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Chapter 1

Introduction

1.1 Integer programming

What is Integer Programming? Integer programming is a field of ap-
plied mathematics that studies optimization problems in which the decision
variables must take integer values. There are many applications in which the
indivisibility of some variables is inherent to the problem. For example,

• In the facility location problem, one has to decide on a certain number
of facilities to open to serve some clients. This number of facilities must
be integer.

• In the cutting stock problem, we look for the best way to cut patterns in
a roll of material in order to minimize the quantity of wasted material.

• In a similar vein, in the bin packing problem, one wants to minimize the
number of bins needed to carry a certain number of indivisible objects.

Problems with on/off or yes/no decisions also belong to the domain of appli-
cations of integer programming. We have for example,

• The traveling salesman problem, i.e. finding the smallest tour to visit a
given number of cities.

• The network design problem in which we have to decide on arcs to open
in a network to allow a certain flow to pass through the network but
minimizing the cost of opening the arcs at the same time.

• Integer programming also appears in airplane or train scheduling for ex-
ample.

11



12 CHAPTER 1. INTRODUCTION

Hardness of Integer Programming However solving optimization prob-
lems with integer variables turns out to be a difficult task. For most of the
problems described above, it is very difficult to find an algorithm that can be
guaranteed to find an optimal solution in a reasonable amount of time. In fact,
related to the work of Cook [12] and the complexity theory, it has been shown
that integer programming in general belongs to a class of problems for which
no one has ever found an efficient algorithm working on all instances. It is
strongly believed that it is impossible to find an algorithm that solves all the
instances of integer programming efficiently (i.e. in what is called polynomial
time).

Main ideas to handle integer programs The last paragraph indicated
the difficulty of solving integer programs and in particular the fact that finding
one good general algorithm is probably impossible. However integer programs
do occur in practice and we need to find ways to tackle them. In today’s
algorithms, we find three basic ingredients that we now discuss.

Relaxation. We assume that integer problems are hard to solve. It is there-
fore natural to start by trying to solve easier variants of the problem. The
easier variant is called a relaxation. From the solution of the relaxation, one
can deduce some interesting conclusions for the solution of the initial problem.

Example. This is a common situation in physics for example. When a real
problem is too hard to handle, one tries to rely on an easier model to obtain
information about the original problem: the perfect gas law comes from as-
sumptions made on the gas that simplify the model and make it computable.
On the other hand, we know that the assumptions are too strong and the
perfect gas model only gives an idea of how a real gas behaves.

The most common relaxation used in integer programming is the linear relax-
ation, i.e. solving a continuous problem where the integrality requirements on
the variables are dropped. Indeed in this thesis, we only look at linear integer
problems. In this case, if we relax the integrality requirements, we obtain a
linear program for which “efficient” algorithms exist (like the simplex algorithm
which has a good running time in practice, or interior point methods which are
guaranteed to run in polynomial time). The fact that the new problem is close
enough to the original but computable is of course very important. However
it is not the only relaxation used in integer programming. Indeed if all the
variables of an equality constrained integer program can take any integer value
(not restricted to any interval in Z), the integer problem can be solved in poly-
nomial time. Therefore another interesting relaxation is to keep the integrality
but drop the bounds on the variables, such as nonnegativity constraints which
often occur in practice. We can do this for all the variables or just a fraction
of them.

Enumeration. Assuming that the number of possible values of the integer
variables is finite, which is almost always the case in practice, we could imag-
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ine enumerating all possible cases to find the best feasible one. However the
number of cases to test is typically so huge that a pure enumeration approach
is hopeless. But since integer problems are hard to solve, a good idea is to
decompose the problem into different subproblems of smaller sizes: “divide and
conquer”. The most natural way to do it is to fix the value of some variable
and consider all the possible subproblems arising with each possible value of
the variable. By using the cheap bound information provided by solving a re-
laxation of each subproblem, it is possible to reduce the number of total cases
to study. This is called “intelligent enumeration”.

Reformulation. A last major ingredient of today’s methods is reformulation.
In other words, if the problem is too hard, we can try to take a different
viewpoint. There are different ways to reformulate. A first way to reformulate
is to describe the problem differently: change the variables and the constraints.
A second way to reformulate is to add extra information to the problem even if
it may look redundant. Sometimes redundant information added to the original
may be of interest for a relaxation. For example adding properly chosen linear
inequalities to a problem provides the same set of feasible integer points but
changes the linear relaxation. A third way to reformulate is to express the
problem with other unknowns, or simply add new variables to a formulation.

Example. The concept of reformulation appears in mathematics in other cases.
We can represent a point of the euclidian plane either with traditional cartesian
coordinates (x, y) or with polar coordinates (r, θ). For some problems, the
choice of coordinates can be crucial to reduce the computational complexity.

The state of the art in integer programming The branch-and-cut al-
gorithm (see Section 1.2.5) has become the most standard algorithm to solve
integer programs. It is based on the three main ingredients as explained above:
using the bound information provided by the linear relaxation, performing in-
telligent enumeration (branch) using the bounds, and adding redundant linear
inequalities that make the linear relaxation tighter (cut). These redundant
linear inequalities are also called cutting planes or valid inequalities. This ap-
proach has turned out to be successful on many integer problems and it is used
in all the commercial integer programming systems. Nevertheless there still
exist some problems for which branch-and-cut does not work. We explain now
one such problem.

Suppose that a group of people decide to share between themselves the
objects contained in an attic of a house that they own together. There is a
fixed number of each type of object and each object has a fixed value. The
people want to perform the sharing in a fair way. However they have all put
different amounts of money into the house. Therefore they want to share the
objects in such a way that every one gets a total value and a number of objects
proportional to their investment in the house. Since the objects are indivisible,
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it is typically impossible to find a perfect solution. The problem is, therefore,
to find a partition of the objects that minimizes the unfairness. This is an
integer problem which is hard for the standard methods and we explain briefly
why.

The branch-and-cut method relies on the power of enumeration and linear
relaxation. In a typical problem, if you fix a large proportion of the variables,
the linear relaxation gives you a good idea on how good a solution obtained
from the fixing can be. You can sometimes avoid exploring a partial solution
further because the linear relaxation tells you that the variables fixed lead to
bad solutions. In the case of the sharing of the contents the attic, the situation
is different. Suppose that you have fixed the value of 90% of the variables.
In most of the cases, you will always manage to complete a perfect sharing by
allowing splitting of the remaining objects. In other words, as soon as you allow
fractions of some objects, the problem becomes too easy. Therefore the value
given by the linear relaxation never gives any interesting information and the
standard methods reduce to complete enumeration. In practice, experiments
show that, even for small problems, standard systems spend hours without
finding an optimal solution. The fifth chapter of this thesis shows that a proper
reformulation of the problem using lattice methods (see Section 1.2.8) allows
us to solve this and related problems within seconds.

This small example shows the necessity of having good alternatives to the
branch-and-cut algorithm. This suggests that research in integer programming
has to focus on two ideas.

• Continuing to improve the performance of the branch-and-cut methods.
For example, it consists in providing interesting cutting planes, good
implementations or polyhedral studies that enhance the efficiency of the
method. A result can either be general or problem specific.

• Providing new ideas of algorithms that could be possible alternatives
to the branch-and-cut. In this category fall new ideas to solve integer
programs in general but also problem specific algorithms that work par-
ticularly well when the branch and cut fails.

