
téristiques de la roue statorique, & mi-hauteur de veine. Celles-ci sont présentées a la figure
2.1, sur une vue dans le plan aube-a-aube (coordonnées (x,0)). Ces positions de coupe ont
été choisies dans des régions de haut degré de non-uniformité : le bord d’attaque, le bord
de fuite et le sillage.

a
T
1
1
1
1
1
1
1
1

x
FIGURE 2.1 — Sections caractéristiques

Avant d’analyser le spectre fréquentiel en ces sections, nous présentons a la figure 2.2
I’écoulement & mi-hauteur d’aube, issu de la simulation 3D, en termes de nombre de Mach
et d’entropie.
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FIGURE 2.2 — Champs de Mach absolu (haut) et d’entropie (bas) a mi-hauteur de veine
dans le domaine statorique

Il s’agit d’un écoulement classique illustrant nos propos du chapitre précédent. La figure
confirme que 'aube est chargée principalement sur sa partie antérieure alors que la partie
postérieure est concernée par le développement des couches limites.

Ces différentes zones sont caractérisées par des richesses spectrales assez variables
comme nous allons l'illustrer. L’expression (2.1) rappelle le développement en série de
Fourier d’une fonction quelconque f dépendant de la variable azimutale 6. Les coefficients
K, sont les coefficients de Fourier et les paramétres w,, les fréquences associées, f désignant
la valeur moyenne de la fonction.
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f@ = f+ [Kne™r? + K_pem*Y] (2.1)
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n=1

Cette définition inclut un nombre infini de termes. Modéliser et calculer un nombre
infini de coefficients est bien entendu irréalisable. La question qui va donc se poser, pour
analyser la possibilité de dériver une méthode harmonique efficace, est de déterminer le
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nombre N de coefficients de Fourier qu’il est nécessaire d’inclure dans le développement
(2.2) pour reproduire, de maniére satisfaisante, I’évolution circonférentielle de I’écoulement.
Autrement dit, que vaut N pour obtenir une erreur E (N) suffisamment faible ?

Une série de Fourier converge vers la fonction exacte pourvu que celle-ci soit continue
par morceaux et périodique. Cette derniére condition n’est pas remplie dans un passage
inter-aubes, puisque les écoulements sont généralement différents sur 'extrados et I'intrados
de 'aube. Cela implique que pour décomposer une fonction en série de Fourier dans le canal
inter-aubes, il est nécessaire de rendre cette fonction périodique. La difficulté principale
est qu’en faisant cela, I’évolution réelle est altérée. Ainsi, un soin particulier doit étre pris
pour rendre cette fonction périodique en modifiant au minimum son contenu fréquentiel.
Nous avons choisi une modification locale aux extrémités du domaine azimutal. Nous y
appliquons une adaptation linéaire vers les valeurs moyennes des fonctions d’intérét en ces
deux extrémités.

La figure 2.3, que nous appellerons spectre fréquentiel, illustre le logarithme de la valeur

absolue des coefficients de Fourier normés par la valeur du premier pour la composante
axiale de la quantité de mouvement (pV,.).

log (‘\féﬁ' >
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FIGURE 2.3 — Spectre fréquentiel de pV, aux sections a (bleu), b (rouge), ¢ (vert) et d
(noir) & mi-hauteur de veine du stator.

La station a se révéle assez pauvre en terme de contenu spectral, ce qui était attendu
puisque cette région est dominée par des effets potentiels, de longueur caractéristique im-
portante. Ce genre de comportement apparait aussi a la station d, laquelle se situe dans le
sillage. Ainsi, la méme conclusion est valable pour les effets visqueux et non-visqueux hors
du canal inter-aubes, témoignant d’un contenu fréquentiel limité hors des aubes. En ce qui
concerne la partie droite du spectre pour ces deux stations, les termes de haute fréquence et
de faible amplitude sont probablement du bruit, conséquence de I'interpolation trilinéaire
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effectuée lors de 'extraction d’information de la simulation de référence.

Par contre, les stations b et ¢ sont riches en contenu fréquentiel. La décroissance des
coefficients de Fourier est lente, ce qui démontre que des phénomeénes de hautes fréquences
sont présents dans cette région. Ces deux positions correspondent au domaine inter-aubes,
'une prés du bord d’attaque (station b) et I'autre prés du bord de fuite (station ¢). Ainsi,
elles impliquent toutes deux une zone de gradients importants, proche de la paroi. A I'avant,
la zone est principalement non-visqueuse tandis qu’a ’arriére, elle est liée au développement
des couches limites. Dans les deux cas, cela correspond & un faible niveau de décroissance
des coefficients de Fourier.

Cet exemple illustre une différence importante entre les régions inter-aubes et hors
aubes, indiquant le besoin d’une reconstruction plus cotiteuse dans la zone aubée, compre-
nant des longueurs caractéristiques plus faibles. Ces observations tendent & affirmer qu’il
est nécessaire d’inclure un nombre important de coefficients de Fourier pour obtenir une
modélisation harmonique efficace. Cependant, notre objectif n’est pas de reconstruire avec
exactitude les évolutions les plus brutales de 1’écoulement, mais bien d’obtenir le niveau
moyen de non-uniformité qui permettra de reproduire les phénomeénes d’ordre supérieur au
sein d’une simulation méridienne. Ceci fait I'objet de la section suivante.

2.2 Reconstruction harmonique

Cette section est consacrée a I'analyse de la difficulté a reconstruire les tensions circon-
férentielles, caractérisées par un spectre fréquentiel étendu, en particulier dans les régions
aubées. Pour ce faire, les évolutions azimutales des variables conservatives sont recons-
truites par série de Fourier, pour un nombre variable de modes.

La figure 2.4 représente 1’énergie cinétique des non-uniformités circonférentielles moyen-
nes associée a des champs fictifs approchant ’écoulement réel par reconstruction harmo-
nique pour 3, 5, 10 et 20 modes. Elle reprend aussi I'énergie cinétique associée a la si-
mulation 3D de référence. La correspondance générale est trés bonne, dés les premiers
modes. L’allure générale est en effet reproduite assez facilement. Il s’agit 1a d’une observa-
tion importante. En effet, nous I’avons vu aux équations (1.9) a (1.11) décrivant le modéle
méridien, les tensions n’apparaissent pas directement dans ces équations, mais bien leur
dérivée. Ainsi, si 'allure de la courbe présente les bonnes caractéristiques locales relatives,
il est a attendre que les dérivées seront cohérentes. L’augmentation du nombre de modes
permet ensuite d’élever le niveau de non-uniformité pour approcher la solution de référence.
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FIGURE 2.4 — Champ d’énergie cinétique, en [%], reconstruit avec, du haut vers le bas, 3
modes (1), 5 modes (2), 10 modes (3), 20 modes (4) comparé au champ de référence (5).

Afin de quantifier la qualité de reconstruction, la figure 2.5 montre le rapport de I’énergie
cinétique pour 3, 5, 10 et 20 modes a 1’énergie cinétique de référence.

Cette figure nous apprend que 3 modes ne sont pas suffisants pour obtenir un niveau de
non-uniformité représentatif. Celle-ci n’est en effet reproduite qu’a 50 % dans la région au-
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FI1GURE 2.5 — Rapport du champ reconstruit d’énergie cinétique au champ de référence,
en |%], pour, du haut vers le bas, 3 modes (1), 5 modes (2), 10 modes (3) et 20 modes (4).

bée et le sillage. L’ajout de 2 modes change substantiellement la situation, fournissant une
bonne reproduction aux parois ainsi que dans le sillage. Avec 10 modes, la non-uniformité
obtenue est a plus de 80 % presque partout, excepté localement dans la zone rotorique au
moyeu, au bord d’attaque, au carter et en bout de pale. Finalement, avec 20 modes, le
seuil de 80 % est atteint partout.

Un examen de cette figure 2.5 fait apparaitre une différence de comportement, au niveau
du passage inter-aubes, le long de la corde. En effet, dans la premiére moitié de la zone
aubée, pres du bord d’attaque, le niveau de précision atteint avec peu d’harmoniques est
vite acceptable. Ainsi, 5 modes reprennent 80% du niveau moyen de non-uniformité. Par
contre, pour des nombres plus élevés de modes, la précision augmente difficilement. La
seconde moitié de la zone aubée présente le comportement inverse. Pour un faible nombre
d’harmoniques, le niveau d’erreur est important. Celui-ci décroit cependant trés rapidement
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avec le nombre de modes inclus. Il est méme notable que la précision, dés 10 modes, est
meilleure sur la deuxiéme partie de I’aube que sur la premiére.

Ces types de comportements sont explicables par le résultat suivant. Selon Orszag [112],
le nombre de modes de Fourier nécessaires pour reproduire 1’évolution d’un écoulement
comprenant une couche limite d’épaisseur € est proportionnel a 1/4/e.

Sur la premiére moitié de I’aube, la couche limite est fine. Il est donc nécessaire, pour la
reproduire, d’inclure un nombre élevé d’harmoniques, ce qui explique la convergence lente
au-deld de 80 %. Pour des nombres plus faibles de modes, lesquels correspondent a des
longueurs caractéristiques plus grandes que celles de la couche limite, cette derniére n’est
pas capturée. Cependant, comme la couche limite est fine, elle constitue un phénomeéne
trés localisé, qui ne génére pas énormément de non-uniformité moyenne. Ainsi, il suffit de
capter les phénomeénes potentiels, qui conduisent a une précision élevée avec peu de modes
et d’inclure quelques harmoniques plus élevées pour atteindre le niveau souhaité.

Sur la deuxiéme partie de I'aube, la couche limite visqueuse s’est développée, deve-
nant d’une épaisseur plus importante. Elle ne peut dés lors plus étre considérée comme un
phénomene local et génére davantage de non-uniformité moyenne. Ainsi, comme les pre-
miers modes de Fourier ne sont pas capables de reproduire cette couche limite, la précision
est faible. Par contre, étant donné que la couche limite est plus épaisse, une augmenta-
tion du nombre d’harmoniques permet une capture rapide du phénoméne, expliquant la
convergence plus rapide pour la deuxiéme partie de ’aube.

De cet exemple, nous pouvons conclure qu’aussi bien pour la partie avant de 'aube,
présentant un comportement principalement non-visqueux, que pour la zone proche du
bord de fuite, présentant une couche limite plus épaisse, un nombre de modes de Fourier
limité permet de reproduire, avec une précision suffisante, la non-uniformité moyenne.

Ces deux figures tendent a illustrer le fait que 10 & 20 modes peuvent reproduire 80
% du niveau réel de non-uniformité. Ceci apparait aussi bien dans les régions pariétales,
ol l’écoulement est fortement tridimensionnel que dans ’écoulement principal pour le-
quel les couches limites aux parois des aubes sont caractérisées par de faibles longueurs
caractéristiques.

Aussi, il est notable que ’ajout de modes supplémentaires & la série de Fourier tronquée
rapproche le niveau de non-uniformité du niveau réel, dans toute la veine. Ceci est la
conséquence de la convergence uniforme des séries de Fourier des variables conservatives.

Pour terminer cette analyse, nous allons examiner plus spécifiquement la convergence
de I'énergie cinétique des perturbations en certaines lignes de coupe. Leur position est
décrite a la figure 2.6. Trois lignes sont disposées dans la zone rotorique, juste en amont
du bord d’attaque, dans la zone aubée et juste en aval du bord de fuite. Trois autres lignes
se trouvent dans la zone statorique.



2.2. RECONSTRUCTION HARMONIQUE 37

s

T

FIGURE 2.6 — Position des 6 lignes de coupes

La figure 2.7 illustre I’évolution radiale de I’énergie cinétique associée a des champs

approchés avec 1, 3, 5, 10, 20 et 50 modes (traits discontinus) et au champ de référence
(trait continu) dans les trois premiéres lignes de coupe.
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FIGURE 2.7 — Evolutions radiales de ’énergie cinétique des champs de référence (continu)
et reconstruit (discontinu) dans le domaine rotorique

En amont du bord d’attaque, la convergence est trés rapide, seuls des effets potentiels
étant impliqués. Sur le rotor, loin des parois, la convergence est beaucoup plus lente, les
couches limites visqueuses devant étre reproduites. Si nous regardons plus particuliérement
en bout d’aube, nous voyons que la reconstruction est assez aisée, ce qui confirme les obser-
vations précédentes. Ceci peut étre expliqué par le raisonnement suivant. Dés qu’un modele
de turbulence est utilisé dans la simulation, les trés petites échelles ne doivent plus étre
résolues. La structure résultante est complexe, avec des interactions fortes entre les couches
limites pariétales et ’écoulement de bout d’aube, mais n’inclut pas de perturbations de
faibles longueurs caractéristiques, contrairement a 1’écoulement le long de I'aube qui, lui,
comporte une fine couche limite. Si nous regardons la figure de droite, représentant une
coupe avale au bord de fuite, nous voyons que la convergence redevient assez rapide, tant
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aux parois que loin de celles-ci.

Aprés cette analyse, nous pouvons conclure que la région la plus difficile a reconstruire
en terme fréquentiel est la zone aubée, du fait de perturbations associées a des phénoménes
de faibles longueurs caractéristiques et orientés dans la direction tangentielle. Prés des
parois, méme si I’écoulement est désorganisé et comprend davantage de non-uniformité, il
est caractérisé par une forte amplitude et des longueurs caractéristiques moyennes, et donc
plus facilement reproductible par une série de Fourier.

Il parait donc possible de reproduire, avec une précision raisonnable, le niveau de non-
uniformité moyen au sein de ’étage de compresseur par une série de Fourier tronquée. La
derniére étape, avant de pouvoir affirmer qu’une reconstruction harmonique est adaptée aux
tensions circonférentielles, est d’étudier 'impact de tensions reconstruites, i.e. approchées,
dans une simulation méridienne. Ceci fait I’'objet de la section suivante.

2.3 Fermeture harmonique du méridien

Divers écoulements fictifs ont été reproduits par reconstruction harmonique. A chacun
sont associées des tensions circonférentielles. Celles-ci vont étre introduites dans une si-
mulation méridienne, selon la procédure décrite au chapitre précédent. Ceci a pour but
de vérifier la capacité de ces tensions approchées a reproduire les phénomeénes physiques
observés précédemment.

La figure 2.8 illustre le changement progressif du champ d’entropie avec les tensions
circonférentielles harmoniques. La premiére sous-figure résulte d’une simulation incluant
les composantes visqueuse et non-visqueuse de la force mais sans tension circonférentielle.
Les sous-figures (2) a (5) proviennent de simulations incluant les tensions de champs ap-
prochés reconstruits avec 3, 5, 10 et 20 modes. La derniére sous-figure inclut la simulation
méridienne augmentée de tous les termes additionnels.

Il est notable qu’avec 3 modes apparaissent déja la zone de haute entropie au bord de
fuite du rotor, I'amincissement de la couche limite au moyeu et l'effet du tourbillon de
bout d’aube sur la couche limite au carter. Avec davantage de modes, la qualité augmente
progressivement, partout.

Analysons ensuite plus localement la reproduction des phénoménes liés aux perturba-
tions circonférentielles. La figure 2.9 montre les évolutions radiales de I'entropie le long des
six lignes de coupe reprises a la figure 2.6 pour différentes simulations. Les courbes vertes
en trait discontinu sont les évolutions résultant de simulations avec des tensions circonfé-
rentielles de champs approchés avec 1, 3, 5, 10, 20 et 50 modes de Fourier. La figure 2.10
représente le nombre de Mach en ces mémes coupes.
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FIGURE 2.9 — Evolutions radiales de I'entropie dans les zones rotorique (haut) et statorique
(bas) avec différentes termes additionnels : la composante non-visqueuse de la force f,
(bleu), les composantes visqueuse et non-visqueuse de la force f, + f, (rouge), tous les
termes additionnels (vert), les composantes visqueuse et non-visqueuse de la force avec les
tensions harmoniques (vert discontinu) et la solution 3D moyennée de référence (noir).
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FIGURE 2.10 — Evolutions radiales du nombre de Mach dans les zones rotorique (haut) et

statorique (bas) avec différentes termes additionnels :

la composante non-visqueuse de la

force fi, (bleu), les composantes visqueuse et non-visqueuse de la force fi, + f, (rouge), tous
les termes additionnels (vert), les composantes visqueuse et non-visqueuse de la force avec
les tensions harmoniques (vert discontinu) et la solution 3D moyennée de référence (noir).
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L’accord entre la simulation méridienne avec tous les termes additionnels et la simula-
tion tridimensionnelle moyennée est assez bon, pour les deux roues, prés des parois comme
loin de celles-ci. Les modifications locales produites par les gradients des produits de pertur-
bations (équations (1.10) et (1.11)) ménent & des gradients réalistes au sein de I’écoulement.
La région de bout de rotor est totalement modifiée par la présence des tensions circonféren-
tielles. La qualité de reproduction semble moins bonne au moyeu en ce qui concerne l’en-
tropie. La fidélité est meilleure pour le nombre de Mach. Cette faiblesse pourrait provenir
d’une incompatibilité entre les modeéles de turbulence de Baldwin-Lomax bidimensionnel
et tridimensionnel. Des réinitialisations de la viscosité se produisent dans la simulation
bidimensionnelle [136] alors qu’il n’en est rien pour la simulation tridimensionnelle. Ce
phénomeéne est de moindre importance au carter ot le tourbillon de bout d’aube est le
principal générateur d’entropie.

Comme cela a été fait pour la veine compléte, concentrons-nous sur la capacité des
tensions approchées a reproduire des effets locaux. Pour chacune des six coupes, méme les
tensions subissant les plus fortes approximations permettent de reproduire plus fidélement
les évolutions radiales. Hors des zones aubées, proche ou loin des parois, 3 modes semblent
étre suffisants. Une fois encore, c’est au sein des zone aubées que le besoin modal est le plus
fort. Mais dans chacun des cas, I’ajout de modes est récompensé et un nombre N de modes
compris entre 10 et 20 reproduit de maniére satisfaisante les effets locaux tridimensionnels
moyens.

Sur base de cette analyse, nous pouvons affirmer que les tensions circonférentielles
présentent une nature harmonique, c’est-a-dire qu’elles peuvent étre reproduites sur base
d’une série de Fourier tronquée. Ainsi, I’hypothése principale des méthodes harmoniques
est vérifiée, méme s’il est vrai que la reconstruction sera probablement plus cotiteuse que
dans le cas instationnaire.

Il reste un point & soulever. Au cours de nos analyses, nous avons toujours supposé
connaitre de maniére exacte les termes additionnels, a savoir les tensions circonférentielles,
la force des aubes et les termes sources d’énergie. Pour cela il a été nécessaire d’extraire
ces termes d’une simulation tridimensionnelle, ce qui va a l’encontre d’un code méridien
autonome. La méthode harmonique qui sera implantée dans le code méridien devra donc
étre capable de générer ces termes additionnels par ses propres moyens. Dans ce cas, il est
évident que la qualité des non-uniformités tridimensionnelles moyennes sera dépendante
de la précision de la méthode utilisée.

La suite de cet exposé est consacré a la dérivation du systéme d’équations aux pertur-
bations spatiales qui nous permettra d’accéder aux tensions circonférentielles.
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Le chapitre précédent a permis de montrer qu'une décomposition harmonique circonfé-
rentielle était adaptée, laissant la possibilité de recourir a une des méthodes harmoniques
pour résoudre le probléme de fermeture. Ces deux grandes catégories de méthode harmo-
nique proviennent de deux auteurs : Li He [61] et Kenneth Hall [60]. Les méthodes associées
sont respectivement “la méthode harmonique non-linéaire” (Nonlinear Harmonic Method)
et “I’équilibre harmonique non-linéaire” (Nonlinear Harmonic Balance).

Tout comme Hall, le domaine de recherche de He se situe dans l'interaction fluide
structure [62]. Il a souhaité développer une méthode efficace pour étudier un phénomeéne
instationnaire tel que le flottement. Il est cependant parti dans une autre direction, celle
d’Adamczyk. En effet, He percoit une résolution instationnaire efficace comme la résolu-
tion d’un systéme moyen, en l'occurrence un systéme moyenné dans le temps, associé a
la résolution approchée d'un systéme d’ordre supérieur dont 1’objectif est notamment de
proposer une fermeture au probléme moyen.

Le principe de la méthode de He est le suivant. Dans un esprit de résolution efficace de
I’écoulement instationnaire, il souhaite avoir recours aux équations instationnaires linéari-
sées et les résoudre dans le domaine fréquentiel, par une approche numérique stationnaire,
pour laquelle il existe des techniques d’accélération bien établies. Cependant, leur qualité
de prédiction décroit en cas de non-linéarité importante au sein de I’écoulement, comme des
chocs. Pour solutionner ce probléme, du moins en partie, il couple les équations tridimen-
sionnelles moyennes aux équations aux perturbations tridimensionnelles instationnaires au

43
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moyen des tensions déterministes, lesquelles assurent un transfert des non-linéarités entre
les deux systémes. Cette méthode a montré son efficacité tant du point de vue du cotit de
résolution que de la reproduction des non-linéarités principales.

Etant basée sur la philosophie d’Adamczyk, 1'extension de cette méthode a la prise
en compte des interactions entre roues mobiles et statiques a été réalisée par Chen [23],
par I’adaptation de la technique des plans de mélange. Les résultats obtenus illustrent une
continuité retrouvée entre les grandeurs de 1’écoulement de part et d’autre des plans de
mélange, grace a la modélisation précise des tensions déterministes.

He [64] a méme étendu, avec succés, sa méthode harmonique non-linéaire & la prise en
compte des tensions apériodiques et donc de l'effet de clocking, soit les interactions entre
roues immobiles 'une par rapport a ’autre, mais de nombres d’aubes différents.

Stridh [143] applique ensuite la méthode harmonique pour le calcul d'un champ de
fonctionnement de compresseur et montre l'influence des tensions déterministes sur les
performances globales. On y voit que 'influence des tensions déterministes est de plus en
plus marquée au fur et & mesure de 1’éloignement par rapport au point de fonctionnement
nominal, témoignant de 'importance des instationnarités, c¢’est-a-dire des interactions entre
roues.

En résumé, cette méthode harmonique non-linéaire a été reprise par plusieurs auteurs
qui ont prouvé son efficacité. Dans la suite, nous allons détailler cette méthode. Nous
envisagerons alors son extension au cas du modéle méridien.

Nous n’envisagerons pas la méthode de “I’équilibre harmonique non-linéaire”. En effet,
méme s’il n’y a pas de doute quant a lefficacité de cette méthode, elle est difficilement
adaptable au modéle méridien. Elle présente principalement deux difficultés. Premiére-
ment, en tant que méthode de collocation, elle nécessite une vision tridimensionnelle du
domaine de calcul, ce qui s’oppose a la philosophie du méridien. Deuxiemement, elle ne
fait pas de distinction entre les niveaux d’ordre moyen et d’ordre élevé de la simulation.
Par conséquent, elle s’écarte de la ligne conductrice de la cascade d’Adamczyck. Nous nous
concentrerons donc essentiellement sur la méthode harmonique non-linéaire.

3.1 La méthode harmonique non-linéaire

ur expliquer mé nous su rons un écoulement bidimensionnel non-
Pour expliquer cette méthode, nous supposerons écoulement bidimensionnel no
visqueux, dans le plan (x,y). Nous utiliserons donc les équations d’Euler instationnaires !

(3.1).

1. Cette méthode est cependant applicable aux équations tridimensionnelles instationnaires visqueuses.
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ou N JF (U) N 0G (U)
ot ox dy

~0 (3.1)

Les vecteurs U (z,y,t) des inconnues conservatives et F (z,y,t) et G (z,y,t) des flux
sont donnés par I'expression (3.2). Il y apparait la masse volumique p, les deux composantes
de vitesse u et v, la pression statique p, I’énergie totale E et ’enthalpie totale H.

P pu pu

u=| " F = pu” +p G = p2uv (3.2)
pU pUv pve+0p
pE puH pvH

La forme intégrale du systéme d’équations (3.1) est donnée par I'expression (3.3), AA
étant la surface d’'un élément de maillage, S son périmétre.

9 / UdA + 7{ [Fdy + Gda] = 0 (3.3)
tJJaa s

Ensuite, la philosophie d’Adamczyk est introduite en séparant les inconnues conserva-
tives instationnaires en une partie moyenne et une partie fluctuante.

U (z,y,t) = U(z,y) + U (z,y,1) (3.4)

Substituant cette décomposition au sein de I'équation (3.3) et moyennant ? par rapport
au temps, le systéme suivant est obtenu.

7§ [Fdy + Gdz] =0 (3.5)

Les vecteurs flux F(z,y) et G(x,y) sont donnés par I'expression (3.6).

pu U
F_ | PREHPE (0w G| Putp) (3.6)
pu v+ (pu) v/ PU U+ P+ (pv) v/ '
pu H + (pu) H’ pv H + (pv) H'

2. Les différents développements mathématique réalisés pour obtenir ce systéme d’équation, comme
ceux qui seront effectués dans la suite, ne sont pas détaillés ici. Une procédure compléte sera présentée
dans la suite lors de 'application au cas du modéle méridien.
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Dans I'expression des flux apparaissent des produits de fluctuations; il s’agit des ten-
sions déterministes. Elles sont le résultat de la procédure de moyenne appliquée a des
termes non-linéaires et expriment ’effet moyen de l'instationnarité sur le champ moyen.
Ces termes expriment un échange entre le champ moyen et le champ fluctuant. Ce dernier
est obtenu par la soustraction du systéme moyen (3.5) au systéme instationnaire (3.3).
De plus, He fait ’hypothése que le champ de perturbations est dominé par les termes du
premier ordre, et procéde & une linéarisation. Le résultat est exprimé par (3.7).

9 / / U'dA + 7{ [F'dy + G'dz] = 0 (3.7)
ot J Jaa s

Les vecteurs flux F'(z,y,t) et G'(x,y,t) sont donnés par I'expression (3.8).

(pu)" (po)"
,_ | puu+a (pu) +p ,_ | v +T (pv)
K= ou v —|—U_(pu)' G = pov +v (_pv)/ +p (3.8)
pu H' + H (pu) pv H'+H (pv)

Les perturbations des inconnues primitives et conservatives sont liées par des expres-
sions linéarisées, du type (3.9).

U — M (3.9)

P

He fait usage de la linéarisation des perturbations afin d’obtenir une forme quasi-linéaire
des équations les concernant, c’est-a-dire linéaire pour un champ moyen donné. Ainsi, une
décomposition en série de Fourier permet de découpler les fréquences, le systéme étant
homogene et les fonctions de Fourier orthogonales. C’est de ces hypothéses que provient
Iefficacité de la méthode harmonique. En effet, soit la décomposition de Fourier suivante.

U (z,y,1) = > _ U, (w,y) ' (3.10)

Sachant que les flux F’ et G’ sont des fonctions linéaires de U’, la forme intégrale (3.7)
se réduit a (3.11).

Z (iwn / N U/ dA + ji [F (U)dy + G (U) dx]) ent = (3.11)

n

Le systéme étant homogéne et les fonctions de Fourier étant orthogonales, on obtient,
pour N modes, un ensemble de N équations (3.12) intégrales découplées pour les inconnues
complexes U/, et ne dépendant que des variables spatiales.
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7! T (U)dy + G (U,) dz] = —ico, / U dA (3.12)
S AA

Ensuite, le systéme (3.12) étant exprimé en fonction de variables stationnaires, il est
possible de lui adjoindre une pseudo variable temporelle 7 afin de le rendre hyperbolique par
rapport a celle-ci puis d’utiliser les techniques d’accélération caractéristiques des résolutions
stationnaires.

Pour que la formulation (3.12) soit consistante, il est nécessaire de pouvoir exprimer
les conditions limites instationnaires de maniére homogéne et linéaire afin d’obtenir un
ensemble de conditions limites pour chaque mode. Les conditions d’entrée et de sortie
utilisées sont les conditions limites non-réflectantes de Giles qui s’expriment dans le do-
maine fréquentiel. Elles peuvent étre séparées fréquence par fréquence. En ce qui concerne
les frontiéres circonférentielles du domaine de calcul, une condition limite de décalage de
phase peut étre utilisée et exprimée par la relation (3.13) s’appliquant a chaque mode
séparément.

oo (T, y + Ay) = pp (x,7) elon, op = Wy At = ———— (3.13)

ol IV, est le nombre d’aubes et Q2 la vitesse de rotation.

Le probléme instationnaire (3.12) peut donc étre résolu pour chaque mode successi-
vement, dans le domaine fréquentiel. Une fois le systéme aux perturbations résolu par
superposition modale, une mise en commun des différentes solutions permet d’accéder aux
perturbations temporelles, fournissant ainsi une relation supplémentaire au systéme moyen,
résolvant le probléme de fermeture.

En effet, soit la décomposition de Fourier suivante pour les perturbations des compo-
santes de vitesse u’ et v'.

N

u' = > et e (3.14)
n=1
N

Vo= Z[vfnei“mtjtv’_me_iw?"t] (3.15)
m=1

La moyenne temporelle, sur une période de révolution 7' de la machine, du produit de
ces fluctuations représente une composante du tenseur déterministe apparaissant dans les
flux (3.6) du systéme moyen. Il s’exprime de la maniére suivante.
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1 T N N
' = — ul o etlwntem)t g gy gilwnmwm)t
L[5S G i .

ul_ o) eflwntemlt gl g e“(_“’”_w’“)t) dt

—m

De ce développement ne subsistent, aprés moyenne, que les termes correspondant a
m=n et w, — Wy OU Wy, — w,. L’expression (3.16) se réduit dont a (3.17).

(upv’, +ul0)) (3.17)

n n

N
uv! = E
n=1

Sachant de plus que chaque coefficient de Fourier contient une partie réelle et une partie
imaginaire, la moyenne du produit de fluctuations prend la forme finale suivante.

N
u' = Z 2 (un%v;?‘\: + u?vf) (3.18)
n=1

Ainsi, le modeéle d’ordre élevé fournit une relation supplémentaire pour fermer le systéme
moyen, conformément au formalisme d’Adamczyk. Cette relation de fermeture est le seul
couplage entre les modes de Fourier obtenus par des résolutions distinctes.

De plus, cette relation de fermeture (3.18) constitue un lien non-linéaire entre le systéme
aux perturbations (3.12) et le systéme moyen (3.5). En effet, pour étre résolu, le systéme
aux perturbations nécessite la connaissance de ’écoulement moyen. Il peut alors fournir
les tensions déterministes. Ces derniéres sont ensuite injectées dans le systéme moyen et
modifient la prédiction. Cette modification de 1’écoulement moyen va a son tour avoir
une influence sur le systéme aux perturbations. Il s’agit donc d’un processus itératif non-
linéaire. Ainsi, malgré I’hypothése de petites perturbations menant a la linéarisation du
systéme d’ordre supérieur, les non-linéarités principales de ’écoulement peuvent étre re-
produites. Pour tenir compte de ces interactions non-linéaires entre les écoulements moyen
et instationnaire, He propose une stratégie de résolution réalisant un couplage fort, en in-
tégrant simultanément les deux systémes par rapport a un méme pseudo-temps 7, ce qui
offre de plus des performances accrues en termes de stabilité et de convergence.

La méthode qui vient d’étre exposée s’inscrit totalement dans la lignée de la cascade
d’Adamczyk, un systéme d’ordre élevé résolu de maniére approchée étant percu comme un
moyen efficace de fournir au systéme moyen l'information qui lui manque. L’hypothése la
plus forte de cette méthode est que les perturbations sont faibles. Dans un premier temps,
nous ne discuterons pas de la validité de cette hypothése dans le cas du modeéle méridien.
Elle sera évaluée dans un chapitre ultérieur.
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3.2 Applicabilité au modéle méridien

Dans le cas d'une application au modéle méridien, le systéme moyen serait ce dernier
tandis que le systéme aux perturbations fournirait les non-uniformités circonférentielles,
information d’ordre supérieur. Selon la méthode de He, un calcul couplé consisterait alors
a résoudre un ensemble de problémes méridiens dans le domaine fréquentiel, le nombre de
résolutions étant déterminé par le nombre de modes, ce dernier conditionnant la précision
de reconstruction.

La méthode présentée semble, a priori, convenir non seulement a nos objectifs d’af-
franchissement vis-a-vis de 'empirisme mais aussi & une résolution par un outil de calcul
bidimensionnel. Nous allons cependant constater que la nature du probléme a résoudre dans
le cas méridien est différente du cas instationnaire et représente un obstacle a I'utilisation
de cette méthode. Nous allons présenter ce dernier dans ce qui suit.

L’obstacle a ’application de la méthode précédente au cas méridien provient des condi-
tions limites. Pour I'expliquer, I’exemple du cas instationnaire, plus particuliérement des
interactions entre roues mobiles et statiques, est présenté. L’extension au cas méridien est
ensuite discutée.

3.2.1 Les conditions limites déterministes

Un modéle d’ordre supérieur peut étre résolu efficacement, dans le domaine fréquentiel,
si ses conditions limites sont exprimables dans ce méme domaine. Ainsi, il est nécessaire
que les conditions limites d’ordre supérieur, c’est-a-dire associées aux phénomeénes dont on
souhaite une image moyenne, puissent étre imposées, d’'une maniére ou d’une autre, au
sein d'un code de calcul d’ordre inférieur, i.e. un code de calcul stationnaire dans le cas
déterministe.

