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In the Chomsky’s hierarchy, the simplest models of computation
are finite automata accepting regular languages.
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100100, 1000, 1000100, 0000001, . . .



With this model in mind, what is a “simple” set of integers ?

DEFINITION

A set X ⊂ N is k-recognizable, if the set of base k expansions of
the elements of X is accepted by some finite automaton, i.e.,
repk(X) is a regular language.

Much “simpler” than a recursive set of integers for which there
is an algorithm that decides whether or not a given number
belongs to the set.



SOME EXAMPLES

A 2-RECOGNIZABLE SET

X = {n ∈ N | ∃i, j ≥ 0 : n = 2i + 2j} ∪ {1}

A B C D

0 0 0 0,1

1 1 1

X = {1,2,3,4,5,6,8,9,10,12, 16,17,18, 20, 24, . . .}
rep2(X) = {1,10,11,100,101,110,1000,1001, 1010, 1100, . . .}



SOME EXAMPLES

◮ The set of even integers is 2-recognizable.
◮ The Prouhet–Thue–Morse set is 2-recognizable,

X = {n ∈ N | s2(n) ≡ 0 mod 2}

1

1

0 0

X = {0,3,5,6,9,10,12,15,17, 18, . . .}
rep2(X) = {ε,11,101,110,1001,1010,1100, 1111,10001, 10010, . . .}

◮ The set of powers of 2 is 2-recognizable.



MORE EXAMPLES

Let X = {x0 < x1 < x2 < · · · } ⊆ N. Define

RX := lim sup
i→∞

xi+1

xi
and DX := lim sup

i→∞

(xi+1 − xi).

GAP THEOREM (COBHAM ’72)

Let k ≥ 2. If X ⊆ N is a k-recognizable infinite subset of N,
then either RX > 1 or DX < +∞.

A. Cobham, Uniform tag, Theory Comput. Syst. 6, (1972), 164–192.

COROLLARY

Let k, t ≥ 2 be integers.
The set {nt | n ≥ 0} is NOT k-recognizable.

S. Eilenberg, Automata, Languages, and Machines, 1974.



MORE EXAMPLES

M INSKY–PAPERT 1966

The set P of prime numbers is not k-recognizable.

A proof using the gap theorem :
Since n! + 2, . . . , n! + n are composite numbers, DP = +∞
Since pn ∈ (n ln n, n ln n + n ln ln n), RP = 1
E. Bach, J. Shallit, Algorithmic number theory, MIT Press

SCHÜTZENBERGER1968

No infinite subset of P can be recognized by a finite automaton.



BASE SENSITIVITY

Is this notion of recognizability base dependent ?

◮ Is the set of even integers 3-recognizable ? (exercice)
◮ Is the set of powers of 2 also 3-recognizable ?

2,11,22,121,1012, 2101,11202, 100111, 200222,1101221,

2210212,12121201, 102020102,211110211, 1122221122, 10022220021,

20122210112,111022121001,222122012002,1222021101011, . . .



BASE SENSITIVITY

Two integers k, ℓ ≥ 2 are multiplicatively independent
if km = ℓn ⇒ m = n = 0, i.e., if logk/ log ℓ is irrational.

COBHAM ’ S THEOREM (1969)

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is ultimately periodic,
i.e., X is a finite union of arithmetic progressions.

V. Bruyère, G. Hansel, C. Michaux, R. Villemaire, Logic and p-recognizable sets of integers, BBMS ’94.

F. Durand, M. Rigo, On Cobham’s theorem, to appear in Handbook of Automata.

TOOL (KRONECKER’ S THEOREM)

Let θ be an irational number.
The sequence ({nθ})n≥0 is dense in [0,1).



BASE SENSITIVITY

The easy part, e.g., conversion between base 2 and base 4,

00 0
01 1
10 2
11 3



Some consequences of Cobham’s theorem from 1969:

◮ k-recognizable sets are easy to describe but non-trivial,
◮ motivates characterizations of k-recognizability,
◮ motivates the study of “exotic” numeration systems,
◮ generalizations of Cobham’s result to various contexts:

multidimensional setting, logical framework, extension to
Pisot systems, substitutive systems, fractals and tilings,
simpler proofs, . . .