The main content of the thesis These two lines of research are pursued in
this text. Trying to improve the standard branch-and-cut algorithm is the most
popular and active field in integer programming. It has led to many results
on polyhedral studies and cutting planes for specific algorithms. The quantity
of papers written on the subject is of course a rich reservoir of results. On
the other hand the basics used in all the papers are often the same and it is
sometimes difficult to see that many of these results are in fact particular cases
of each other. Therefore possible unifications of all the theories are always wel-
come. In the first part of the thesis, we explore ways to unify a series of results
on polyhedral studies. For example we touch the recurrent question of lifting,
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i.e. generate cutting planes from the knowledge of cutting planes for simpler
lower-dimensional sets. This procedure is often efficiently used in practice and
several papers were written on the subject. Here we try to give a presenta-
tion of the lifting procedure. Although our model is not completely general, it
allows us to handle most of the cases of the literature and hopefully simplify
the presentation of the procedure. We also treat another topic related to the
standard branch-and-cut algorithm and more particularly to the generation of
efficient cutting planes. A lot of research has been carried out on the so-called
single node flow set and its variants. There is again a large quantity of results
in the literature and we try to unify them in the sense that we show that they
all can be obtained using a procedure combining MIR and lifting, MIR being
the most basic way to generate cutting planes for mixed integer problems. The
goal of this is first to show that one procedure is sufficient to generate a lot of
the known valid inequalities and secondly that one can classify the inequalities
with respect to the way they can be generated.

As we indicated earlier, a second line of attack on integer programs is to
find alternatives to the standard systems. The problem of sharing the contents
of an attic showed that one may find problems for which the branch-and-cut
is inefficient. One could expect it from the complexity theory. It is in fact
assumed that it is impossible to find an algorithm which solves efficiently all
instances of integer programming. In the second part of the thesis, we explore
alternatives that have been recently proposed. Our first study is an attempt
to combine two non standard approaches to integer programming, namely the
group approach proposed by Gomory in 1969 [19] (see Section 1.2.7) and the
Integral Basis Method published in 2003 by Haus, Köppe and Weismantel [29]
(see Section 1.2.6). There is a natural way to combine the two methods and
we explore it in detail. This entails a study of “extended formulations” for the
group relaxation. Remark that an extended formulation can also be used on
its own as an added feature of a branch-and-cut system. The two viewpoints
are investigated. Finally we explore a solution method for the sharing problem
mentioned earlier (in a financial form) and for which the traditional approaches
are inefficient. In this case, the method is to reformulate the problem before
using a branch-and-cut algorithm. The problem being better posed, the refor-
mulation allows us to reduce considerably the computation time. However the
computation of the reformulation may be slow for large instances and we show
how to decompose the problem in order to speed up the method.

In the next section of the introduction, we come more formally to the math-
ematics of integer programming. The complete section is dedicated to a survey
of all the methods to which we refer later in the text. We present several
algorithms to solve general integer programs or mixed integer programs (or
both). The first five subsections introduce the basics of integer programming
and the most classical methods used today to solve integer programs. The
reader used to the integer programming formalism and standard approaches
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can skip this part without losing important information. The last three sub-
sections introduce the non standard approaches explored in the thesis, namely
an introduction to two primal methods, the group approach as it was intro-
duced by Gomory in 1969 [19] and an introduction to lattices and the way to
use them to reformulate integer programs. These three subsections refer to
topics that are less known in the integer programming world.

After this long presentation of methods, the last section of this introduction
outlines more formally the content and the main results of this text. For each
topic, we also present a review of the existing literature.

1.2 Basic algorithms

In this section, we review the basic algorithms used to solve integer and mixed-
integer programs. For ease of presentation, we explain all the methods on the
same simple example.

Problem 1.1 (The hiker problem) A hiker prepares an excursion and won-
ders what to take in his knapsack. Besides the food, he can fill the bag with
two types of drinks that he likes: water and soda. One bottle of water costs 0.5
euros while a can of soda costs 0.9 euros. His budget is 3.5 euros. The space
left in his bag is 4.5 l and one can suppose that a bottle of water occupies 1.1
l whereas a can needs 0.4 l. Furthermore he slightly prefers soda and therefore
assumes that a can of soda is worth 3 “points” while a bottle of water is worth
2 “points”. What does he have to buy if he wants to maximize the number of
points he takes in his bag, while satisfying the constraints?

A first step in trying to solve such a problem is to present a formulation. A
common way of formulating is to define variables which represent the important
unknown quantities of the problem and constraints which are mathematical
relations that must be satisfied by the variables to give feasible solutions of
the problem. We also define an objective. It is a mathematical function of
the variables that has to be maximized or minimized. These three definitions
provide a mathematical program that formulates the problem.

In the case of Problem 1.1, we define two variables. The number of bottles
of water to be bought is represented by x1 while the number of cans of soda is
represented by x2. There are two major constraints in the problem, the budget
constraint, and the space constraint. The budget constraint can be formulated
by the following condition on the variables

0.5x1 + 0.9x2 ≤ 3.5.

Similarly the space constraint can be formulated by

1.1x1 + 0.4x2 ≤ 4.5.
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Finally we can model the objective by maximizing the “points” given for buying,
or

max 2x1 + 3x2.

To complete the model, it is important to state the domain of definition of the
variables. In the case of Problem 1.1, both x1 and x2 have to take nonnegative
integer values. The standard way of writing a mathematical program is to
collect the information in a tableau of the form

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35
11x1 + 4x2 ≤ 45
x1, x2 ∈ Z+.

(1.1)

When all the constraints and the objective are linear, the mathematical pro-
gram is a linear program. When all the variables of a linear program must take
integer values, we talk about an integer program. When some variables have to
be integer and some others have to be real, we handle a mixed-integer program.

It is important to notice here that the formulation presented above is one
formulation of the problem and there exist several possible mathematical pro-
grams that model the same problem. The formulation used is crucial in the
choice of the method to solve the problem and in the speed of the different
methods. This will become clear from the presentation of the algorithms. We
now review some methods that have been proposed to solve integer programs
of the type (1.1).

1.2.1 Enumeration

The simplest possible method is the enumeration of the finite set of all possible
feasible solutions. Then among them determine the solution that maximizes
(or minimizes) the objective.

In the case of Problem 1.1, one can derive bounds on the variables from the
linear constraints. For example, the space and the nonnegativity constraints
imply that 0 ≤ x1 ≤ 4. The budget and nonnegativity constraints imply that
0 ≤ x2 ≤ 3. This means that we have to check 5×4 = 20 possible pairs of values
and determine the feasible pair that maximizes the objective. For such a small
problem, it is of course pretty fast to check all possibilities. However as soon
as the number of variables in the problem becomes too large, it is practically
intractable to achieve such an enumeration as the following example shows.

Suppose we want to check every possible vector of size n, where every
component can take two possible values: 0 or 1. This means that we have
to check 2n vectors. We first suppose that, for every vector, the verification
is done in constant time, independently of n. On the other hand, we suppose
that this check is done on two computers. Computer 1 would be rather fast
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today and would check one billion (109) vectors per second. Computer 2, which
would be a super computer of the future, is a million times faster and is able to
verify 1015 vectors per second. Table 1.1 shows the time taken by each machine
to do the complete check for given n. In this table, we see that a size for which

n Computer 1 Computer 2
10 0 sec 0 sec
20 0 sec 0 sec
30 1 sec 0 sec
40 18 min 0 sec
50 13 days 1 sec
60 36 years 19 min
70 37000 y. 13 days
80 38 million 38 years

years

Table 1.1: Time for enumerating 2n vectors by supercomputers

the computers can do the complete check in reasonable time is n = 40 for
Computer 1 and n = 60 for Computer 2. It means that by taking a computer
one million times faster, we are able to solve a problem only 1.5 times larger.
Moreover, as soon as the problem gets bigger, the number of cases to explore
explodes. It becomes impossible to use the algorithm. This suggests that this
brutal approach has its limits and cannot be considered as an alternative as
soon as the problem has a decent size. In the following, we present other
algorithms that try to improve on this very primitive method. Although none
of them have a non exponential bound on the computation time, they all tend
to have a limit of computability that is larger and thus more suitable to real
life problems. And before presenting the algorithms, we give some geometric
intuition on integer programs.

1.2.2 Geometric approach

It is very useful to “visualize” the set of feasible solutions of an integer program.
It allows one to see where the optimal solution is located. Unfortunately, it
is only possible to see two dimensional problems completely. It is therefore
hopeless to have a geometric algorithm for arbitrarily large integer programs.
Nevertheless it is very interesting to have a geometric insight to what happens
in an integer program.