Prenons le cas d'un code de calcul tridimensionnel utilisant la technique des plans de
mélange, ol chaque roue d’un ensemble d’étages est calculée séparément, ne communiquant
avec les autres roues qu’au travers d’écoulements moyennés. Si l'objectif est de reproduire
les effets instationnaires, cela signifie que I’on recherche les interactions instationnaires entre
roues mobiles et statiques, comme nous I’avons mentionné lors de ’analyse de la cascade
d’Adamczyk. Pour cela, il faut appliquer une condition limite que nous qualifierons de
déterministe, qui va permettre de générer les non-uniformités temporelles dans le domaine
de calcul tridimensionnel stationnaire. Ainsi, afin de prendre en compte l'effet des roues
adjacentes sur la roue considérée, il faut appliquer, aux frontiéres de son domaine de calcul,
des conditions limites décrivant le comportement de celles-ci.
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Prenons I'exemple d’un étage de compresseur, i.e. une roue mobile (rotor) suivie d’une
roue statique (stator), illustré a la figure 3.1. L’interface entre les deux roues, le plan de
mélange, est repéré sur la figure et constitue la limite des domaines de calcul de chaque
roue.

Qu

interface

Stator
Rotor
Al U, Qp =0
AQ =Qp —Qp o5
Afbu = ZTF/AHU 9[] = QD + tAQ

FIGURE 3.1 — Conditions limites déterministes

Afin de prendre en compte 'effet du rotor sur le stator, il faut reproduire les carac-
téristiques de 1’écoulement en sortie du domaine amont a ’entrée du domaine aval et ce,
dans un formalisme permettant une expression fréquentielle pour chaque mode. Pour ce
faire, 'hypothése d’Adamczyk [2] est utilisée. Celle-ci suppose que la composante insta-
tionnaire d’une roue sur 'autre provient de la non-uniformité azimutale stationnaire de
la roue amont qui, par rotation d’'un domaine par rapport a l'autre, se transforme en
non-uniformité temporelle dans le domaine aval.

Dans le domaine aval, les instationnarités sont exprimées au travers d’une série de
Fourier comme l'expression (3.19), ou €p est la coordonnée azimutale dans le domaine de
calcul de la roue considérée, le stator.

U'(r,0p,2,t) = Y U, (r,0p,z) ™" (3.19)

Le probléme se réduit donc a trouver une expression des conditions limites déterministes
qui a cette forme, afin de pouvoir appliquer une condition limite distincte sur chaque mode
spatial. Selon I’hypothése faite précédemment, le développement (3.21) de 1’écoulement
stationnaire non-uniforme azimutalement dans le domaine amont (repéré par l'indice U
dans la suite) permet d’obtenir une telle expression dans le domaine aval (repéré par
I'indice D dans la suite).
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Soit la relation de passage (3.20) d’un domaine a lautre.

Oy =0p + Qi (320)

La décomposition de I’écoulement amont est alors la suivante.

U'r,0y,z) = ZU{I (r,x) e*nfu

_ ZUT/L (7,7 I) eiwn(0D+Qt)

*
Wn

N
_ ZU/ (r,z) iwnfD eiant
n
—_——
n

U;L* (T70D 71:)

= ZUT;* (r,0p, x) e™nt (3.21)

Ainsi, les interactions entre roues peuvent apparaitre, dans le plan fréquentiel du do-
maine aval, comme des conditions limites purement spatiales.

3.2.2 Les conditions limites circonférentielles

Pour que la méthode de He soit applicable au cas méridien, il est donc nécessaire que les
conditions limites d’ordre supérieur a l'origine des non-uniformités circonférentielles soient
décomposables en série de Fourier de la forme (3.22), afin qu’elles puissent étre appliquées
séparément & chaque mode méridien, fonction uniquement des variables méridiennes (r, x).

U'(r,0,x) = Z U (r,z) e’ (3.22)

Dans le cas méridien, I'information d’ordre supérieur, a savoir les non-uniformités azi-
mutales, sont générées par I'aube elle-méme, par son imperméabilité® dans le cas non-
visqueux. Ceci signifie qu’en certaines positions particulieres ¢, et 8,, une condition limite
doit étre imposée. Cette condition limite peut étre exprimée par (3.23).

U'(r,#, :c)](,:@p = U; (r, ) (3.23)

3. Ainsi que par sa condition de non-glissement dans le cas visqueux.
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Substituant (3.23) dans (3.22), on obtient l'expression (3.24) de la condition limite
d’ordre supérieur.

Uy (ro) = Y Uy (ra)e

Uy (r,x)

= Z U*(r,z) (3.24)

Ainsi, cette condition limite n’est pas vraie pour tout #. Elle ne peut donc pas étre
décomposée en série de Fourier du type (3.22) et ne peut s’appliquer de maniére distincte
sur chaque mode. Elle doit étre appliquée sur la série entiére, couplant tous les modes.
Du fait de la présence du générateur d’information d’ordre supérieur dans le domaine de
calcul, une résolution par superposition modale est donc impossible.

Une autre facon de situer le probléme issu de la formulation classique des aubes dans
le domaine de calcul peut étre déduit de la figure 3.2.

imperméabilité périodicité

périodicité

X

FIGURE 3.2 — Domaines de calculs avec formulation classique des aubes : domaine continu
non-périodique (haut) et domaine périodique discontinu (bas).

L’utilisation de séries de Fourier passe par la condition de périodicité du domaine de
calcul. Comme le montre la figure du haut, c’est le cas dans tout le domaine excepté aux
parois des aubes. L’autre disposition de ’aube au sein du domaine de calcul méne a un
domaine périodique mais discontinu.
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Il n’en reste pas moins que la méthode de He est tres attractive. L’obstacle rencon-
tré est cependant de taille. D’un point de vue mathématique, afin de résoudre le systéme
aux perturbations par superposition modale, il est nécessaire de rendre 1’écoulement pério-
dique. D’un point de vue physique, il faut s’affranchir de toute condition limite sur 'aube,
c’est-a-dire rendre ’aube perméable. En d’autres termes, il faut supprimer ’application de
conditions locales (i.e. en certains ;) tout en conservant l'effet des aubes puisqu’elles sont
a 'origine des perturbations circonférentielles.

Selon ce raisonnement, la force des aubes doit apparaitre comme un terme source dans le
systéme d’équations aux perturbations, et ce de maniére décomposable en série de Fourier.
Les aubes doivent donc étre remplacées par un champ de force tridimensionnel qui conduit
I’écoulement & respecter une condition d’imperméabilité fictive. Ce champ de force doit
de plus ne pas étre localisé aux parois fictives des aubes, ce qui correspondrait a deux
fonctions de Dirac (I'une a l'extrados et l'autre a l'intrados), mais étre “répandu” autour
de la position fictive de 'aube, de maniére a fournir une décomposition spectrale de bande
passante limitée.

Ainsi, chaque mode serait résolu par un calcul méridien distinct correspondant & une
composante fréquentielle du champ de force. Cette formulation s’inscrit en ligne directe
de la méthode de He, puisque le systéme aux perturbations peut étre vu comme une
superposition de problémes d’ordre inférieur dans le domaine fréquentiel, et donc résolu
par la méme technique que le systéme moyen, lui-méme correspondant a la partie moyenne
du champ de force.

Ces idées font partie intégrante de la méthode dite de frontiére immergée (“Immersed
Boundary Method”), ou le corps plongé dans un fluide apparait sous forme d’un champ
de force. Celui-ci agit sur le domaine fluide défini sur un maillage ne se conformant pas
au corps. Le corps solide n’apparait plus explicitement, ni les conditions limites correspon-
dantes. La clé de cette méthode est la transposition des conditions limites reproduisant le
corps afin d’en traduire l'effet sur un maillage recouvrant a la fois les domaines fluide et
solide.

Le chapitre suivant est consacré a la présentation de cette méthode. Ensuite, nous
montrerons que l'utilisation de cette technique de reproduction du corps permet d’appliquer
la méthode de He au cas du modéle méridien.
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La méthode de frontiére immergée
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Charles Peskin [118, 119, 120] développe une méthode (1972) destinée a faciliter le trai-
tement de problémes d’interaction fluide-structure, qu’il applique en dynamique des fluides
biologiques (écoulement du sang dans le coeur). Sa méthode met en jeu deux maillages.
Le premier est un maillage fixe représentant tout le domaine de calcul (maillage dit “eulé-
rien”). Le deuxiéme est un maillage curviligne mobile et déformable suivant le mouvement
du corps (maillage dit “lagrangien”). Ces deux maillages sont totalement indépendants et
I'information se transmet de I'un & I'autre au moyen d’une équation d’interaction incluant
une fonction de distribution (approximation lissée de la fonction de Dirac). Celle-ci répartit
I'information de la présence du corps sur le domaine. Le maillage lagrangien bouge libre-
ment sur le maillage cartésien, sans obligation de s’y adapter. Il s’agit d’'une méthode de
maillages non-conformes.

Par la suite, une autre catégorie de méthodes, dites “méthodes de maillages cartésiens”
ont vu le jour. Elles reprennent 1'idée de Peskin et 'appliquent au calcul d’écoulements
sur des corps de géométrie complexe sur un simple maillage cartésien. Dans la suite, nous
regroupons sous l’appellation méthode “Immersed Boundary”, ou méthode de “frontiére
immergée”, les méthodes qui simulent des écoulements autour de frontiéres solides et aux-
quelles le maillage ne se conforme pas.
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Au cours de ce chapitre, nous allons présenter la méthode de frontiére immergée et le
travail de quelques auteurs. Nous montrerons qu’elle remplit les critéres d’une application
au cas du méridien harmonique.

4.1 Principe de la méthode

Classiquement, la résolution du probléme de I’écoulement d’un fluide autour d’un corps
passe par le solutionnement des équations de Navier-Stokes sur un domaine fluide 2; borné
notamment par la frontiére solide I'y, du corps, comme illustré a la figure 4.1 (haut).

{1
{4+

o LY
AP EERARI 1 TN d

~

FIGURE 4.1 — Exemples de maillages conformes (haut) et de maillages cartésiens (bas)
[160]

Dans ce cas, une étape importante et complexe est la génération du maillage. Les équa-
tions a résoudre sont alors discrétisées sur ce maillage et sont accompagnées de conditions
limites, notamment sur le corps. Celles-ci sont aisément implémentées dans le code puis-
qu’elles font partie du domaine de calcul.

Par exemple, soit les équations et conditions limites suivantes, ou U est le vecteur des

inconnues et L (U) lopérateur représentant les équations de Navier-Stokes.

L(U)=0 surQy (4.1)
U= UI‘ sur Fb
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Les conditions limites sont donc imposées explicitement au cours du processus de réso-
lution. C’est ce point qui représentait un obstacle a I’application directe de la méthode de
He au cas du modeéle méridien.

Dans une méthode de frontiére immergée par contre, il n’existe plus de restriction sur
la forme du maillage, il peut étre généré indépendamment de la forme du corps. Ceci est
trés avantageux pour des corps mobiles ou de géométrie complexe. Dans ce cas de maillage
non-conforme, les conditions limites apparaissent indirectement, par une modification du
systéme d’équations (4.1). Cette modification consiste en l’ajout d’un terme source dont
le but est de reproduire 'effet du corps, c’est-a-dire l'effet de la condition limite (4.2).
L’imposition des conditions limites est la clé de 'efficacité de la technique. C’est aussi par
la facon d’imposer la présence du corps que les différentes méthodes se distinguent. Le
terme source peut étre introduit dans les équations de deux fagons : discréte (“Discrete
forcing approach”) ou continue (“Continuous forcing approach”).

4.2 Approche discréte

Dans l'approche discréte, les équations (4.1) sont d’abord discrétisées sur le maillage
cartésien, sans considérer les conditions limites, ce qui donne I’expression suivante.

L] {U} =0 sur Q (4.3)

Ensuite, la discrétisation est ajustée dans les régions proches des parois fictives pour
prendre en compte leur présence. Ainsi, I'opérateur discrétisé [L| devient un opérateur
[L'] différent et 'effet des parois fictives est introduit par un terme {r}, donnant lieu a
I’expression suivante.

[L']{U} = {r} sur (4.4)

Cette approche discréte n’est pas universelle car elle dépend du schéma de discrétisation
choisi. Cette vision de la méthode de frontiére immergée se rapproche du cas de résolution
sur maillage conforme. En effet, dans le cas discret, les équations sur le domaine fluide sont
traitées en priorité. Ce n’est que dans un deuxiéme temps que les conditions limites sont
ajoutées au sein de la discrétisation. Il apparait donc une distinction entre le domaine fluide
et le corps qui y baigne, I’écoulement n’y étant d’ailleurs pas nécessairement résolu. Les
conditions limites peuvent étre imposées de maniére indirecte, au travers d’une force, ou
directe, par interpolation de I’écoulement sur les parois fictives puis correction de celui-ci.
Ce dernier cas se rapproche fortement de la méthode classique sur maillage conforme.

Dans un cas comme dans 'autre, ’approche discréte nécessite une localisation explicite
du corps immergé pour effectuer les modifications de la discrétisation des équations.
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Le corollaire est que les conditions limites peuvent étre imposées de maniére plus précise,
plus ponctuelle, et conviennent donc bien aux écoulements a hauts nombres de Reynolds
pour lesquels la couche limite est trés localisée.

4.3 Approche continue

Dans 'approche continue, le terme source de force f, traduisant la présence du corps
est inclu dans les équations continues (4.1), ce qui donne 'expression suivante a résoudre.

L(U) =f, sur Q (4.5)

Le systéme d’équations & résoudre est appliqué sur le domaine 2 = Qy U €, c’est-a-
dire sur le maillage cartésien entier, y compris a l'intérieur du corps. C’est une différence
majeure par rapport aux résolutions sur maillage conforme. Cette équation est ensuite
discrétisée sur le maillage cartésien, menant a I’équation suivante qui sera résolue sur tout
le domaine.

L] {U} = {£,} sur Q (4.6)

Contrairement a ’approche discréte, ’approche continue ne distingue pas le domaine
fluide du domaine solide. Les équations sont résolues sur le domaine cartésien entier. Ceci
peut présenter un inconvénient puisqu’il est nécessaire de résoudre les équations sur un
domaine solide qui, a priori, ne présente aucun intérét. Cependant, en vue d’une extension
a une méthode harmonique, ceci est appréciable puisque le domaine peut étre uniforme
azimutalement et périodique. La présence des aubes est vue comme une information externe
qui vient se superposer a 1’écoulement défini sur un maillage quelconque. Ceci correspond
a la philosophie d’Adamczyk ot le générateur de non-uniformité circonférentielle (I’aube)
est une information d’ordre supérieur. Pour cette raison, c¢’est I’approche continue qui est
choisie et approfondie dans la suite.

Cette approche s’applique différemment selon la nature du corps immergé : élastique
ou rigide.

4.3.1 Frontiéres élastiques

La méthode initiale de Peskin s’inscrit dans cette catégorie. Elle avait pour but de
faciliter les calculs d’interaction fluide-structure, notamment le couplage des équations so-
lides aux équations fluides. La transmission de I'information du corps élastique au domaine
fluide est effectuée au moyen d’une loi constitutive comme celle de Hooke.
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Soit (g, 7, s) les coordonnées curvilignes d'un point de la surface du corps, X(q,r, s,t)
sa position au temps t dans I’espace cartésien, x un point quelconque de I'espace cartésien,
F(q,r,s,t) la force élastique appliquée par le corps sur le fluide dans les coordonnées
lagrangiennes. La relation qui lie cette force a son équivalent dans I’espace eulérien (le
domaine cartésien) f(x,t) est la suivante, ot ¢ est la fonction de Dirac.

f(x,t) = /F(q, r,s,t) 6(x — X(q,7,5,t)) dg dr ds (4.7)

Il s’agit de ’équation d’interaction entre les deux domaines.

En pratique, ces domaines sont discrétisés. Il s’ensuit qu’une fonction de Dirac ne pourra
transmettre l'information que si les deux maillages coincident. Or cela va a l’encontre de
la philosophie de Peskin. La fonction ¢ est donc remplacée par une fonction J;, qui est une
approximation lissée de la fonction de Dirac. Elle permet de transmettre la force exercée
par un neeud lagrangien aux nceuds eulériens adjacents, sans nécessiter une coincidence de
maillage, comme illustré a la figure 4.2. Pour étre cohérente, cette fonction 9, doit satisfaire
plusieurs conditions.

Immersed Boundary

| —+—  Saiki & Biringen

| (1996)

Peskin (1972)
Beyer & Leveque
(1992)

Lai & Peskin
(2000)

—
(=]

Force distribution
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|
o
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| | ]
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Grid Indices

FIGURE 4.2 — Transmission de I'information d’un maillage a 'autre [104]

Construction de d;,

Supposons que la fonction tridimensionnelle ¢, est donnée par un produit de fonctions
d’une variable et qui dépendent de la largeur de maille h de la maniére suivante :

0= oo (20 (2)0(2). =

ol x1,T9,x3 sont les composantes cartésiennes de x. Cette formulation n’est pas es-
sentielle mais permet la simplification du raisonnement & une dimension. La dépendance
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vis-a-vis du maillage exprimée par (4.8) permet de retrouver naturellement la fonction de
Dirac comme une limite pour A tendant vers 0.

En fonction de cela, les postulats suivants peuvent étre énoncés en termes de fonc-
tion ¢(r), ou r désigne x1/h, x2/h ou x3/h. Ces conditions a satisfaire sont les suivantes,
exprimées en langage discret.

¢(r) est continue pour tout réel r (4.9)

¢(r) =0 pour |r| > 2 (4.10)

Z ¢(r — 7) = 1 pour tout réel r (4.11)
j

Z(r — j)¢(r — j) = 0 pour tout réel r (4.12)

J

La condition de continuité (4.9) est utilisée pour permettre une transmission progressive
de la force au domaine fluide, facilitant la résolution numérique.

La condition (4.10) de support compact est énoncée, a l'origine, pour des raisons d’effi-
cacité de calcul, afin de limiter le nombre de points du maillage cartésien qui interagissent
avec le maillage lagrangien. Peskin propose une borne égale a 2 parce qu’elle convient a son
schéma de discrétisation. La condition pourrait cependant étre exprimée plus généralement
pour |r| > C ou C est une constante déterminée par l'utilisateur. D’un autre coté, il est
logique de limiter I'extension de la fonction, puisqu’elle est censée approcher une fonction
ponctuelle.

La condition (4.11) exprime la conservation de la force lors de la distribution sur le
maillage cartésien.

La derniére condition exprime la surface comme le centre de gravité de la distribution de
la force qu’elle génére, ce qui permet de ne pas créer de couple parasite par la distribution.

Peskin propose la fonction suivante.
1 T :
(14cos (%)), sifrl <2
oo - (A g <m>
Il existe plusieurs fonctions ¢y, les plus connues étant illustrées a la figure 4.2. Chaque

point lagrangien (i.e. de la frontiére solide) répand son effet sur le maillage eulérien au
moyen de la fonction de distribution.
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4.3.2 Frontiéres rigides

La méthode classique de Peskin utilise la loi de Hooke, adaptée a un corps élastique,
mais dont la limite pour un corps rigide pose probléme. Dans le cas d'un corps rigide, il ne
s’agit plus d'un probléme d’interaction fluide-structure nécessitant une loi de comportement
du solide immergé. Une condition limite d’imperméabilité ou de non-glissement suffit dés
lors pour traduire son influence sur I’écoulement.

Plusieurs auteurs se sont intéressés a la maniére de formuler une force externe qui per-
mettrait de satisfaire les conditions d’imperméabilité ou de non-glissement sur les parois
fictives. Dans la suite, nous nous intéresserons plus particuliérement aux méthodes de péna-
lisation développée par Arquis & Caltagirone |7], de “frontiére virtuelle” ( Virtual Boundary)
ou de “feed-back” proposée par Goldstein [51] et de “forcage direct” (Direct-forcing) initiée
par Mohd-Yusof [106].

4.3.3 Meéthode de pénalisation

Cette méthode de pénalisation consiste a ajouter aux équations du mouvement un
terme de force pénalisant, en certaines zones, I’écoulement dont la vitesse n’est pas égale
a la vitesse voulue ug. Pour cela, Arquis & Caltagirone [7] utilisent le concept de milieu
poreux pour définir le terme de force. Ils considérent le domaine entier {2 comme 1'union
de différents milieux : fluide €2¢, poreux €2, et solide €2;,. Chacun des milieux est caractérisé
par une constante de perméabilité n(x).

ng — 00 six € Qf
n(x) = p six €, (4.14)
m — 07 sixe

Les milieux fluide et solide apparaissent donc comme limites d’un milieu poreux. La
méthode consiste ensuite a ajouter un terme de trainée aux équations de Navier-Stokes dé-
finies sur le domaine €). Ce terme représente ’action du milieu poreux fictif sur I’écoulement
et est défini ci-dessous, ol u est la vitesse du fluide et € une fonction porte.

€

f= ~ (u—up) (4.15)

Cette expression permet de définir une condition de non-glissement sur un corps solide
par pénalisation sur la vitesse. Arquis & Caltagirone appliquent cette méthode en volumes-
finis, tout volume appartenant au moins en partie au corps étant muni d’une constante de
perméabilité 7. Un maillage suffisamment fin est donc nécessaire pour définir les frontiéres
solides.
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Cette méthode présente l'avantage d’étre facile a implémenter, un simple terme al-
gébrique devant étre ajouté aux équations du mouvement. Elle permet aussi de calculer
aisément la force exercée sur un corps par une intégration volumique plutot que surfacique.
La simplicité de ce terme a permis des études théoriques assez poussées [6, 81, 80] démon-
trant la convergence de la solution pour 7 tendant vers 0. Ces études ont montré qu’il est
possible, au travers de ce parameétre 7, de maitriser le niveau d’erreur sur la satisafaction
de la condition de vitesse.

Néanmoins, cette méthode comporte des défauts au moins aussi importants que ses
qualités. En effet, le terme source (4.15) s’avére trés raide lorsque 1 diminue, ce qui est
nécessaire pour obtenir une solution précise. Il a été montré que la stabilité de I'intégration
temporelle nécessite un pas de temps At = n < 1. De plus, la convergence de I'erreur est
assez lente, au mieux O(n). Enfin, cette force génére une couche limite dont I’épaisseur est
lice a I’étalement du terme (4.15) autour de la position de la paroi fictive.

D’autres auteurs |78, 94, 24| ont repris cette méthode et 'ont adaptée aux écoulements
compressibles. Il ressort de ces contributions qu’une résolution implicite cotiteuse est utile
pour obtenir une solution précise en évitant la forte contrainte sur le pas de temps. Certains
[78, 85] utilisent cette méthode dans un environnement spectral avec, toutefois, un nombre
de modes de Fourier trés important. Un filtrage est de plus nécessaire pour atténuer le
phénomeéne de Gibbs.

4.3.4 Meéthode de “feed-back”

Goldstein [51] inclut le calcul de la force f au sein du processus itératif de résolution.
Il résout les équations de Navier-Stokes et souhaite donc que l'effet des parois fictives soit
larrét total du fluide. Pour ce faire, il utilise un procédé de régulation de la vitesse du
fluide en différents points x, du corps solide. Sa formulation de la force est la suivante, en
chaque point x4, ol «a et [ sont deux parameétres déterminés par l'utilisateur et u est la
vitesse du fluide.

f:a/o (u—ug)dt+ B (u—up) (4.16)

La force externe est donc dictée par un controleur composé d’un terme proportionnel
et d’un terme intégral, dont la consigne de régulation est une vitesse ug aux points x,. La
présence du terme intégral garantit 'obtention de la consigne a la convergence du processus.

L’inconvénient majeur de cette méthode est que le terme intégral de (4.16) introduit
une condition de stabilité sur le pas de temps At entre les itérations, laquelle est, selon
Goldstein, dans la plupart des cas plus restrictive que la condition CFL intrinséque aux
schémas d’intégration explicite d’équations hyperboliques. Cependant, il a été montré [90,
133| que cette restriction était forte dans son cas du fait de 'utilisation d’un schéma
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d’intégration temporelle d’Adams-Bashforth. Dans le cas d’un schéma de Runge-Kutta,
ces auteurs ont montré que la condition CFL est du méme ordre que celle imposée par les
équations du mouvement.

Pour aller plus loin, d’autres auteurs [90, 101| ont étudié la dynamique du controleur
(4.16) en fonction du couple (v, B). Il en ressort que le parameétre (3, 1ié a 'amortissement du
processus, domine la vitesse de convergence au début du processus tandis que la paramétre
a est lié a la fréquence de réponse du controleur et détermine I’erreur finale sur la condition
de vitesse. Selon Margnat [101], le couple idéal de paramétres doit étre fixé selon la théorie
de l'oscillateur amorti du second ordre, de fréquence propre w,, et de taux d’amortissement

€.

a=—w (4.17)

n

B = —28w, (4.18)

Certains auteurs [128, 90| notent que les écoulements interne et externe a l’obstacle
sont liés dans la région proche des parois au travers de la fonction de distribution de la
force. Par conséquent, il peut étre intéressant dans certains cas de controler également
I’écoulement interne.

Au passage, nous pouvons remarquer que la méthode précédente peut étre considérée
comme un cas particulier de celle de Goldstein pour o = 0 et § = —%. Notons que, a
précision égale sur la condition de vitesse, le terme intégral permet de diminuer la valeur
du coefficient f.

4.3.5 Meéthode de forgcage direct

Mohd-Yusof [106] définit un terme source de force qui lui permet d’imposer directement
la valeur de certaines inconnues (les composantes de vitesse) au droit des frontiéres fictives
['y. Soit les équations de Navier-Stokes discrétisées par rapport au temps, ot U est le
vecteur des inconnues, R (U) le vecteur de résidu spatial et f le terme source de force.

Un+1 _ Un

— = R(U)+f (4.19)

Mohd-Yusof souhaite imposer la valeur Uy aux inconnues U sur les frontiéres I',. Les
équations (4.19) peuvent étre réarrangées de la maniére suivante.

Ut = U" + At[R (U") +f] (4.20)
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Deés lors, si le résidu spatial R (U) est connu a 'itération n, alors le terme de force est
le suivant.

1
-R(U"+ —(Uyg—-U") sixel
F - (U + 5 (G0 = UY) ' (4.21)
0 ailleurs

Cette méthode présente les avantages de satisfaire a tout moment la condition de vitesse
et de ne pas présenter de limite de stabilité.

Cependant, elle comporte aussi des inconvénients. La précision de la méthode est gran-
dement liée a l'interpolation de I’écoulement aux parois et a la distribution de la force.
Ceci nécessite en général un maillage plus fin aux abords des parois ou un schéma d’inter-
polation d’ordre élevé |38, 83, 25|. D’autres auteurs [158, 161] proposent que 'intégration
temporelle (4.19) soit effectuée sur le maillage lagrangien, le transfert d’information entre
les maillages cartésien et lagrangien étant opéré par la méme fonction pour l'interpola-
tion et la distribution. Wang [166] mentionne que le processus de distribution détruit la
satisfaction de la condition de vitesse suite a 'influence des points voisins et propose une
méthode a plusieurs pas.

Aussi, 'imposition directe du champ voulu ne garantit pas que celui-ci soit physique.
En effet, en régle général, le champ obtenu ne satisfait pas la conservation de la masse.
Pour y remédier, Kim [83] ajoute des termes mais comme le souligne Muldoon [108], le
champ de vitesse est de divergence non-nulle.

Enfin, cette méthode a été appliquée avec succés en écoulement compressible, notam-
ment par Cho [25] et Keistler [79].

4.4 Synthése de la méthode de frontiére immergée

L’idée de base de Peskin est de définir un domaine de calcul trés général puis de venir
rajouter par dessus un domaine secondaire, le corps, apportant une information de mo-
dification de I’écoulement uniforme. La méthode de Peskin est trés générale et offre des
avantages qui sont recherchés dans plusieurs domaines. Il I’a lui-méme appliquée aux pro-
blémes d’interaction fluide-structure. Elle a ensuite été reprise pour calculer I’écoulement
autour de corps de géométrie complexe pour lesquels il est difficile de générer un maillage.

L’imposition des conditions limites n’est pas directe. Il existe plusieurs méthodes pour
appliquer celles-ci, aucune n’étant universelle. La méthode la plus appropriée dépend de
I'usage que 1’on souhaite faire de la technique.
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L’approche discréte permet un contréle sur la qualité de résolution prés de ’aube, cette
derniére pouvant apparaitre explicitement au travers d’interpolations du maillage cartésien.
Son principe se rapproche donc d’une résolution en maillage conforme, si ce n’est que ce
sont les équations qui sont modifiées pour reproduire le corps, non le maillage. Elle en tire
donc une propriété avantageuse, qui est la gestion efficace des écoulements & haut nombre
de Reynolds, qui requiérent une localisation précise des parois. Cependant, cette approche
ne peut nous convenir puisqu’il y est requis de localiser explicitement ’aube.

Nous nous orienterons plutot vers 'approche continue. Celle-ci satisfait nos exigences en
vue d’une résolution harmonique. En effet, elle permet un calcul sur un maillage uniforme
azimutalement sur lequel vient se superposer une distribution de force. De plus, pour
I’application au cas harmonique, nous reprenons l'idée de Peskin d’utiliser une fonction de
Dirac lissée. Il ne s’agit pas seulement de répartir la force sur les points voisins du maillage
eulérien mais aussi d’avoir une répartition douce de cette action. Celle-ci doit en effet étre
caractérisée par un spectre fréquentiel étroit, tout en offrant une définition suffisamment
fine de 'aube. Ce sont la deux critéres opposés, qui méneront & un compromis.

Le corollaire est qu’il faut s’attendre a ne pouvoir résoudre 1’écoulement que de maniére
approximative. En effet, sans localisation explicite de ’aube, 'imposition des conditions
limites est soumise au niveau de raffinement du maillage, par le calcul de la force mais
aussi par la répartition de celle-ci sur le maillage cartésien. Cependant, notre optique est
de résoudre le systéme d’ordre supérieur de maniére approchée, avec comme paramétres le
maillage et le nombre de modes de Fourier, une information approchée donnant de bons
résultats, comme nous 'avons vu au chapitre 2.

Dans ce chapitre, nous avons présenté une classe de techniques dites de frontiére im-
mergée qui va nous permettre de surmonter 1'obstacle rencontré dans ’adaptation de la
méthode de He au cas circonférentiel. En effet, les frontiéres immergées permettent de
visualiser ’obstacle non plus comme un ensemble de conditions limites ponctuelles mais
bien comme un champ de force, un terme source homogéne, qui génére un effet identique
sur 1’écoulement défini sur un domaine de calcul périodique et continu. Plus rien ne s’op-
pose dés lors au développement d’'un méridien de nature harmonique. Le chapitre suivant
présente la dérivation de ce nouveau modéle.
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Dérivation du méridien harmonique
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Dans ce chapitre, nous allons dériver le systéme d’ordre supérieur donnant accés aux
perturbations circonférentielles. La dérivation des systémes moyen et aux perturbations
est réalisée selon la philosophie de He, c’est-a-dire en conservant une partie moyenne non-
linéaire et en linéarisant la composante fluctuante pour la résoudre ensuite par super-
position modale. Dans cette configuration, les interactions non-linéaires principales entre
les deux systémes sont reprises au travers des tensions circonférentielles. Ainsi, dans un
premier temps du moins, nous ferons ’hypothése que les perturbations sont suffisamment
faibles pour permettre une linéarisation. Nous savons d’ores et déja que cette hypothése est
a mettre en doute. En effet, supposer un systéme linéaire reviendrait a poser une hypothése
de petites perturbations, ce que nous ne souhaitons pas faire ici. Pour concilier les objec-
tifs, nous présenterons le systéme aux perturbations sous forme linéaire non-homogéne,
les termes non-linéaires apparaissant dans le membre de droite du systéme, de maniére
analogue a des termes sources.

Etant donné que ’écoulement est calculé sur un domaine recouvrant le corps, la valeur
moyenne obtenue doit s’entendre comme une valeur moyenne non-physique, définie sur
un domaine différent du domaine réel ou s’écoule le fluide. Il en est de méme pour les
perturbations. Les valeurs réelles correspondant au domaine fluide seront ensuite obtenues

67



68 CHAPITRE 5. DERIVATION DU MERIDIEN HARMONIQUE

par simple post-traitement des résultats de calcul.

Afin de dériver le systéme méridien harmonique, nous n’allons pas partir du début de
la cascade d’Adamczyk (figure 1.1) mais bien de I’étage dont nous souhaitons obtenir une
image moyenne, soit les équations de Navier-Stokes périodiques de passage en passage.
Aussi, nous ne considérerons pas les termes additionnels provenant des moyennes effec-
tuées dans les étages supérieurs de la cascade. Les tensions déterministes et les tensions
apériodiques n’apparaitront donc pas dans le modéle développé.

5.1 Le systéme d’équations de Navier-Stokes tridimen-
sionnelles périodiques de passage en passage

Ce systéme est repris aux équations (5.1) a (5.5) ci-dessous exprimées en coordonnées
cylindriques (r, 6, x), la vitesse de rotation de la roue y étant dénommée 2. Ces équations
sont complétées par I'expression de I'enthalpie totale (5.6) et la loi des gaz parfaits (5.7).
Ces équations sont valables dans un repére fixe (2=0) comme dans un repére mobile,
les grandeurs apparaissant dans les équations devant, dans ce dernier cas, étre assimilées
aux grandeurs relatives. Pour des raisons numériques, nous conférons une forme pseudo-
temporelle a ces équations, ce qui garantira la nature hyperbolique des équations par
rapport au pseudo-temps 7.

