Phase retarders in liquid crystals polymers

Piron Pierre

12 March 2012
Goal of the thesis

- Development of phase retarders in liquid crystal polymers (LCP)

Liquid Crystal Polymers

- Liquid crystals connected to chain polymers
 ⇒ possesses birefringent properties
 ⇒ locally orientable
 ⇒ space variant retarders

New recording method

- Polarization holography
 ⇒ recording without mechanical action
- **Realization process in 2 steps**
 1. alignment layer with photo sensitive polymers:
 - exposed to a UV linearly polarized beam
 - ⇒ orient themselves according to the incident polarization
 2. layer of liquid crystals pre-polymer:
 - liquid crystals orient according the orientation of layer 1
 - ⇒ definition of optical axis orientation
 - exposed to a UV source to fix them
 - ⇒ stable orientation of optical axis
Superposition of differently polarized beams

- beams coming from the same source
 \[\Rightarrow \text{respect interference conditions} \]
- differently polarized beams
 \[\Rightarrow \text{polarization interference} \]
 \[\Rightarrow \text{no intensity variation} \]
 \[\Rightarrow \text{non uniformly polarized resulting beam} \]
- **Polarization analyzer**
 - recording: superposition of two circularly polarized beam with opposite handedness ⊗ + ⊗
 - wave plate with a constant phase shift
 - continuous and periodical rotation of its optical axes
 - measurement of the Stokes parameters
 - variation of the optical axis orientation in the x direction ⇒ transmitted beam non uniformly polarized
 - analyzer + linear polarizer ⇒ variation of the intensity variation function of the Stokes parameters
Numerical simulation

- computation of the transmitted intensity
- fit of the intensity by equation

\[I = \frac{S_0}{2} - \frac{S_1}{2} \cos\left(\frac{\phi}{2}\right)^2 - \frac{S_1}{2} \cos(4\theta) - \frac{S_2}{2} \sin\left(\frac{\phi}{2}\right)^2 \sin(4\theta) + \frac{S_3}{2} \sin(\phi) \sin(2\theta) \]

with \(\theta \) local orientation of the o.a \(\theta = \frac{\pi(x + c)}{d} \)

\(\phi \) phase shift of the wave plate

\(S_i \) Stokes parameters

- error on the numerical Stokes parameters < 1%
- Measurement process
 acquisition of 3 pictures
 - laser off
 - laser on, no retarder
 - laser on + retarder
 ⇒ normalized picture
 bright and dark areas
 ⇐ ≠ orientations of o.a
Numerical treatment

- nearly vertical areas
 \Rightarrow rotation of the picture angle \leftarrow Hough transform
- computation of a mean line inside the rectangle
Calibration process = measurement of incident beams with specific polarization state (↕, ↔, ⦿, ⊶ polarization) ⇒ period d
⇒ phase shift ϕ
⇒ orientation of optical axes in the first pixel c

Measurement = fit of the mean line by equation 1 ⇒ value of the Stokes parameters
Results for several linearly polarized beams with degree of polarization = 1
(orientation of $22.5^\circ, 67.5^\circ, 112.5^\circ, 157.5^\circ$)
⇒ error on the experimental Stokes parameters $\approx 10\%$
 ⇒ method not accurate enough
 ⇒ future possible ameliorations
 • more complex computational process
 ⇔ more equations in the process
 $S_0 > 0, \ S_0^2 \geq S_1^2 + S_2^2 + S_3^2, \ldots$
 • better imaging system
 ⇔ reduced aberrations
 • small changes in the realization process
 ⇔ modification of the period of the retarder
Phase mask coronagraph

- coronagraphy = eclipse simulation
 ⇒ reveal faint companions
- half wave plate with radial orientation of o.a
- at the center phase singularity
 ⇒ central light attenuation
- recording using a radially polarized beam
Recording system

- 4 beams differently polarized
 - A Left circular
 - B Horizontal
 - C Right circular
 - D Vertical
- **Characterization angle**
 - \(\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \) rotation 2 times to slow
 - \(\Rightarrow \) realize a half-wave plate for UV with this \(\theta \)
 - \(\Rightarrow \) creation of a locally radially polarized beam
 - \(\Rightarrow \) simulation to predict the coronagraphic effect
- Characterization intensity
 - $I_{\text{recording}}$ sufficient everywhere
 - region of $\frac{I_{\text{small}}}{I_{\text{large}}} > 0.75 \approx 150\mu m$ around the center
 (on a sample of 6700μm large)
 \Rightarrow test on elliptically recording beam to perform
 \Rightarrow determination of the threshold of ellipticity
Conclusion

- polarization analyzer
 numerically it works with an error < 1%
 practically it works with an error ≈ 10%
 ⇒ several upgrades to implement (equations, optics, period, ...)
- phase mask coronagraph
 4 beams superposition recording in two steps
 intensity everywhere but circular polarization at the center
 ⇒ practical tests with several recording with different ellipticity in the neighborhood of a center radially polarized
 ⇒ numerical tests to obtain coronograph characteristics
 ⇒ prototype realization
Questions
- **Realization**
 - layer 1 exposed to the overlap of 2 circularly polarized beams of opposite handedness: \(\odot + \odot \)
 - beam with a constant intensity and non-uniform polarization: serie of linear polarizations
 - continuous variation of the optical axes orientation