Problem 1.1 is represented in Figure 1.1. In the 2D-space, linear constraints
are represented by half-spaces. All the nonnegative integer points that satisfy
the two constraints are represented in grey in the picture. The non-feasible
integer points are represented in black. The direction depicted on the top right
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Figure 1.1: Geometric representation of Problem 1.1

corner indicates the direction of the objective function. In this picture, it is
pretty easy to see that the feasible point that maximizes the objective function
corresponds to x1 = 3, x2 = 2.

This geometric intuition cannot really be called an algorithm. Nevertheless
it provides all the ingredients needed to present the algebraic methods. From
the particular case of Figure 1.1, some important general observations can be
made. It can be first seen that the set of linear constraints involved in an
integer program define a polyhedron of the continuous space. A polyhedron is
a convex set of the real space and can be defined in two different ways.

Definition 1.1 A set P ⊆ R
n is a polyhedron if there exist A ∈ R

m×n and
b ∈ R

m such that P = {x ∈ R
n : Ax ≤ b}.

The following proposition gives an equivalent way of defining polyhedra.

Proposition 1.1 A set P ⊆ R
n is a polyhedron if and only if there exist

vectors p1, . . . , pr ∈ R
n ( extreme points) and t1, . . . , ts ∈ R

n ( extreme rays)
such that

P = {x ∈ R
n : x =

r
∑

i=1

λipi +

s
∑

j=1

µjtj ,

r
∑

i=1

λi = 1, λi, µj ≥ 0}.

Figure 1.2 shows the polyhedron P defined by the linear constraints of the
formulation (1.1) of Problem 1.1. The extreme points (or vertices) of the poly-
hedron are represented by circles. This polyhedron has no extreme rays.

There are several different polyhedra that include exactly the same sets of
feasible integer points. Of particular interest is the polyhedron defined as the



20 CHAPTER 1. INTRODUCTION

x

2
x

1

P

Figure 1.2: The polyhedron P defined by the constraints of Problem 1.1

convex hull of all feasible integer points. In that case, all the vertices of the
polyhedron are integral.

Definition 1.2 Let S ⊆ R
n with S 6= ∅, the convex hull of S is defined as

conv(S) = {x ∈ R
n : there exist k ∈ Z+, y1, . . . , yk ∈ S and λ1, . . . , λk ≥ 0

such that x =
∑k

i=1 λiyi,
∑k

i=1 λi = 1 }.

In the case of Problem 1.1, this particular polyhedron is defined by

P = {x1, x2 ∈ R+ :
x2 ≤ 3
x1 + 2x2 ≤ 7
2x1 + x2 ≤ 8 },

and is represented in Figure 1.3. This means that another valid model for
Problem 1.1, although it does not really correspond to any “physical” meaning
is

max 2x1 + 3x2

s.t. x2 ≤ 3
x1 + 2x2 ≤ 7

2x1 + x2 ≤ 8
x1, x2 ∈ Z+.

(1.2)

1.2.3 Cutting plane algorithms

The geometry of integer programs provides an intuition on how to solve such
problems. Unfortunately no geometric argument can be used as soon as the
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Figure 1.3: The convex hull P̄ of all integer solutions of Problem 1.1

dimension of the problem is too large. As said before, it is also inefficient to
consider a complete enumeration. Since the problem is then too difficult to
solve, we try to solve an easier variant of it. If we can tackle the easier variant,
one can hope to extract some interesting information for the harder problem.
The easier version of a problem is called a relaxation.

Definition 1.3 Let X ∈ R
n. A set Y ∈ R

n is called a relaxation of X if
X ⊆ Y .

Solving a relaxation of a problem provides a bound on the optimal value of the
original problem.

Proposition 1.2 Let x∗ = arg max {cx : x ∈ X} and let Y be a relaxation of
X. If y∗ = arg max {cy : y ∈ Y }, then cy∗ ≥ cx∗.

Suppose now that we are trying to solve an integer program max cx, Ax ≤
b, x ∈ Z

n
+, a very natural relaxation is the set of all real points that satisfy the

constraints Ax ≤ b, i.e. ignoring the integrality constraints.

Definition 1.4 Let X = {x ∈ Z
n
+ : Ax ≤ b}. The linear relaxation of X is

LP (X) = {x ∈ R
n
+ : Ax ≤ b}.

It is well known that optimizing over a polyhedron in the real space can be
done efficiently with either the simplex algorithm (which has a good running
time in practice) or an interior point method (which is guaranteed to run in
polynomial time). The bound given by solving the linear relaxation is called
the LP bound. Now if we suppose that some optimal solution y of the linear



22 CHAPTER 1. INTRODUCTION

relaxation is integral, it implies that y is also an optimal solution of the integer
program.

If we go back to Problem 1.1 and solve the linear relaxation of (1.1), we
obtain (x1, x2) = (265/79, 160/79) which gives a bound of 12.79 on the value
of the optimal integer solution. Unfortunately this does not provide an integer
solution of the original problem. However if we solve the formulation (1.2), the
solution produced is (x1, x2) = (3, 2), i.e. the optimal integral solution of value
12. The fact is that among the optimal solutions of a linear program, there
is always one located in an extreme point of the corresponding polyhedron.
Therefore, when one solves the linear relaxation of an integer program, the
optimal integral solution is always found when the polyhedron that models the
integer program is the convex hull of all integer feasible points. The principle
of the cutting plane method is to iteratively find some new valid constraints
for the integer program to be as close as possible to the convex hull until some
integer solution to the linear relaxation is found. Let us now define the concept
of valid inequality.

Definition 1.5 Let X ⊆ Z
n. An inequality ax ≤ a0 is valid for X if ax ≤ a0

holds for all x ∈ X.

A crucial question in the cutting plane algorithm is the separation.

Definition 1.6 Let X ⊆ Z
n and y ∈ R

n such that y 6∈ conv(X). The separa-
tion problem is to find a valid inequality ax ≤ a0 for X that is not satisfied by
y, i.e. such that ay > a0.

Let us assume that we solve the mixed-integer program

max c1x + c2y
s.t. A1x + A2y = b

x ∈ R
n1
+ , y ∈ Z

n2
+ .

(1.3)

We define a set of active constraints C with respect to the problem. We also
introduce the notation X = {x ∈ R

n1
+ , y ∈ Z

n2
+ : A1x + A2y = b}. The cutting

plane algorithm can be outlined in the following way.

Cutting Plane Algorithm

(1) Initialize C1 = {(x, y) ∈ R
n1
+ × R

n2
+ : A1x + A2y = b} and i = 1.

(2) Find (x∗
i , y

∗
i ) = arg max {c1x + c2y : (x, y) ∈ Ci}.

(3) If (x∗
i , y

∗
i ) ∈ R

n1
+ × Z

n2
+ then

(4) Return (x∗
i , y

∗
i ) as optimal solution

(5) Else
(6) Find a valid inequality for X , ai

1x + ai
2y ≤ ai

0, separating (x∗
i , y

∗
i )

from conv(X).
(7) Set Ci+1 := Ci ∩ {(x, y) ∈ R

n1
+ × R

n2
+ : ai

1x + ai
2y ≤ ai

0}.
(8) Set i := i + 1 and go to step 2.
(9) End
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Step 2 can be carried out efficiently by a linear programming algorithm like
the simplex algorithm. Step 6 is crucial and non trivial. A lot of research has
been done on finding good valid inequalities and on the separation problem.
Finally an important remark is that, as such, there is no guarantee that the
cutting plane algorithm terminates. We now see an example of the algorithm
on Problem 1.1 presented above.

Example: We try to solve the integer problem

max {2x1 + 3x2 : x ∈ X},

where X = {x1, x2 ∈ Z+ : 5x1 + 9x2 ≤ 35, 11x1 + 4x2 ≤ 45}.