Equation de conservation de la masse

0 opV, 10rpV, 10pV,
9p , OpVa  10rpVe 100V

or " or Ty or Trag 0 (5-1)

Equations de conservation de la quantité de mouvement

Composante axiale

OpVe 9 (pVeVe +p) L 10rpViVe  10pVeVe O 1017 1070

or ox r  Or r 00 Oz +r or r 00 (5:2)
Composante circonférentielle
dpVp N IpV,Vy N 10rpV, Vg 4 10 (pVyVe +p) _ 0740 i 10r7g n 1079e
or ox r Or r 00 ox r or r 00
rg — V;V
+ ”Tpe + 20V, (5.3)
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Composante radiale

opV,  0pVeV.  10r(pV;V, +p) 10pVpV, 0ty  10r7, 101
87'+ ox +7“ or +7" 00 _8a:+r or +T86‘

%3 —
PYg + P Too + p%r — 290V, (5.4)

_|_

Equation de conservation de 1’énergie

OpE N opVH N 10rpVilH  10pVeH _ OVjTy; n 10rVim; 10V,

or ox r  Or + r 00 ox r Or r 00

8(]9[: 1 ar(JT 1 8QH 2
(am o +FW) Ty (55)

Equations d’état

H=£+"% (5.6)
P

ﬁ] (5.7)

pz(v—l)p[E— 5

5.2 Les systémes moyen et auxiliaire

Pour obtenir le systéme moyen (ou systéme méridien), on utilise I'opérateur de moyenne
circonférentielle au sein d’un canal, lequel a déja été présenté, mais est rappelé ci-dessous.

¢ = ! /S¢d9 (5.8)

2w
24

Nous rappelons aussi la moyenne de Favre.

s

o= Tr— = (5.9)

/pd@
p
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Les expressions des perturbations par rapport aux deux moyennes sont décrites ci-
dessous.

d=¢p—06 ¢ =6-¢ (5.10)

Une relation entre ces deux perturbations peut étre établie.

po = (p+0) (6+6") =06+ p6" + G+ o
(p0) = po—pd=ps"+ 0+ 0"
pe" = (pg) —p'o

Utilisant cette relation, il est possible d’obtenir ’expression détaillée du triple produit

poip.

pov = p(6+9") (+v")
= PO+ pU0+ p8" + p8Y »
= poY + oY+ ¢ (gw)' — Ao+ (p9) — p'op + po" )"
= pov + ¢ (pv) + ¥ (pd) — p'ov + pd"y”

De 14, les composantes moyenne et fluctuante du triple produit sont déduites.

pb = f}% + pd"y" B
(poy) = ¢ (pv) + 0 (pd) — P o + pd" " — pg/"yp"

Il nous faut ensuite traiter les dérivées pour en obtenir les moyennes et les perturbations.
Rappelons 'expression de la moyenne circonférentielle d'une dérivée selon une variable
spatiale quelconque s.

¢ Obe 201°
55l

ds b Os %rb 0s (5.11)

p

Décomposons ensuite la dérivée en une composante moyenne et une composante de
perturbation.

00 _[00Y , (95
5 (50)+ (5)
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Or I'expression de la moyenne d’une dérivée est connue.

9y _ 1o 1 [
ds) — bads Zb| 0s],

1o 1 [-00  ,00]°
= za—fb@“ﬁas}

N p
a6 [ 1 [0’
- bds b |0s » Zp " Os »
s o L[ o)
b ds  bOs %’Tb s],

a_gEJr(Eab pob 1 (b,aes
Os bos bos 2

0o 1 001°
- Y- |y 12
ds  2%b [¢ 83} , (5.12)
On en déduit I'expression de la perturbation d’une dérivée.
9\ _ 99 _ (99
ds - 0Os 0s
0o 0o 1 ,007°
T 0 os b {gb 85L
o¢’ 1 001°
= —+ 5 |¢=— 1
ds ~ 2h [gb &SL (5.13)

Cette expression montre que le systéme aux perturbations peut étre exprimé en fonction
des perturbations des inconnues tridimensionnelles. Mathématiquement, le second terme du
membre de droite de I'expression précédente provient de la non-périodicité de la fonction
¢ sur Uintervalle [6,,6;]. Physiquement, il traduit I'influence des aubes sur ’écoulement
perturbé dans le passage inter-aubes.

Avec la formulation de type frontiére immergée, ’aube n’apparait plus dans le domaine
de calcul. Par conséquent, les notions d’extrados et d’intrados n’existent plus. Dés lors, le
second terme du membre de droite de chacune des relations (5.12) et (5.13) disparait, ainsi
que le facteur de blocage, rendant homogénes ces mémes expressions.

Utilisant toutes ces relations, le systéme d’équations décrivant un écoulement moyen
au sein d’une machine compléte, soit I’écoulement méridien, peut étre dérivé, ainsi que le
systéme auxiliaire dont la solution est I'information d’ordre élevé. Ces deux systémes sont
respectivement repris par les expressions (5.14) et (5.21).
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Systéme moyen

ou O0(F-F,) 0(G-G, - _
s i R AR CEL LS
— p - _0
Ve fa
U= |7V f=1 7, (5.15)
pVr e
B ﬁE - L 76 .
o] ] 0
~ ~ ~ ~ pVIVT | IpVIVT
PVaVo + b ViV, 0.t o
F=| 9.0 G=| Wl S=| “Ht e | (519)
TR T 4= pVIVI | dpVIVI
pVaVy pViVi+p e =
i ﬁ‘/xH | I ﬁ‘/rH | ap\g{;}p/ 4 8pV§£H//
T 0] 0] [ 0 ]
?ccaz ?m: O
F, = T 20 G, = Tro S, = 0 (5.17)
?IT ?7"7" O
& -5 - o7, V7 orr, V7'
ij‘/} 4z | TTJVJ qr | EE % or ]
| v, ] [0 ]
. A T
L=— 25V, Vy — 2005V, Ly=—1| 27w (5.18)
V.V, — VoV + 2005V — P22 Trr = Too
I oV, H — pQ%r2V, ] | TrVi— @
A cela s’ajoutent les relations (5.19) et (5.20).
— Vi k .
e I | R (5.19)

. . 1— — e ~ —~—
7= 2B+ LT E), BT (5.20)
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Systéme auxiliaire

ou’ oFU" oGU'" 10HU ~_, OF, 0G), 10H! _, , , ,
p + I + o +7" B +LU = B + B +r 20 +L —(S"—S))+1f (5.21)

E, Q et E sont les matrices jacobiennes axiale, radiale et azimutale. Elle ne dépendent
que de I’écoulement moyen. L est la matrice jacobienne moyenne des termes sources cy-
lindriques. S’ reprend les termes non-linéaires non-visqueux, S! les termes non-linéaires
visqueux. f’ est le vecteur de perturbation de la force obtenu par méthode de frontiére im-
mergée. F! . GI, H/ et L! reprennent les termes visqueux linéaires. Le détail de ces termes
se trouve en annexe B. Les relations (5.22) et (5.23) ont aussi été utilisées pour dériver le
systeme (5.21).

~2
; / /V; 7 / K
po= (=D (pE) +p o = VilpVi) = 5 (5.22)
/ / ‘71‘2 / e / k/

(pH) = ~v(pE) + (v —1) > P - Vi (pV3) -5 (5.23)
Ko= (pV'V = pV'VY) (5.24)

5.3 Le systéme auxiliaire harmonique

Le systéme d’équations (5.21) est non-linéaire et tridimensionnel. Il ne comporte aucune
hypothése additionnelle. Le membre de gauche représente une forme quasi-linéaire vis-a-vis
des perturbations U’, c’est-a-dire linéaire pour un écoulement moyen connu. Le membre
de droite reprend quant a lui les termes visqueux, les termes non-linéaires et la force des
aubes.

Dans ce qui suit, nous allons utiliser la démarche de He. Celle-ci consiste a faire quelques

hypothéses sur la nature des termes du systéme et a exprimer celui-ci dans 'espace fré-
quentiel pour en permettre une résolution par superposition modale.

5.3.1 Développement en série

Soit le développement en série de Fourier spatiale (5.25) dans la direction circonféren-
tielle du vecteur des perturbations des inconnues conservatives.
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(r,0,z) ZU/ r,x) e n? (5.25)

Substituant le développement (5.25) dans le systéme auxiliaire (5.21), nous obtenons
I'expression suivante pour le membre de gauche (MG) de ce dernier.

au’, aFU' oGU/, L

MG = + = "HU’ + LU' elnd 5.26
Z Ox or (5:26)

Afin d’obtenir un systéme homogéne par rapport aux fonctions de Fourier, il est né-
cessaire d’établir une expression similaire pour le membre de droite (MD). Nous allons
considérer successivement le force des aubes, les termes visqueux et les termes non-linéaires.

5.3.2 Force des aubes

Grace au recours a la méthode dite de frontiére immergée, ot le corps plongé dans
un fluide apparait sous forme d’un champ de force, celui-ci agit sur le domaine fluide
périodique et continue défini sur un maillage ne se conformant pas au corps. Selon cette
nouvelle formulation, la force des aubes apparait comme un terme source dans le systéme
d’équations aux perturbations. Ce champ de force n’est pas localisé aux parois fictives
des aubes, ce qui correspondrait & deux fonctions de Dirac (I'une a 'extrados et I'autre a
I'intrados), mais “répandu” autour de la position fictive de 'aube, de maniére a fournir une

décomposition spectrale de bande passante limitée. Ceci permet de ’exprimer par la série
de Fourier (5.27).

(r,0,x) Zf’ r, ) en? (5.27)

L’établissement de ce champ de force résulte de I’application de la méthode de frontiére
immergée. Son adaptation au cas harmonique sera détaillée dans la suite.

5.3.3 Termes non-linéaires

Tels quels, les termes non-linéaires participent a 'impossibilité de séparer les résolutions
modales. Pour résoudre ce probléme, il est donc nécessaire de les développer en série de
Fourier. Les termes non-linéaires devront apparaitre sous la forme suivante.

(r,0,x) ZS (r,z) e™n? (5.28)
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Développer les termes non-linéaires en fonction des séries de Fourier de leurs compo-
santes et les regrouper par fréquence de Fourier nécessiterait une identification complexe
et présenterait, comme l'affirmait Hall [60] pour I'expression des flux, un cotit d’évaluation
trop important.

Hall propose une autre solution. L’expression de ces termes non-linéaires en fonction
des inconnues conservatives dans l'espace physique est connue. Dés lors, au cours d'un
processus itératif, supposant connu le vecteur U/, a 'itération t, il est possible de recourir
a la transformation inverse de Fourier pour retourner dans I'espace physique. Les termes
non-linéaires peuvent alors étre calculés puis convertis en coefficients de Fourier. Ils agiront
alors comme termes sources a l'itération ¢ + 1.

Cette facon de procéder présente I'inconvénient de devoir recourir aux transformations
de Fourier en cours de processus itératif. Elle permet cependant d’inclure toutes les non-
linéarités au sein de la méthode de He.

Il existe une alternative. Billson [13| propose une expression simplifiée des termes non-
linéaires dans I’espace physique, obtenue en négligeant les triples produits de fluctuations,
les perturbations de température et les fluctuations de masse volumique. Dans ce cas,
les termes non-linéaires se réduisent a des doubles produits de fluctuation de vitesse. Ces
formulations étant simplifiées, il serait plus aisé d’exprimer les termes sources dans I'espace
fréquentiel en fonction des coefficients de Fourier des inconnues conservatives, évitant les
transformations de Fourier.

Il reste une derniére possibilité. Ces termes pourraient étre négligés, c’est ’hypothese
qui est faite dans la méthode harmonique de He. Pour le justifier, revenons aux objectifs
fixés au début de cet exposé. Nous souhaitons limiter les besoins en empirisme du méridien.
Pour cela, il nous faut notamment considérer I'influence des tensions circonférentielles sur
le systéme moyen. Pour les former, il nous faut accéder a l'information d’ordre supérieur
symbolisée par les inconnues conservatives U’. Ces inconnues seront obtenues par résolution
d’un systéme dans lequel apparaissent des termes non-linéaires du type (5.29) qui sont en
fait des perturbations de perturbations.

06"~ b (5.29)

Dés lors, ces termes n’auront normalement qu'une influence trés indirecte sur I’écoule-
ment méridien.

A ce niveau, nous n’allons pas plus loin dans la discussion des termes non-linéaires.
Celle-ci sera poursuivie au chapitre 7.
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5.3.4 Termes visqueux

Afin que les termes visqueux ne fassent pas obstacle & 'obtention d’un systéme ho-
mogene, il est nécessaire de leur appliquer quelques hypothéses de travail. Les tensions
visqueuses sont de la forme (5.30) ou (5.31) ot u et v sont respectivement les viscosités
dynamique et cinématique.

oV, v 20

B ov, oV; 20V,
=vp (&’L’i + oz, — 33xk6”) (5.31)

Pour en obtenir la moyenne et la perturbation, nous allons faire ’hypotheése [141] que
les fluctuations de viscosité cinématique v/ sont négligeables. Ceci méne aux expressions
(5.32) et (5.33) pour la moyenne et la perturbation des tensions visqueuses.

T@'j =

ov;, IV, B gavkéu
Or; Ox; 30z "

- (9Vj+8V 28Vk5
~vp Ox; Oz 30z, “

V5 8V+8V_28Vk5”
8561 xj 30x; "

_ 20V 5ij> (5.32)

Q

Q
=

89@ Ox; 30wy

dx; | Oxr; 3 0x

LV 20V
ZL‘j 38[Ek “

V” vy 200
— Oii 5.33
+vp (8:1:1 + Ox; 3 Oy, j) (5.33)

+ vy

) <3V” ov!” 20V/) )
=0 ks

Telle quelle, 'expression de la perturbation des tensions visqueuses est non-linéaire et
ne permet pas une décomposition en série de Fourier du type (5.34).

(r,0,x) ZT (r,x) e™n? (5.34)
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Ayant précédemment fait ’hypothése de négliger les termes non-linéaires, nous allons
poursuivre dans cette voie, en accord avec la philosophie de He. Nous supposerons les
produits de perturbations négligeables, ce qui revient a supprimer le troisieme terme du
membre de droite de l'expression (5.33), et les perturbations de masse volumique négli-
geables par rapport & leur moyenne. Ainsi, la perturbation par rapport & une moyenne de
Favre s’exprime par (5.36).

/"o (p¢), B ,0'5
Q" = —ﬁ T (5.35)

L (00) —p'o (5.36)

Iz

Ce faisant, la moyenne des perturbations des vitesses devient nulle. Une décomposition
en série de Fourier de ces perturbations et donc des tensions visqueuses devient alors
compatible avec les expressions moyennes de ces derniéres.

Nous ajouterons une derniére hypothése en supposant également que le champ de vis-
cosité dynamique ne dépend que de I’écoulement moyen, ce qui nous permettra d’utiliser
le modéle de turbulence implémenté dans le méridien. Dans ce cas, le deuxiéme terme du
membre de droite de (5.33) est négligé.

Toutes ces hypothéses nous ménent a considérer 'expression approchée (5.37) pour les
tensions visqueuses.

~~
)

(Vv 200y
T = —_ = 5ij
ox; Or; 3 0z

5.3.5 Systéme harmonique

Soit les développements en série de Fourier des inconnues conservatives et du terme
source de force.

N
U(rbx)= > U, (rz) e’ (5.37)
n=—N,n#0
N
£ (r,0,2)=" > f(rz) e’ (5.38)
n=—N,n#0
N
F (r,0,x) = Z F,, (rz)e“’ (5.39)

n=—N,n#0
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N
G,(rbz)= Y G, (rz)e’ (5.40)
n=—N,n#0
N
H,(r,0,2)= Y H,, (rz) "’ (5.41)
n=—N,n#0
N
L (r,0,z) = Z L., (rz) e’ (5.42)
n=—N,n#0

La somme s’étend sur 2N modes complexes conjugués, le mode d’indice 0 n’apparaissant
pas puisque correspondant a la valeur moyenne, laquelle est résolue par le systéme moyen

(5.14).

Substituant (5.37) a (5.42) dans (5.21) et sachant que les fonctions de Fourier sont
orthogonales, I'expression (5.43) du sous-systéme n parmi 2N est obtenu.

ox or

r

U, OFU. aGU Wy~ ~ oF,, 0G,, iw,
O OEU,  OGU, (T gy = Den en By Ly g (5.43)
or ox or T ' ’

Il s’agit donc d’un systéeme d’équations complexes dépendant uniquement des coordon-
nées méridiennes (r,z), par conséquent résoluble par un code de calcul méridien. Ainsi,
chaque mode serait obtenu par un calcul méridien distinct correspondant & une compo-
sante fréquentielle du champ de force. Cette formulation s’inscrit en ligne directe de la
méthode de He, puisque le systéme aux perturbations peut étre vu comme une superposi-
tion de problémes d’ordre inférieur dans le domaine fréquentiel, et donc résolu par la méme
technique que le systéme moyen, lui-méme correspondant a la partie moyenne du champ
de force.

Quant aux fréquences associées aux modes de Fourier, elles sont calculées selon I'exten-
sion azimutale Af du passage inter-aubes.

2T
— 20 .44
Wy =1 7 (5.44)

Les coefficients de Fourier sont complexes et conjugués pour des valeurs opposées de
I'indice modal. Ainsi, chaque mode de Fourier requiert la résolution de deux problémes
méridiens, I'un pour la partie réelle et ’autre pour la partie imaginaire.

U, =Ur U7 (5.45)

La formulation compléte du systéme (5.43) peut étre trouvée en annexe C.
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A ce point du travail, nous sommes parvenus & proposer une solution innovante pour
la reproduction des effets d’ordre élevé au sein d’un code méridien, & savoir les tensions
circonférentielles et la force des aubes. A notre connaissance, cette combinaison entre la
méthode harmonique non-linéaire, un méridien et la méthode de frontiére immergée est
unique.

Selon cette nouvelle formulation, il n’y a théoriquement plus aucun obstacle en vue de
Iaffranchissement du méridien en empirisme. Toute médaille a son revers et il est évident
que l'acquisition de cette information d’ordre supérieur va augmenter le cotit de calcul
comparativement a un méridien classique.

Dans le prochain chapitre, nous allons détailler 'implémentation de ce méridien harmo-
nique au sein du code existant. Ce méridien harmonique apparaitra comme une nouvelle
fonctionnalité, comme un nouvel étage de calcul venant s’ajouter au méridien classique,
en accord avec la philosophie de la cascade d’Adamczyk. La seule modification de 1'étage
classique se fera au niveau de la formulation de la force de I'obstacle immergé.
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Ce chapitre est consacré aux aspects numériques de la mise en place du méridien harmo-
nique. Celui-ci est composé de trois techniques : les volumes finis, la méthode harmonique
non-linéaire et la méthode de frontiére immergée. Nous commencerons par présenter briéve-
ment la structure originale du méridien qui recourt a la technique des volumes finis. Ensuite,
nous aborderons les modifications requises par la fonctionnalité harmonique. Pour termi-
ner, nous concentrerons la discussion sur 1’élément prépondérant du méridien nouvellement
développé ; I'implémentation de la méthode de frontiére immergée et ses interactions avec

les deux pans précédents du code.

81
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6.1 Code méridien initial

Cette partie du chapitre ne se veut pas une description compléte du code méridien
mais plutot une présentation des techniques numériques utilisées. Ces techniques ont en
effet une importance prépondérante sur la fagon d’appliquer les méthodes harmonique et
de frontiére immergée.

La force de la méthode harmonique développée est de s’appuyer sur le méridien clas-
sique et de lui adjoindre des capacités de résolution et de simulation supplémentaires. La
philosophie, développée depuis le début de cette contribution est de conserver les principes
du méridien, un code bidimensionnel, tout en lui ajoutant un étage permettant l'accés a
une description physique plus compléte.

Le code original bénéficie de I’état de ’art de la CFD dont nous allons présenter briéve-
ment certains points utiles pour la suite de I'exposé. L’implémentation détaillée du méridien
classique est disponible dans Simon [136].

6.1.1 Meéthode des volumes finis
Les systémes d’équations (5.14) et (5.43) sont analogues a l'équation générique (6.1).

ou oF 0G
—+=—+=—=5 6.1
ot + ox * or (6.1)

Afin de résoudre numériquement une équation de ce type, il est nécessaire de la discré-
tiser sur un certain maillage. Différentes méthodes le font : les éléments finis, les différences
finies et les volumes finis. L’état de ’art en CFD fait appel a la résolution par volumes
finis.

Cette technique consiste en la résolution simultanée, sur un ensemble de volumes consti-
tuant un maillage, de la forme intégrale de I’équation (6.1). Lorsque le maillage est struc-
turé, i.e. de topologie parallélépipédique, les volumes sont des quadrangles repérables par
un couple d’indices (4, 7). Selon 'approche de type centrée (“cell-centered’), chacun de ces
quadrangles, de surface €2 et de périmetre I', porte en son centre I'inconnue U;;. Ceci est
illustré a la figure 6.1.

La valeur de l'inconnue U;; est obtenue par la résolution de I’équation intégrale (6.2).

oU OF  0G
i+ /Q (% + 5) Q) = /QSdQ (6.2)
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L.

FIGURE 6.1 — Approche “cell-centered’ en volumes finis

Utilisant le théoréeme de Green sur le volume df) de contour dI', I’équation simplifiée
(6.3) est obtenue.

U ey = f (Fn, + Gn,) dl' + / SdQ (6.3)
T 4 i

Si 'on fait les hypothéses que et S sont constants sur le volume et que le flux normal
f = (Fn, + Gn,) est constant sur chaque face, I’équation simplifiée (6.4) détermine la
valeur de U .

aU ! Zmr +5 (6.4)

Néanmoins, pour résoudre cette équation, il reste a exprimer le flux normal f et la
dérivée pseudo-temporelle 22 S - L'expression du flux concerne le probleme de la discrétisation
spatiale tandis que l’expression de la dérivée est relative au probléme de l'intégration
temporelle.

6.1.2 Discrétisation spatiale

La détermination des flux a travers les faces des éléments de volumes dépend de la
nature de ces flux. La méthode numérique employée différe selon que celui-ci est visqueux
ou non-visqueux.
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Partie convective

La difficulté d’établir les flux convectifs f (U) provient de leur nature hyperbolique.
Ces flux correspondent a la propagation d’informations dans certaines directions, dont il
convient de tenir compte lors de la discrétisation pour respecter leur physique. Les schémas
répondant & cette condition sont dits “décentrés amont” (“upwind’).

Le schéma décentré utilisé pour la cause est celui de Roe [126]. Il résout de maniére
approchée un probléeme de Riemann qui consiste, pour les équations d’Euler monodimen-
sionnelles, a déterminer la solution des équations d’Euler & l'interface de deux zones ot des
écoulements différents initiaux résident. En amont de l'interface se trouve un état gauche
Uy, tandis qu'un état droit Ug existe en aval de I'interface, comme illustré a la figure 6.2.

UL

T

FIGURE 6.2 — Conditions initiales du probléme de Riemann

Selon le schéma de Roe, le flux f (U, Ug) est obtenu par I'expression (6.5).

£ U+ 1 )] = 5 SNl 7, (65)

(UL, Ug) =

N | —

ou A; sont les valeurs propres de la matrice jacobienne de 1’écoulement méridien, r; les
vecteurs propres a droite de la matrice jacobienne et §W; 'intensité des ondes. Le détail
de la formulation de Roe se trouve en annexe D.

Pour évaluer I'expression (6.5), il reste & déterminer les états gauche Uy, et droit Ug sur la
face du volume fini. La détermination de ces états constitue le probléme de reconstruction.
Le schéma de reconstruction employé dans le code, du fait de son ordre de précision élevée,
est le schéema MUSCL (Monotonic Upstream Scheme for Conservation Laws) développé
par Van Leer [162]. Ce schéma s’appuye, pour chaque dimension du probléme, sur les 4
neeuds voisins de la face en x; 1 illustrés a la figure 6.3.

Sur un maillage uniforme, le schéma de reconstruction MUSCL s’exprime par les rela-
tions (6.6) et (6.7) et atteint l'ordre 3 de précision pour k = 1/3. Pour les autres valeurs
du parameétre k, le schéma est d’ordre 2.
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Ujt1
L
R Uiyl
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FIGURE 6.3 — Informations pour la reconstruction MUSCL

Uppar = Ui+ %1 (1= k) (u; —ui—1) + (L + K) (w1 — ;)] (6.6)
Uy 1h = U+ i (1= k) (wir1 —u) + (1 + k) (u; — ui_q)] (6.7)

La formulation compléte, sur un maillage quelconque, est reprise en annexe E.

Ce schéma de haut ordre ne peut cependant étre utilisé tel quel. En effet, selon le
théoréme de Godunov [50], les schémas linéaires utilisés pour les équations de convection
ne peuvent étre monotones que s’ils sont du premier ordre de précision. Un schéma est dit
monotone s'il ne crée pas de nouvel extremum et s’il ne diminue (resp. augmente) pas un
minimum (resp. maximum) local. Le schéma MUSCL étant au moins d’ordre deux, il n’est
pas monotone. Ainsi, des oscillations numériques peuvent apparaitre au voisinage d’une
discontinuité, telle un choc.

Selon le théoréme de Godunov, il est possible d’éviter un tel comportement en intro-
duisant de la non-linéarité. Une telle non-linéarité peut étre apportée par un limiteur qui
réagira, lors de la détection d'un comportement non-monotone, en modifiant le schéma
pour le ramener a 'ordre 1 de précision. La description des limiteurs dépassant le cadre
de I'exposé, nous nous contenterons de préciser que les limiteurs “MinMod” [127] et “Van
Albada” [159] sont implémentés dans le code.

Partie visqueuse

Contrairement a la partie convective, la partie visqueuse correspond & une action diffu-
sive sans direction préférentielle. Ces termes peuvent donc étre discrétisés par un schéma
centré. La difficulté de la discrétisation des termes visqueux provient plutot du fait qu’ils
comprennent les gradients des inconnues portées par les nceuds. La discrétisation spatiale
visqueuse consiste a évaluer précisément ces gradients aux faces des volumes finis.
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Ceci est réalisé au moyen du schéma dit “en diamant” (“diamond path”) [26], qui consiste
a appliquer le théoréme de Green a un quadrangle formé des deux sommets de la face en
question et de ses deux nceuds voisins, comme l'illustre la figure 6.4.

3 2
° /,q\
0 /// E AY R
° ) i/
4 1

FIGURE 6.4 — Volume en diamant (en trait discontinu)

L’évaluation du gradient au point P a l’aide du théoréme de Green passe par la connais-
sance des valeurs aux sommets du diamant. Pour conserver 'ordre de précision général de
la discrétisation, ces valeurs doivent étre obtenues par une méthode d’ordre 2 de précision.
Elles sont obtenues par interpolation bilinéaire entre les valeurs aux 4 noeuds voisins, notés
1 & 4, du point 0. Le détail de I'interpolation est fourni en annexe F.

6.1.3 Intégration temporelle

L’équation (6.4) comporte une dérivée temporelle. En effet, bien que la seule solution
stationnaire de 1’écoulement soit recherchée, il est utile de conserver une dérivée tempo-
relle. Ceci permet de conférer aux équations une nature hyperbolique, que I’écoulement
soit subsonique ou supersonique. Grace a cette invariance de la nature hyperbolique, une
technique de résolution numérique unique permet de gérer tous les écoulements.

La résolution précise de ’échelle de temps n’est cependant pas notre objectif. Ainsi, il
n’est pas nécessaire d’évaluer la dérivée temporelle exacte, une dérivée pseudo-temporelle,
par rapport & un pseudo-temps numérique peut donc étre utilisée. Ceci permet de recourir
a des techniques d’accélération de la convergence.

Le schéma d’intégration temporelle utilisé dans le code est le schéma de Runge-Kutta,
un algorithme d’intégration & plusieurs pas. Soit 1’équation (6.4) réécrite sous la forme

(6.8).

.~ R(U) (6.8)
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Le schéma de Runge-Kutta a m pas s’écrit de la maniére suivante, pour passer de
I'itération n a l'itération n + 1. Comme toute méthode explicite, celle-ci comporte une
limite de stabilité.

v =un
Ut =U"+aAtR (U)

U™ =U"+a,AtR (U™ )
Un+1 =[m

Les coefficients «,,, déterminent les propriétés du schéma. Un schéma & m pas peut étre
au plus d’ordre m en termes de précision temporelle. Ceci requiert cependant un ensemble
de parameétres «,, particulier.

Lorsque la précision temporelle n’est pas recherchée, ce qui est le cas ici, les paramétres
a,, peuvent étre choisis de maniére & conférer au schéma davantage d’amortissement et de
stabilité afin d’accélérer la convergence. Deux schémas sont implémentés, I'un a trois pas,

I’autre a quatre. Les parameétres associés ainsi que le CFL maximum sont repris au tableau
6.1.

(%1 (&%) Qs Oy CFLmax
3 pas | 8/17 17/20 1 - 1.53
dpas| 1/4 5/14 14/25 1  2.58

TABLE 6.1 — Paramétres des schémas de Runge-Kutta implémentés

La limite de stabilité d’un schéma intégrant des équations de type hyperbolique s’ex-
prime par la restriction (6.9) sur le pas de temps discret At.

CFLmax

At < Q

= 4
Z Vo, +al), A
=1

Une fois de plus, la précision temporelle n’étant pas souhaitée, il est possible d’attribuer
un pas de temps maximum différent a chaque volume fini, selon l'expression (6.9). Cette
technique du pas de temps local permet d’améliorer la convergence générale du processus
itératif.

(6.9)

Une technique d’accélération additionnelle est le lissage des résidus (“ Residual Smoo-
thing’). Elle consiste a remplacer le résidu R; d’un nceud ¢ par une moyenne pondérée
R; des résidus environnants. Le résidu pondéré est obtenu par la résolution du systéme
implicite (6.10), pour un cas monodimensionnel.



88 CHAPITRE 6. IMPLEMENTATION DU MERIDIEN HARMONIQUE

— ERZ‘,1 + (1 + 26) RZ — EEiJrl = Rz (610)

Pour un paramétre de lissage € positif, cette technique permet d’augmenter la limite de
stabilité CFL.

6.1.4 Conditions limites

Afin de poser correctement le probléme, les limites du domaine de calcul doivent inclure
certaines informations provenant de 'extérieur. Pour les équations d’Euler, le nombre de
ces conditions limites est déterminé par le nombre d’ondes caractéristiques entrant dans le
domaine.

Ainsi, 'entrée du domaine nécessite 'imposition de quatre conditions lorsque 1’écoule-
ment y est subsonique et cing lorsqu’il est supersonique. Les quatre conditions en subso-
nique sont la pression totale, la température totale et les angles d’entrée de 1’écoulement.
A la sortie du domaine, une seule condition suffit en subsonique. Il s’agit dans notre cas
de la pression statique.

Ces conditions limites d’entrée et de sortie sont conservées pour les équations de Navier-
Stokes. En effet, il est communément admis que lorsque les frontiéres sont suffisamment
¢éloignées des aubages, I’écoulement y est principalement non-visqueux.

En ce qui concerne les parois solides du domaine de calcul, les conditions imposées
sont différentes selon la nature visqueuse ou non des équations résolues. Pour les équations
d’Euler, la vitesse normale & la paroi est nulle. Pour les équations de Navier-Stokes, une
condition de non-glissement est imposée ainsi que la température de paroi si celle-ci est
isotherme ou I'annulation de son gradient si la paroi est adiabatique.

FIGURE 6.5 — Neeud additionnel en frontiére de domaine

Numériquement, afin d’imposer ces conditions, un nceud additionnel est placé en chaque
face frontiére, comme illustré a la figure 6.5. Ces nceuds additionnels portent également
des inconnues mais les équations du fluide n’y sont pas résolues. Leur seule fonction est
de permettre une évaluation des flux aux faces frontiéres selon les valeurs imposées a leurs
inconnues.
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6.2 Fonctionnalité harmonique

Nous venons de décrire les caractéristiques principales de I'implémentation du méridien
classique. Au sein du méridien harmonique, la partie classique devient la partie moyenne du
systéme complet. Elle sera conservée telle quelle, & 'exception de I'adjonction de termes
supplémentaires (tensions circonférentielles, force). Il s’agit 1a d’'un des avantages de la
fonctionnalité harmonique. En effet, elle apparait, tant numériquement que physiquement,
comme un étage supplémentaire apportant un lot d’informations additionnelles.

Comme nous 'avons vu précédemment, le systéme auxiliaire ayant pour solution les
perturbations circonférentielles de I’écoulement peut étre résolu par une superposition de
calculs méridiens. Dés lors, la majeure partie de son implémentation est similaire & celle
de la partie moyenne. Néanmoins, certaines différences apparaissent du fait du caractére
pseudo-linaire des équations et de leur nature tridimensionnelle. L’exposé de ces différences
fait 'objet de cette partie.

6.2.1 Calcul des flux

Le systéme d’équations harmoniques (5.43) peut étre réécrit sous la forme conservative
générique (6.11).

U OF oG

o + o7 + oy S (6.11)

avec U’ les perturbations harmoniques des inconnues conservatives, F’ et G’ les flux har-
moniques axial et radial.

Sous I'hypothése de linéarité invoquée pour obtenir le systéme (5.43), il peut encore
étre écrit sous la forme quasi-linéaire générique (6.12)

ou’ —. ouU’
2 TFO) 5

ou'
or

+G (D) s’ (6.12)

avec les matrices jacobiennes F (U) et G (U) du systéme harmonique définies par les
expressions suivantes.

(e (6.13)
G (U) = e (6.14)
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Les matrices jacobiennes du systéme harmonique ne dépendent que de I’écoulement
moyen U. De plus, celles-ci sont égales aux matrices jacobiennes du systéme moyen. En
effet, soit le développement en série de Taylor (6.15) du flux F(U) autour du point U = U.