B. Adamczewski, J. Bell, G. Hansel, D. Perrin, F. Durand, V. Bruyère, F. Point, C. Michaux, R. Villemaire, A. Bès,
J. Honkala, S. Fabre, C. Reutenauer, A.L. Semenov, L. Waxweiler, M.-I. Cortez, . . .



LOGICAL CHARACTERIZATION

BÜCHI–BRUYÈRE THEOREM

A set X ⊂ N
d is k-recognizable IFF it is definable by a first order

formula in the extended Presburger arithmetic 〈N,+,Vk〉.

Vk(n) is the largest power of k dividing n ≥ 1, Vk(0) = 1.

ϕ1(x) ≡ V2(x) = x

ϕ2(x) ≡ (∃y)(V2(y) = y) ∧ (∃z)(V2(z) = z) ∧ x = y + z

ϕ3(x) ≡ (∃y)(x = y + y + y + y + 3)

RESTATEMENT OFCOBHAM ’ S THM.

Let k, ℓ ≥ 2 be two multiplicatively independent integers.
A set X ⊆ N is k-rec. AND ℓ-rec. IFF X is definable in 〈N,+〉.

Applications to decision problems and, in computer science, to
model-checking and formal verification.



NON-STANDARD NUMERATION SYSTEMS

DEFINTION

Consider an increasing sequence (Un)n≥0 of integers such that
◮ U0 = 1

◮ supUn+1/Un is bounded

Any integer n can be written as

n =

ℓ
∑

i=0

ci Ui, ci > 0.

We choose the greedy representation: repU(n) = cℓ · · · c0.
Usually, we ask that repU(N is a regular language.

A. Fraenkel, Systems of numeration, Amer. Math. Monthly, 1985

M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press 2002, Chap. by Ch. Frougny

Combinatorics, Automata and Number Theory, V. Berthé, M. Rigo (Eds.), Cambridge Univ. Press 2010, Chap. 2& 3



NON-STANDARD NUMERATION SYSTEMS

FIBONACCI (ZECKENDORF 1972)

. . . , 34, 21, 13, 8, 5, 3, 2, 1 = (Fn)n≥0 and repF(11) = 10100

but valF(10100) = valF(10011) = valF(1111) Un+2 = Un+1 + Un.

E. Zeckendorf, Bull. Soc. Roy. Sci. Liège 41, 179–182.

. . . ,610,377,233,144,89, 55,34,21, 13,8, 5, 3, 2,1

1 1 8 10000 15 100010
2 10 9 10001 16 100100
3 100 10 10010 17 100101
4 101 11 10100 18 101000
5 1000 12 10101 19 101001
6 1001 13 100000 20 101010
7 1010 14 100001 21 1000000



NON-STANDARD NUMERATION SYSTEMS

Can we extend Cobham’s theorem on recognizability into two
integer base systems to non-standard numeration systems ?

DEFINITION

A set X ⊂ N is U-recognizable, if the set of greedy expansions
of the elements of X is accepted by some finite automaton, i.e.,
repU(X) is a regular language.

If X ⊂ N is U-rec. and V-rec., U and V being “sufficiently
independent”, does it imply that X is ultimately periodic ?



AN INTERLUDE

EXERCISE FOR1ST YEAR STUDENTS(J.-P. ALLOUCHE’99)

Study the sign over the interval [0, π] of the function

Fn(x) = sin(x) sin(2x) sin(4x) · · · sin(2nx)

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1



AN INTERLUDE

EXERCISE FOR1ST YEAR STUDENTS(J.-P. ALLOUCHE’99)

Study the sign over the interval [0, π] of the function

Fn(x) = sin(x) sin(2x) sin(4x) · · · sin(2nx)

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1



AN INTERLUDE

EXERCISE FOR1ST YEAR STUDENTS(J.-P. ALLOUCHE’99)

Study the sign over the interval [0, π] of the function

Fn(x) = sin(x) sin(2x) sin(4x) · · · sin(2nx)

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1



AN INTERLUDE

EXERCISE FOR1ST YEAR STUDENTS(J.-P. ALLOUCHE’99)

Study the sign over the interval [0, π] of the function

Fn(x) = sin(x) sin(2x) sin(4x) · · · sin(2nx)

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1



AN INTERLUDE

n = 0 +
n = 1 + −
n = 2 + − − +
n = 3 + − − + − + + −

t = +−−+−++−−++−+−−+ · · ·
f : {+,−} → {+,−}∗ : + 7→ +−, − 7→ −+

A word w is an overlap if w = avava where a is a letter.