Iteration 1
We start by considering the linear relaxation

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35 (1.4)

11x1 + 4x2 ≤ 45 (1.5)

x1, x2 ∈ R+.

Computing the optimal solution of this linear relaxation yields x1∗ = (265
79 , 160

79 ).
This point is shown by a circle in Figure 1.4. It is not integral. Therefore we

x

2
x

1

x1*

Figure 1.4: Optimal solution of the linear relaxation after Iteration 1

need to find some valid inequality separating x1∗ from the convex hull of all
integer solutions, i.e. conv(X). For the time being, we do not know any
systematic way to generate a separating valid inequality. But let us do it
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in the following way. If we consider some linear combination of the two main
inequalities, we still obtain a valid inequality. For example 2(1.4) + (1.5) yields

21x1 + 22x2 ≤ 115.

This can be rewritten as

x1 +
22

21
x2 ≤

115

21
. (1.6)

As the variables are nonnegative, a weaker form of (1.6) is

x1 + x2 ≤
115

21
(1.7)

because the coefficient of x2 is smaller. But now since the left hand side of
(1.7) is always integer for all the feasible integral points, we can round down
the right hand side and write that

x1 + x2 ≤ 5 (1.8)

is valid for all points in X . We can check that x1∗ violates the inequality.
Indeed 265

79 + 160
79 = 5.38. Hence we add inequality (1.8) to the model and

iterate. Figure 1.5 shows the inequality (1.6) obtained by linear combination.
On the same figure, it can also be seen that the inequality (1.8) does include

x

2
x

1

Figure 1.5: An inequality and a separating inequality obtained from it

the same nonnegative integer points as (1.6).
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Iteration 2
We now solve

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35 (1.9)

11x1 + 4x2 ≤ 45 (1.10)

x1 + x2 ≤ 5 (1.11)

x1, x2 ∈ R+.

The optimal solution is x2∗ = (10
4 , 10

4 ) and is represented by a circle in Figure
1.6. If we now add the valid inequality x2 ≤ 4 to (1.9), divide by 5 and round

x

2
x

1

x1*

x2*

Figure 1.6: The optimal solution of the linear relaxation at Iteration 2

down, with the same argument as before, we obtain a valid inequality

x1 + 2x2 ≤ 7, (1.12)

separating (10
4 , 10

4 ) from conv(X). Hence, we add (1.12) to the model.

Iteration 3
By reoptimizing, we obtain the solution x3∗ = (3, 2) as indicated in Figure
1.7. This point is integral and therefore is the optimal solution of the integer
program.

As the example shows, the crucial step in the algorithm is to find valid
inequalities, also called cutting planes. This has been a very active field of
research in the past decades. There is some kind of library of different valid
inequalities depending on the problem structure. There are also some gen-
eral ways of generating valid inequalities. In this introduction, we present the
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Figure 1.7: The optimal solution of the linear relaxation at Iteration 3

two most general types of valid inequalities: the Chvátal-Gomory cut and the
mixed-integer rounding.

Proposition 1.3 (Chvátal-Gomory cut) Let

X = {y ∈ Z
n
+ :

n
∑

i=1

aiyi ≤ b}, (1.13)

where ai, b ∈ R, for all i = 1, . . . , n. The inequality

n
∑

i=1

baicyi ≤ bbc (1.14)

is valid for X.

Proof: If we round down the left hand side of (1.13), the inequality remains
valid beacause it is weaker. Then we can round down the right hand side of
(1.13) because the left hand side always takes integer values for points in X .�

The mixed-integer rounding procedure is some sort of generalization of Propo-
sition 1.3 to the case of a mixed-integer program. Nevertheless it is also appli-
cable to pure integer programs and even provides at least as strong inequalities.
To introduce it, we first need to define an important function.

Definition 1.7 Let 0 < α ≤ 1. The MIR function Fα : R → R can be defined
as

Fα(x) = bxc +
(F(x) − α)+

1 − α
,

where F(x) denotes the fractional part of x, and (a)+ = max {0, a}.
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Figure 1.8: The MIR function F3/5(x)

The MIR function F3/5 is represented in Figure 1.8. The slope of F at the
origin defines another useful function.

Definition 1.8 For 0 < α ≤ 1, the function F̄α : R → R is defined by

F̄α(x) =

{

0 if x ≥ 0
x

1−α if x < 0.

We can now introduce the Mixed Integer Rounding (MIR).

Proposition 1.4 (MIR) Let

X = {x ∈ R
n1
+ , y ∈ Z

n2
+ :

n1
∑

i=1

cixi +

n2
∑

j=1

ajyj ≤ b},

where aj , b, ci ∈ R for all i and j. The inequality

n1
∑

i=1

F̄α(ci)xi +

n2
∑

j=1

Fα(aj)yj ≤ Fα(b),

where α = F(b), is valid for X.

There are, of course, other ways to generate valid inequalities and some of them
are often problem dependent. Some methods are explored in the next chapters
of the thesis.
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Propositions 1.3 and 1.4 provide ways to automatically generate valid in-
equalities for a problem. Nevertheless it is very important to know whether the
generated inequalities are weak, strong or maybe as strong as possible. The
ideal situation is when the polyhedron that we obtain has integer vertices. In
that case, we know that solving a linear program over the polyhedron always
yields an integer solution which is therefore optimal with respect to the corre-
sponding integer problem. This is the case, for example, for the formulation
(1.2) of Problem 1.1. In this situation, we say that the valid inequalities (1.2)
are facet-defining for the convex hull of all integer integer solutions of the hiker
problem. We make this more precise in the next definitions.

Definition 1.9 Consider a1, . . . , ap ∈ R
n. We say that a1, . . . , ap are affinely

independent if

(a2 − a1, a3 − a1, . . . , ap − a1)

are linearly independent.

An important concept related to polyhedra is the dimension.

Definition 1.10 Let P ⊆ R
n be a polyhedron. P is of dimension p if there

exist p + 1 affinely independent vectors ai ∈ P .

Definition 1.11 Let dx ≤ d0 be a valid inequality for P , polyhedron of di-
mension p, dx ≤ d0 is a facet-defining inequality for P if there exist p affinely
independent vectors ai ∈ P such that dai = d0 for all 1 ≤ i ≤ p.

Geometrically a facet-defining inequality of a polyhedron P is a hyperplane
of dimension one less than that of P and which defines the border of P . For
example it corresponds to a face of a dice.

This discussion allows us to say that when we look for valid inequalities for
an integer set X , the best we can do is to produce facet-defining inequalities
for conv(X). Remark that we sometimes use the term facet instead of the long
“facet-defining inequality”.

1.2.4 Branch-and-Bound

The drawback of the cutting plane algorithm is that there is no guarantee
of termination. We have also seen before that pure enumeration is hopeless.
The method presented here is an improvement of the enumeration technique.
Instead of simply looking at every combination, we enumerate the variables one
at a time. Each time we fix some variable(s), we try to compute some bound
on the objective after the fixing. This allows us to know that some cases are
not worth being explored further and to reduce the enumeration tree. We first
explain the method on Problem 1.1 before giving a theoretical presentation of
the method.
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Example: We again solve the integer problem max {2x1 + 3x2 : x ∈ X}, with
X = {x1, x2 ∈ Z+ : 5x1 + 9x2 ≤ 35, 11x1 + 4x2 ≤ 45}.

Iteration 1: As in a cutting plane method, we start by considering the linear
relaxation of the original formulation. That is what is called the top node. As
before, we obtain the solution x1∗ = (265

79 , 160
79 ) with an objective value of 12.79.

The idea of the branch-and-bound is to enumerate different cases but, for each
case, to compute a bound on the optimal value in order to draw some conclu-
sions on the different new cases to explore. This bound is usually obtained by
the computation of a linear relaxation. Going back to the example, since we
are looking for an integral solution, 265

79 is not an acceptable value. Therefore it
is true to say that either x1 ≥ d 265

79 e = 4 or x1 ≤ 3. The enumeration tree here
splits into two branches: a first case is x1 ≥ 4 and the second case is x1 ≤ 3.