L OF(U) — —\ 2
F(U)_F(U)%—\ 5 UU(U—U)J+O<(U—U)> (6.15)

Le premier terme correspond au flux axial du systéme moyen tandis que le second
correspond au flux axial du systéme auxiliaire. Vu la définition d’une matrice jacobienne,
I'égalité (6.16) est vraie et montre que les jacobiennes des deux systémes sont identiques.

— OF OF
F(U) = au _ oU

(6.16)

La matrice jacobienne des deux systémes est donc décrite par I'expression (6.17).

A{U)=F({U)n,+G(U)n, (6.17)

Cette observation s’avére utile pour dériver de maniére simple le schéma de Roe (6.5)
pour le systéme harmonique. Comme le montre Geuzaine [43|, celui-ci peut se réécrire sous
la forme matricielle (6.18)

£ (UL, Us) = 3 [ (U2) + £ (Un)] — /A1 (Us ~ U2) (6.18)

| —

avec

A|=R [A\| R (6.19)

ou R est la matrice des vecteurs propres a droite et A la matrice diagonale des valeurs
propres, toutes deux évaluées selon la moyenne de Roe.

Le schéma de Roe pour le systéme harmonique est donc exprimé par (6.20) et comparé
a celui du systéme moyen (6.21).

£(00 UL U, UR) = 5 [6(0001) + £ (Un,Up)] = 51A (U) | (U~ U1) (6:20)

f(U,,U,) =

NSRS NN

1
2
£ (T2) + £ (Ta)] — 51A (T) | (T~ T) (6.21)
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6.2.2 Intégration temporelle

Le systéme d’équations harmoniques (5.43) peut étre réécrit sous la forme quasi-linéaire
générique (6.12) rappelée ci-dessous.

ou’ ——C14

ou’
o TFO0) 5 =

or

LG (D) s
avec les matrices jacobiennes F (U) et G (U) du systéme harmonique, identiques a celles
du systéme moyen, comme explicité précédemment.

Une analyse de stabilité d’un schéma menant a une condition du type (6.9), telle une
analyse de Von Neumann, se base notamment sur les hypothéses suivantes :

— les matrices jacobiennes sont constantes,

— les termes dérivés d’ordre inférieur sont négligeables.

La premiére condition ne pose pas de probléme puisque la matrice jacobienne ne dépend
pas des perturbations et que le critére est appliqué cellule par cellule pour déterminer un
pas de temps local.

La deuxiéme hypothése consiste a négliger le terme source S’, celui-ci étant bien inférieur
aux termes dérivés a la limite de raffinement de maillage, i.e. pour une longueur de maille
Ax — 0 et un pas de temps At — 0. En pratique, cette condition n’est jamais totalement
remplie mais son approximation suffit. Selon cette hypothése, la discrétisation du systéme
harmonique étant la méme que celle du systéme moyen, la limite de stabilité doit étre la
méme. Dans certains cas cependant, il peut arriver que les termes dérivés d’ordre inférieur
soient du méme ordre que les termes dérivés d’ordre supérieur.

Dans le terme source S’ du systéme (6.12) se trouve 'expression spectrale des flux
circonférentiels, qui font intervenir la fréquence modale w. Si 'on suppose que ce terme est
dominant dans S, I’équation (6.12) peut se réécrire sous la forme (6.22).

ou’ — ou’ . oU’ w _
—+F(U)—+G((U)—+i—H({U)U =0 6.22
ot ( ) ox ( ) or r ( ) (622)

Cette fréquence modale w pouvant étre importante pour les harmoniques élevées, il
apparait en pratique que ce terme ne peut pas étre négligé pour établir la limite de stabilité
du processus itératif. Afin d’étendre la condition (6.9) a la prise en compte de ce terme
dérivé spectral, nous réécrivons 'équation (6.22) dans le formalisme volumes-finis.

U 1<
T QZfiAFi+i%h (6.23)
n=1

avec f; le flux méridien normal & la frontiére AL'; et h le terme source exprimant la dérivée
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spectrale.

Par extension, si I’équation (6.4) méne a la condition de stabilité (6.9), alors I’équation
(6.23) est stable pourvu que la condition (6.24) soit respectée.

At<Q CF Lnas (6.24)

4
> ([Va+al), AT, +—|V9+a|9
=1

En effet, tout comme les vitesses V., + _a] sont les valeurs propres maximales de la
matrice jacobienne normale F (U ) n, + G (U ) n., |Vp + a| est la valeur propre maximale
de la matrice jacobienne H (U)

Ainsi, chaque résolution modale du systéme harmonique correspondant au mode n de
fréquence propre w, a sa propre limite de stabilité, celle-ci étant plus restrictive pour les
harmoniques de plus haut ordre. Chacun de ces systémes harmoniques est intégré tempo-
rellement par le méme schéma de Runge-Kutta que celui utilisé pour le systéme moyen.
Selon He [61], cette intégration simultanée permet d’améliorer la stabilité et la vitesse de
convergence. Ceci provient du lien non-linéaire qui existe entre le systéme moyen dune
part et le systéme harmonique aux perturbations d’autre part. Ce couplage est réalisé par
les matrices jacobiennes et les tensions circonférentielles. Le systéme auxiliaire détermine
les perturbations et par conséquent les tensions circonférentielles, qui apparaissent dans le
membre de droite des équations moyennes. Celles-ci impactent également le systéme auxi-
liaire au travers des matrices jacobiennes qui ne dépendent que des valeurs moyennes de
I’écoulement. Cet échange d’information permet de capturer les non-linéarités de 1’écou-
lement. Il est repris schématiquement a la figure 6.6, pour deux itérations t et ¢t + 1. En
pratique, cet échange d’information est réalisé & chaque pas du schéma de Runge-Kutta.

[tération ¢ U U,
F,.G H S, S,
Avancement Avancement
de (5.14) de (5.43)
Itération ¢ + 1 U U’

FIGURE 6.6 — Avancement temporel simultané des systémes moyen et harmonique
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Le calcul des tensions circonférentielles est donc effectué a chaque itération. Il est opéré
a l'aide de la relation de fermeture (6.25), laquelle est peu consommatrice en temps de
calcul.

in in

N

I — _ H% I/§R //% //%

VIVT =253 (ViR VSV (6.25)
n=1

6.2.3 Conditions limites

Pour des raisons de compatibilité entre les systémes auxiliaire et moyen, les conditions
limites doivent étre de méme nature. Celles-ci sont reprises au tableau 6.2.

Amont Aval Paroi non-visqueuse | Paroi visqueuse
Pression totale Pression statique Glissement Arrét
Température totale
Direction

TABLE 6.2 — Conditions limites subsoniques

Ainsi, pour permettre la résolution du systéme harmonique par superposition modale,
chacun des ces systémes modaux doit avoir ses propres conditions limites. Il convient donc
d’exprimer les valeurs du tableau 6.2, ou plutét leurs perturbations, en terme fréquentiel.

D’un point de vue cotit numérique, la fagon la plus intéressante d’imposer les conditions
limites est de rester dans le domaine fréquentiel et de les exprimer par des relations directes
entre coefficients de Fourier des valeurs concernées. Si ceci est possible pour les conditions
en aval et aux parois qui font intervenir les vitesse et la pression, aisément exprimables par
des relations linéaires en fonction des inconnues conservatives, ce n’est pas le cas en amont
du domaine. En effet, U'expression (6.26) de la pression totale est non-linéaire.

TO\ 71
P’ =p (?) (6.26)

Deés lors, pour cette frontiére, I'imposition sur chaque mode des valeurs prescrites né-
cessite de passer dans le domaine physique par une transformation inverse de Fourier. Les
valeurs y sont calculées pour étre ensuite reportées dans 'espace fréquentiel par une nou-
velle transformée de Fourier. Afin de préserver la compatibilité entre les systémes auxiliaire
et moyen, il est important d’utiliser cette méme procédure pour déterminer les valeurs du
systéme moyen.

En ce qui concerne les autres frontiéres, il est possible de recourir a des expressions
linéaires des inconnues conservatives modales. Celles-ci sont exprimées ci-dessous.
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Frontiére aval Dans une vision méridienne du probléme, nous exprimons ici la nullité des
perturbations de pression statique. Un champ de pression non-uniforme pourrait cependant
étre envisagé. La relation (6.27) découle de I'expression (5.22) de la perturbation de pression
statique, dans laquelle p’ = 0.

V; ~
(PE) = —=p' = + Vi (pVi) + ¥ (6.27)

Paroi non-visqueuse La condition de glissement est exprimée par une perturbation de
vitesse normale nulle. Sur une paroi axisymeétrique, la relation (6.28) doit étre vérifiée.

(0V2) 1 + (V) mr = 0 (6.28)

Paroi visqueuse Il s’agit d’imposer ici 'annulation de la vitesse aux travers des rela-
tions (6.29) & (6.31) ainsi que la perturbation de température (supposée nulle) (6.32) pour
une paroi isotherme ou l'annulation du gradient de température (6.33) pour une paroi
adiabatique.

(pVa) =0 (6.29)
(pV,) =0 (6.30)
(pVa) =0 (6.31)
" =0 (6.32)

aT//
5 =0 (6.33)

avec
v—1 , V2o~ , 0~

T =1""|(pE (R VTN AU 73 I 6.34
R (pE) +p 5 (PVi) p (6.34)

Enfin, il reste une condition limite supplémentaire a satisfaire par rapport au cas pure-
ment méridien. Il s’agit d’une condition de périodicité selon la direction circonférentielle,
I’écoulement étant identique de canal inter-aubes en canal inter-aubes. Cette condition est
implicitement satisfaite par 'utilisation de fonctions de Fourier.
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6.3 Recours a la formulation de frontiére immergée

Nous venons de décrire les deux premiéres composantes du méridien harmonique : le mé-
ridien classique et la fonctionnalité harmonique. Dans cette section, nous allons concentrer
la discussion sur I’élément prépondérant du méridien nouvellement développé ; 'implémen-
tation de la méthode de frontiére immergée et ses interactions avec les deux composantes
précédentes du code.

Comme nous 'avons annoncé au chapitre 4, il existe de nombreuses variantes de mé-
thodes de frontiére immergée. Nous commencerons par préciser la variante choisie et justi-
fier ce choix. Nous entrerons ensuite dans la description de la discrétisation de la méthode
qui fait intervenir deux maillages, I'un lagrangien, I’autre eulérien. Nous discuterons enfin
I’aspect temporel de la méthode et son insertion dans le méridien.

6.3.1 Choix de la méthode

La premiére distinction entre les différentes techniques de frontiére immergée est leur
appartenance a ’approche continue ou l'approche discréte. Leur nature a été décrite au
chapitre 4 et il en est ressorti que l'approche discréte ne peut convenir a 'application
concernée puisqu’il y est requis de localiser explicitement 1’obstacle, précisément ce que
nous souhaitons éviter. Nous nous orientons donc vers ’approche continue et ses trois
catégories de technique : la pénalisation en volume, le feedback et le forgage direct. De ces
trois méthodes, nous sélectionnons le feedback sur base des considération suivantes.

La technique du feedback a été choisie principalement pour trois raisons. Premiérement,
cette technique est compatible avec le concept de code méridien puisque c’est par une
équation de force du méme type que le méridien classique détermine la partie non-visqueuse
du champ de force moyenne imposant la condition d’imperméabilité du squelette.

Deuxiémement, cette équation supplémentaire est caractérisée par une limite de stabi-
lité du méme ordre que le systéme hyperbolique fluide et n’introduit donc pas de restriction
supplémentaire sur le pas de temps.

Troisiémement, la raison principale du choix de cette méthode est qu’en consistant en
une boucle fermée, elle assure une certaine robustesse face aux erreurs de discrétisation
inhérentes a la méthode. En effet, comme il le sera détaillé dans la suite, la communication
entre les deux maillages (lagrangien et eulérien) ne garantit pas un transfert parfait de
I'information de I'obstacle vers le domaine de résolution. La raison en est la non-coincidence
de la fonction de distribution avec le maillage cartésien et I’étalement harmonique, i.e.
I'erreur de troncature, avec le recouvrement des informations qu’il peut engendrer.

La technique de la pénalisation en volume est quant a elle écartée car elle n’est qu’un
cas particulier de la technique précédente dont I’action correctrice intégrale est supprimée.
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Le corollaire est qu’elle ne présente pas la robustesse du feedback. De plus, elle ne garantit
I’'obtention de la consigne au travers de son action proportionnelle qu’au mieux de maniére
inversement proportionnelle & son gain [6, 80, 94|, auquel la limite de stabilité est elle-
méme inversement proportionnelle. Pour résoudre cette difficulté, il est alors nécessaire de
recourir & des méthodes numériques plus stables (GMRES pour [80], BI-CGSTAB pour
[81], traitement implicite du terme de pénalité pour [24])

Enfin, la technique du forcage direct est également évitée car ses exigences se rap-
prochent d’une technique a maillage conforme. En effet, pour étre efficace, il est nécessaire
que la consigne soit transmise de maniére précise puisqu’il n’existe pas de processus de
correction. Il faut donc que la fonction de distribution soit parfaitement représentée par
sa transformée de Fourier, ce qui est impossible. Il faut aussi que le maillage cartésien soit
raffiné aux abords de la paroi de 'obstacle pour garantir ’ordre de précision des schémas
complexes d’interpolation et de distribution du champ de vitesse [38, 83, 79, 161]. Ceci
nécessite une vision physique du maillage. De plus, par 'imposition directe du champ de
vitesse, la conservation de la masse n’est pas forcément assurée. Certains auteurs |83, 108]
y apportent une correction sous forme de terme source de masse. Pour finir, I’équation de
forgage direct (4.21) est difficilement répercutable de maniére séparée sur chaque mode de
Fourier.

6.3.2 Discrétisation spatiale

La traduction de la présence de l'obstacle sur ’écoulement est le point clé de la mé-
thode de frontiére immergée. Il consiste & organiser de maniére précise et consistante les
interactions entre le maillage cartésien, sur lequel les équations du fluide sont résolues, et
le maillage lagrangien, a la surface de l'obstacle. Cette organisation passe par trois étapes.
Premiérement, il est nécessaire de communiquer 1’état de ’écoulement au maillage de sur-
face. Deuxiémement, sur base de cette information, le champ de force doit étre mis a jour
pour atteindre 'imperméabilité de I'obstacle. Troisiémement, Le champ de force actualisé
doit étre transféré sur le maillage cartésien pour y influencer I’écoulement résolu. Ces trois
étapes vont étre décrites dans la suite.

Avant d’y diriger la discussion, il est utile de décrire briévement la nature des deux
maillages en question : le maillage cartésien et le maillage lagrangien.

Le maillage cartésien

Le premier maillage que nous envisageons est le maillage cartésien. Celui-ci est éga-
lement appelé eulérien parce qu’il reste fixe par rapport a l'obstacle mouvant dans les
applications d’origine de la méthode. Par la suite, pour des applications ou I'obstacle est
fixe, il est devenu d’usage de l'appeler cartésien, de par sa configuration extrémement
simple. Un exemple est présenté a la figure 6.7.
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En effet, les exigences de la méthode de frontiére immergée quant a la structure du
maillage sont réduites puisque celui-ci ne doit aucunement se conformer a l'obstacle au-
tour duquel 1’écoulement est recherché. L’essence méme de la méthode est de résoudre
I’écoulement aussi bien a l'intérieur de I'obstacle fictif qu’a I'extérieur. La traduction de
la présence de ce dernier est réalisée par un terme source et non plus par des conditions
limites en surface, lesquelles nécessitent un maillage conforme. Néanmoins, pour obtenir
une définition précise du corps fictif obtenue par transfert d’information entre les maillages
lagrangien et eulérien, ce dernier doit étre raffiné dans la zone en question. Le controle de
la résolution de maillage dans les zones proches de la paroi est plus cotiteux en méthode
de frontiére immergée qu’en cas de domaine de calcul épousant la forme du corps. Dans
ce dernier cas, 'obtention d'un certain espacement dans la couche limite peut se faire par
une adaptation du maillage dans la direction normale a ’aube. Dans le cas d’un maillage
non-conforme par contre, il est nécessaire de raffiner celui-ci dans les deux directions. Ceci
représente en général un inconvénient de la méthode mais dont le méridien harmonique
peut étre affranchi.

En ce qui concerne le maillage, le cas du méridien harmonique est particulier. En ef-
fet, le maillage cartésien est le maillage sur lequel les équations du fluide sont résolues.
Or le méridien harmonique résout ces équations dans le domaine spectral par superposi-
tion modales de calculs bidimensionnels, sur un maillage méridien classique dans le plan
(r,x). Ainsi, le maillage cartésien, le maillage de calcul, posséde déja les caractéristiques
de raffinement voulues.

Si le maillage cartésien est utilisé pour la résolution des équations du fluide, il doit aussi
permettre un transfert d’information avec le maillage de surface de 'obstacle. Cet obstacle
ayant une composante dans la direction circonférentielle, il doit en étre de méme pour le
maillage cartésien, c’est pourquoi il est nécessaire de conférer une dimension circonféren-
tielle & ce maillage. Elle est obtenue par simple extrusion du maillage méridien dans cette
direction.

Ainsi, cette extrusion a principalement deux caractéristiques. Premiérement, elle doit
étre de densité uniforme pour satisfaire au développement en série de Fourier. Deuxiéme-
ment, la densité de maillage doit étre suffisamment importante pour permettre un transfert
précis de la représentation physique vers le domaine fréquentiel. Ce nombre de mailles est
lié a la fréquence du mode le plus élevé par le théoréme de Shannon.

Soit un intervalle Af dans la direction circonférentielle, correspondant au pas inter-
aubes en turbomachines. Si N est I'indice du mode de Fourier de fréquence la plus élevée,
alors le nombre K de mailles composant 'extrusion du maillage méridien doit vérifier la
condition (6.35).

K >2N+1 (6.35)

Si cette condition permet d’identifier effectivement la fréquence du mode N, elle ne
garantit pas la précision de la série de Fourier. En pratique, nous augmenterons donc le
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nombre de mailles. Si le nombre de mailles peut devenir important pour des grands nombres
de modes, cela ne pénalisera que trés modérément le calcul puisque le recours a ce maillage
n’est effectué qu’une seule fois, en pré-traitement, lors de la discrétisation harmonique de
la fonction de distribution.

Si le maillage cartésien correspond au maillage méridien dans le domaine fréquentiel
ol se passe la résolution, son extrusion est son homologue dans le domaine physique et est
illustrée de maniére générique a la figure 6.7 dans le plan (x, #) pour un canal inter-aubes.

L.

FIGURE 6.7 — Extrusion circonférentielle du maillage méridien

Le maillage lagrangien

Le maillage lagrangien consiste en la division de la paroi de 'obstacle en surfaces finies
curvilignes portant les grandeurs descriptives de 1’écoulement de surface en leur centre.
C’est en ces nceuds lagrangiens que la condition limite fictive sera imposée.

La création du maillage est réalisée en deux étapes. La premiére consiste a découper
I’obstacle en tranches d’épaisseur dr selon la direction radiale. Ce découpage correspond
a la projection du maillage méridien, du moins ses lignes orientées selon 1’écoulement,
sur 'obstacle. Cette construction n’est pas requise par la méthode de frontiére immergée
mais facilite la décomposition de 'obstacle. La deuxiéme étape consiste a diviser chaque
tranche d’obstacle, chaque profil, en segments portant en leur centre le noeud lagrangien.
Un exemple de cette division d’un profil d’aube est fourni a la figure 6.8.
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FIGURE 6.8 — Discrétisation lagrangienne d’un profil d’aube

6.3.3 Du maillage lagrangien vers le maillage cartésien

La méthode de frontiére immergée repose sur le transfert de 'influence de I’obstacle,
la force f; définie en chaque nceud du maillage lagrangien, sur ’écoulement résolu sur
le maillage cartésien pour le contraindre a respecter la condition imposée a la surface de
I’obstacle. Cette communication fait intervenir une certaine fonction de distribution ¢ sur
un certain support. Ces deux aspects caractérisent le processus de distribution.

La fonction originale définie par Peskin [118| est de la forme suivante.

o= w0 (2)o (7)o (2) (630

ol 1, T2 et x3 sont les composantes cartésiennes du vecteur ayant pour origine un
noeud lagrangien, € étant I’extension du support de la fonction de distribution. La fonction
(6.36) doit satisfaire plusieurs conditions :

e clle doit tendre vers la fonction de Dirac pour € — 0,
e clle doit étre continue,

e son intégrale en volume doit valoir I'unité,

e clle doit étre définie sur un support compact,

e son centre de gravité doit étre situé sur le noeud lagrangien.

Afin de satisfaire ces conditions, Peskin dérive une fonction définie par morceaux qu’il
simplifie par une fonction du type (6.37) qui en est une bonne approximation unidimen-
sionnelle.

¢ (d) = Qi [1 + cos (ﬂ)} d<e (6.37)

€ €
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ol d est la distance au centre du support. Le support compact utilisé par Peskin est une
sphére de rayon € centrée en chaque noeud lagrangien. Cette fonction cosinus est 1'une
des plus facile a représenter en série de Fourier puisque de méme nature que ses fonctions
propres '

La méthode originelle de frontiére immergée [118] a été développée pour étre appliquée
sur un domaine purement cartésien avec des techniques numériques classiques. Ce que nous
proposons, le méridien harmonique, utilise cette méthode d’une maniére nouvelle. En effet,
non seulement elle recourt a un formalisme de Fourier mais elle résout le probléme dans
Iespace fréquentiel, sans vision physique de la dimension circonférentielle et donc sans
maillage. D’autres auteurs [51, 106, 80, 129, 78, 85| ont utilisé la technique de frontiére
immergée avec une représentation de Fourier. Cependant, ceux-ci l'ont fait dans des codes
pseudo-spectraux, en utilisant des méthodes de collocation, qui conservent une notion de
maillage dans la dimension dont on veut s’affranchir. Ce maillage doit d’ailleurs étre raffiné
aux abords des parois et de plus, la résolution des équations passe réguliérement sur ce
maillage pour évaluer dans le domaine physique les termes non-linéaires. Le nombre de
modes inclus dans leur simulation est par ailleurs supérieur a la centaine, ce que nous ne
pouvons nous permettre. Il s’agit donc d’une classe de méthodes trés différentes de la notre.
La nouvelle méthode que nous proposons nécessite une discussion concernant la nature du
support et le processus de distribution de 'effet de I'obstacle sur le maillage cartésien.

Le domaine de calcul du méridien harmonique est un maillage méridien classique dans le
plan (r, z). Il est complété par une dimension 6 résolue dans le domaine spectral. L’objectif
de la distribution est de former les termes sources de force f et f/ des systéme moyen (5.14)
et harmonique (5.43). Le processus idéal serait la formation directe de ces coefficients de
Fourier & partir des forces nodales f;. Ceci éviterait tout recours au maillage méridien
extrudé, le maillage cartésien.

Dans la formulation classique de la méthode de frontiére immergée, ’existence d’un
support compact est justifiée par la nécessité de communication d’information entre deux
maillages non-coincidents. Lorsque 'aspect spectral est ajouté, le support doit répondre a
des critéres supplémentaires. En effet, afin que le champ de force distribué soit représentable
par une série de Fourier fortement tronquée (20 a 30 modes), le spectre fréquentiel de la
fonction de distribution doit étre étroit. Ceci demande une certaine largeur € de support
suffisamment grande et en tous cas plus importante que ne le permettrait une technique
de résolution dans le domaine physique sur un maillage raffiné au voisinage de la paroi.

La conséquence est que pour un maillage lagrangien donné, le recouvrement entre les
distributions nodales sera de plus grande ampleur, comme le montre la figure 6.9 (gauche),
ce qui méne a un lissage des variations abruptes de force lors de la distribution.

Un tel effet de moyenne engendre une perte d’information qui, dans un contexte d’action
en boucle fermée, peut conduire a une incompatibilité entre I'observation et la commande,
déstabilisant le contréleur. C’est ce qui a été observé en bord d’aube, ou des variations

1. Nous discuterons en détail sa représentation fréquentielle dans le chapitre 7
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FIGURE 6.9 — Bords avec des supports classiques (gauche) et avec des supports non-
recouvrants (droite)

fortes et rapides de I’écoulement existent.

Pour éviter des interactions parasites entre les actions de contréle des noeuds lagran-
giens, une enveloppe de supports non-recouvrants peut étre envisagée, comme l'illustre la
figure 6.9 (droite). La dimension de ces supports est variable selon la densité de points,
seule leur extension dans la direction normale & la paroi étant constante et de valeur e.
Il n’est cependant pas souhaitable de conserver des supports totalement distincts et en
tous cas propres a chaque nceud lagrangien, ce qui ménerait a une représentation grossiére
de la force lagrangienne et a un champ de force en escaliers, qui plus est difficilement
représentable vu le faible niveau de continuité associé.

La solution élaborée pour distribuer ’effet du maillage de surface consiste a lui adjoindre
une fonction de distribution globale sous la forme d’une enveloppe?, comme l'illustre la
figure 6.10. Cette fonction de distribution établit le lien global, dans le domaine physique,
entre les maillages lagrangien et cartésien. La force physique f. en un centre ¢ du maillage
cartésien serait obtenue par 'interpolation (6.38) entre les noeuds lagrangiens voisins & et
kg.

f.= 0421 fk1 (b (dk‘w'nlﬂ) + 0422 ka ¢ (dkzc'nkQ) (638)
ol k;c est la distance a la surface de I'obstacle et af + af, = 1.

Afin d’établir un lien direct entre une valeur lagrangienne et son homologue fréquentiel,
il est nécessaire de dériver une fonction de distribution harmonique §* reliant le nceud
lagrangien k au mode n. Pour ce faire, il faut regrouper les relations du type (6.38) par
noeud k, comme exprimé par la relation (6.39).

2. Notons que le vecteur normal y est approché puisque I’enveloppe est constituée de profils isopara-
métriques.
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2¢

FIGURE 6.10 — Support enveloppe

§(r,0,2) = af ¢ (dgeny) (6.39)

Une transformée de Fourier de cette fonction permet d’obtenir I'influence modale du
nceud k sur tout maille méridienne. Le champ de force harmonique f,, est ensuite obtenu
par la sommation (6.40) de l'influence de chaque nceud lagrangien.

£, (r,z) =Y f 0} (r,2) (6.40)

La discussion précédente montre combien le processus de distribution est une opération
délicate, en particulier dans son application au méridien harmonique. L’une des restric-
tions engendrées par la résolution harmonique est ’existence d’une borne inférieure sur
le paramétre e afin de limiter le spectre fréquentiel de la fonction de distribution. Ainsi,
la condition limite fictive, vérifiée de maniére exacte aux noeuds lagrangiens, aura une
influence sur ’écoulement proche de la paroi, sur une zone d’autant plus large que le pa-
rametre e est grand. Ceci est génant pour une résolution des équations de Navier-Stokes,
qui nécessite I'arrét du fluide a la paroi. En effet, cet arrét va notamment étre provoqué
par un champ de force tangentielle & la paroi distribué sur une bande de largeur e. Le
champ de vitesse n’étant pas nul sur toute la largeur de cette bande, la force va générer de
I'entropie et donc créer une couche limite visqueuse d’épaisseur O (¢). Vu les restrictions
qui pésent sur €, la couche limite sera fortement surestimée, en particulier pour des ap-
plications turbomachines pour lesquelles le Reynolds est O (10°). Le nombre de modes de
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Fourier nécessaires pour représenter une couche limite d’épaisseur 0 est O (t/6) ou t est le
pas inter-aubes dimensionnel, ce qui peut trés vite requérir plus d’une centaine de modes.
Nous devrons donc nous cantonner a appliquer la condition de glissement a la surface de
'obstacle®. Cependant, rien n’empéche de considérer un écoulement visqueux pour lequel
la condition d’arrét aux parois de la veine pourra étre appliquée. De la sorte, nous négli-
gerons uniquement la composante visqueuse de la force qui, comme le montre Simon|136]
est d’ordre inférieur & sa composante non-visqueuse et aux tensions circonférentielles. Pour
des écoulements non séparés a haut Reynolds, I'application de la condition de glissement
a la paroi des aubes n’aura qu’une influence limitée sur la structure de ’écoulement.

6.3.4 Du maillage cartésien vers le maillage lagrangien

Afin d’établir un champ de force qui permettra de faire respecter I'imperméabilité de
I’obstacle, le maillage lagrangien doit observer I’état de I’écoulement résolu sur le maillage
cartésien. En effet, méme si plusieurs auteurs calculent la force sur le maillage cartésien di-
rectement [105, 38, 83|, la plupart remonte sur le maillage lagrangien, [158, 146, 166, 161]
notamment. Cette facon de procéder est aussi celle de Peskin et s’avére moins contrai-
gnante. Dans notre cas, c’est la seule acceptable puisque comme nous ’avons mentionné
précédemment, nous ne pouvons pas imposer la condition limite fictive dans le domaine fré-
quentiel et donc pas directement sur le maillage cartésien, qui est le maillage de résolution
des équations.

En général, la reconstruction de I’écoulement sur les nceuds lagrangiens est réalisée au
moyen de la fonction de transfert utilisée pour distribuer l'effet de ceux-ci sur le maillage
cartésien. Ceci établit une relation biunivoque entre les deux maillages sur le support com-
pact de la fonction de transfert. C’est pour cette raison que son intégrale en volume doit
valoir I'unité. En ce qui concerne le méridien harmonique, cette technique méne a une re-
construction fort imprécise. En effet, le support de la fonction étant assez large pour limiter
son spectre fréquentiel, la fonction de transfert opére un lissage important de I'information
du domaine cartésien. Ceci ne permettrait que 'imposition d’une imperméabilité moyenne.
En pratique, cette méthode crée une couche limite et un sillage assez épais. Ceci peut s’ap-
parenter a une définition imprécise des parois qui, en maillage conforme, méne également
a de fortes imprécisions et a des écoulements perturbés. De plus, il ressort qu'une telle
reconstruction n’est que du premier ordre de précision [12, 155, 107].

Afin d’améliorer I'ordre de précision de la reconstruction tout en conservant la méme
méthode de transfert entre les deux maillages, certains auteurs élaborent des fonctions de
transfert [12] ou des techniques d’interpolation [161] plus complexes. Pour notre part, afin
d’obtenir un controle précis, nous reconstruisons 1’écoulement au droit de la paroi en deux
étapes. La premiére consiste a procéder a une interpolation bilinéaire sur le maillage méri-
dien des coefficients de Fourier des inconnues conservatives en chaque nceud lagrangien k
en leur projection (ry, zx), comme illustré a la figure 6.11. La deuxiéme étape est I’évalua-

3. Nous illustrerons cependant briévement le cas du cylindre visqueux dans le chapitre 7 pour illustrer
les capacités de la méthode & bas Reynolds.
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tion dans le domaine physique, en la coordonnée 6, du noeud k, de la série de Fourier des
coefficients interpolés.
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FIGURE 6.11 — Reconstruction de 1’écoulement sur le nceud lagrangien k

La reconstruction est ainsi O (2) dans le plan méridien et bénéficie de la convergence
spectrale de la série de Fourier dans la direction circonférentielle.

6.3.5 Phénoméne de Gibbs

La méthode de frontiére immergée fournit une solution qui converge vers I’écoulement
exact pour une fonction de distribution tendant vers la fonction de Dirac. Ainsi, la qualité
de reproduction de l'effet de I'obstacle augmente avec la réduction de la taille du support
compact de la fonction de distribution. Mais dés que les séries de Fourier apparaissent,
le phénomeéne de Gibbs n’est pas loin. Les oscillations apparaissent dans deux cas : lors
du développement en série de Fourier discréte au voisinage d’une discontinuité ou lors de
la troncature d’'une série de Fourier. Le méridien harmonique rencontre les deux cas, la
reconstruction harmonique pouvant étre fortement tronquée, et la fonction de distribution
présentant une discontinuité sur sa dérivée seconde aux bornes du support compact.

Parmi les auteurs ayant appliqué la méthode de frontiére immergée dans un code
pseudo-spectral, recourant a la technique de collocation, certains [128, 80, 78] ont noté
que le phénomeéne de Gibbs, bien que génant pour la représentation de la solution, ne
dégrade pas la résolution en elle-méme. Néanmoins, bon nombre des auteurs ont recours
a une technique de lissage par filtrage des coefficients de Fourier [51] ou par lissage de la
fonction de distribution [106, 80, 85]. Les deux fagons de procéder ont leurs avantages et
inconvénients.

Le lissage de la fonction de distribution est effectué au moyen d’un filtre passe-bas
tel que celui de Lanczos (6.41) appliqué a chaque coefficient de Fourier f,. L’intérét est
d’obtenir un champ de force lisse afin d’éviter des oscillations parasites dans I’écoulement.
Cependant, le lissage déforme la fonction de distribution, augmentant la taille effective de
son support de maniére variable selon 'orientation de la portion de surface concernée.
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_ sin (nw/N)
nm/N

lissé
£ =o,1, o

(6.41)

L’utilisation d’une fonction lisse consiste, dans notre cas, a étendre suffisamment le
support compact afin que le champ de force transféré dans le domaine fréquentiel soit aussi
proche que possible du champ distribué dans le domaine physique. Par conséquent, 1’action
de la paroi est plus diffuse, lissant artificiellement les gradients de ’écoulement aux abords
de cette derniére. Cependant, cette facon de procéder permet une meilleure représentation
harmonique de la fonction de distribution et une adéquation plus stricte entre la volonté
du controleur feedback et sa commande réelle. Les oscillations de Gibbs restent cependant
présentes pour un nombre de modes N et une largeur de support € raisonnables 4.