THEOREM (A. THUE 1912, M. MORSE1921)

The infinite word t is overlap-free.

M. Lothaire, Combinatorics on words, reprinted in 1997 by Cambridge University Press



MORPHIC WORDS

DEFINITION (ON AN EXAMPLE)

Let A = {a, b, c} and B = {0,1} be finite alphabets. Consider
the morphisms f : A∗ → A∗ and g : A∗ → B∗ given by

f :







a 7→ abc
b 7→ ca
c 7→ b

(prolongable) g :







a 7→ 0
b 7→ 1
c 7→ 0

(coding)

purely morphic

fω(a) = lim
n→∞

f n(a) = abccabbabccacaabccabbabcbabc · · ·

morphic g(fω(a)) = 0100011010000001000110101010· · ·

Special case of a uniform morphism f , like Thue–Morse



THEOREM (COBHAM 1972)

An infinite word x is morphic and generated by a k-uniform
morphism IFF x is k-automatic, i.e., ∀n ≥ 0, xn is generated by
an automaton reading repk(n).

f : A 7→ AB, B 7→ BC, C 7→ CD, D 7→ DD

fω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·

A B C D

0 0 0 0,1

1 1 1



{

+ 7→ +−
− 7→ −+

+−−+−++−−++−+−−+−++−+−−+ · · ·

+ −
1

1

0 0

COROLLARY

A set X ⊆ N is k-recognizable IFF its characteristic sequence is
k-automatic.



Non-uniform case also of interested, e.g., Fibonacci word:
a morphic sturmian/mechanical word 01001010010101001· · ·

5 10 15 20
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ρ: intercept, α: slope, T : x 7→ {x + α}, (Tn(ρ))n≥0,

α = ρ = 1/φ2 ≃ .382
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In fact, the Fibonacci word is purely morphic

f : 0 7→ 01, 1 7→ 0

The transition matrix associated with f is

Mf =

(

1 1
1 0

)

n f n(0) f n(1)
1 01 0
2 010 01
3 01001 010
4 01001010 01001

M2
f =

(

2 1
1 1

)

, M3
f =

(

3 2
2 1

)



Two formalisms: numeration systems / morphic words

THEOREM (A. M AES, M.R., 2002)

An infinite word is morphic IFF it is S-automatic for some
abstract numeration system S (whatever it is precisely)

We can try to reformulate Cobham’s theorem from 1969...

K IND OF A RESULT

Let x be an infinite word such that

g(fω(a)) = x = s(rω(b))

for “sufficiently independent” morphisms f and r.
Then x is ultimately periodic.



For the sakeof simplicity,
Assume f is a primitive morphism, i.e., the matrix Mf is
primitive.

From Perron’s theorem,
Mf has a unique dominating real eigenvalue αf > 1.

THEOREM (F. DURAND 1998)

Let x be an infinite word such that g(fω(a)) = x = s(rω(b)) for
primitive morphisms f and r such that αf and αr are
multiplicative independent real numbers.
Then x is ultimately periodic.

F. Durand, A Theorem of Cobham for non primitive substitutions, Acta Arithmetica (2002)
F. Durand, M. Rigo, Syndeticity and independent substitutions, Adv. in Applied Math. (2009)

F. Durand, Cobham’s theorem for substitutions, J. Eur. Math. Soc. (2011)



EXAMPLE

For the Fibonacci word, the matrix Mf is primitive having
(1+

√
5)/2 has Perron value.

Consequently, the Fibonacci word is not k-automatic.