Iteration 2 We study the first branch x1 ≥ 4. The first step is to compute a
bound on the objective function in this branch. To do this, we compute the
value of the linear relaxation

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35

11x1 + 4x2 ≤ 45

x1 ≥ 4

x1, x2 ∈ R+.

The optimal solution is x2∗ = (4, 1
4 ) with a value of 8.75. This can be seen in

x

2
x

1

x1*

x2*

3*x

Iteration 3 Iteration 2

Figure 1.9: Iteration 1,2,3 of the branch-and-bound algorithm

Figure 1.9. Suppose now that a heuristic produced the simple feasible integer
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solution x̂ = (0, 3) with a value of 9. The conclusion is that no better solution
than x̂ can be found in the branch x1 ≥ 4. Therefore we say that we prune
the branch by bound. In other words we do not explore further this case since
we know that all potential integer solutions have a value smaller than 8.75 and
therefore smaller than 9. Hence we stop this branch and go to the case x1 ≤ 3.

Iteration 3 We study now the case x1 ≤ 3. Again it is important to obtain an
upper bound on the value of the solutions in the branch. Therefore we solve

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35

11x1 + 4x2 ≤ 45

x1 ≤ 3

x1, x2 ∈ R+.

As we can see in Figure 1.9, the optimal solution is x3∗ = (3, 20
9 ) with an

objective value of 12.67. This is still above 9 but not integral. New branches
need to be explored. As x2 is fractional, we enumerate two cases for x2 namely
x2 ≥ 3 or x2 ≤ 2. Let us first study the case x2 ≤ 2.

Iteration 4 We study thus the case x1 ≤ 3 and x2 ≤ 2. Figure 1.10 shows the
case of Iteration 4. We solve the linear relaxation

max 2x1 + 3x2

s.t. 5x1 + 9x2 ≤ 35

11x1 + 4x2 ≤ 45

x1 ≤ 3

x2 ≤ 2

x1, x2 ∈ R+.

The optimal solution is x4∗ = (3, 2) with a value of 12. It is integral, larger
than 9, and gives thus a new lower bound on the value of the optimal integral
solution. It is not needed to explore the branch further since no better other
integral solution can be found. We say that we prune this branch by optimality.
A node has still to be explored.

Iteration 5 We study the case x1 ≤ 3 and x2 ≥ 3. Figure 1.10 shows the set
studied. The linear relaxation yields x5∗ = (8

5 , 3) with a value of 12.2. x5∗
1 is

fractional and therefore we explore two more cases: x1 ≤ 1 or x1 ≥ 2.

Iteration 6 For the case 2 ≤ x1 ≤ 3, x2 ≥ 3, it appears that the linear relaxation
is infeasible. It is clear that the search in the node must be stopped. We say
that we prune the node by infeasibility.

Iteration 7 The case x1 ≤ 1 and x2 ≥ 3 gives the solution x7∗ = (1, 3) with a
value of 11. This node is prunded both by bound and by optimality.
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Figure 1.10: Iteration 4,5 of the branch-and-bound algorithm

Now all the nodes have been completely explored. We can deduce that the
best solution is x4∗ = (3, 2), i.e. the best integral solution found during the
computation. We show a picture of the branch-and-bound tree in Figure 1.11.

x1 > 4

x2 < 2

OPTIMALITY

BOUND

LP: 12IP: 12

OPTIMALITYINFEASIBILITY

1 LP: 12.89

2LP: 8.75 3

x1 < 3

LP: 12.67

4 5

x2 > 3

LP: 12.2

6 7

x1 > 2 x1 < 1

LP: 11IP: 11

Figure 1.11: The branch-and-bound tree

Based on this example we are now able to come up with an algorithm. For
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this purpose, we need to define some sets. The set of all active nodes is denoted
by N . Each node i has a certain number of constraints attached to it, denoted
by C(i). We present the algorithm for a maximization problem in Table 1.2. In

(1) Initialize N = {1}, C(1) = X, UB = +∞, LB = −∞, n = 1
(2) While N 6= ∅ do
(3) Choose i ∈ N
(4) Solve the LP relaxation LP (i) = max {cx : x ∈ C(i)} with sol. x∗(i).
(5) If LP (i) < LB or C(i) = ∅, then
(6) N = N \ {i} (Prune by bound or infeasibility)
(7) Else
(8) If x∗(i) ∈ Z

n
+ then

(9) LB = max {LB, LP (i)}
(10) N = N \ {i} (Prune by optimality)
(11) Else
(12) Chose some variable x∗

k(i)
(13) Create two branches C(n + 1) = C(i) ∩ {xk ≤ bx∗

k(i)c}
(14) and C(n + 2) = C(i) ∩ {xk ≥ dx∗

k(i)e}
(15) Set n = n + 2, and N = N \ {i}
(16) End
(17) End
(18) End
(19) Return LB as the optimal value.

Table 1.2: LP-based branch-and-bound algorithm

this algorithm, some steps can be replaced by more general ones. At each step
of the algorithm, some better lower bounds can be sought in order to cut off
some nodes more quickly. In Step (4), we compute an upper bound of the node
by a linear relaxation. Every other method that computes an upper bound is
of course suited to replace the computation of the linear relaxation. A crucial
step in the algorithm is the choice of node i in Step (3). The most common
strategies are of the type “depth-first-search” or “breadth-first-search”. The
depth-first-search allows one to find as quickly as possible a feasible solution in
order to have a lower bound. The breadth-first-search allows one to have good
upper bounds to know how far from the optimum are the current solutions.
The choice in Step (3) is called the “node selection”. Finally the choice in Step
(12) is also of importance. We usually decide to branch on a fractional variable
in the LP solution. The branching can be done either on the most fractional
variable or on the closest to an integer. Some algorithms also “look ahead”
i.e. try to see which choice of variable produces the best bound before actually
chosing. This is called “strong branching”. In general, the choice in Step (12)
is called the “variable selection” or branching rule.



1.2. BASIC ALGORITHMS 33

1.2.5 Branch-and-Cut

The methods of the two last sections both use the linear relaxation to draw some
conclusions on the probable solution. It is possible to combine them. The idea
of a branch-and-cut algorithm is to use some cutting planes within the branch-
and-bound algorithm. This produces tighter bounds and LP solutions closer to
actual feasible integer solutions. The cutting phase can be carried out either at
the top node by generating globally valid inequalities or during the branching
phase. In that case, the cutting planes generated are only valid locally. The
branch-and-cut algorithm is implemented in most commercial systems that
solve integer and mixed-integer programs (IP and MIP). It has turned out to be
a quite successful approach on a series of a problem. Furthermore these systems
continue to improve with better cuts and better branching rules. However
there remain some problems for which they are pretty inefficient. For these
problems, one needs good formulations and sometimes even other algorithms.
As a conclusion, it is important to note here that the question of the quality
of a formulation remains particularly crucial.

1.2.6 Primal Methods

A very important notion in mathematical programming is that of primal-dual
pair of problems. The primal problem is typically the original maximization
(minimization resp.) problem that we want to solve. Its dual is a problem
with the property that all its feasible solutions have a value of the objective
greater (lower resp.) than or equal to the value of the objective of all the
feasible solutions of the original problem. A strong dual is a dual problem with
the property that its optimal solution takes the same value of the objective as
the optimal solution of the primal problem, if optimal solutions do exist. In
integer programming, we typically do not know beforehand an analytic form
of a strong dual problem. However the values of the relaxations of a problem
provide bounds and we refer to them as dual bounds. The algorithms based on
the linear relaxations are dual. It means that instead of solving the original
problem, we solve relaxations that provide bounds. We first focus on the bound
before searching for feasible solutions. Those feasible solutions are found once
the value of the dual has been made close enough to the value of the primal
problem. However a very natural way of solving problems is to come up with a
solution that we try to improve to another feasible solution. Once it becomes
impossible to improve again, we focus on proving the optimality of the solution.
We call that approach a primal algorithm. The advantage is that it guarantees
to keep a feasible solution throughout the computation, feasible solution that
could possibly be used in practice, even when the computation is not finished.