6.3.6 Intégration de I’équation de force

L’équation de force de la méthode du feedback (6.42) a pour consigne, dans notre cas,
I’annulation de la vitesse normale a la paroi. Elle comprend deux termes : une action in-
tégrale et une action proportionnelle. Le premier terme intégre 1’erreur sur la consigne au
cours du temps. Elle est a l'origine de l'introduction d’une condition de stabilité supplé-
mentaire a la condition CFL des équations du mouvement du fluide.

fr =« /OT [(pU), ng] dr’ + B [(pU),, .0y (6.42)

Cette limite de stabilité dépend du schéma d’intégration temporel utilisé par le solveur
fluide. Ainsi, Goldstein [51] affirme que la limite de stabilité est deux ordres de grandeur
plus faible que la condition CFL, restreignant fortement I’efficacité de la méthode. Il s’avére
cependant que cette limite a été dérivée pour un schéma temporel d’Adams-Bashforth. Lee
[90] montre que pour un schéma de Runge-Kutta, le pas de temps limite est du méme ordre
que celui déterminé par la condition CFL, ne pénalisant pas la convergence du processus
général. Il détermine le domaine de stabilité de I’équation (6.42) pour divers schémas
temporels dans lequels elle est insérée. Parmi les schémas testés, celui qui présente le
domaine de stabilité le plus large est celui de Runge-Kutta a 3 pas.

La détermination du couple de parameétres («, ) menant a la convergence optimale
est 'une des difficultés de la méthode. Selon Lee [90], le paramétre 8 dicte le taux de
décroissance de 'erreur sur les premiéres itérations tandis que le paramétre a détermine
le niveau d’erreur final. Pour formaliser le choix du couple, Margnat [101]| exploite la
similitude de ’équation (6.42) avec un oscillateur amorti du second ordre lorsqu’elle est
insérée dans les équations du fluide. Selon ce modéle, les parameétres « et  peuvent étre
réécrits dans le formalisme (w,, ), respectivement la fréquence propre de l'oscillateur et
son taux d’amortissement.

4. Cette discussion sera poursuivie dans le chapitre 7 consacré a la validation du code de calcul.
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a=—w’ B = —28wy, (6.43)

Ce formalisme permet de retrouver les conclusions de Lee. Lorsque la fréquence propre
w, de la boucle fermée augmente et devient suffisamment supérieure a celle de la confi-
guration fluide, le systéme est plus réactif et peut maintenir la consigne. Lorsque le taux
d’amortissement £ augmente, la décroissance de I'erreur est rapide au début du processus.
Selon la théorie de l'oscillateur amorti, le taux d’amortissement permettant d’arriver en
régime stabilisé au plus vite est £ = 0,7. En pratique cependant, ce taux d’amortissement
n’est pas optimal pour deux raisons.

Premiérement, la théorie de 1'oscillateur n’est qu’une approche du systéme a résoudre
puisque d’autres termes (convection, pression, viscosité) interviennent dans les équations
du mouvement du fluide. De plus, il ne faut pas considérer la seule convergence de 'imper-
méabilité de I'obstacle mais plutot celle de I’ensemble du domaine fluide, qui fait intervenir
le couplage entre les systémes moyen et harmonique avec I'imperméabilité. C’est pourquoi
un taux d’amortissement supérieur, bien que censé dégrader I'évolution temporelle de la
condition d’imperméabilité, permet de stabiliser le processus global de résolution.

Deuxiémement, les études de stabilité effectuées supposent une fonction de distribution
parfaitement représentée. Le méridien harmonique s’en éloigne lors du transfert de celle-
ci dans le domaine harmonique. Or comme Shin [133]| le remarque, la stabilité dépend
de la fonction de distribution utilisée. Il en est de méme pour les écarts par rapport a
la fonction exacte qui ne peuvent que restreindre la limite de stabilité. Ainsi, un taux
d’amortissement supérieur est & nouveau souhaitable pour stabiliser la convergence. A la
limite de stabilité, ceci aura pour effet de diminuer la fréquence propre de I'oscillateur mais
surtout 'importance relative de I'action intégrale, qui peut s’avérer déstabilisatrice suite a
un aveuglement a la commande effective dans le domaine fréquentiel.

Nous optons donc de maniére générale pour un taux d’amortissement de 3, la fréquence
propre étant quant a elle fixée a la limite de stabilité.

Afin de garantir un domaine de stabilité large, ’équation (6.42) doit étre intégrée si-
multanément aux équations du fluide. L’algorithme 1 est décrit pour une équation modale
du type (6.44), pour N modes de Fourier et K nceuds lagrangiens, ou dj,. est la distance
entre les nceuds lagrangien k et cartésien c et At le pas de temps.

oy,
ot

=L (U,) + £, (6.44)

Deux intégrations temporelles simultanées sont réalisées : I'une pour les coefficients de
Fourier U, (r, ) des inconnues conservatives et 'autre pour la force lagrangienne fj, plus
particuliérement pour sa composante intégrale fr;. L’équation de force étant intégrée sur
I'obstacle, une transformée de Fourier inverse (TFI) est réalisée pour identifier le champ de
vitesse a la paroi. La force nodale est ensuite mise a jour puis transférée dans le domaine



6.3.6 INTEGRATION DE L’EQUATION DE FORCE

fréquentiel. Les inconnues conservatives sont finalement mises a jour.

Algorithme 1 Intégration simultanée des équations du fluide et de la force de 1'obstacle

Itération t

Ul (r,z) n=0,...,N

Force de 'obstacle

TFT sur les nceuds lagrangiens xy,

Avancement temporel

Action proportionnelle
Inconnues conservatives

Distribution de la force

Avancement temporel

Itération t-+1
Uttt (r,z) n=0,....,N

ft, (r,x) k=1,...,K

UL k=1,...K
fo = £’ + 8 (Ujmy)

Ui =0, + [L(UY) + £ At

foifll (r,2) k=1,...,K
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Dans ce chapitre, nous allons concentrer la discussion sur la validation et 'illustration
des développements détaillés précédemment. Pour ce faire, nous aurons recours a un cas test
assez simple mais ne préjudiciant pas la portée des conclusions : 1’écoulement non-visqueux
autour d’une cascade de cylindres. Cette configuration a été choisie pour sa notoriété, sa

difficulté de reproduction et le niveau important de perturbations spatiales engendrées.

Nous commencerons par une description succincte de ce cas test. Ensuite, avant d’ob-
server tout résultat, nous caractériserons la fonction de distribution de l'information la-
grangienne vers le domaine de calcul. Celle-ci revét une importance majeure puisque la

qualité d’imposition de la condition de paroi fictive est soumise & sa représentation.

109
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Pour suivre, nous nous pencherons sur les résultats de simulation méridienne harmo-
nique. Nous y observerons la qualité de reproduction de I’écoulement mais aussi l'influence
des parameétres de simulations (distribution, contenu fréquentiel). Bien str, nous illustre-
rons a nouveau l'intérét des tensions circonférentielles dans la fidélité de reproduction de
I’écoulement. Enfin, nous aborderons quelques points qui permettront de parfaire la mai-
trise de la méthode nouvellement développée (stabilité, présence d'un écoulement interne,
approximation de linéarité).

Les résultats de cette étude seront observés de deux points de vue différents, intrin-
séques au méridien harmonique. Le premier est issu de ’application de la philosophie et
la démarche développées dans les chapitres précédents. La résolution harmonique fournit
une information d’ordre élevé utilisée pour accroitre la fidélité de 1’écoulement moyen. Ce
point de vue est dit “moyen”.

La deuxiéme approche est basée sur le raisonnement suivant. Il a été montré au cours
des chapitres précédents que I'obtention d’information d’ordre élevé en vue de ’améliora-
tion de la fidélité de 1’écoulement méridien passe inévitablement par un résolution de la
dimension supérieure, 'effet de 'obstacle, au moyen de la méthode de frontiére immergée.
Ainsi, les résolutions successives dans le domaine fréquentiel solutionnent le probléme de
fermeture du méridien mais donnent également accés aux perturbations circonférentielles
dans le domaine physique, puisque les modes de Fourier de I’écoulement sont calculés. La
conséquence est que le méridien harmonique peut aussi étre vu comme une simulation
tridimensionnelle approchée par un code méridien. Cette vision est celle adoptée par plu-
sieurs auteurs (Chen|23|, Stridh[143], Vilmin[164]) qui utilisent la méthode harmonique
non-linéaire pour reconstruire la dimension temporelle avec un code tridimensionnel sta-
tionnaire. Ce point de vue est dit “d’ordre élevé”.

Dans le cas test envisagé, la dimension radiale étant négligée, ’ordre moyen sera la
moyenne d'un écoulement dans le plan aube-a-aube tandis que l'ordre élevé sera la vision
bidimensionnelle de I’écoulement.

7.1 Présentation du cas test

Le cas choisi est 1’écoulement non-visqueux autour d’un cylindre. Il s’agit d’un cas
bidimensionnel, ce qui ne nuira pas a la généralité des propos tenus dans ce chapitre. Les
effets de paroi seront abordés au chapitre 8 au travers d’une application tridimensionnelle.
La configuration du cas est illustrée a la figure 7.1, ou la trace du cylindre fictif apparait
en blanc.
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Périodicité
TO
p° p
B
0
T_,x Périodicité

FIGURE 7.1 — Configuration spatiale du cas test

Le diamétre du cylindre est tel que la compacité vaut 0,1875. La longueur du do-
maine vaut 7 diameétres. Afin de simuler une grille de cylindres rectiligne, le rayon de la
veine fluide est 1000 fois supérieur a sa hauteur. Ceci permet de négliger toute compo-
sante radiale. Ainsi, le résultat méridien que nous observerons dans la suite sera en réalité
unidimensionnel, résultant de la moyenne azimutale d’un écoulement bidimensionnel.

Les conditions limites du calcul sont reprises au tableau 7.1. Le fluide entre dans le
domaine avec un nombre de Mach de 0,3.

Température totale d’entrée  T° [K]| 300
Pression totale d’entrée p°  |Pal] | 101325
Angle d’entrée B |deg] 0
Pression statique de sortie  p  [Pa] | 95200

TABLE 7.1 — Conditions limites

La figure 7.1 reprend également la fonction de distribution, dont la “largeur” e vaut 2,5
% du pas inter-aubes. Les bornes du support de la fonction sont tracées en gris sur la figure.
Dans la section qui suit, nous allons nous atteler a la caractérisation de cette fonction.
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7.2 Caractérisation de la fonction de distribution

La fonction de distribution revét une importance particuliére puisqu’elle doit assurer
la transmission de la force lagrangienne sur le maillage de calcul de maniére & obtenir
la satisfaction des conditions limites de paroi virtuelle en dégradant le moins possible
I’écoulement dans le domaine fluide. Cette fonction est définie sur un support compact
représenté par une enveloppe entourant l'obstacle et dépend de la distance a la paroi
fictive de ce dernier.

o(d) = — {1 + cos (ﬁ)} q<e (7.1)

:26 €

Lors de l'utilisation de cette fonction dans le domaine fréquentiel, un antagonisme
apparait entre la “largeur” € du support et le nombre de modes de Fourier N utilisés pour
la représenter. En effet, alors qu’un support étroit permet de tendre vers la solution exacte,
il requiert également davantage de modes. Si I'analyse qualitative est rapide, I'influence de
ces deux parameétres n’est pas immédiate d’un point de vue quantitatif.

Dans cette section, nous allons discuter la dualité entre les paramétres € et N en ce qui
concerne la représentation harmonique de la fonction de distribution. Les implications sur
la qualité de I’écoulement seront examinées plus loin.

Le paramétre e définit la longueur caractéristique de la fonction de distribution, &
laquelle est associée une fréquence caractéristique de la variation induite par la fonction de
distribution. Afin d’obtenir une représentation fidele de celle-ci par une série de Fourier,
cette derniére devra comporter des fréquences du méme ordre. Intuitivement, il apparait
donc que le nombre de modes N requis pour garantir un certain niveau d’erreur variera
de maniére inversement proportionnelle a la longueur caractéristique e. C’est ce qui est
observé en pratique au niveau du spectre fréquentiel de la fonction de distribution ¢ (d).
En effet, pour tout couple (¢, N), le spectre illustré a la figure 7.2 est en similitude par
rapport a la variable eN.

Le spectre fréquentiel présente une série de pics négatifs, que l'on pourrait qualifier
de pics de résonance, le premier étant rencontré pour e/ N = 1. Inversement, une série de
maxima locaux apparait, laquelle permet de définir une courbe enveloppe qui colle d’aussi
prés que possible, par borne supérieure, aux coefficients de Fourier. Cette enveloppe est
reprise en rouge sur la figure 7.2 et exprime la convergence de la série.

Pour une série de Fourier, I'ordre de convergence k est le nombre maximum pour lequel
la condition (7.2) sur 'amplitude des coefficients de Fourier K, est satisfaite.

lim |K,| n* < oo, n>>1 (7.2)
n—oo
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FIGURE 7.2 — Spectre fréquentiel de la fonction de distribution

Une définition équivalente consiste & dire que l'ordre de convergence est k si la condition
(7.3) est rencontrée.

K, ~ O [1/n"], n>>1 (7.3)

D’apreés ces définitions, il apparait que la fonction de distribution présente une conver-
gence d’ordre 3 par rapport & la variable e/ N. Ce genre de convergence est dit algébrique.
Notons aussi, sur base de la figure 7.2, que la décroissance modale pour eN < 1 peut étre
approchée par I'exponentielle indiquée sur la figure.

Cette notion de convergence est importante car elle permet d’estimer ’ordre de grandeur
de chaque mode du spectre fréquentiel. En effet, si 'erreur de troncature E (N), définie
comme la différence entre la fonction fy (x) correspondant a 'approximation par une série
de Fourier tronquée au mode N de la fonction f (z), alors, selon Boyd [15]|, pour une
convergence algébrique, 'erreur de troncature est estimée par la relation (7.4).

E(N) ~ O (N|Kxl) (7.4)

C’est effectivement le résultat obtenu dans notre cas et illustré a la figure! 7.3, si la
notion précédente est étendue a la variable eN.

1. L’erreur de troncature illustrée est en réalité ’amplitude maximale des oscillations en dehors du
support [—e¢, €] de la fonction de distribution car ce sont elles qui sont a lorigine de la dégradation de la
représentation de I’écoulement.
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eN

FIGURE 7.3 — Amplitude maximale des oscillations de la fonction reconstruite

Cette figure présente une série de paliers qui sont a mettre en relation avec les pics
observés a la figure 7.2. Ces paliers plus ou moins larges s’avérent étre des modes inutiles
a la diminution de l’erreur. La prise en compte de ces modes serait une pure perte au
niveau coiit de calcul. L’erreur de troncature étant déja environ deux ordres de grandeurs
inférieure a la valeur maximale de la fonction de distribution, nous nous satisferons pour
la suite de la plage de valeurs eN € [0, 1].

Pour une troncature correspondant & eN = 0.6, la fonction de distribution approchée
prend la forme présentée a la figure 7.4 (en rouge). Pour une largeur ¢ = 0.025, le nombre de
modes N est d’environ 25, ce qui constitue une valeur & ne pas dépasser fortement au risque
d’engendrer des temps de calculs prohibitifs. Malgré cela, des oscillations non-négligeables
apparaissent.

€.¢(d)
1+ Fonction objectif
Fonction reconstruite
0.8 + Fonction lissée
0.6 +
0.4 +
0.2 +

1 — : : ‘ — 1 d/e
3 9 0 " 2 3

FIGURE 7.4 — Fonctions de distribution orginale (noire), reconstruite (rouge) et lissées
(bleue et verte).



7.2. CARACTERISATION DE LA FONCTION DE DISTRIBUTION 115

Afin de lisser ces oscillations parasites qui dégraderont la qualité de reproduction de
I’écoulement, il faut recourir au filtrage des plus hautes fréquences. En effet, ces oscillations
proviennent d’une décroissance trop lente des modes de haute fréquence dont la troncature
pénalise la reconstruction. Afin d’amincir le spectre fréquentiel, un filtre passe-bas est
utilisé. Ce filtre a été présenté au chapitre précédent et est rappelé a I'expression (7.5).

lissée __ _
K, =o0,K, o, =

(7.5)

ou f =nm/N.

L’effet d’un tel lissage est illustré par la courbe bleue a la figure 7.4. Les oscillations ont
presque totalement disparu mais la largeur effective de la fonction a fortement augmenté.
Ceci est trés pénalisant car la forme de 'obstacle, représentée par cette fonction, va étre
déformée de maniére variable selon son orientation et parce qu'un controle de I’écoulement
va étre opéré dans une zone éloignée de 'observation, dégradant la qualité et la stabilité
du processus.

Afin de maitriser “I'intensité” du filtre, il est nécessaire de lui adjoindre un paramétre
supplémentaire. En effet, un filtre passe-bas est caractérisé par une fréquence de coupure
w, & laquelle correspond une atténuation de 50% de 'amplitude du signal. Au-dela de cette
fréquence, les modes sont fortement amoindris. Cette atténuation diminue les oscillations
mais est responsable de I'étalement de la fonction. Pour amoindrir cet effet indésirable, il
convient d’ajuster la fréquence de coupure du filtre pour obtenir les effets souhaités.

Nous redéfinissons donc le filtre par I'expression (7.6).

We
_*0
We

Op —

ol w, est la fréquence de coupure du filtre (7.5) qui vaut environ 0.67 et w} est la
fréquence de coupure souhaitée.

A présent, le probléme consiste donc & déterminer le couple (e N,w.) pour obtenir les
caractéristiques souhaitées (Af,€*) de la fonction de distribution approchée, ou €* est la
largeur effective de la fonction apreés lissage.

La figure 7.5 dresse la carte de deux familles de courbes. La premiére correspond aux
courbes de méme erreur de troncature Af (en noir), pour des valeurs allant de 1% a 9%
du maximum de la fonction. La deuxiéme famille est celle de méme largeur effective €* en
pourcentage de la largeur demandée €.
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FIGURE 7.5 — Courbes d’égales erreurs d’amplitude (noir) et de lissage (bleu)

Les deux familles de courbes sont caractérisées par deux tendances différentes. En effet,
si Af et € diminuent tous deux lorsque eN augmente, ils évoluent de maniére opposée
lorsque la fréquence de coupure varie. Il convient donc soit d’effectuer un compromis entre
les deux caractéristiques de la fonction, soit de donner la priorité a I'un d’eux. Nous choi-
sissons cette deuxiéme option et décidons de limiter I'erreur de troncature. Cette option
est sélectionnée pour deux raisons. La premiére est qu’il est difficile d’établir une rela-
tion déterminant I’évolution idéale de Af et ¢*. La deuxiéme est que les oscillations sont
génératrices de perturbations circonférentielles parasites, qu’il convient de limiter. Nous
limiterons I'erreur de troncature a la valeur arbitraire de 3,5% du maximum de la fonction
de distribution.

Une fois ce choix effectué, nous disposons donc d’une courbe déterminant la fréquence
de coupure w, & appliquer pour toute valeur e N. Ainsi, le seul parameétre de calcul devient
la valeur e N liée tant au colt de calcul qu’a la qualité de représentation. En fonction de
ce choix apparait une distorsion de la fonction de distribution représentée a la figure 7.6.

Si une distorsion de 20 % est acceptée, le nombre de modes a inclure pour représenter
correctement le champ de force est de 0,6/¢. Ceci correspond a la courbe verte de la figure
7.4.
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% % % # eN
0.4 0.6 0.8 1.0

FIGURE 7.6 — Ratio de la largeur de la fonction de distribution apres lissage a celle avant
lissage pour une erreur de troncature limitée a 3,5% du maximum de la fonction de distri-
bution

La figure 7.7 illustre les composantes axiale et tangentielle du champ de force développé
par le cylindre pour garantir son imperméabilité. La force est diffuse autour de la position
de la frontiére indiquée en trait continu noir, sur un support compact dont les frontiéres
sont représentées en trait continu gris. Notons que de légéres oscillations de Gibbs sont
observées sur la composante tangentielle. Elles sont cependant tres limitées et n’altéreront
manifestement pas la solution.

% 0
T—m T—WU

FIGURE 7.7 — Composantes axiale (gauche) et tangentielle (droite) du champ de force pour
€=0,25 % et N=25
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7.3 Structure de ’écoulement autour d’un corps im-
mergeé

Avant d’engager 1’étude de la méthode développée sur le cas de I'écoulement non-
visqueux autour d’un cylindre, il convient d’aborder une des particularités de celle-ci, issue
de T'utilisation de la méthode de frontiére immergée. Il s’agit du fait que ’écoulement est
également résolu a l'intérieur de 'obstacle et s’y développe. Dans ce qui suit, nous allons
décrire la structure de cet écoulement interne qui, de maniére générale, dépend peu de la
géométrie du corps immergé.

L’écoulement interne n’est qu’une conséquence de son pendant externe et du champ de
force qui maintient I'imperméabilité a la paroi fictive de I'obstacle. Le champ de force a
été observé a la figure 7.7. L’écoulement externe est quant a lui visible a la figure 7.8, au
travers de la vitesse et de la pression statique adimensionnelles. Les constantes d’adimen-
sionnalisation sont la vitesse et la pression totale a I’entrée du domaine.

Les résultats bien connus sont retrouvés : deux points d’arrét de part et d’autre du

cylindre selon ’axe et deux pics de succion selon la direction circonférentielle. Ces résultats
ont été obtenus par le méridien harmonique. Nous préciserons sa configuration dans la suite.

=l B

FIGURE 7.8 — Champs de vitesse (gauche) et de pression (droite) autour du cylindre

Afin de déduire, de maniére générale, la structure de 1’écoulement interne, il convient
d’ajouter aux figures 7.7 et 7.8 la projection des équations de conservation de la masse
(7.7) et de la quantité de mouvement (7.8) dans le référentiel (n,t) de la normale et la
tangente au cylindre.

oV | OpVy
n + 5 =0 (7.7)

0pVilV  Op  OpVi,V,
o on ot

= fa (7.8)
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La vitesse normale V,, étant annulée a la paroi, dans une région proche de celle-ci, les
équations simplifices (7.9) et (7.10) représentent fidélement le comportement du fluide.

opVe  OpVi
5t =0 (7.9)
Jp
— 1
on In (7.10)

Ces relations, appliquées au cas du cylindre, permettent de dégager les tendances illus-
trées a la figure 7.9, laquelle présente également les lignes de courant, la trace du cylindre
et les zones principales de force (en orange).

FIGURE 7.9 — Structure des écoulements interne et externe au cylindre

A Tavant et a larriére du cylindre, la force est orientée vers 'extérieur de 1'obstacle et
meéne aux deux points d’arrét (vitesse nulle et pression élevée). A 'avant du cylindre, la
force diffuse arréte le fluide au niveau de la paroi et provoque une vitesse vers 'amont a
Iintérieur de 'obstacle. En poursuivant le long de ’axe, la force qui se trouve a I'arriére du
cylindre permet de réorienter le vecteur vitesse dans le sens aval, en passant par un nouveau
point d’arrét. L’écoulement interne est donc caractérisé par une recirculation sur ’axe de
symétrie. De maniére générale, pour une géométrie de profil aérodynamique, celle-ci se
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retrouvera sur le squelette ou dans ses proches abords.

L’obstacle étant imperméable, le reste de I’écoulement interne doit assurer la conser-
vation du débit. Celle-ci se traduit par le développement de deux zones tourbillonnaires.
En effet, hors de I'aube, en partant du point d’arrét amont pour se diriger vers le pic de
succion “extrados”, le gradient tangentiel de vitesse tangentielle est positif. Il s’ensuit, par
la conservation de la masse, que le gradient normal de vitesse normale est négatif. Cette
derniére étant nulle au droit de la paroi, elle est positive a 'extérieur et négative a l'inté-
rieur (i.e. dirigée vers la paroi). La vitesse tangentielle interne quant a elle est dirigée vers
l'aval, par continuité avec la vitesse tangentielle externe. Ce couple (V},,V;) montre une
circulation tourbillonnaire dans le sens horloger dans cette moitié supérieure du cylindre.
Un raisonnement analogue valide I’écoulement interne dans le reste de I'obstacle.

Ainsi, la structure interne de 1’écoulement présente deux lobes de circulation tourbillon-
naire avec une vitesse inverse proche de la ligne moyenne. Ce raisonnement est général car
tout obstacle dans un fluide en mouvement présente deux zones de surpression, aux bords
d’attaque et de fuite, ainsi que des zones de succion, ne fussent-elles que locales. Dés lors,
bien que I’écoulement interne ne présentera pas en général une allure symétrique, il aura
la méme comportement. Ceci sera a nouveau illustré au chapitre 8.

La présence d'une telle structure d’écoulement dans la résolution a des implications
importantes pour le méridien harmonique. Afin de dériver le modéle méridien harmonique,
il a été nécessaire de présenter le systéme aux perturbations sous forme quasi-linéaire,
pour permettre sa résolution par superposition modale. Les termes non-linéaires incluant
des perturbations de produits de fluctuations de la forme (7.11) ont ainsi été mis a 1’écart.

VIV — pVIVT (7.11)

Aprés la discussion que nous venons d’effectuer, il apparait que ces termes ne sont pas
négligeables. En effet, a I'intérieur de 'obstacle existe une zone de recirculation importante
qui crée des perturbations de 'ordre des composantes moyennes de 1’écoulement.

Comme nous 'avons mentionné au chapitre 5, il existe plusieurs facons de prendre en
compte ces termes non-linéaires. Ils peuvent étre évalués a partir des séries de Fourier
de leurs composantes, calculés dans le domaine physique ou résulter d’'une approximation
(Billson|[13]). Nous avons utilisé cette derniére méthode pour exprimer les termes non-
linéaires par les expressions (7.12) a (7.13).
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Ces termes sont calculés dans le domaine fréquentiel en réalisant le produit de convolu-
tion des transformées de Fourier des perturbations de vitesse. En effet, ’expression (7.14)
reprend 1'une des propriétés des séries de Fourier qui est que le produit de deux fonctions
temporelles est égal au produit de convolution de leurs transformées de Fourier dans le
domaine spectral.

F(t).g(t) = Flwn] *Glw] (7.14)

Numériquement, la convolution est exprimée par la relation (7.15).
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Cependant, I'ajout de ces termes non-linéaires dans le systéme auxiliaire a tendance
a déstabiliser la résolution numérique. Ceci est probablement di au fait que ce systéme
est résolu par un schéma numérique basé sur les composantes moyennes de I’écoulement,
comme nous l’avons détaillé au chapitre 6. Dés lors, la physique des termes non-linéaires
n’est pas respectée. De plus, 'intensité de ceux-ci est importante et leur variation brutale,
ce qui rend la résolution numérique difficile et instable.

Pour I'application sur le cylindre, il a été néanmoins possible d’arriver a la convergence
en calculant les termes non-linéaires une seule fois au cours de la résolution, pour une
solution linéaire déja bien établie, et en les figeant pour le reste de la résolution non-
linéaire. Les résultats présentés a la figure 7.8 en sont I'illustration 2.

Néanmoins, 'expérience a montré qu’il n’est pas possible d’obtenir une stabilité du
processus de résolution de maniére générale. Nous devons donc nous résoudre a négliger
les termes non-linéaires, méme si cela se fait au détriment de la qualité de reproduction.

Le corollaire est que les termes non-linéaires présents dans le systéme moyen, i.e. les
tensions circonférentielles, ne peuvent plus apparaitre tels quels. En effet, considérer la
moyenne de ces termes sans leur pendant aux perturbations déséquilibrerait la résolution,
les perturbations n’étant pas altérées de facon compatible avec ’altération des moyennes,
les termes de la forme (7.11) étant absents.

Afin d’éviter le découplage entre les systémes moyens et aux perturbations qui dé-
coulerait de la non prise en compte des tensions circonférentielles, il reste possible de se
conformer aux hypothéses de perturbations limitées de He en calculant les tensions cir-
conférentielles d’apreés la seule partie de I’écoulement externe a l'obstacle. Dans ce cas, les
produits de perturbations peuvent devenir négligeables. Les tensions calculées de la sorte

2. Ces résultats seront comparés a la solution de référence plus loin dans I’exposé par souci d’exhaus-
tivité.
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modifieront I’écoulement moyen de fagon favorable a une reproduction fidéle a la physique,
comme nous le montrerons dans la suite. En effet, étant donné que nous ne nous intéressons
qu’a I’écoulement externe, l'usage de termes non-linéaires qui leur sont compatibles s’avére
suffisant. Cette philosophie est adoptée dans la suite. Les tensions circonférentielles restent
calculables dans le domaine fréquentiel. Leur expression compléte est reprise a I'annexe G.

7.4 Comportement modal du méridien harmonique

La discussion de début de chapitre a permis d’identifier les parameétres qui définiront la
qualité de reproduction du méridien harmonique. Il s’agit du nombre de modes de Fourier
N inclus dans la simulation, de la largeur ¢ du support de la fonction de distribution et le
produit e/N qui influence la représentation fréquentielle du champ de force.

L’influence du produit e N a été mise en lumiére précédemment. C’est de lui que dépend
la fidélité de reconstruction fréquentielle de la fonction de distribution. Les effets de cette
fidélité variable seront abordés en premier.

Ensuite, nous aborderons I'influence que présente la dimension € relative a la compacité
du support de la fonction de distribution sur la reproduction de I’écoulement.

Pour chacun de ces cas, nous effectuerons la comparaison avec la solution de référence

obtenue par un code tridimensionnel stationnaire 3.

7.4.1 Fidélité spectrale de la fonction de distribution

Comme cela a été discuté précédemment, I'effet d’un produit e/N variable est double.
Premiérement, un produit trop faible correspond & une troncature trop importante du
spectre fréquentiel de la fonction de distribution, ce qui laisse apparaitre des oscillations de
Gibbs. Deuxiémement, un produit de valeur insuffisante engendre un étalement du champ
de force et une distorsion de la représentation géométrique de 1’obstacle.

Dans ce qui suit, les différents résultats présentés ont été obtenus par des simulations
harmoniques incluant un nombre de modes de Fourier variable, allant de 10 a 50, et pour
une largeur € du support équivalente a 2% de l'extension circonférentielle du domaine
étudié, soit une valeur assez faible qui permet d’assurer une représentation assez compacte
de la paroi. Ceci correspond & une gamme de produits eV allant de 0,2 & 1.

Pour commencer, la figure 7.10 présente, d'un point de vue moyen, les évolutions de

3. Notons que, afin de s’affranchir de tout défaut émanant de la résolution effectuée par ce code, le
résultat fourni par celui-ci a été symétrisé par rapport au plan de symétrie de normale axiale passant
par le centre du cylindre. Ceci ne fausse nullement le cas de référence puisque I’écoulement est censé étre
naturellement symétrique.
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I’énergie cinétique des perturbations et le nombre Mach. Les traits discontinus indiquent
les positions de début et de fin du cylindre. La coordonnée axiale est adimensionnée par le
diameétre D du cylindre.
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FIGURE 7.10 — Evolutions axiales de I’énergie cinétique moyenne des perturbations (haut)
et du nombre de Mach moyen (bas) pour €N variant de 0,2 (bleu) a 1 (rouge) par pas de
0,2 (gris) comparées a la solution de référence (noir)

L’accord entre les différentes simulations hors de la zone couverte par le cylindre est
trés bon, dés les plus faibles nombres de modes. L’écoulement dans ces régions est princi-
palement conditionné par I’arrét du fluide aux bords “d’attaque et de fuite”, eux-mémes liés
a la configuration de la fonction de distribution. Or celle-ci varie peu en ces endroits car
sa plus faible dimension, sa largeur €, est orientée selon la direction axiale, dont la qualité
est liée au maillage méridien, inchangé d’une simulation a l'autre.

En revanche, dans la zone couverte par le cylindre, I'influence de la qualité variable du
champ de force harmonique est ressentie. Si I'allure générale est bonne dés les plus faibles
valeurs du produit €N, il s’avére qu'une valeur de 0,8 méne a la convergence des valeurs
illustrées. L’explication est a trouver a la figure 7.6 exprimant I’étalement harmonique de
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la fonction de distribution en fonction du parameétre e/N. Comme cela avait été observé sur
cette figure, une valeur de 0,6 pour ce produit semble acceptable, tant pour le champ de
force que pour ’écoulement qu’il génére.

Afin de poursuivre les observations d’un point de vue d’ordre élevé, la figure 7.11
représente 1’évolution circonférentielle du champ de vitesse axiale adimensionnée par la
vitesse en entrée en un plan de coupe de normale axiale passant par le centre du cylindre. La
seule portion fluide est illustrée. La distorsion de la fonction de distribution y est indiquée
en traits discontinus au travers de la valeur effective €* de la largeur de son support.
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FIGURE 7.11 — Evolutions circonférentielles de la vitesse axiale sur la portion fluide en un
plan de coupe passant par le centre du cylindre pour e N variant de 0,2 (bleu) a 1 (rouge)
par pas de 0,2 (gris) comparées a la solution de référence (noir)

Cette figure montre que les oscillations de Gibbs du champ de force n’influencent plus
I’écoulement pour une inclusion d’au moins 20 modes, soit e N=0,4. Ensuite, ’effet mar-
quant est la diminution de la distorsion de la fonction de distribution et son impact sur la
reproduction du pic de vitesse a la paroi. A nouveau, on observe que ’écoulement atteint
sa convergence spectrale a 40 modes, soit a une valeur e N=0,8.

Cette figure montre également que le pic de vitesse est décalé de la paroi fictive du
cylindre, contrairement a la réalité de cet écoulement. Ceci est dii a la localisation floue de
la frontiére solide. Nous aborderons ce point en détail a la section 7.5. C’est également pour
cette raison que les grandeurs moyennes ne se conforment pas a 1’évolution de référence,
comme la figure 7.10 'exprime.

Pour terminer, la figure 7.12 illustre le champ de vitesse absolue adimensionnelle de
simulations harmoniques incluant 10, 20 et 30 modes qu’elle compare a la solution de
référence. Cette figure apporte une confirmation visuelle des éléments discutés. La structure
de I’écoulement hors de la zone couverte par le cylindre varie peu tandis que les pics de

>
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vitesse, par leur amplitude et leur étendue, sont fortement influencés par la richesse modale
de la simulation.

FIGURE 7.12 — Champs de vitesse adimensionnelle obtenus par la simulation de référence
(haut, gauche) et par des simulations harmoniques de 10 modes (haut, droite), de 20 modes
(bas, gauche) et de 30 modes (bas, droite)

Sur base des observations réalisées, nous pouvons confirmer qu'un produit e/N de va-
leur 0,6 est suffisant pour représenter correctement le champ de force et son impact sur
I’écoulement. La confrontation des points de vue moyen et d’ordre élevé nous apprend que
I’écoulement moyen est moins sensible & ce parameétre, car moins sensible aux variations
locales, et pourrait méme étre représenté de fagon satisfaisante pour une valeur e N=0,4.

7.4.2 Largeur du support

Par sa distribution diffuse, le champ de force empéche une localisation précise de la paroi
et donc de son influence sur I’écoulement. La frontiére effective du cylindre est difficile a
déterminer, comme c’est le cas pour une balle de tennis. Ainsi, pour reproduire au mieux
les gradients de I’écoulement, il semble évident qu’une largeur € du support de la fonction
de distribution faible soit souhaitable. C’est ce que nous allons étudier.
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Dans ce qui suit, les différents résultats présentés ont été obtenus par des simulations
harmoniques dans lesquelles la fonction de distribution est définie sur un support de largeur
¢ variable, allant de 1% de 'extension circonférentielle du domaine étudié a 8% de celle-ci.
Pour chacune d’entre elles, le nombre de modes de Fourier inclus est de 60, ce qui permet
d’obtenir des valeurs e/ N supérieures a 0,6 et de garantir une représentation fidele de la
fonction de distribution.

La figure 7.13 présente, d’'un point de vue moyen, les évolutions de I’énergie cinétique
des perturbations et le nombre Mach. Les traits discontinus indiquent les positions de début
et de fin du cylindre.
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FIGURE 7.13 — Evolutions axiales de I’énergie cinétique moyenne des perturbations (haut)
et du nombre de Mach moyen (bas) pour N=60 et ¢ variant de 8% (bleu) a 1% (rouge)
par pas de 1% (gris) comparées a la solution de référence (noir)

Cette figure montre que 1’écoulement moyen est influencé par 'étroitesse du support
tant dans la zone couverte par le cylindre qu’en dehors, bien que dans une moindre mesure.
La conformation a la solution de référence est continue pour des supports se rétrécissant,
sans atteinte de la convergence. En effet, celle-ci ne sera obtenue que pour une fonction de
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distribution égale a la fonction de Dirac, autrement dit pour un support d’extension nulle.

D’un point de vue d’ordre élevé, la figure 7.14 représente I’évolution circonférentielle
du champ de vitesse axiale adimensionnée par la vitesse en entrée en un plan de coupe
de normale axiale passant par le centre du cylindre. La seule portion fluide est illustrée.
L’extension du support de la fonction de distribution y est indiquée en traits discontinus.
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FIGURE 7.14 — Evolutions circonférentielles de la vitesse axiale sur la portion fluide en un
plan de coupe passant par le centre du cylindre pour € variant de 8% (bleu) a 1% (rouge)
par pas de 1% (gris) comparées a la solution de référence (noir)

Pour une définition de plus en plus localisée du champ de force, la représentation du
pic de vitesse se rapproche de la solution de référence, tant par son amplitude que par sa
position. A nouveau, il est observé que I'amélioration de la description est continue pour
une largeur € diminuant. Cependant, cet effet est principalement localisé dans la région
proche de la paroi fictive, les courbes se conformant d’emblée a la solution de référence hors
du support de la fonction de distribution. Ces effets localisés et orientés selon la direction
circonférentielle modifient le niveau d’énergie cinétique des perturbations (figure 7.13) mais
sans pour autant en altérer grandement 1’allure. Ces deux observations expliquent pourquoi
I'influence sur ’évolution moyenne du nombre de Mach (figure 7.13) est plus limitée. Par
conséquent, 1’étendue de la fonction de distribution sera fixée différemment selon le point
de vue abordé, moyen ou d’ordre élevé, et selon le niveau de fidélité recherché.

L’effet de la dimension du support sur la structure compléte de ’écoulement est re-
présenté a la figure 7.15 qui compare le champ de vitesse absolue adimensionnelle de si-
mulations harmoniques a la solution de référence. Elle confirme 'étendue restreinte des
améliorations en fonction du support mais aussi son importance pour la conformation a
I’écoulement réel.
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0

F1GURE 7.15 — Champs de vitesse adimensionnelle obtenus par la simulation de référence
(haut, gauche) et par des simulations harmoniques caractérisées par une largeur de support
¢=5% (haut, droite), e=3% (bas, gauche) et e=1% (bas, droite).

Si un support trés compact présente I'avantage de localiser plus précisément I'obstacle
et d’approcher au mieux les gradients de I’écoulement a ses abords, il excite des modes de
Fourier d’ordres plus élevés. Les spectres fréquentiels relatifs aux variables conservatives,
inconnues de la simulation harmonique, vont s’élargir et réclamer des simulations plus
coliteuses.

La figure 7.16 montre ’évolution axiale des amplitudes des modes de Fourier de la
quantité de mouvement axiale.

Il apparait clairement qu’un support de dimension restreinte crée un écoulement fré-
quentiellement plus riche. Ainsi, tout comme le cas s’est présenté pour la représentation
de la fonction de distribution, un compromis apparait entre la fidélité de la simulation et
son cotit. Néanmoins, ce compromis dépend du point de vue recherché, moyen ou d’ordre
élevé. En effet, la courbe noire présente sur chaque composante de la figure 7.16 indique
le lieu des modes d’amplitude ayant diminué d’un facteur 100 par rapport au mode domi-
nant, le mode 0 étant la valeur moyenne. On constate que cette courbe varie peu avec le
paramétre €. Ainsi, l'allure générale de 1’écoulement, et donc la composante moyenne de
celui-ci, peut étre reproduite pour un nombre de modes relativement faible. L’accés aux
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FIGURE 7.16 — Spectres (loglo [%D de pV, associés a des simulations harmoniques

caractérisées par une largeur de support e=5% (haut, gauche), e=3% (haut, droite), e=2%
(bas, gauche) et e=1% (bas, droite).

détails sera quant a lui conditionné par la richesse modale de la simulation.

7.4.3 Fidélité fréquentielle de 1’écoulement

Nos discussions précédentes ont fait ressortir qu’il existe une borne inférieure sur le
produit e N pour représenter correctement 1’obstacle au travers de son champ de force et
qu'une largeur € faible favorise la reproduction des variations locales et brutales de 1’écou-
lement tout en élargissant le spectre fréquentiel. Nous allons a présent aborder I'impact sur
I’écoulement du compromis qu’impose une valeur e N constante. En effet, le résultat utile
est I’écoulement lui-méme et non le seul champ de force.
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Si la largeur du support et le nombre de modes ne sont pas indépendants, le choix du
paramétre dont il faut déterminer la valeur reste libre. Choisir € signifie choisir le niveau
de détail de ’écoulement, comme cela a été montré. Il en découle une borne inférieure sur
le parameétre N fixée par la représentation du champ de force. Le nombre de modes ainsi
fixé pourrait cependant s’avérer insuffisant pour représenter ’écoulement. Autrement dit,
il se pourrait que la valeur de €N soit insuffisante. C’est cependant fort peu probable.

En effet, 'excitateur de ’écoulement est le champ de force au travers des ses compo-
santes modales présentes dans le membre de droite du systéme aux perturbations (5.43).
Si I'on excepte I'existence de conditions limites variables circonférentiellement en entrée et
en sortie de domaine de calcul, ¢’est lui seul qui excite les modes. Aucune perturbation de
fréquence supérieure au spectre du champ de force ne sera créée au sein de 1’écoulement.
Or ce champ de force est déterminé par € pour sa localisation et par la valeur de e N pour
la qualité de sa représentation. Pour exciter ’écoulement suffisamment, il faut donc une
largeur € faible. Et pour que cet écoulement soit excité fréquentiellement, il faut de plus
que le produit €N soit suffisant, i.e. qu’il y ait assez de modes pour représenter la force.

La figure 7.11 discutée précédemment permet d’étayer ces affirmations. Elle montre une
convergence spectrale de I’écoulement & partir de e N=0,8. C’est cette valeur qui permet de
représenter la force de maniére précise, comme 1’étude de la section 7.2 I’a mis en lumiére.

A son tour, la figure 7.16 renforce ces considérations. En effet, pour les différentes
dimensions du support de la fonction de distribution, elle montre que le spectre de I’écou-
lement présente des amplitudes non négligeables jusqu’a des valeurs du produit €N voisines
de 0,8. Au-dela, la coupure est assez nette.

Pourtant, ’écoulement intrinséque autour du cylindre ne comporte pas une telle richesse
modale. Pour preuve, le spectre de la solution de référence est illustré a la figure 7.17.
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FIGURE 7.17 — Spectre <10g10 [%]) de pV, associé a la solution de référence

Dés lors, la différence ne peut provenir que de ’écoulement interne. En effet, afin de
représenter spectralement la solution de référence, celle-ci a été prolongée de maniére douce,
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par des polynomes du troisiéme degré, ce qui n’a probablement introduit que trés peu de
contenu de haute fréquence. Par contre, I’écoulement interne de la solution harmonique
montre des variations rapides aux parois, comme en témoigne la figure 7.18. Celles-ci le
deviennent de plus en plus au fur et & mesure que la largeur € du support diminue.
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FIGURE 7.18 — Evolution circonférentielle de la vitesse axiale sur un canal complet en un
plan de coupe passant par le centre du cylindre pour € variant de 8% (bleu) a 1% (bleu)
par pas de 1% (gris) comparées a la solution de référence (noir)

De maniére générale, c’est ’écoulement interne qui dictera le contenu fréquentiel de
I’écoulement. En effet, les variations s’y produisent sur une longueur caractéristique maxi-
male de l'ordre de I’épaisseur de l'obstacle alors que celles de 1’écoulement externe se
produisent sur une portion fluide qui est plus étendue pour un facteur de blocage usuel. Or
la méthode de frontiére immergée voit les écoulements interne et externe comme une seule
et méme évolution, la représentation de faible qualité de I'un entraine la méme pauvreté
de l'autre.

En conclusion, lors de la résolution d’'un écoulement, le choix de la dimension € est
primordial, le nombre de modes N suivra au travers d’un produit e/N devant assurer une
représentation suffisamment fidéle de la fonction de distribution associée.

7.5 Deécalage du champ de force

Par le recours a la méthode de frontiére immergée, la paroi de I'obstacle apparait de
maniére floue et diffuse au travers de la fonction de distribution dont le support est de
largeur non nulle €. Ceci méne a un lissage des variations de 1’écoulement proche de la
paroi.
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Pour fixer les idées, considérons la conservation de la quantité de mouvement selon la
direction normale a la paroi en la position du pic de succion du cylindre, représenté a la
figure 7.19. L’équilibre des forces (7.10) montre que le champ de force et la pression vont
évoluer de concert.
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FIGURE 7.19 — Equilibre des forces & la surface fictive

La force appliquée pour maintenir I'imperméabilité de I’obstacle va induire un gradient
normal de pression positif sur une bande de largeur 2¢. Cependant, a l'extérieur de cette
zone, I’écoulement externe est tel que le gradient normal de pression est négatif. Cet anta-
gonisme va mener a un minimum qui ne sera pas localisé a la paroi et qui sera supérieur a
la valeur réelle. Cette analyse est transposable au champ de vitesse qui est lui aussi altéré
par la présence du champ de force dans I’écoulement externe. Cet effet a été observé au
cours des discussions précédentes. Il existe donc une couche tampon, sorte de couche limite
non-visqueuse, qui dégrade le comportement du fluide aux abords de la paroi.

Pour éviter ou du moins limiter cet effet, il convient de décaler le support de la fonc-
tion de distribution par rapport a la paroi vers l'intérieur de l'obstacle. L’imposition de
I'imperméabilité est quant a elle conservée au droit de la paroi fictive.

Dans ce qui suit, les différents résultats présentés ont été obtenus par des simulations
harmoniques dans lesquelles la fonction de distribution est définie sur un support de lar-
geur €=2,5% de l'extension circonférentielle du domaine étudié et décalée par rapport a
la frontiére fictive de 0% a 75% de la largeur €. Les simulations incluent 25 modes, ce qui
assure une valeur e N supérieure a 0,6.

La figure 7.20 présente, d’'un point de vue moyen, les évolutions de I’énergie cinétique
des perturbations et le nombre Mach. Les traits discontinus indiquent les positions de début
et de fin du cylindre.

Si Deffet est limité hors de la zone couverte par le cylindre, il est par contre remarquable
a l'intérieur de celle-ci. En effet, pour un décalage de 50% de la largeur du support, les
courbes sont trés proches de la réalité et pour un décalage de 75%, I'accord avec la solution
de référence est presque total si 'on excepte quelques oscillations que nous expliquerons
dans la suite.

D’un point de vue d’ordre élevé, la figure 7.21 (bas) représente 1’évolution circonféren-
tielle sur la portion fluide du champ de vitesse axiale adimensionnée par la vitesse en entrée
en un plan de coupe de normale axiale passant par le centre du cylindre. L’extension du
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FIGURE 7.20 — Evolutions axiales de ’énergie cinétique moyenne des perturbations (haut)
et du nombre de Mach moyen (bas) pour un décalage variant de 0% (bleu) a 75% (rouge)
par pas de 25% (gris) de la largeur € du support comparées a la solution de référence (noir)

support de la fonction de distribution y est indiquée en traits discontinus.

Au fur et & mesure du décalage du support de la fonction de distribution, I’écoulement
externe devient de moins en moins lissé par le champ de force. Il tend progressivement vers
I’écoulement qui se développe naturellement autour d’'une paroi classique, d’épaisseur nulle.
Un décalage de 75% permet de retrouver I’évolution réelle du pic de vitesse a la frontiére.
Cependant, pour cette valeur du décalage, quelques oscillations de Gibbs apparaissent.
Elles sont a relier a la raideur de I’évolution de I’écoulement interne illustré a la figure 7.21
(haut). Elles proviennent d’une part, des évolutions plus brutales au niveau de la paroi
mais surtout de 'amplification du pic de vitesse inverse rencontré au centre du cylindre.

Lors de 'examen de la figure 7.9 illustrant ’écoulement interne, nous avons expliqué
la présence d’'une zone de vitesse axiale négative sur la ligne moyenne de 'obstacle. Elle
résulte des champs de force orientés vers l'extérieur de l'obstacle aux “bords d’attaque



134 CHAPITRE 7. VALIDATION DU MERIDIEN HARMONIQUE

04
_14
ro
D
Ve
V.
2.5
2P\
1.5+
3l | | | | p
]0.5 1 1.5 D) 2.5 D

FIGURE 7.21 — Evolutions circonférentielles de la vitesse axiale sur un canal inter-aubes
(haut) et sur la seule portion fluide (bas) pour eN=0,625 et e=2,5 % et un décalage allant
de 0% (bleu) a 75% (rouge) par pas de 25% (gris) de la largeur € comparées a la solution
de référence (noir)

et de fuite”. Considérons, par symétrie, la seule partie avant du cylindre. La consigne du
controleur feed-back est d’annuler la vitesse normale a la paroi. Pour un décalage nul, le
champ de force va agir de maniére & annuler la vitesse normale au centre du support.
Cette force va cependant continuer a agir apres la position de la frontiere, sur la deuxiéme
moitié du support, interne a 'obstacle. Ainsi, la vitesse poursuit sa diminution, devenant
forcément négative. Ceci est illustré a la figure 7.22 qui représente 1’évolution axiale de la
vitesse axiale en un plan de coupe orienté circonférentiellement passant par le centre du
cylindre. La zone couverte par le cylindre est délimitée par deux traits discontinus noirs.

Au passage, on observe qu’un décalage nul est suffisant en cette position pour reproduire
correctement les variations de vitesse de I’écoulement. Ceci provient du fait que la largeur
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FIGURE 7.22 — Evolutions axiales de la vitesse axiale pour e N=0,625 et ¢=2,5 % pour un
décalage allant de 0% (bleu) a 75% (rouge) par pas de 25% (gris) de la largeur € comparées
a la solution de référence (noir)

€ est suffisamment faible et que le champ de force agit dans le méme sens que le gradient
normal de vitesse, ne créant pas d’antagonisme et donc pas d’extremum local.

La figure 7.22 montre que lorsque le support de la fonction de distribution est décalé
vers 'intérieur, la vitesse interne sur la ligne moyenne diminue encore. En effet, le support
rentrant dans 'obstacle, le champ de force est exercé sur une zone de plus en plus large
aprés la position de vitesse nulle, ne faisant que renforcer I'action sur I’écoulement interne.

Alinsi, pour compléter la discussion de la section 7.4.3, il peut arriver, par une situation
particuliére associée a ’écoulement interne, que le contenu spectral de I’écoulement soit
supérieur & celui du champ de force. La figure 7.23 montre ’enrichissement fréquentiel qui
découle du décalage du support de la force.

Contrairement au cas classique d’utilisation de la méthode de frontiére immergée ([51],
[38], [88]), son application au domaine spectral peut avoir pour conséquence que 1'écoule-
ment interne dégrade son pendant externe.

L’effet de la dimension du support sur la structure compléte de ’écoulement est repré-
senté a la figure 7.24 qui compare le champ de vitesse absolue adimensionnelle de simula-
tions harmoniques a la solution de référence. Elle confirme 'augmentation de la fidélité de
I’écoulement & la réalité pour un décalage augmentant.
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FIGURE 7.23 — Spectres (log10 [%]) de pV, associés aux simulations harmoniques avec
25 modes et €=0,025 pour un décalage de 0% (gauche) et de 75% (droite)

FIGURE 7.24 — Champs de vitesse adimensionnelle obtenus par la simulation de référence
(haut, gauche) et par des simulations harmoniques avec eN=0,625 et ¢=0,025 pour un
décalage de 25% (haut, droite), 50% (bas, gauche) et 75% (bas, droite)
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7.6 Influence des tensions circonférentielles

Au sein du modéle méridien apparaissent deux types de termes : la force des aubes et les
tensions circonférentielles. Nous avons vu les bénéfices de chacun d’eux. Contrairement au
méridien classique, le méridien harmonique est capable de les obtenir de maniére autonome.
Précédemment, nous avons discuté la qualité de reproduction du champ de force et des
tensions circonférentielles. Dans ce qui suit, nous allons illustrer, dans un cas de simulation
harmonique, les bienfaits de celles-ci.

Nous I'avons expliqué a la section 7.3, les termes non-linéaires présents dans le systéeme
aux perturbations ne sont pas négligeables et il conviendrait de les considérer. Les résultats
d’une simulation incluant ces termes, sous les hypothése simplificatrices exposées en 7.3,
seront présentés ci-apres. Cependant, étant donné que cela rend la simulation fortement
instable, nous ne pourrons, de maniére générale, inclure ces produits de perturbations
dans la résolution. Afin de conserver un couplage non-linéaire entre systémes moyen et
aux perturbations, nous considérons les tensions circonférentielles de I’écoulement externe
a 'obstacle. Nous montrerons, par comparaison avec les résultats d’une simulation dont
elle sont absentes, qu’il est important de les inclure et qu’elles reproduisent la physique de
maniére satisfaisante. La figure 7.25 reprend 1’évolution axiale du nombre de Mach moyen
dans les cas énoncés et comparés a leurs équivalents par résolution méridienne classique.
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FIGURE 7.25 — Evolutions axiales du nombre de Mach moyen issues d'une simulation clas-
sique (discontinue bleue), d'une simulation classique nourrie des tensions circonférentielles
(discontinue rouge), d’une simulation classique nourrie des tensions circonférentielles et de
la force (discontinue verte), d’une simulation harmonique sans tensions circonférentielles
(continue bleue), d’une simulation harmonique avec tensions circonférentielles (continue
rouge), d'une simulation harmonique avec tensions circonférentielles et termes non-linéaires
(continue verte) comparées a la solution de référence (trait continu noir).



138 CHAPITRE 7. VALIDATION DU MERIDIEN HARMONIQUE

Il apparait clairement trois couples de courbes, chacun étant composé d’une simulation
classique (en traits discontinus) et d’une simulation harmonique (en traits continus).

Le premier couple (bleu) est formé par deux simulations dont les tensions circonféren-
tielles sont absentes. Les effets potentiels, & I'origine de 'adaptation du fluide & 'obstacle,
sont absents. Aussi, le niveau de Mach est fortement sous-estimé au sein de la zone couverte
par le cylindre. L’absence de tensions circonférentielles empéche de reproduire le blocage
que créent les effets non-axisymétriques.

Le deuxiéme couple (rouge) est composé d’une simulation classique nourrie des tensions
circonférentielles, extraites de la simulation de référence, et d’une simulation harmonique
incluant les tensions circonférentielles calculées. Pour chacune des simulations, ’accord avec
la solution de référence est excellent. L’adaptation de ’écoulement est reproduite ainsi que
le niveau de Mach sur le cylindre.

Le troisiéme couple (vert) est le résultat d’une simulation méridienne classique aug-
mentée des tensions circonférentielles et du champ de force extraits de la simulation de
référence, et d’une simulation harmonique incluant tous les termes non-linéaires, tant du
systéme moyen que du systéme aux perturbations. L’accord avec la solution de référence
est ici aussi assez bon. Il y a cependant peu de différence avec le couple précédent. C’est au
niveau des évolutions des champs moyens de pression (figure 7.26) et de masse volumique
(figure 7.27) que la différence apparait.
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FIGURE 7.26 — Evolutions axiales de la pression moyenne issues de simulations méridiennes
classiques et harmoniques comparées a la solution de référence (trait continu noir)

Tout comme pour le champ de Mach moyen, ’absence de tensions circonférentielles est
préjudiciable a la reproduction de 1’écoulement. Lorsque celles-ci sont ajoutées, les courbes
de pression et de masse volumique se rapprochent sensiblement de la solution de référence,
tant pour la simulation classique que pour la simulation harmonique. L’écoulement hors
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zone solide est bien reproduit et les pics de pression et de masse volumique sont assez fidéles.
En revanche, 1’écoulement sur ’avant et ’arriére du cylindre est moins précis, comportant
méme une discontinuité aux bords de celui-ci. Cette derniére provient de 'effet brutal que
créent les pics de non-uniformités aux abords de ’obstacle.
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FIGURE 7.27 — Evolutions axiales de la masse volumique moyenne issues de simulations
méridiennes classiques et harmoniques comparées a la solution de référence (trait continu
noir)

Ensuite, lorsque le champ de force issu de la simulation de référence est ajouté a la
simulation méridienne classique, les évolutions reproduites deviennent trés proches de la
référence. Ceci est conforme aux attentes puisque tous les termes additionnels du modéle
méridien sont présents et “exacts”. Les discontinuités observées précédemment n’existent
plus car le terme source de force rétablit la compatibilité de 1’écoulement.

Penchons-nous sur la simulation harmonique, dont ressort un résultat remarquable.
Lorsque les termes non-linéaires du systéme aux perturbations sont inclus, le champ moyen
de pression se conforme assez bien a la simulation classique augmentée et par conséquent
a la solution de référence. L’explication est a trouver dans I'expression du champ de force
utilisé pour fermer le méridien classique (7.16).

N-1 1 90 s
for =2 5 [pg} (7.16)

n=0 p

Celui-ci est calculé d’aprés le champ de pression sur l'obstacle issu de la simulation de
référence. Ce champ de pression se compose d’'une partie moyenne et d’une partie fluctuante
(7.17) dans laquelle apparaissent les triples produits.
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Ainsi, le champ de force procure a la simulation méridienne le méme effet que les
termes non-linéaires du systéme aux perturbations sur la simulation harmonique. Il est
donc logique de retrouver des résultats comparables. Il convient cependant de ne pas réduire
le champ de force aux seuls triples produits. Le cas examiné ici est particulier puisque
le champ de force tangentiel moyen est nul, ’écoulement n’étant pas dévié. De maniére
générale, l'effet premier du champ de force sera de dévier le fluide par sa composante
moyenne avant d’apporter les effets non-linéaires des triples produits.

En ce qui concerne le champ moyen de masse volumique, la reproduction obtenue par
la simulation harmonique compléte n’est pas aussi réaliste que pour le Mach et la pression.
En effet, afin de permettre une résolution par superposition modale et un calcul des termes
non-linéaires dans le domaine fréquentiel, les perturbations de masse volumique ont été
négligées devant leur partie moyenne. Il est donc cohérent d’obtenir une image moins fidéle
de cette grandeur.

L’étude du champ moyen nous apprend plusieurs choses. Premiérement, une simula-
tion harmonique est capable de se fournir, de maniére autonome, un champ de force et
des tensions circonférentielles qui reproduisent de maniére assez fiable 1’écoulement réel.
Deuxiémement, la linéarisation requise par la résolution harmonique s’avére pénalisante
au niveau du champ de pression, grandeur la plus touchée par I’hypothése. Néanmoins, les
résultats obtenus par le méridien harmonique sont nettement supérieurs a un méridien clas-
sique, incapable d’accéder aux informations d’ordre élevé, lesquelles ont un impact majeur
sur le champ moyen.

Pour terminer, les figures 7.28 et 7.29 illustrent, d’un point de vue d’ordre élevé, les
champs de pressions de référence et obtenus par simulations harmoniques complétes, avec
et sans tensions circonférentielles.

Ces figures confirment que la simulation harmonique complétement non-linéaire re-
produit de maniére quasiment exacte le champ réel. Les résultats obtenus avec et sans
tensions circonférentielles sont inévitablement moins fidéles. L’inclusion des tensions cir-
conférentielles modifie le champ de pression dans la bonne direction. Les faits marquants
sont la surévaluation de pression aux “bords d’attaque et de fuite” du cylindre ainsi que la
sous-estimation des pics de succion.
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FIGURE 7.28 — Evolutions axiale (haut) et circonférentielle (bas) de la pression statique de
référence (noir) comparée a celle obtenue par simulation harmonique compléte (vert), avec
tensions circonférentielles (rouge) et sans tensions circonférentielles (bleu).

0.6



142 CHAPITRE 7. VALIDATION DU MERIDIEN HARMONIQUE

1,00 1,00

0,74 0,74

1,00 1,00

0,74 0,74
FIGURE 7.29 — Champs de pression adimensionnelle obtenus par la simulation de référence
(haut, gauche) et par des simulations harmoniques compléte (haut, droite), avec tensions
circonférentielles (bas, gauche) et sans tensions circonférentielles (bas, droite).
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7.7 Stabilité du processus itératif

L’option choisie pour imposer 'imperméabilité, le forcage par feed-back, a une large
influence sur 1’évolution temporelle de la solution. En effet, I'imposition de I'imperméabilité
de l'obstacle est réalisée au moyen d’un controleur de type Proportionnel-Intégral (PI). Ce
terme intégral introduit une limite de stabilité, laquelle dépend du schéma d’intégration
temporelle de I’équation de force (7.18).

f:aAT@%ﬁh+6@%J (7.18)

Selon Lee [90], pour un schéma de Runge-Kutta a 2 pas, la limite de stabilité peut étre
obtenue de maniére analytique. Pour une résolution bidimensionnelle, celle-ci est exprimée
par (7.19). La limite de stabilité augmente avec le nombre de pas du schéma mais ne peut
plus étre exprimée par une telle inégalité.

alAt?  4BAt
- <
2 2 =

8 (7.19)

L’équation (7.18) est résolue simultanément aux équations du mouvement du type
(7.20).

opVy,
or

— RHS + f (7.20)

Remplagant la force par son expression compléte dans I’équation (7.20) et dérivant par
rapport au pseudo-temps 7, I’équation (7.21) est obtenue, laquelle s’apparente a 1’expression
décrivant 1’évolution temporelle d'un oscillateur amorti de fréquence propre w, = /—a et
de taux d’amortissement & = —f/ (2w,,).

0* (pVn)
or?

d(pVy) ORHS
_ —a(pV,) = =22 721
5 o (v = S (7.21)
Remplagant les expressions de la fréquence propre et du taux d’amortissement dans
I'expression (7.19) de la limite de stabilité, la relation (7.22) est obtenue.

walAt < 4 (—g + \/@) (7.22)

En pratique, bien que nous utilisions un schéma de Runge-Kutta a 3 ou 4 pas, méme
cette limite de stabilité ne pourra étre atteinte. En effet, celle-ci a été dérivée dans I'hypo-
thése d’une représentation de la fonction de distribution sur un maillage physique et sur
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les seuls points voisins de la frontiére fictive.

Dans la suite, nous allons présenter les courbes de convergence relatives a trois cas. Nous
commencerons par illustrer I'effet d’une variation de la fréquence propre w,, de l'oscillateur
et de son taux d’amortissement £. Ensuite, nous envisagerons le résultat du décalage du
support de la fonction de distribution. Enfin, nous observerons les conséquences d’une
variation de la largeur € du support. Pour toutes ces simulations, sauf mention contraire,
nous introduirons 25 modes de Fourier, un support de largeur €=2,5% ainsi qu’un taux
d’amortissement =3 et une fréquence d’oscillateur égale a 10% de la limite théorique
(7.22). Le pas de temps sera une moyenne sur la zone couverte par I'obstacle de celui des
équations du mouvement, fourni par la condition CFL classique.

7.7.1 Paramétres du controleur

La figure 7.30 présente les courbes de convergence du champ de force (i.e. I'imper-
méabilité) et du champ moyen pour des simulations harmoniques de paramétres (wy, &)
variables.

Tout d’abord, observons les conséquences d’une variation de la fréquence propre de
loscillateur amorti. Lorsque la fréquence augmente, le résidu du champ de force, qui n’est
autre que la norme rms des vitesses normales aux nocuds lagrangiens, diminue plus ra-
pidement mais en présentant des oscillations de plus forte amplitude pendant la phase
d’établissement. A convergence, 'imperméabilité est mieux respectée pour des fréquences
élevées. En effet, plus le controleur est rapide, mieux il parvient & dominer I’écoulement,
représenté par le membre de droite des équations du mouvement, pour assurer une vitesse
normale faible & la paroi fictive.

En revanche, le résultat est bien différent en ce qui concerne la convergence du champ
moyen *. En effet, plus la fréquence de l'oscillateur est élevée, plus le résidu moyen reste
important a convergence. Ceci s’explique par le fait que, dans les équations du mouvement
forcées, I'imperméabilité prend une part de plus en plus importante, au détriment du
champ d’inconnues conservatives sur le maillage cartésien. Ce controle devient si rapide
qu’il empéche I’écoulement de s’établir plus précisément.

Ainsi, lorsque 1'on observe la convergence dans sa globalité, il apparait qu’il n’est pas
nécessairement opportun de choisir une fréquence élevée pour le controleur car 'effet re-
cherché est principalement la convergence du champ d’inconnues conservatives, tout en
assurant un respect suffisant de I'imperméabilité sur I'obstacle. Or c’est bien le cas puisque
celle-ci est obtenue a 1072 dans tous les cas et pour une vitesse normale maximale inférieur
a5 107 Ve,

4. La convergence du champ de perturbations est trés semblable a celle du champ moyen et ne sera
donc pas détaillée.
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FIGURE 7.30 — Courbes de convergence du champ de force (haut) et du champ moyen
(bas) avec la fréquence propre de l'oscillateur w,, variant de 5% (bleu) a 30% (rouge) de la
fréquence limite théorique par pas de 5% (gris) et le taux d’amortissement ¢ variant de 2
(traits discontinus oranges) a 6 (pointillés oranges) par pas de 2 (continu orange)

Concernant le taux d’amortissement, comme attendu, lorsque celui-ci augmente, les
oscillations présentes pendant la phase d’établissement de I'imperméabilité sont atténuées.
La convergence est cependant ralentie et I'imperméabilité moins bien respectée, 'amplitude
des variations étant toutefois moindre que par la variation de la fréquence propre. Comme
précédemment, 'effet sur le champ moyen est contraire. Ceci confirme que la théorie de
I'oscillateur amorti ne peut étre appliquée aveuglément puisqu’il convient de considérer
également la dynamique des termes relatifs au mouvement du fluide dans le membre de
droite de (7.21). Ainsi, un taux d’amortissement de 3 semble un compromis équilibré.
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7.7.2 Deécalage du champ de force

Nous avons vu précédemment I'intérét que présente le décalage du champ de force vers
I'intérieur de l'obstacle. Il permet d’obtenir un écoulement plus naturel aux abords de la
paroi fictive. Cependant, lorsque la fonction de distribution est distancée de la frontiére
virtuelle, c’est aussi le lieu ot est exercée ’action du controleur qui est éloigné de la position
d’observation. Cette configuration ne peut mener qu’a une déstabilisation de la boucle de
controle. C’est ce qu’illustre la figure 7.31 présentant les courbes de convergence du champ
de force et du champ moyen pour différentes valeurs de décalage.
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FIGURE 7.31 — Courbes de convergence de champ de force (haut) et du champ moyen (bas)
avec le décalage du support variant de 0% (bleu) a 75% (rouge) de la largeur € par pas de
25% (gris)
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Pour le couple de paramétres (w,, £), il s’avére qu'un décalage supérieur ou égal a 50%
déstabilise 'imposition de I'imperméabilité. Cette divergence observée sur le champ de
force se reporte ensuite, avec un certain délai, sur ’écoulement lui-méme. C’est apparent
pour un décalage de 75%. Pour ce qui concerne I’écart de 50%, I'instabilité apparait sous la
forme d’oscillations pendant la phase d’établissement. La divergence arrive progressivement
aprés ’historique présenté.