In this subsection, we present the Gomory-Young primal all-integer algo-
rithm and a recent primal algorithm proposed by Haus, Köppe and Weismantel
based on the Gomory-Young algorithm. We start by presenting the Gomory-
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Young algorithm on the example of Problem 1.1.

The principle of the algorithm is to adapt the simplex algorithm to the
integer case. As in the simplex algorithm, we start with a feasible solution and,
in this case, with an all-integer tableau representation. Concerning Problem
1.1, we need to introduce slack variables on each constraint, s1, s2 ∈ Z+. The
first feasible solution is thus x1 = (x1, x2, s1, s2) = (0, 0, 35, 45) and the tableau
representation is

max 2x1 + 3x2

s.t. 5x1 + 9x2 +s1 = 35

11x1 + 4x2 +s2 = 45 (1.15)

x1, x2, s1, s2 ∈ Z+.

The variable x1 has a positive reduced cost. It is thus interesting to try to
increase its value. By comparing the ratios 35

5 , 45
11 , we see that (1.15) is the

first constraint to become tight when the value of x1 increases. In a standard
simplex algorithm, we would pivot on (1.15) and obtain a value of 45

11 for x1.
In this algorithm, we want to prevent fractionality and to enforce x1 to be
integer. To do that, we divide (1.15) by the coefficient of x1 and generate a
Chvátal-Gomory cut

x1 + b
4

11
cx2 ≤ b

45

11
c,

i.e. x1 ≤ 4 or equivalently

x1 + s3 = 4, (1.16)

with s3 ∈ Z+. We add (1.16) to the model and make x1 basic in the constraint.
We obtain the new tableau

max 3x2 − 2s3 + 8

s.t. 9x2 +s1 − 5s3 = 15

4x2 +s2 − 11s3 = 1 (1.17)

x1 + s3 = 4

x1, x2, s1, s2, s3 ∈ Z+.

The new integer solution is x2 = (x1, x2, s1, s2) = (4, 0, 15, 1). The move made
in this first iteration is shown in Figure 1.12. The new inequality (1.16) deter-
mines this move. In the new tableau, x2 has still a positive reduced cost and
it is therefore interesting to try to augment it. The tighter constraint for x2

is (1.17). A pivot on this row would make x2 fractional (1
4 ). We prevent it

by generating a Chvátal-Gomory cut on equation (1.17) divided by 4, i.e. the
coefficient of x2. It gives

x2 − 3s3 + s4 = 0, (1.18)
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Figure 1.12: The first iteration of the Gomory-Young algorithm

where s4 ∈ Z+ represents a slack variable. We add again (1.18) to the model
and make x2 basic in the tableau to obtain

max 7s3 − s4 + 8

s.t. s1 + 22s3 − 9s4 = 15

s2 + s3 − 4s4 = 1

x1 + s3 = 4

x2 − 3s3 + s4 = 0

x1, x2,s1,s2, s3, s4 ∈ Z+.

In this case, no new point is obtained because one cannot find an integer point
on the way to the complete fractional pivot. This is always the case when the
right hand side of the row on which we pivot is smaller than the coefficient of the
variable that we want to augment. Therefore x2 = (x1, x2, s1, s2) = (4, 0, 15, 1).
This iteration is represented in Figure 1.13. Remark that the Chvátal-Gomory
cut (1.18) can be represented on the picture via its projection onto the (x1, x2)-
space. It suffices to substitute (1.16) in (1.18). The cut can thus be written
3x1 + x2 ≤ 12.

The next iteration does not provide any new augmentation as the Gomory
cut generated

s3 − s4 + s5 = 0,

with s5 ∈ Z+ being a slack variable, has 0 as right hand side. After this pivot,
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Figure 1.13: The second iteration of the Gomory-Young algorithm

the tableau is still not optimal. A new Gomory cut

s4 − 2s5 + s6 = 1 (1.19)

is generated. At this stage of the algorithm the simplex tableau is

max s5 − 4s6 + 12

s.t. s1 + 4s5 − 13s6 = 2 (1.20)

s2 − 7s5 + 3s6 = 4

x1 + s5 − s6 = 3

x2 − s5 + 2s6 = 2

s3 − s5 + s6 = 1

s4 − 2s5 + s6 = 1

x1, x2,s1,s2,s3,s4, s5, s6 ∈ Z+.

Note that here we have reached the optimal point but we do not have a certifi-
cate of optimality because s5 has still a positive reduced cost. The last iteration
produces this certificate. Indeed generating the cut on (1.20) yields

s5 − 4s6 + s7 = 0,

with s7 ∈ Z+. Making x5 basic in this constraint yields, for the objective
function,

0s6 − s7,

i.e. no variables have a positive reduced cost which means that the present
solution cannot be improved. The last iterations are presented in Figure 1.14.
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Figure 1.14: The move to the optimal solution by the Gomory-Young algorithm

Based on this example, we are now able to present the Gomory-Young algo-
rithm. It is shown in Table 1.3. We suppose that we are given a feasible integer
solution x0. It is always possible to find an all integer simplex tableau that
represents this solution, even if it is sometimes necessary to add some variables
to the representation in order to be able to represent x0. This is the starting
point of the algorithm. We also introduce the following notation: T is a sim-
plex tableau with a basic variable for each constraint, reduced costs for each
variable and nonnegative right hand sides for each constraint. We denote by
āij the value of the coefficient of variable j in row i, by c̄j the reduced cost of
variable j and by b̄i the right hand side of row i in the tableau T .

(1) Input: x0 feasible, T 0 all-integer simplex tableau representing x0, i = 1
(2) While T i−1 is not optimal do
(3) Choose a variable xk with c̄(xk) > 0

(4) Set t := arg min { b̄j

ājk
: for all rows j s.t. ājk > 0}

(5) Generate the Gomory cut Ci :
∑

j∈Nb ātj

ātk
cxj + si = b bt

ātk
c

(6) Add Ci to T i−1 and make a new tableau T i by making xk basic in Ci

(7) Set i := i + 1
(8) End
(9) Return the solution given by T i

Table 1.3: The Gomory-Young algorithm

This algorithm has some drawbacks. First it adds one new variable and
one new constraint at each iteration. At some point, the size of the tableau
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becomes very large. Another drawback is that it often needs to add a big
number of degenerate rows (i.e. with a 0 right hand side) before being able to
move to another feasible point. In other words, the algorithm is often stuck in
some feasible point for a big number of iterations. Finally the algorithm lacks
flexibility in the sense that imposing the complete integrality in the tableau
only allows us to add weak Gomory cuts which also explains that the algorithm
progresses slowly.

Recently Haus, Köppe and Weismantel have proposed an improvement that
keeps the primal character of the algorithm. The idea is to avoid adding weak
Gomory cuts and replace the step by the addition of new variables. As before
we present the algorithm on the case of Problem 1.1. The first iteration is the
same as in the Gomory-Young algorithm because in this case, an augmentation
has been found. We obtain thus after Iteration 1, the tableau

max 3x2 − 2s3 + 8

s.t. 9x2 +s1 − 5s3 = 15

4x2 +s2 − 11s3 = 1 (1.21)

x1 + s3 = 4

x1, x2, s1, s2, s3 ∈ Z+.

The variable x2 has a positive reduced cost and it is therefore interesting to
try to increase its value. However the tight constraint (1.21) is such that
the right hand side is smaller than the coefficient of x2. A normal Gomory-
Young iteration would add a degenerate row. It means that no move would
be performed. Instead, Haus, Köppe and Weismantel try to characterize the
primitive solutions of (1.21). As s2 ≥ 0, it implies that

4x2 − 11s3 ≤ 1. (1.22)

Some valid integer solutions of (1.22) are, for example,

(

x2

s3

)

=

(

1
1

)

,

(

3
1

)

,

(

9
5

)

,

(

0
2

)

, . . .