Cependant, la divergence observée ne signifie pas qu’il est impossible d’utiliser un dé-
calage de 50% ou de 75% de la largeur € du support de la fonction de distribution. Cela
témoigne simplement d’une limite de stabilité inférieure. Le choix d’une fréquence propre
plus faible permettra donc de parvenir a la convergence. Afin d’éviter une évolution tem-
porelle trop lente tout en conservant le bénéfice d’un décalage sur ’écoulement, un écart
de 50% semble raisonnable.

7.7.3 Largeur du support

La stabilité de la méthode de forcage par feed-back est fortement dépendante de la fagon
dont est distribuée la force lagrangienne sur le maillage cartésien. De maniére générale, Lee
[90] affirme que plus le schéma d’interpolation et de distribution utilisé pour communiquer
entre les deux maillages est de précision élevée et moins la boucle de controle est stable.
Shin [133], quant a lui, montre dans le contexte de la fonction de distribution réguliére de
Peskin, que la stabilité varie selon le nombre de points du maillage cartésien sur lesquels
la force est distribuée.

Dans la suite, nous allons étudier I'influence de la largeur du support de la fonction
de distribution sur la stabilité du processus itératif. La figure 7.32 présente les courbes de
convergence du champ de force et du champ moyen pour différentes largeurs de support.

Tout d’abord, une comparaison des courbes de convergence du champ de force et du
champ moyen montre une réaction identique de ceux-ci a& une variation de I’étendue du
support de la fonction de distribution. Ceci indique que l'effet ne provient pas de carac-
téristiques différentes du controleur mais d’une origine plus globale. Aussi, il est observé
que la courbe correspondant & e=4% meéne, pour le couple de paramétres (wy, £), au résidu
minimum parmi l’ensemble des simulations présentées.

Pour des supports plus étroits, tant I'imperméabilité que le champ moyen convergent
vers des niveaux d’erreur supérieurs. D’aprés ces figures, nous pouvons affirmer qu’'un de
support relativement large permet d’obtenir une solution plus précise. En effet, lorsque
le support s’élargit, I’écoulement est lissé et adapté progressivement a la présence de la
frontiére solide. Le contréleur a une emprise plus large sur le fluide et organise de maniére
plus stable 'imperméabilité de ’obstacle.
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FIGURE 7.32 — Courbes de convergence du champ de force (haut) et du champ moyen (bas)
avec une largeur de support e variant de 8% (bleu) a 1% (rouge) par pas de 1% (gris). La
largeur e=4% est remarquée en orange.

Ceci est vrai dans une certaine mesure seulement. Lorsque la largeur du support dépasse
la valeur e=4%, la précision atteinte est moins bonne. La discussion de la section 7.7.3 a
montré que lorsque le champ de force s’élargit, I’écoulement aux abords de la paroi est
moins bien représenté, pour cause de lissage et de décalage des pics de variation en cas de
gradients interne et externe antagonistes. Ainsi, lorsque le comportement du fluide est mal
reproduit proche de la frontiére virtuelle, il devient difficile d’y imposer I'imperméabilité.
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7.7.4 Comparaison avec le méridien classique

Pour terminer I’étude de la stabilité du méridien harmonique, nous proposons de com-
parer sa convergence a celle d’'un méridien classique au travers de la figure 7.33.

log;, rhSms
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) i i ’ 1000

FI1GURE 7.33 — Courbes de convergence du champ moyen par le méridien harmonique
(orange) et par le méridien classique (gris)

La comparaison des courbes de convergence des méridiens classique et harmonique
montre que la méthode de feed-back ne pénalise pas la phase d’établissement, le méridien
harmonique étant méme plus rapide durant celle-ci. Ceci montre bien que la limite de
stabilité du feed-back ne méne pas a des nombres CFL inférieurs & celui des équations du
fluide elle-méme. Par contre, le respect de 'imperméabilité étant limité, il existe une limite
a la convergence du méridien harmonique. Celle-ci est cependant acceptable et peut étre
adaptée en fonction des influences examinées précédemment.

7.8 Ecoulement visqueux autour d’un cylindre

Pour terminer la validation du méridien harmonique, nous allons présenter succincte-
ment les résultats de la simulation harmonique d’un écoulement visqueux autour d’une cas-
cade de cylindres. Nous n’effectuerons pas ici d’étude quantitative mais nous nous concen-
trerons sur les tendances observées d’un point de vue d’ordre élevé. Celles-ci permettront
d’illustrer les possibilités et les limites du méridien harmonique lorsque la viscosité est
impliquée.

Le domaine de calcul représente un canal de la grille de cylindres dont I'extension cir-
conférentielle vaut 6 fois le diameétre de chacun d’eux. La longueur du domaine en aval
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du cylindre vaut 15 fois ce diamétre, ce qui permet de limiter la perturbation de I’écou-
lement par la condition de pression uniforme en aval. Nous présenterons les résultats de
deux simulations pour des nombres de Reynolds valant 25 et 40 (Re = pU>D/u). Nous
restons & des Reynolds assez bas pour plusieurs raisons. Premiérement, afin d’obtenir une
représentation fidéle de 1’écoulement, il faut faire en sorte que la couche limite soit suf-
fisamment épaisse devant le support de la fonction de distribution. Deuxiémement, nous
souhaitons que les effets visqueux soient dominants. Enfin, nous voulons conserver un écou-
lement intrinséquement stationnaire pour rentrer dans le domaine d’application du modéle
développé.

La figure 7.34 représente les lignes de courant autour du cylindre pour les deux écou-
lements simulés avec 80 modes et une largeur du support de la fonction de distribution
e=0,8% de l'extension circonférentielle, soit environ 5% du diamétre du cylindre. Pour
amoindrir le lissage par I'extension du support dans I’écoulement, il a été décalé de 50%
de sa largeur vers 'intérieur du cylindre. L’équation de force du controleur PI inclut main-
tenant une composante tangentielle afin d’annuler la vitesse absolue a la paroi fictive.

FIGURE 7.34 — Lignes de courant & Reynolds = 25 (haut) et Reynolds = 40 (bas)

Dans les deux cas, une bulle de recirculation apparait a ’aval du cylindre. Ceci est
cohérent avec la réalité. Cependant, la longueur de celle-ci est sous-estimée. En effet, la
figure reprend également la longueur moyenne observée par plusieurs auteurs et reprises
aux références [128, 150, 89| sous la forme d’un trait orange. Dans chacun des cas, la
longueur issue de la littérature est supérieure a celle observée. Cependant, la zone de faible
vitesse est d’extension comparable. La différence provient du fait que la recirculation se
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crée plus en aval du cylindre qu’elle ne le devrait par la présence dans 1’écoulement du
champ de force qui assure le non-glissement & la frontiére fictive. Néanmoins, 1’évolution
de la structure de 1’écoulement avec le nombre de Reynolds est assez représentative de la
réalité.

Afin d’illustrer I'extension de la zone de faible vélocité a I'arriére du cylindre, la figure
7.35 reprend le champ de vitesse absolue pour les deux simulations.

FIGURE 7.35 — Champs de vitesse absolue a Reynolds = 25 (haut) et Reynolds = 40 (bas)

Ce bref exemple confirme la capacité du méridien harmonique a traiter un écoulement
visqueux mais a la condition que le support de la fonction de distribution soit suffisam-
ment étroit pour exciter les hautes fréquences liées & la couche limite et surtout pour
ne pas surévaluer cette derniére. Pour ’application présentée, 80 modes furent utilisés
pour permettre une largeur e faible dans ’absolu mais pourtant non-négligeable devant
I’épaisseur de couche limite. Ceci justifie le choix opéré de ne pas imposer la condition de
non-glissement de maniére générale, en particulier pour des écoulements a haut nombre de
Reynolds tels que ceux rencontrés en turbomachines.
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7.9 Synthése de la méthode harmonique

Au cours de ce chapitre, nous avons évalué en détail le méridien harmonique nouvelle-
ment développé. Celui-ci permet d’obtenir de 'information d’ordre supérieur a un méridien
classique tout en utilisant le méme type de solveur bidimensionnel. Pour ce faire, il est en-
richi d’une modélisation spectrale qui donne accés aux non-uniformités circonférentielles.
Afin d’obtenir cette précieuse information, il est cependant nécessaire de passer par une
gestion soignée et relativement complexe de 'ordre élevé, de 'obstacle en 'occurrence.

La traduction correcte des frontiéres solides fictives sur I’écoulement passe par un choix
adéquat des parameétres spécifiques a la méthode de frontiére immergée. Tout d’abord, le
support de la fonction de distribution doit étre suffisamment étroit pour reproduire les
variations rapides de l’écoulement proche paroi tandis qu'un élargissement permet une
diminution du besoin modal et une meilleure convergence. Ensuite, un décalage de ce
support vers 'intérieur de ’obstacle s’avére appréciable pour éviter de lisser artificiellement
les évolutions du fluide aux abords de la paroi. Il doit pourtant rester d’ampleur limitée
pour éviter de déstabiliser la résolution itérative. Il a d’ailleurs été montré qu’a condition
que les parameétres du controleur PI soient choisis judicieusement, celle-ci présente la méme
convergence que le méridien classique. L’introduction d’une troisiéme dimension n’est donc
pas pénalisante du fait du transfert immédiat d’information découlant de sa résolution dans
le domaine spectral, contrairement a ce qu’il se passerait dans un code tridimensionnel
classique.

L’une des particularités issues de la méthode de frontiére immergée est la présence d’un
écoulement interne a l’'obstacle présentant un haut degré de non-uniformité circonféren-
tielle. Ceci a pour conséquence 'affaiblissement de la validité de ’hypothése de petites
perturbations, laquelle est pourtant requise pour une application saine de la méthode har-
monique non-linéaire. L utilité des termes non-linéaires, négligés par cette méthode, a été
illustrée. Ceux-ci se montrent cependant fortement déstabilisateurs, empéchant leur inclu-
sion générale dans la méthode. Malgré cela, il a été montré que 1'utilisation des tensions
circonférentielles relatives au domaine externe a 1’obstacle suffit & améliorer de maniére si-
gnificative la reproduction moyenne de ’écoulement et, dans une moindre mesure, la vision
tridimensionnelle de celui-ci.

Ainsi, le méridien harmonique représente un bon compromis en vue de l’obtention
autonome et sans empirisme d’informations d’ordre élevé qui permettent d’améliorer sen-
siblement la fidélité de la solution produite.
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Au cours du chapitre précédent, les caractéristiques du méridien harmonique nouvelle-
ment développé ont été illustrées et les conditions de son fonctionnement idéal ont été épin-
glées. En effet, la nature harmonique de la méthode engendre une série de contraintes qu’il
convient de respecter afin d’obtenir une résolution efficace de I’écoulement. Ces conditions
portent principalement sur trois aspects : la dimension du support compact de la fonction
de distribution, la courbure de la paroi solide et 1’épaisseur de 1’obstacle.

La dimension du support de la fonction de distribution résulte d’un compromis. D’une
part, elle doit étre importante pour diminuer le besoin modal de reconstruction de la
fonction de distribution. D’autre part, elle doit étre faible afin de reproduire au mieux
les variations rapides de 1’écoulement aux abords de la frontiére solide. En pratique, cette
dimension sera déterminée par le cotit de calcul supportable.

Ensuite, la courbure de la frontiére doit étre suffisamment faible pour éviter la création
de zones de variations importantes sur des distances de 1’ordre de la dimension du support.
L’exemple type est celui des bords minces que l'on rencontre sur des profils aérodyna-
miques. De telles configurations géométriques engendrent des influences importantes entre
les nceuds lagrangiens par I’étalement de la fonction de distribution. Ainsi, il peut résulter,
au mieux, un controle moyen de I’écoulement et au pire, une déstabilisation de la force en
ces points.

153
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L’épaisseur du domaine solide, enfin, s’avére importante pour plusieurs raisons. Celle-
ci doit, dans tous les cas, étre suffisamment grande devant le support de la fonction de
distribution. En effet, dans le cas contraire, I’écoulement interne peut devenir ample et
fréquentiellement riche. Aussi, pour des obstacles fins, des points lagrangiens se faisant face
pourraient s’influencer mutuellement au travers de leur fonction de distribution. Enfin, si
I'obstacle ne présente pas une épaisseur suffisante, le décalage du support compact vers
I'intérieur devient impossible pour les mémes raisons de risque d’influence mutuelle entre
points se faisant face.

Ces différentes restrictions trouvent toutes leur origine dans la nature spectrale de la
résolution et rendent délicate 'application de la méthode a des géométries ne les satisfaisant
pas. C’est le cas des profils aérodynamiques, que nous allons aborder dans ce chapitre. Il
ne faut pas pour autant en conclure que la méthode développée est inapplicable a de
telles configurations mais bien qu’elle nécessite certaines adaptations et qu'une précision
inférieure au cas illustré précédemment est a attendre.

Dans ce qui suit, nous allons présenter les adaptations a effectuer pour les profils minces
et les illustrerons sur une coupe a mi-hauteur d’aube du stator du compresseur CME2 déja
abordé. Nous poursuivrons avec ce profil pour comparer les résultats fournis par le méridien
harmonique a ceux d’une simulation tridimensionnelle qui constituera notre référence. Nous
terminerons le chapitre par 'application de la méthode au compresseur CME2 complet.

8.1 Particularités de 'application aux profils (minces)

Les deux adaptations propres aux profils aérodynamiques concernent la gestion des
bords minces et I'influence mutuelle des parois.

8.1.1 Bords minces

L’incompatibilité du support enveloppe présenté au chapitre 6 avec les restrictions énon-
cées méne 4 scinder celui-ci en trois parties : le bord d’attaque, le bord de fuite et le reste
de I'aube. La discrétisation qui en découle est illustrée a la figure 8.1.

L’influence du bord d’attaque et de son voisinage est transmise au domaine de calcul
au moyen d’une fonction de distribution définie sur un disque de rayon e. Le controle de
cette région est effectué par un seul degré de liberté puisqu’une seule information est trans-
mise par cette fonction de distribution centrée sur le bord d’attaque. Afin de garantir une
imperméabilité moyenne de la zone concernée, I'action feedback a pour consigne ’annu-
lation du débit a travers cette portion d’aube, i.e. la vitesse normale moyenne sur cette
surface frontiére. Ainsi, le résultat obtenu sera une satisfaction moyenne de la condition
d’impermeéabilité tout en évitant une instabilité dans le controle de 1’écoulement au bord.
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FIGURE 8.1 — Discrétisation adaptée aux profils minces

Le bord de fuite présente lui aussi un seul degré de liberté. Contrairement au bord
d’attaque, I'imperméabilité moyenne ne peut y étre imposée car cela engendre un sillage
de vitesse faible en aval du bord de fuite. En effet, ’écoulement en aval de ce dernier va
dépendre de I’écoulement interne ’abordant et de la force qui y est exercée. Dés lors que
I’écoulement interne est libre de s’établir naturellement, il sera, dans la plupart des cas,
impossible d’obtenir a la fois une imperméabilité moyenne dans la région du bord de fuite
et un écoulement uniforme en aval.

Afin d’obtenir une solution cohérente, nous choisissons de privilégier 1’écoulement aval
et d’autoriser une perméabilité au bord de fuite. Etant donné que cette portion d’aube est
restreinte, son effet sur le débit total le sera tout autant. Puisque I'objectif est d’obtenir un
écoulement uniforme en aval, la force appliquée au bord de fuite est telle que I’écoulement
observé aprés celui-ci soit uniforme. Le degré d’uniformité est établi selon une observation
située a une distance égale a 10% de la corde axiale, sur une certaine extension azimutale
BAO comme illustré a la figure 8.2, Af étant la portion circonférentielle couverte par un
canal inter-aubes .

7

gt

FIGURE 8.2 — Disposition des observations (traits oranges) pour le controle de la force
appliquée au bord de fuite (10% aval du bord de fuite) et du taux de cisaillement (10%
amont du bord de fuite)

1. Nous adoptons la valeur 5=0,06.
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Le reste de I'aube est commandé par une vitesse normale nulle, qui peut étre atteinte
avec une bonne précision, la discrétisation y étant favorable et la boucle de controle réactive.

La figure 8.3 illustre la fonction de distribution du profil selon la discrétisation adaptée
aux bords minces.

FIGURE 8.3 — Fonction de distribution du profil selon la discrétisation adaptée

8.1.2 Influence des parois

La deuxiéme problématique des profils minces est celle de I'influence que peuvent avoir
I'une sur 'autre les parois solides opposées, i.e. I’extrados et I'intrados, en certaines régions
de I'aubage dont I’épaisseur est de 'ordre de grandeur de l'extension € du support de la
fonction de distribution. Un exemple de recouvrement des fonctions de distribution est
visible a la figure 8.1. Dans la région du bord de fuite, 'effilement de ’aubage engendre
une superposition partielle des supports relatifs a 'intrados et I'extrados.

Une telle superposition des actions de nceuds lagrangiens résulte en une action moyenne.
Ainsi, il n’est plus possible d’effectuer un controle local précis en ces points, seule la
moyenne de leurs commandes sera transmise au domaine de calcul et donc a l’écoule-
ment. La maitrise de ce dernier dans ces zone effilées est donc limitée et ne permet plus
que d’agir sur la moyenne de celui-ci.

La conséquence importante qui en découle est que le champ de force moyenné résultant
ne permet plus d’obtenir un écoulement interne du type rencontré au chapitre précédent,
a la figure 7.9, et donc de le contraindre & l'intérieur de 'obstacle. La structure a deux
tourbillons de I’écoulement interne se propage a I'extérieur des frontiéres solides virtuelles
tout en respectant avec une tolérance assez faible de 10~* U, I'impermeéabilité du solide.
L’écoulement associé est illustré a la figure 8.4 sous forme vectorielle.

Comme nous l’avons mis en lumiére au chapitre précédent, la position du support
représente une zone tampon, une bande de transition entre les écoulements externe et
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FIGURE 8.4 — Ecoulements externe et interne au profil

interne. La vitesse tangentielle y décroit de I’extérieur vers l'intérieur du solide, de maniére
analogue a une couche limite visqueuse au sein de laquelle la vitesse tangentielle tend
progressivement vers zéro. Il existe donc toujours une couche de cisaillement qui, dans le

meilleur des cas, se trouve a 'intérieur de l'obstacle et, dans le pire des cas, sort de l'aubage.

Pour un écoulement avec imposition de la condition de glissement & la paroi, la zone
pariétale ne doit théoriquement pas inclure de cisaillement. Cependant, la méthode de fron-
tiére immergée en génére inévitablement. L utilisation de cette méthode dans un contexte
harmonique rend impossible le positionnement de ces bandes de cisaillement a I'intérieur de
I’obstacle impossible, le décalage du support de la fonction de distribution étant contraint
par ’épaisseur du solide.

Dés lors, il est nécessaire de s’en accommoder et de maitriser cette couche pariétale
cisaillée, illustrée a la figure 8.5.
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FIGURE 8.5 — Zone de cisaillement & la surface fictive

Pour ce faire, il convient d’ajouter une composante tangentielle a la force lagrangienne.
Celle-ci ne modifie que la zone pariétale, de faible précision en méthode de frontiére im-
mergée, tout en permettant de contenir I’écoulement interne et de controler efficacement
la vitesse normale, comme le montre la figure 8.6.
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FIGURE 8.6 — Ecoulements externe et interne au profil en présence d’une force tangentielle

L’écoulement interne retrouve une structure a deux tourbillons fermée par la surface
virtuelle, analogue a celle décrite au chapitre précédent. Si 'ajout d’une force tangentielle
permet de résoudre le probléme de I'influence des parois opposées, il reste & déterminer son
intensité.

Etant donné que l'on ne peut imposer un taux de cisaillement nul, nous I'imposons
a une valeur constante. L’objectif de cette action tangentielle est d’établir une barriére
censée circonscrire 1’écoulement interne pour permettre a son pendant externe de se dé-
velopper naturellement tout en détériorant au minimum les caractéristiques pariétales de
I’écoulement. Pour suivre cette voie, le taux de cisaillement & la paroi est calculé d’aprés
les vitesses tangentielles aux distances € et €/2 de celle-ci. Elles se trouvent ainsi dans la
zone d’influence de la force pariétale sans pour autant se situer aux abords directs de la
frontiére virtuelle, ceux-ci pouvant étre fortement variables et perturbés. Ensuite, le taux
de cisaillement T' = % a atteindre est adapté au cours des itérations, une valeur constante
étant définie séparément pour 'intrados et ’extrados, en vue d’obtenir des champs de vi-
tesse aussi uniformes et similaires que possible de part et d’autre de 'aubage en aval de
ce dernier. Cette uniformité est quantifiée a 'extrados et & 'intrados, en amont du bord
de fuite, & une distance équivalente a 10% de la corde axiale, sur des portions azimutales
d’extension aAf, comme illustré a la figure 8.22. Si cette action présente une part arbi-
traire, elle permet d’atteindre un écoulement se rapprochant au mieux de la physique, en
dirigeant la résolution vers I'obtention d’un champ uniforme en aval de ’aube.

En pratique, le controle tangentiel aura pour consigne la vitesse tangentielle a une dis-
tance €/2 de la paroi qui méne au taux de cisaillement prescrit. Afin d’éviter une limitation
temporelle supplémentaire, cette action est proportionnelle. Ainsi, pour imposer le taux de
cisaillement 7" sur un élément de controdle illustré a la figure 8.7, la force tangentielle est
définie par (8.1).

2. Nous adoptons une valeur a=0,35.
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FIGURE 8.7 — Elément de controle a la paroi
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L’action tangentielle et la discrétisation des bords minces constituent les deux adapta-
tions nécessaires a la résolution de I’écoulement autour de profils minces. Elles apportent
une réponse pragmatique aux difficultés rencontrées et permettent, comme nous allons le
montrer dans ce qui suit sur un profil statorique, d’obtenir un écoulement cohérent.

8.2 Le stator du CME2

Afin de valider les modifications apportées, nous résolvons I’écoulement non-visqueux a
mi-hauteur d’'un profil d’aube statorique du compresseur CME2. Cette application résulte
a nouveau en un écoulement moyen unidimensionnel. Les conditions limites relatives a
cet exemple sont reprises au tableau 8.1. Les résultats seront générés avec 25 modes et
comparés a la solution obtenue par un code tridimensionnel, moyennée dans la direction
circonférentielle, considérée comme solution de référence.

Température totale d’entrée TV |K] 312
Pression totale d’entrée p°  [Pa] | 115000
Angle d’entrée g |deg] 39
Pression statique de sortie  p  [Pa] | 109000

TABLE 8.1 — Conditions limites

Comme précédemment, nous présenterons les résultats selon deux approches. La pre-
miére est une vision moyenne selon laquelle le méridien harmonique fournit les termes
d’ordre supérieur et en traduit I'effet moyen sur I’écoulement moyen. La deuxiéme est une
vision compléte de 'ordre supérieur, tirant profit de la résolution des modes de Fourier des
perturbations circonférentielles pour en reconstruire 1’évolution.
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Commencons par focaliser I’analyse sur la vision moyenne de 1’écoulement et sur I’amé-
lioration procurée par les termes d’ordre élevé. Dans cette optique, la figure 8.8 compare
I’énergie cinétique des perturbations circonférentielles obtenues par le méridien harmonique
a la référence.
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FIGURE 8.8 — Evolutions axiales de I’énergie cinétique moyenne des perturbations issues
de la simulation de référence (noir) et du méridien harmonique (rouge)

Le niveau de perturbation est globalement surestimé. Ceci est di & la présence dans
I’écoulement, aux abords de la paroi, d’une zone de transition entre les écoulements externes
et internes. Cependant, 'allure générale est cohérente et présente des évolutions similaires
a la référence.

Afin de souligner I'apport des termes d’ordre élevé, la figure 8.9 compare les évolutions
axiales du Mach et de la pression statique moyens, obtenues par la simulation de référence,
a celles issues du méridien harmonique incluant ou non les tensions circonférentielles.

La comparaison entre les évolutions du nombre de Mach moyen incluant ou non les
tensions circonférentielles montre I’amélioration fournie par celles-ci. L’adaptation du fluide
a la présence de 'aube en amont est notable, ainsi que la conformation de 'accélération
du fluide sur I'avant de ’aube & la référence.

En ce qui concerne la pression statique, I'accord avec la courbe de référence est de
moindre qualité. Ceci est a relier aux approximations découlant de 'hypothése de petites
perturbations, comme nous I’avons expliqué au chapitre 7. Néanmoins, nous observons a
nouveau l’amélioration procurée par la prise en compte des tensions circonférentielles.

L’examen de I’écoulement moyen a confirmé les observations du chapitre précédent. Le
méridien harmonique d’ordre élevé permet une reproduction fiable du champ de vitesse
mais ne permet d’approcher la pression statique qu’avec une précision limitée.
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FIGURE 8.9 — Evolutions axiales du Mach et de la pression statique moyens, issues de
la simulation de référence (noir) et du méridien harmonique avec (rouge) ou sans (bleu)
tensions circonférentielles

Passons a présent a la discussion des résultats associés a la seconde vision de la méthode,
la vision circonférentielle. La figure 8.10 compare les champs de vitesse obtenus par le
méridien harmonique (haut) et la simulation de référence (bas). La trace de 'aube dilatée
d’un facteur (1-+¢€) y est représentée. Elle délimite la zone d’application du champ de force.

Cette figure montre que I’écoulement est assez bien reproduit jusqu’a mi-corde. Ensuite,
I’amincissement de l'aube entraine une influence mutuelle des parois discrétisées qui ne
permet plus un contréle précis aux abords de la paroi. Il se crée une couche de transition
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FIGURE 8.10 — Champs de vitesse [m/s| issus du méridien harmonique (haut) et de la
simulation de référence (bas)

entre les écoulements externe et interne qui se propage ensuite a ’aval, laissant un sillage
non-visqueux. Cette couche de transition est clairement délimitée par le support de la
fonction de distribution et est inévitable sur un profil mince. Si I’écoulement aux abords
de la paroi est détérioré, l'allure générale hors de cette zone est en assez bon accord avec
la solution de référence.

Afin de poursuivre I'analyse, la figure 8.11 compare les champs de pression statique
obtenus par le méridien harmonique (haut) et la simulation de référence (bas). A nouveau,
si 'on excepte la bande pariétale associée au support de distribution et perturbée par
le champ de force, I'allure générale du champ de pression est en assez bon accord avec le
champ de référence. En particulier, les points de stagnation sont visibles, ainsi que la poche
de succion & l'extrados et 'augmentation progressive de pression a I'intrados. A ce sujet,
tant a 'intrados qu’a l'extrados, ’épaississement des bandes de basse vitesse de la figure
8.10 (haut) concorde avec les gradients de pression adverses observés aux parois.
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FIGURE 8.11 — Champs de pression statique [bar| issus du méridien harmonique (haut) et
de la simulation de référence (bas)

Pour terminer notre analyse, les figures 8.12 et 8.13 comparent les évolutions pariétales
de la vitesse et de la pression statique établies par le méridien harmonique a une distance
¢ de la paroi virtuelle (noir), a celles issues de la simulation de référence a des distances
moyennes €/10 (rouge) et € (bleu) de la paroi solide.

Concernant la vitesse, on constate un accord entre les différentes tendances jusqu’a
environ 70% de la corde. Cet accord est moindre sur la derniére portion d’aube, par I’aug-
mentation de I'influence entre les parois, du fait de 'amincissement du profil. En particulier,
cette fin de profil est principalement conditionnée par la boucle de controéle de la force tan-
gentielle et par le choix d’agir sur le taux de cisaillement et I'uniformité de I’écoulement
aval.
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FIGURE 8.12 — Vitesse a la paroi établie par le méridien harmonique & une distance € de la
paroi virtuelle (noir) comparée a celles issues de la simulation de référence a des distances
moyennes €/10 (rouge) et € (bleu) de la paroi solide
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FIGURE 8.13 — Pression a la paroi établie par le méridien harmonique a une distance € de la
paroi virtuelle (noir), comparée a celles issues de la simulation de référence a des distances
moyennes €/10 (rouge) et € (bleu) de la paroi solide
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L’examen de la figure 8.13 relative aux pressions montre des évolutions pariétales si-
milaires entre le méridien harmonique et la simulation de référence. Bien que la pression
soit une grandeur fortement conditionnée a 'hypothése de petites perturbations et que de
légéres oscillations apparaissent tant a la paroi que dans 1’écoulement, sa répartition sur
I'intrados et 'extrados est fidéle a la réalité et témoigne d’une bonne prédiction du champ
de force.

Aussi, tant la vitesse tangentielle que la pression montrent que la force tangentielle
ajoutée pour garantir le maintien de l’écoulement interne ne détériore pas la physique
associée a ’écoulement. Les choix opérés pour le controle de cette action s’avérent donc
respectueux de la nature de I’écoulement. Il est clair que d’autres choix de contréle seraient
possibles et pourraient sans doute fournir des résultats comparables mais ceux que nous
avons effectués sont justifiés et donnent satisfaction.

L’ensemble de la discussion menée sur ce cas de I’écoulement autour d’un profil sta-
torique nous permet de conclure que par une modélisation adaptée aux particularités des
profils aérodynamiques, il est possible d’obtenir de I'information d’ordre élevé au travers
d’une méthode de frontiére immergée utilisée dans un contexte harmonique.

8.3 Le CME2 complet

Dans ce qui suit, nous allons aborder la derniére étape illustratrice des capacités du
méridien harmonique. Celle-ci consiste en la résolution de 1’écoulement au sein du com-
presseur CME2, dont la description a été effectuée au chapitre 1. Pour ce cas test, la vision
méridienne sera bien bidimensionnelle tandis que la vision d’ordre élevé relévera de ’espace
tridimensionnel.

Si le domaine de calcul méridien est toujours exprimé dans un repére fixe, la résolution
des perturbations circonférentielles se déroule quant a elle dans les repéres relatifs aux roues
aubées. En simulation tridimensionnelle stationnaire classique, le transfert d’information
d’un repére a 'autre est formalisé par la technique dite de plan de mélange. Ce dernier
constitue l'interface entre les roues, une moyenne circonférentielle y étant opérée afin de
transférer I’écoulement moyen d’un repére a ’autre. Dans le cas du méridien harmonique,
la communication apparait naturellement au travers du domaine méridien qui recouvre
I’entiéreté de la machine.

Température totale d’entrée  T° K] 288,15
Pression totale d’entrée p°  [Pa] | 101325
Angle d’entrée B |deg] 0
Pression statique de sortie  p  [Pa] | 113500
Vitesse de rotation Q  [rpm| | 6300

TABLE 8.2 — Conditions limites
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Les conditions limites relatives a cette application sont indiquées au tableau 8.2. Dans
le but de nous placer en conditions efficaces d’utilisation du méridien harmonique, nous
limiterons le nombre de modes de Fourier résolus a 25. Les résultats seront comparés a la
solution obtenue par un code tridimensionnel stationnaire, considérée comme solution de
référence. Nous présenterons a nouveau ces résultats selon deux visions, I'une moyenne et
I’autre d’ordre supérieur.

Pour débuter notre discussion, penchons-nous sur la reproduction des non-uniformités
circonférentielles, que nous visualisons au moyen de I’énergie cinétique des perturbations.
La figure 8.14 compare le champ obtenu par le méridien harmonique & celui de référence,
dans les cas de fluide visqueux et non-visqueux.

FIGURE 8.14 — Champs d’énergie cinétique moyenne des perturbations k en pourcentage
de D'énergie cinétique totale locale de I’écoulement issus (respectivement du haut vers le
bas) de simulations méridienne harmonique non-visqueuse (1), de référence non-visqueuse
(2), méridienne harmonique visqueuse (3) et de référence visqueuse (4).
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La confrontation des deux figures du haut, issues de la résolution des équations d’Eu-
ler 3, montre un accord entre le méridien harmonique et la référence, tant au niveau de la
localisation des zones de non-uniformité que de leur intensité. Dans un cas comme dans
I’autre, les perturbations proviennent du chargement des aubages, situé sur l'avant de
ceux-ci.

En ce qui concerne les simulations de fluides visqueux, précisons toutefois que le méri-
dien harmonique applique une condition de glissement aux parois virtuelles des aubages.
Seules les parois méridiennes, i.e. le carter et le moyeu, sont caractérisées par l'arrét du
fluide. Par conséquent, le flux principal présente une nature non-visqueuse, le mécanisme
de génération de tensions visqueuses étant absent dans cette région. C’est ce que montre
en effet la comparaison des résultats de simulation méridienne dans les cas visqueux et
non-visqueux.

De ce fait, le degré de non-uniformité reproductible est réduit. Il est possible d’esti-
mer cette diminution en comparant les résultats de la simulation de référence incluant ou
non la viscosité. Lorsque la condition d’arrét est imposée, les couches limites visqueuses
qui en découlent apportent un niveau de non-uniformité comparable a ce qu’engendre le
chargement des pales.

Néanmoins, la condition d’arrét imposée aux parois méridiennes permet d’altérer le
champ d’énergie cinétique des perturbations dans ces régions pour en reproduire assez
fidélement les caractéristiques locales. En particulier, le champ de non-uniformité associé
au jeu de bout de rotor est cohérent avec la simulation de référence. Aussi, les régions de
pied et de téte en fin de stator sont remarquables.