However if we consider the solutions
(

x2

s3

)

=

(

0
1

)

,

(

1
1

)

,

(

2
1

)

,

(

3
1

)

, (1.23)

all the integer solutions of (1.22) can be expressed as nonnegative integer com-
binations of the vectors (1.23). For example,

(

9
5

)

= 3

(

3
1

)

+ 2

(

0
1

)

.
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We say that the vectors (1.23) form an Hilbert basis of the solutions of (1.22).
The vectors (1.23) are also called irreducibles because they cannot be written
as a nonnegative integer combination of other solutions.

The idea of the algorithm is to associate new variables y0, y1, y2, y3 with
each vector of the Hilbert basis. For example a variable y2 is associated to
(

2
1

)

. It means that when y2 = 1, x2 is increased by 2 and s3 by 1. The

coefficients of the variable y2 in the simplex tableau are therefore equal to twice
the coefficients of x2 added to the coefficients of s3. The tableau (1.21) can
now be written

max − 2y0 + y1 + 4y2 + 7y3 + 8

s.t. s1 − 5y0 +4y1 +13y2 +22y3 = 15 (1.24)

s2 −11y0 −7y1 − 3y2 + y3 = 1

x1 + y0 + y1 + y2 + y3 = 4

x1,s1,s2, y0, y1, y2, y3 ∈ Z+,

with x2 = y1+2y2+3y3 and s3 = y0+y1+y2+y3. In this new formulation, three
variables have a positive reduced cost: y1, y2, y3. Among these three variables
y1 and y2 have coefficients less than or equal to the right hand side in every
row. We say that these variables are augmenting directions. In other words,
we are able to find a new better feasible solution by increasing the value of one
of these variables. Since y2 has the larger reduced cost, we try to augment this
variable. The tight constraint for y2 is (1.24) and the Gomory cut generated
from the division of (1.24) by the coefficient of y2 is

−y0 + y2 + y3 + s4 = 1,

where s4 ∈ Z+ represents the slack variable. We add this constraint to the
tableau and make y2 basic in order to give it a nonzero value. We now have

max + 2y0 + y1 +3y3 − 4s4 + 12

s.t. +s1 + 8y0 +4y1 +9y3 −13s4 = 2 (1.25)

+s2 −14y0 −7y1 +4y3 + 3s4 = 4

x1 + 2y0 + y1 − s4 = 3

− y0 +y2 + y3 + s4 = 1

x1, s1, s2, y0, y1, y2, y3, s4 ∈ Z+.

The solution represented by this tableau is (x1, y2, s1, s2) = (3, 1, 2, 4). As y2

represents 2x2 + s3, the solution can be expressed in terms of the original vari-
ables by (x1, x2, s1, s2, s3) = (3, 2, 2, 4, 1). Let us remark that we have reached
the optimal solution. However since there remain some variables with a posi-
tive reduced cost, the optimality of the solution is not yet proved. A geometric
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Figure 1.15: Directions computed via irreducible solutions

view of the iteration is represented in Figure 1.15. The four proposed directions
y0, y1, y2, y3 are the integer feasible directions that keep the constraint (1.22)
feasible. As we express the variables as nonnegative integer combinations of
these directions, in the linear relaxation the original variables must be included
in the cone determined by the directions. Therefore, in the space of original
variables, we intersect the polyhedron with the cone C indicated in Figure
1.16. This cone C is the set of nonnegative combinations of the directions
y0, y1, y2, y3. However we consider the problem in a higher dimension which

x

2
x

1
1x

C

Figure 1.16: In the original space, the polyhedron is intersected with a cone
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provides a richer structure that cannot be shown on a picture. For example
in this case, it allows us to move directly to another point even if it is not a
vertex in the original space.

Let us now go back to the tableau produced by Iteration 2. As said before
there remain variables with a positive reduced cost. Before going on with the
generation of new variables, an important step is to compactify the tableau,
i.e. to get rid of the variables that are useless for the formulation. How can we
know that a variable is useless? When, for example, the maximal value that it
can take in any real feasible solution is less or equal to 1. The maximal value
of y3 can be computed by considering the linear programming

max y3

s.t. +s1 + 8y0 +4y1 +9y3 −13s4 = 2

+s2 −14y0 −7y1 +4y3 + 3s4 = 4

x1 + 2y0 + y1 − s4 = 3

− y0 +y2 + y3 + s4 = 3

x1, s1, s2, y0, y1, y2, y3, s4 ∈ R+.

The value of this linear program is 1.3. It means that y3 ≤ 1 in every integer
solution of Problem 1.1. The same kind of computation can be done for the
other variables in order to get bounds as tight as possible. In the case where
one obtains a bound ui for a variable xi such that ui < 1, the variable xi can
be removed from the formulation. In our case, we find

y0 ≤ 4, y1 ≤ 3, y3 ≤ 1, s4 ≤ 5. (1.26)

We can now proceed to generate new variables. We consider the tight row
(1.25) for y3 and write

8y0 + 4y1 + 9y3 − 13s4 ≤ 2. (1.27)

Instead of adding a Gomory cut, we try to find the irreducible solutions of
(1.27). We obtain, corresponding to the variables (y0 y1 y3 s4)

T , the following
matrix of irreducibles









0 1 0 1 0 0 2 0 3 1 3 4 0 2 1 0 5 0
0 0 1 1 0 1 0 2 1 0 0 0 3 3 5 0 0 7
0 0 0 0 1 1 1 0 0 2 0 1 0 0 0 3 0 0
1 1 1 1 1 1 2 1 2 2 2 3 1 2 2 2 3 2









.

Using the bounds (1.26) computed earlier allows us to reduce the number of
irreducibles of (1.27). Indeed the vectors









1 1 0 5 0
0 5 0 0 7
2 0 3 0 0
2 2 2 3 2
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violate one of the bounds of the nonbasic variables. We can therefore get rid of
them in the new formulation. We then consider a new variable for each relevant
irreducible solution and reformulate the problem using these new variables. A
simple check of the 13 new variables shows that they all have a nonpositive
reduced cost. Therefore no variable has an interesting reduced cost, which
proves that the current feasible solution is optimal.

This example indicates all the major ingredients of the Integral Basis Method
that we now present in a general context. Suppose that we want to solve the
integer program max{cx : x ∈ X} where X = {x ∈ Z

n
+ : Ax = b}. As in

the case of the Gomory-Young algorithm, we start with a feasible integer solu-
tion x0 ∈ Z

n
+ and a simplex tableau T 0 that represents it. The Integral Basis

Method algorithm is outlined in Table 1.4. Some steps need to be explained

(1) Input: x0 feasible, T 0 all-integer simplex tableau representing x0, i = 1
(2) While T i−1 is not optimal do
(3) Choose a variable xk with c̄(xk) > 0

(4) Set t = arg min { b̄j

ājk
: for all rows j s.t.ājk > 0}

(5) If b̄t ≥ ātk then

(6) Generate the Gomory cut Ci :
∑

j∈Nb ātj

ātk
cxj + si = b bt

ātk
c

(7) Add Ci to T i−1 and make a new tableau T i by making xk basic in Ci

(8) Else
(9) Consider R = {x ∈ Z

n
+ :
∑

j∈S ātjxj ≤ b̄t}, with S ⊆ N

(10) Generate a Hilbert basis H for the relaxation R
(11) Create a variable yv for each v ∈ H
(12) Set T i := T i−1

(13) Add yv to T i for all v ∈ H , with coefficients Āv
(14) Remove the variables j ∈ S from T i

(15) Compute the bounds on the variables and compactify T i

(16) End
(17) Set i = i + 1
(18) End

Table 1.4: The Integral Basis Method

in more detail. Steps (1)-(7) are the same as the steps of the Gomory-Young
algorithm presented in Table 1.3 except from the fact that the Gomory cut gen-
erated in Step (6) is only added to the model when it leads to an improvement
to the feasible solution. The relaxation considered in Step (9) often comes from
considering one variable with a positive reduced cost along with variables with
negative coefficients in the row. For Step (10), we need to define more precisely
the concepts of Hilbert bases and of irreducible solutions.
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1.2.7 The group approach

We now present another type of method introduced in 1969 by Gomory [19]
and based on the modulo arithmetic and its structure of group. The method
in itself is not applicable to integer problems of decent size. Nevertheless it
is a tool that can be used within either a cutting plane approach or a primal
method as introduced in the previous subsections. The topic of Chapter 4 is
to show this possible combination of approaches.