Afin d’observer les effets de la prise en compte des tensions circonférentielles sur I’écou-
lement méridien, la figure 8.15 compare le champ de Mach moyen résultant de simulations
harmoniques incluant ou non les termes de perturbation, et ce dans un environnement
visqueux ou non, & celui des simulations de référence.

Abordons les simulations d’Euler, soit les trois figures du haut. De maniére générale, le
champ méridien est assez bien reproduit, si I'on excepte une survitesse au moyeu du rotor
et un déficit en téte de ce dernier. Si & ’échelle globale, la prise en compte des tensions
circonférentielles est réduite, des modifications locales sont notables. Il s’agit notamment de
Ieffet d’adaptation de 1’écoulement en amont des roues et d'un rééquilibrage des vitesses
en pied et en téte. Les termes de perturbation permettent donc de se rapprocher de la
réalité, méme si leffet principal reste associé a la force exercée par les aubages sur le fluide,
laquelle est également déterminée par le méridien harmonique.

Poursuivons la discussion sur base des simulations de type Navier-Stokes, dont les
résultats sont exprimeés par les trois figures du bas. Si nous ne pouvons nous attendre a une
cohérence forte entre le méridien harmonique et la référence loin des parois, il est intéressant
d’approcher I'analyse de ces derniéres. Un niveau de Mach amoindri y est observé, surtout

3. Notons que ces simulations ne comprennent pas de jeu en bout de pale rotorique.
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FIGURE 8.15 — Champs de nombre de Mach moyen issus (respectivement du haut vers le
bas) de simulations méridienne harmonique non-visqueuse sans tension circonférentielle (1)

et avec (2), de référence non-visqueuse (3), méridienne harmonique visqueuse sans tension
circonférentielle (4) et avec (5) et de référence visqueuse (6).
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suite a ’altération engendrée par les tensions circonférentielles. En particulier, I’écoulement
au carter subit clairement 'effet du jeu de bout d’aube rotorique et 1'usage des tensions
circonférentielles semble y étre primordial pour obtenir une représentation réaliste.

Etant donné ’absence de certains mécanismes créateurs de non-uniformité dans le flux
principal en contexte de fluide visqueux au sein du méridien harmonique, nous préférons
terminer ’analyse sur base des simulations non-visqueuses, celles-ci étant totalement com-
parables. Dans ce cas, les performances prédites sont reprises au tableau 8.3. Elles prouvent
que méme si des différences locales sont observées entre les résultats des deux codes, les
caractéristiques d’entrée et de sortie sont identiques.

Référence 3D | Méridien harmonique
Débit [kg/s| 10,9 11,1
Rapport des pressions 1,172 1,174
Rapport des températures 1,046 1,044

TABLE 8.3 — Performances globales du compresseur CME2 en non-visqueux

Pour terminer I'observation des résultats sous 1’oeil méridien, la figure 8.16 présente les
champs de pression statique obtenus par le méridien avec et sans tensions circonférentielles
et par la simulation de référence.

N 1,135
21,100

1,065

a 1,030

I0,995

0,960

1,135
| |

= 1,100
— 1,065
1,030

0,995
I0,960
N 1,135
21,100

1,065
1,030

I0,995
0,960

FIGURE 8.16 — Champs de pression statique moyenne |bar| issus (respectivement du haut
vers le bas) de simulations méridienne harmonique non-visqueuse sans tensions circonfé-
rentielles (1) et avec (2) et de référence non-visqueuse (3)
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L’accord entre le méridien harmonique et la référence est assez bon. La distribution de
pression dans les directions axiale et radiale est bien reproduite. Comme précédemment,
la continuité de I’écoulement est préservée au passage du plan de mélange.

La comparaison des deux premiéres figures montre que I’apport des termes de pertur-
bations permet de reproduire I'effet potentiel en amont des roues et de rééquilibrer quelque
peu la distribution de pression entre le pied et la téte du rotor.

A ce sujet, une surestimation de la pression en téte de rotor apparait clairement a
I’approche du bord de fuite. L’origine de ce fait est la minceur de I'aubage dans cette
région. En effet, comme nous l'avons exposé en début de chapitre, une épaisseur faible
engendre une augmentation de l'influence entre I'extrados et l'intrados. Au dela d’une
certaine limite, un recouvrement entre les supports compacts des fonctions de distribution
survient. Dés cette valeur, chaque paroi doit non seulement imposer une force qui permet
de controler 1’écoulement externe mais qui doit aussi compenser celle de la paroi qui lui
fait face. De I’équilibre entre ces forces et I’écoulement externe nait une surpression dans
cette zone.

Pour un support compact dont la dimension e vaut 2,5% de I'extension azimutale du
passage inter-aubes, la valeur limite au-dela de laquelle s’établit un recouvrement corres-
pond a un facteur de blocage égal a 0,95. La figure 8.17 montre le facteur de blocage associé
aux roues et pointe cette valeur limite.
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FIGURE 8.17 — Facteur de blocage avec indication (en blanc) du lieu des points de blocage
valant 0,95
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La portion d’aube rotorique caractérisée par une valeur du blocage supérieure a celle
pour laquelle survient le recouvrement correspond assez bien a la zone de surestimation de
pression observée a la figure 8.16.

Cependant, si I’écoulement différe localement dans la zone aubée, il est fidele a la réalité
en dehors. Les performances globales sont donc bien établies, la qualité de prédiction dans
les passages inter-aubes est quant a elle soumise a la finesse de discrétisation harmonique
des pales.

Abordons & présent les résultats sous une vision d’ordre élevé afin d’examiner les capa-
cités d’information locale du méridien harmonique. La figure 8.18 présente, & mi-hauteur
d’aube, les champs de vitesse déterminés par le méridien harmonique et la simulation de
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référence. Notons qu’un telle visualisation est possible sur toute la hauteur de la veine,
I'information d’ordre supérieure étant calculée sur ’entiéreté du domaine.
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FIGURE 8.18 — Champs de vitesse [m/s|, & mi-hauteur de veine, obtenus par le méridien
harmonique (haut) et la simulation de référence (bas).

La structure générale de 1’écoulement est bien approchée. En particulier, les poches de
survitesse aux extrados des deux profils sont bien représentées. Comme observé sur le cas
du profil statorique seul, il subsiste une couche pariétale découlant de la présence dans
I’écoulement du champ de force représentant les parois virtuelles. Aussi, I’amincissement
des aubes a I'approche du bord de fuite reste une épreuve délicate.

La visualisation du plan de mélange est ici aisée et 'arrét des perturbations circonfé-
rentielles y est notable. En effet, le seul transfert d’information est réalisé par I’écoulement
méridien. Le corollaire est que des modélisations harmoniques indépendantes des roues sont
envisageables. Il serait en effet possible d’inclure des nombres différents de modes de Fou-
rier dans chaque repére. L’utilisation limite du méridien harmonique pourrait d’ailleurs
consister a ne calculer aucune perturbation dans l'une des deux roues, utilisant alors le
méridien pour fournir un environnement a la résolution d'une roue particuliére dont on
recherche les évolutions tant méridiennes que circonférentielles.

Pour suivre, la figure 8.19 dépeint, a mi-hauteur d’aube, les champs de pression statique
déterminés par le méridien harmonique et la simulation de référence.

Les caractéristiques dominantes telles que les poches de succion ou les points de stag-
nation sont bien approchées. Quant a ’examen de la portion arriére de I’aube rotorique, il
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FIGURE 8.19 — Champs de pression statique |bar|, & mi-hauteur de veine, obtenus par le
méridien harmonique (haut) et la simulation de référence (bas).

confirme 'origine de la surestimation de pression rencontrée a la figure 8.16. La proximité
des parois solides entraine un forgage inadéquat et une augmentation locale de pression
sous le support de la fonction de distribution, dans I’écoulement externe. Celui-ci ne se
transmet pas a 1’aval et explique pourquoi 1’écoulement y redevient cohérent.

Pour compléter cette vision d’ordre élevé, la figure 8.20 compare les vitesses aux parois
du rotor établies par le méridien harmonique & une distance € de ces derniéres et par la
simulation de référence a distance nulle.

Cette figure montre que les évolutions tant axiale que radiale sont cohérentes. Les
intensités sont approchées de maniére satisfaisante, rendant possible une analyse locale du
comportement de 1’écoulement. En effet, méme si le processus de distribution de la force
entraine un certain lissage des gradients aux abords de la paroi, 'image obtenue est assez
fidele a la réalité.
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FIGURE 8.20 — Champs de vitesse [m/s| a I'extrados (haut) et a 'intrados (bas) du rotor
établis par le méridien harmonique a une distance e de la paroi virtuelle (gauche) et par la

simulation de référence a la paroi solide (droite)

Enfin, nous terminons 'observation des résultats avec la figure 8.21 qui compare les
pressions statiques aux parois du rotor établies par le méridien harmonique a une distance

€ de ces derniéres et par la simulation de référence a distance nulle.

A nouveau, 'accord entre les deux simulations est bon, si ’on excepte la surestimation
de pression rencontrée principalement & 'intrados de ’aubage et dont 'origine est la faible

épaisseur de la pale, comme mentionné précédemment.
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FIGURE 8.21 — Champs de pression statique |bar| a 'extrados (haut) et a I'intrados (bas)

du rotor établis par le méridien harmonique a une distance € de la paroi virtuelle (gauche)
et par la simulation de référence a la paroi solide (droite)
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Toute la discussion effectuée dans ce chapitre montre que la reproduction de ’écoule-
ment autour de profils aérodynamiques est une tache complexe, en particulier dans un
environnement tridimensionnel tel qu'un étage de compresseur. Aussi, de ’absence de
condition d’arrét aux parois des aubages découle I'omission de mécanismes de création
de non-uniformité.

Cependant, par un code fondamentalement bidimensionnel, il est possible, & I'aide d’une
modélisation adaptée aux profils minces, d’accéder a des informations locales qui relévent de
I’ordre supérieur au méridien classique, potentielles dans ’entiéreté de la veine et visqueuses
aux abords des parois méridiennes.



Conclusions

Tout au long de cette contribution, nous avons analysé et développé la possibilité d’af-
franchir la simulation méridienne d’une part de I’empirisme qui lui est associé au travers de
I’'obtention autonome des termes d’ordre élevé, par I’extension au cas circonférentiel d’une
méthode de résolution harmonique.

Nous avons commencé par exposer les bienfaits d’une prise en compte des termes pro-
venant des différentes moyennes réalisées pour parvenir au modéle méridien. Suite a une
décomposition rigoureuse de celui-ci, des termes d’ordre élevé originaires de phénomeénes
supérieurs a un modéle bidimensionnel stationnaire viennent compléter le modéle clas-
sique, qui ne les considére pas. Ces composantes additionnelles améliorent la prédiction de
I’écoulement mais sont inaccessibles au méridien classique.

Afin de les obtenir, nous avons proposé d’étendre au cas circonférentiel une méthode
harmonique déterministe éprouvée. Celle-ci aborde un probléme en le décomposant en un
tronc moyen résolu de maniére non-linéaire et un ordre supérieur, ou élevé, linéarisé et
résolu par superposition modale. Son domaine d’application originel, ’obtention de per-
turbations instationnaires par un code tridimensionnel stationnaire, requiert assez peu de
modes de Fourier, environ cing. Nous avons montré que les perturbations circonférentielles
présentent un spectre fréquentiel du méme ordre de largeur hors des zones aubées. En re-
vanche, dans les passages inter-aubes, ce spectre s’élargit du fait des gradients importants
rencontrés aux parois des aubages. Nous avons cependant illustré qu’une reconstruction ap-
prochée des tensions circonférentielles offre déja une nette amélioration dans la description
de I’écoulement méridien.

Hormis cette divergence de besoin modal, il existe une différence fondamentale entre les
cas circonférentiel et instationnaire. Ce dernier est résoluble dans le domaine fréquentiel
parce que les conditions limites génératrices des non-uniformités temporelles sont expri-
mables dans un formalisme spectral. Dans le cas circonférentiel en revanche, les pertur-
bations spatiales proviennent des aubages, en particulier des conditions limites de non-
glissement, qui ne peuvent étre exprimées sous la forme d’une série de Fourier. Vu au-
trement, le recours aux séries spectrales est rendu impossible par la non-périodicité du
domaine de résolution ou encore sa discontinuité. Afin de pouvoir exprimer le générateur
de non-uniformités circonférentielles, i.e. ’aubage, dans un formalisme fréquentiel, il s’avére
nécessaire d’établir une nouvelle formulation de celui-ci. Elle est proposée par la méthode
de frontiére immergée, qui assimile un obstacle & un champ de force reproduisant un effet
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identique & des conditions limites classiques de non-glissement ou d’imperméabilité sur le

fluide.

Cette méthode satisfait les critéres fréquentiels tant par sa formulation en terme source
que par la continuité du champ de force qu’elle procure et qui permet une expression en série
de Fourier du terme établi. Parmi les différentes ramifications reprises sous 'appellation
de frontiére immergée, nous nous sommes dirigés vers la méthode continue de frontiére
virtuelle (ou feedback). Celle-ci présente une robustesse appréciable et une familiarité avec
les techniques de calcul du champ de force moyen en simulation méridienne classique. Si le
champ de force est suffisamment lisse pour présenter un contenu spectral réduit, il nécessite
pour cela d’étre réparti sur une portion non-négligeable du domaine, ne permettant ainsi
pas de recréer des couches limites fines et réduisant la représentation des parois virtuelles
a une condition de glissement.

Par I’association novatrice des méthodes de frontiére immergée et harmonique non-
linéaire au modeéle méridien, nous avons développé le modéle méridien harmonique. Sous
I’hypothése de petites perturbations, celui-ci établit un ensemble de systémes numériques
bidimensionnels donnant accés aux termes d’ordre élevé, les tensions circonférentielles et
le champ de force de 'obstacle immergé, ainsi qu’a I'image méridienne de 1’écoulement
enrichie et libre de '’emploi de toute corrélation.

L’ensemble du modeéle numérique est issu de I'assemblage flexible de trois techniques
séparables. En effet, le systéme méridien classique résolu par volumes-finis détermine 1’écou-
lement moyen. Celui-ci est enrichi par les tensions circonférentielles formées a partir des
perturbations établies par 1’étage harmonique du code et par le champ de force déterminé
par le module de frontiére immergée. Si la composante méridienne représente le tronc du
modeéle, tant les fonctionnalités harmonique que de frontiére immergée sont des greffons
qui ont pour seul objectif de nourrir I’écoulement moyen. Chacun d’eux peut étre modifié
ou remplacé sans altérer le reste du modéle.

Si I’écoulement moyen est 1’objectif principal, la résolution harmonique donne également
accés a une vision tridimensionnelle de 1’écoulement. Celle-ci conditionne la qualité des
tensions circonférentielles reconstruites et est dépendante d’une gestion soignée du champ
de force, créateur des non-uniformités. Un décalage de celui-ci vers l'intérieur de ’obstacle
permet notamment d’éviter le lissage des écoulements de parois et de saisir au mieux les
gradients dans cette région, mais déstabilise la résolution. Si ’écoulement recherché est
externe a l'obstacle, il existe une contrepartie interne, caractéristique de la méthode de
frontiére immergée et inévitable en contexte harmonique. Cet écoulement interne apparait
comme une limitation a I'hypothése des petites perturbations et dégrade la reproduction du
champ de pression. Néanmoins, le méridien harmonique fait preuve de stabilité et permet
d’accéder a des informations d’ordre élevé avec un nombre de modes, certes plus important
que dans le cas instationnaire, mais raisonnable. Aussi, si la seule condition de glissement
aux parois de l'obstacle est acceptable pour le méridien harmonique, nous avons montré
que le modéle permet la résolution d’écoulements de fluides visqueux.
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Pour fonctionner de maniére optimale dans un contexte harmonique, le méridien re-
quiert de 'obstacle autour duquel s’écoule le fluide une configuration adéquate, évitant
des rayons de courbure faibles ou des épaisseurs minces. Les profils aérodynamiques ne
satisfont pas ces critéres. Néanmoins, par une réponse pragmatique a un probléme concret,
une modélisation adaptée aux particularités rencontrées, il a été montré que le méridien
harmonique permet d’accéder a des informations d’ordre élevé, d’origine supérieure aux ca-
pacités intrinséques d’'un méridien classique, fondamentalement bidimensionnel. Il a ainsi
été possible d’évaluer I’écoulement dans un compresseur mono-étage, en soulignant une pré-
diction de phénoménes locaux. La capacité de résolution des équations de Navier-Stokes a
été éprouvée et offre notamment des informations locales aux parois méridiennes. Loin de
celles-ci cependant, les mécanismes restent principalement d’origine potentielle, par I’ab-
sence de condition d’arrét du fluide aux parois virtuelles des aubes. Il s’ensuit que des
phénomeénes a l'origine d’une part non-négligeable de non-uniformité telles que les couches
limites pariétales restent inacessibles. Néanmoins, les aspects d’origine potentielle des per-
turbations circonférentielles sont couverts et permettent d’enrichir la qualité de prédiction
de I’écoulement méridien tout comme la connaissance de la turbomachine.

La philosophie du méridien harmonique est élégante, disposant dans un méme ensemble
de méridiens classique et augmenté, avec la possibilité de passer de I'un a l'autre par
I'usage de la fonctionnalité d’ordre élevé ou des corrélations empiriques. Néanmoins, bien
qu’enrichi, le modéle reste méridien et ne peut donc accéder aux informations d’ordre
supérieur que par une modélisation supplémentaire comprenant quelques approximations
et inconvénients.

En effet, pour obtenir les tensions circonférentielles notamment, et leur effet moyen
sur I’écoulement méridien, il s’avére nécessaire de reproduire de maniére précise les phé-
nomeénes physiques générateurs de non-uniformité. La qualité des termes additionnels est
donc fortement dépendante de la discrétisation du probléme d’ordre supérieur, soit 1’écou-
lement tridimensionnel. Or, le contexte harmonique limite fortement la finesse de celle-ci.
Les conditions de périodicité et de continuité du domaine de calcul ainsi que la nécessité de
limiter le nombre de modes de Fourier pour des raisons de colit numérique ménent a une
représentation floue de la paroi solide et & un lissage des variations de 1’écoulement a ses
abords. De ce fait, certaines géométries, telles que les profils minces, deviennent difficiles a
résoudre et demandent une modélisation particuliére. De plus, il devient irréaliste de recréer
des couches limites visqueuses associées a des écoulements a haut Reynolds rencontrées en
turbomachines, écartant donc certains phénomeénes créateurs de non-uniformité. Ce méme
contexte harmonique impose une linéarisation des équations aux perturbations, laquelle
est une hypothése forte, trop forte sans doute, dans le cas circonférentiel, qui plus est lors-
qu'un écoulement interne prend place. Un controle de ce dernier pourrait étre envisagé par
I’ajout d’une force interne mais cette solution ne serait applicable qu’a des configurations
d’obstacles suffisamment épais.

Néanmoins, I’ensemble développé reste attractif. Il permet d’accéder a des informations
d’ordre élevé avec un code fondamentalement bidimensionnel. En outre, il ne nécessite pas
la création de maillage tridimensionnel complexe et ne requiert pas un traitement d’in-
formation conséquent en aval des simulations. De plus, I'implémentation reste générale et



178 CONCLUSIONS

flexible. Pour des configurations répondant aux critéres de fonctionnement optimal du mé-
ridien harmonique, les résultats obtenus sont bons, comme en atteste le cas de I’écoulement
autour d’un cylindre. Aussi, aprés une adaptation de la modélisation aux profils minces, la
résolution de cas plus élaborés tel un étage complet de compresseur est possible, permet-
tant d’obtenir des informations tridimensionnelles locales en plus de la solution méridienne
enrichie.

Le package ainsi développé consiste en une association novatrice de techniques indé-
pendantes qui a notamment permis de mettre en lumiére les interactions entre celles-ci.
Ces interactions ont été étudiées, critiquées et solutionnées lorsque cela était possible.

Il n’en demeure pas moins que le formalisme harmonique et la linéarisation associée
apportent un lot de contraintes. Si certaines peuvent étre gérées, les autres restent des
obstacles majeurs a une résolution fine. Nous proposons donc deux alternatives pour diriger
le méridien classique vers un enrichissement au travers de I'accés aux informations d’ordre
élevé. Elles correspondent & deux voies opposées, le choix de I'une ou de ’autre reposant sur
la prépondérance accordée par le développeur & I'un de ces deux critéres : I’affranchissement
total d’empirisme ou la rapidité de calcul.

Si affranchissement total d’empirisme est poursuivi, il convient de se diriger vers une
reconstruction précise des phénoménes physiques a ’origine des tensions circonférentielles
et autres termes additionnels. Cette voie méne donc & 1’élaboration d’une résolution tridi-
mensionnelle, par quelque méthode que ce soit. Nous en proposons trois.

La premiére est ['utilisation de la méthode “Non-linear Harmonic Balance” de Hall [60].
Elle poursuit avec 'usage de séries de Fourier mais ne nécessite pas une reformulation de
I’obstacle. Conservant une vision tridimensionnelle du probléme, elle peut gérer des condi-
tions limites solides classiques. De plus, elle ne nécessite pas de maillage tridimensionnel
complexe mais une extrusion du maillage méridien conforme a I’obstacle.

La deuxiéme possibilité serait de recourir a une méthode de collocation, analogue a la
précédente, mais utilisant des fonctions propres mieux adaptées au cas circonférentiel. Ce
pourrait étre des fonctions satisfaisant directement les conditions limites, des ondelettes
ou d’autres encore. Tout comme la proposition précédente, celle-ci ne permet plus un
découplage des domaines (r, x) et 6.

La troisiéme option consisterait a poursuivre 'usage de la méthode de frontiére immer-
gée, une méthode élégante par la simplicité du maillage de résolution. Il s’agirait d’une
technique permettant de satisfaire la précision requise aux abords de la paroi par des
écoulements a haut Reynolds.

Si la rapidité du code de calcul est privilégiée, il est souhaitable de rester & un niveau
de modélisation bidimensionnel. La relative simplicité des codes méridiens les rend rapides
et appréciés. Cependant, afin de continuer vers une diminution du besoin en empirisme,
il faut conserver le modéle méridien dérivé rigoureusement selon la cascade de moyennes,
avec les termes additionnels conséquents, sans corrélation générale. Il reste alors a identifier
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les moyens d’obtenir chacun des termes supérieurs aux capacités de simulation bidimen-
sionnelle. Nous proposons les réponses suivantes au probléme de modélisation séparée de
chaque terme.

La composante non-visqueuse du champ de force peut étre obtenue de différentes fa-
¢ons : par un code aube-a-aube rapide, par la méthode des panneaux ou encore par la
résolution d’une équation supplémentaire donnant accés a la répartition de pression sur le
profil [19].

La composante visqueuse pourrait résulter d’'un calcul de couche limite sur les parois
de I'aube ou de I'usage de fonctions de forme de tensions de cisaillement ou d’écoulement
a la paroi.

Pour ce qui est des tensions circonférentielles, deux options se présentent. La premiére
est de constituer une base de données de simulations tridimensionnelles pour en extraire les
caractéristiques principales et, de 1a, identifier un modéle paramétré. La deuxiéme serait de
les modéliser sur base de fonctions de forme d’écoulement dans la zone aubée, d’un modéle
de sillage pour 'aval et d’'un modéle potentiel & 'amont, recouvrant les grands phénomeénes
créateurs de non-uniformités azimutales.

Cette seconde voie reste approchée bien str mais de 'ordre d’erreur méridienne et
permettra d’enrichir le méridien en qualité de reproduction et en autonomie.
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Annexe A

Formulation des termes additionnels

La force des aubes, composante non-visqueuse, est calculée par extraction de la pression
s’exercant sur les aubes d’une roue en comportant un nombre N.

=

~ 1 [ 0871°

foo = Z% p%
n=0 o 4p
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La force des aubes, composante visqueuse, est calculée par extraction des tensions
visqueuses s’exercant sur les aubes d’une roue en comportant un nombre N.
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194 ANNEXE A. FORMULATION DES TERMES ADDITIONNELS

Les termes sources d’énergie sont calculés par extraction du flux de chaleur s’exercant
sur ’aube.

N-1 s
. 1 00 00 do
= ano 27b {—%a—x Tt

La composante non-visqueuse apparait dans une roue mobile de vitesse de rotation ).

ep = 0 frg



Annexe B

Le systéme méridien auxiliaire

Le systéme 3D pseudo-instationnaire aux perturbations circonférentielles est présenté
a lexpression (B.1), dans un repére cylindrique (r,0,z). Ces équations sont décrites en
fonction des grandeurs relatives, € étant la vitesse de rotation.

oU’  OFU'  0GU'  19HU'

N N N OF! N 0G! N 1 OH!
or ox or r 00

ox or r 00

+LU = +L,— (S —S,)+f (B.1)

E, Q and E sont les matrices jacobiennes axiale, radiale and azimutale. Elle ne dé-
pendent que de I’écoulement moyen. L est la matrice jacobienne moyenne des termes
sources cylindriques non-visqueux. S’ reprend les termes non-linéaires non-visqueux, S/
les termes non-linéaires visqueux. f’ est le vecteur de perturbation de la force obtenu par
méthode de frontiére immergée. F!, G/ H/ et L reprennent les termes visqueux linéaires.
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ANNEXE B. LE SYSTEME MERIDIEN AUXILIAIRE
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ANNEXE B. LE SYSTEME MERIDIEN AUXILIAIRE
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Annexe C

Le systéme méridien auxiliaire
harmonique

Le systéme 2D pseudo-instationnaire aux perturbations circonférentielles exprimé dans
I'espace fréquentiel est présenté a l'expression (C.1), dans les coordonnées méridiennes

(x,7).

ou’, OFU, 9GU, [iwn= =\, OF,, 0G,,  iw,
+ U, =24+ 24—

—H-+L H L/ ff =0
or + ox + or 7“_+ o or ” on Ty, T 1

(C.1)

Il peut étre scindé en deux sous-systémes, I'un pour la partie réelle U%, I'autre pour la
partie imaginaire U>.

U, =Ur U7 (C.2)
Partie réelle
JUR OFUR 9GUT w,~ o = OFR  OGR w,
n =%n ~-n_rHUS LUS‘%: v,n vn TS L% fﬂ‘%: 3
or * ox + or r n T Ln ox + or r vt Lpn+E0 =0 (C3)
Partie imaginaire
oUS OFUS 0GUS w, ~ -~ o OFY 0G}, w, N
n S S N HUR L LUS = ot R LS 43 = 0 (C)
or ox or r ox or ro v ’
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202 ANNEXE C. LE SYSTEME MERIDIEN AUXILIAIRE HARMONIQUE
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Annexe D

Expression des flux axisymétriques de
Roe

Les flux f (UL, Ug) sont obtenus par l'expression (D.1).

N | —

F (UL UR) = 5 [ U+ (U] = 5 3 bW, (D.1)

oul \; sont les valeurs propres de la matrice jacobienne de I’écoulement méridien, r; les
vecteurs propres a droite de la matrice jacobienne et W, 'intensité des ondes.

La matrice jacobienne est en fait la matrice jacobienne moyenne des états gauche et
droit. Les moyennes de Roe des grandeurs utiles sont reprises ci-dessous.

R N R L
R 2 oo R
R+1

p

~ ~ RtE 4 tF
po=Fpt I R
7o RV T BT
T R+1  R+1
- RVE4 VL \/i

— T T -~ — t
Ve R+1 ¢ 7
_ RVE4+VE ~ o -
Vo = TRyl Vo = Vang + Vin,
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206 ANNEXE D. EXPRESSION DES FLUX AXISYMETRIQUES DE ROE

Les valeurs propres de la matrice jacobienne moyenne sont les suivantes.

M=V, A=V, As =V, M=V, +a A=V, —a

Les vecteurs propres a droites r; sont formulés ci-dessous.

_ . _ ) . ) -
v, pn, 0
7"1: ‘/9 7”'2: 0 ’]“3: O
‘Z _ﬁnx 0
%(‘ZEZ‘F‘N/&‘F‘Z?‘F%) _ﬁ(vxnr—vrna:> | _,5‘79_
_ . - _ ) -
‘Zc+5nx XZC—Zinx
_P % _ P %
T Vo DT Ve
V. + an, V, —an,
| H+av, | | H-—av, |

Les intensités des ondes §W; sont reprises ci-dessous.

)
SWy = b6p — =
a
oWy = 6Vyn, — oVyon,
(5W3 - 5%
)
Wy = 2L 1 5Vin, + 6Vin,
pa
)
Wy = 2L _ §Vin, — 6V,
pa
avec
5p = ptt —p*
5% — ‘/;CR_‘/;L
5% — %R_‘/gL
5‘/;" — ‘/TR_‘/TL

op =p"—p"



Annexe E

Schéma de reconstruction MUSCL

Le schéma de reconstruction MUSCL (Monotonic Upstream Scheme for Conservation
Laws) développé par Van Leer [162] est détaillé ci-dessous, pour un maillage quelconque.

Az | 1+ £ — oL 1— &+ k2]
’LLZ.L+ = u; + _4E (uz — Ui—l) (—12_ < Az > + <Ui+1 — ul) (—2 - Ar (El)
2

I+5
Ax [ 1+ €4 g e hAm\ ]
R 2 Ax 2 Az
uly = - 5 | u1>< - >+<u+1 u)( o (5.2)
avec

Az,

1 T+ B}
w; :A%/x o u(x)dx

M _ 1 AZL‘Z + A$i+1 1 AZL‘Z -+ AJZZ‘_l
2 2 2
. AI‘H_%;AII_%
Az
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Annexe F

Interpolation dans le cadre du schéma
en diamant

Pour I’évaluation des gradients aux faces des volumes finis par I'utilisation du schéma
en diamant, il est nécessaire de connaitre les valeurs aux sommets de ces faces. La valeur ¢g
au point 0 est déterminée par interpolation linéaire entre les valeurs ¢; des 4 noeuds voisins,
par la formule (F.1).

4
E W;iq;
=1

0o = (F.1)

>

i=1

Les poids w; sont obtenues par I'expression (F.2) en fonction des distances d; entre le
point 0 et les noeuds voisins.

1
wi =+ A (20— 21) + Xy (30 — 90) (F-2)

)

avec les multiplicateurs lagrangiens donnés par les expressions suivantes.

IxyRy — [nyx

Ay =
]mr]yy - ]aczy
I, R, — I, R,
A, =
Liply, — 12,

209



210 ANNEXE F. INTERPOLATION DANS LE CADRE DU SCHEMA EN DIAMANT

avec

R, = Z(iﬂz —-To)

=1

R, = Z(yz — %)

=1

Ix:t - Z (xz - xO)Z

i=1

lyy = Z (yi — yo)z

i=1

Izy - Z (xz - ZE()) (yz - ?Jo)

=1



Annexe G

Calcul des tensions circonférentielles

Les tensions circonférentielles relatives au domaine externe a l'obstacle, que nous ap-
pelons tensions relatives au fluide (indice f), peuvent étre déduites des tensions circonfé-
rentielles relatives au domaine complet (externe et interne), que nous appellerons tensions
relatives au domaine immergé (indice 7).

Soit le domaine circonférentiel fluide Q = [6,, 0;] inclut dans le domaine circonférentiel

Q, = [0, 2].

La relation entre les moyennes sur chacun des domaines peut étre déduite.

_ N
- —/ ¢ df
27Tb Qf

_ %[/wg_/m_we]

— ¢ _N ¢ do (G.1)

b 27Tb Q-

-

ou b est le facteur de blocage et N de le nombre de d’aubes.

Dés lors, la cascade de relation suivantes peut étre établie.

pdor = 000 — H g (G.2)
— _ poY N
pT = o oo, p d (G-3)
Pl = POl + PO (G4)
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212 ANNEXE G. CALCUL DES TENSIONS CIRCONFERENTIELLES

L’intégrale du triple produit pgy sur le domaine €2; — Q) est effectuée dans le domaine
fréquentiel, en intégrant le produit des variables conservative et primitive (p¢)), cette
derniére étant obtenue par la relation linéaire (G.5).

=19+ M (G.5)

Soient les séries de Fourier (G.6) et (G.7).
po = ag+2 Z [a,, cos (wp0) — by, sin (w,0)] (G.6)
v o= co+2 Z [¢,, cos (wpf) — d, sin (wy,0)] (G.7)

L’intégrale peut étre calculée par la somme suivante.



/ " (06) v do

aoco (02 — 01)
261,0 Z
2(1,0 Z

&
=

f)m {5in (wynfs) — sin (wm61>}1

)
{cos (W) — cos (Wmel)}:|
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2 Z [Z—n {sin (wnfs) — sin (wnf) }}

20y 2 foos 00) — o (00}

42 Z e :92 ; 0, N sin (2wn92)4;nsin (2wnb1) | W = w,
42% g: Ao _Sm (Wn — Wm)(92 — S;r;()wn — wm) b | Wn, 7 Wy
A zn: zm: e _sm (wn + wm)<92 —_s:jr;()wn + wm) 61 £
A z”: zm: i [ — sin? (wnegz)w—: sin? (wnel)] W =

4zn: g: Uy,  cos (wm Wn)(92 __Czigwm wn) 01 } , Wn 7 Wi
1% b :-sm <wn922>w: sin W’l)] R

ot P i ]
4§:j§jbncm _COS (wn + w?(fil ngwn + wm) 01 ] Wy # W
42 Z bd [0, ; 01  sin (2wn92)4;nsin (2wn61): =,
4 Zn: Zm: bod, sin (w, — wm)(92 —_ S;i()‘*’” — Wm) 01 , Wn 7# Wi
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