As usual we start by solving Problem 1.1. For ease of presentation, we
suppose that we start in the first iteration with a formulation on which we
added the valid cut x1 +x2 ≤ 5. The first step is to solve the linear relaxation.
Therefore we find the optimal solution of

max 2x1 +3x2

s.t. 5x1 +9x2 +s1 = 35

11x1 +4x2 +s2 = 45

x1 + x2 +s3 = 5

x1, x2, s1, s2, s3 ∈ R+.

The optimal - fractional - tableau that we obtain at this stage is

max −1
4s1 − 3

4s3

s.t. x1 −1
4s1 + 9

4s3 = 10
4 (1.28)

x2 +1
4s1 − 5

4s3 = 10
4 (1.29)

7
4s1 +s2 − 79

4 s3 = 15
2 (1.30)

x1,x2, s1, s2, s3 ∈ Z+.

The idea of the group relaxation is to relax the nonnegativity constraint on the
basic variables x1, x2, s2 but to keep the integrality constraint. In this respect,
we can view, for example, (1.28) as

4x1 − s1 + 9s3 = 10 with x1 ∈ Z and s1, s3 ∈ Z+. (1.31)

All the solutions to (1.31) are also the solutions of

−s1 + 9s3 ≡ 10 mod 4,

that can be written as
3s1 + s3 ≡ 2 mod 4. (1.32)

Similarly (1.29) can be viewed as

s1 + 3s3 ≡ 2 mod 4. (1.33)

Remark here that, in the modulo arithmetic, (1.33) is equivalent to (1.32), being
(1.32) multiplied by 3 (mod 4). We can verify that (1.30) is also equivalent,
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when considering s2 ∈ Z, and in the modulo arithmetic to (1.28). Summarizing
we now see that considering x1, x2, s2 ∈ Z and s1, s3 ∈ Z+ requires to solve the
problem

max{−
1

4
s1 −

3

4
s3 : 3s1 + s3 ≡ 2 mod 4, s1, s3 ∈ Z+}. (1.34)

It can be easily proved that the optimal solution of (1.34) is s1 = 2, s3 = 0.
This corresponds, using (1.28),(1.29),(1.30) to the values

x1 = 3, x2 = 2, s2 = 4

for the basic variables. In this case, all the basic variables have a nonnegative
value which shows that we obtained the optimal solution. It is of course possible
that the solution of the group problem leads to negative values for the basic
variables. In that case, the optimal solution of the group problem provides an
upper bound on the optimal integer solution. It is then also possible to add, to
the problem, valid inequalities for the group problem. These inequalities are of
course also valid for the original problem. Gomory proposes a complete study
of the facets of the convex hull of the solutions of a group problem. He calls
this convex hull a corner polyhedron. In Figure 1.17, one can see the two non-
tight constraints determining the vertex (x1, x2, s2) = (10

4 , 10
4 , 15

2 ). The corner
polyhedron CP is determined by the convex hull of all the integer solutions
included in the cone described by these two constraints. It is represented
by bold lines on the figure. Remark that the negative points are also valid
since we relax the nonnegativity constraint on the basic variables. The name
“corner polyhedron” comes from the fact that it represents the facet description
around one vertex i.e. one corner of the polyhedron. One can also represent
the solutions of the group problem only in the space of the non-basic variables.
It is called by Gomory the t-space. Such a picture is presented in Figure 1.18.
The valid points are shown by circles and the corner polyhedron is represented
by straight lines. There is, of course, a one-to-one correspondence between each
circle of Figure 1.18 and the integer points of Figure 1.17.

In the complete study of the corner polyhedron, it appears that to obtain
the facets of a corner polyhedron related to a group mod d, it suffices to study
all the facets of the master polyhedron

x1 + 2x2 + · · · + (d − 1)xd−1 ≡ b mod d.

Gomory also showed that all the facets of corner polyhedra satisfy nice prop-
erties like subadditivity. We come back later in this thesis to these properties.

1.2.8 Lattices

To close this set of approaches to solve integer problems, we finally present
a useful reformulation of integer programs using lattice basis reduction. This
section cannot be considered as a complete method to solve integer programs
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Figure 1.18: The Corner Polyhedron represented in the (s1, s3)-space, also
called the t-space
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but it provides a way to reformulate equality constrained problems. One of
the previous methods has then to be used to actually solve the reformulation.
However it can be proved that in some cases, the reformulation is a lot easier
to solve than the original problem. Let us now define the basic tool of this
approach.

Definition 1.12 Let A ∈ Z
m×n. A lattice L(A) is the set of all integer com-

binations of the columns of A,

L(A) = {x ∈ Z
m : ∃y ∈ Z

n s.t. x = Ay}.

Several matrices define the same lattice. The relation between two matrices
spanning the same lattice is unimodular.

Proposition 1.5 Let A, B ∈ Z
m×n. The two following propositions are equiv-

alent

(i) L(A) = L(B)

(ii) There exists C ∈ Z
n×n unimodular, i.e. |det C| = 1, such that A = BC.

The lattice is a natural object in the context of integer programming. Indeed
if we look for x ∈ Z

n such that Ax = b, it can be equivalently expressed as
checking whether b is in the lattice spanned by the columns of A. This problem
is in fact slightly different from the problem we have seen up to now. In integer
programming, we look for x ∈ Z

n
+ such that Ax = b. Although it may look

really similar, the slight difference, namely the nonnegativity requirements on
x makes the problem much harder. In this context we cannot use the lattice
concept in its pure form. However we will see that we can take advantage of
the well posed relaxation Ax = b, with x ∈ Z

n.

Proposition 1.5 shows that for the same lattice, it is possible to find several
bases. It is quite intuitive that some bases are easier to handle than others.
This is also the case with continuous subspaces. Within the bases spanning
the same linear subspace, some are orthogonal which may be useful in some
aspects. In the integer case, it is not always possible to find orthogonal bases
of a lattice. However we can try to compute a basis with vectors as orthogonal
as possible. Remark also that in the continuous case, the length of the vectors
of a basis can always be chosen. Indeed if v ∈ R

n belongs to a basis, v
λ with

λ ∈ R\{0} can replace v spanning the same linear subspace. In the integer case,
no vector can be divided by a scalar different from 1 or -1 without changing the
lattice. Therefore the lengths of the vectors in a basis are crucial and in general
for practical matters, we always prefer to have vectors as short as possible. In
this text, we focus on one definition of a good integer basis which is called a
reduced basis in the Lovász sense [40]. The definition of Lovász leads to reduced
bases that have the right properties, namely short vectors nearly orthogonal.
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To define the notion of reduced bases of lattices, we first need to recall
the Gram-Schmidt procedure that generates an orthogonal basis of a linear
subspace.

Proposition 1.6 (Gram-Schmidt orthogonalization) Let (bj)j=1,...,p ⊂ R
n

be a basis of a linear subspace of R
n. We define recursively

b̂1 = b1

µkj =
〈bj , b̂k〉

〈b̂T
k , b̂k〉

for all 1 ≤ k < j ≤ p (1.35)

b̂j = bj −

j−1
∑

k=1

µkj b̂k for all j = 2, . . . , p, (1.36)

where 〈x, y〉 denotes the standard inner product of x and y. The set of vectors

(b̂j)j=1,...,p spans the same linear subspace as (bj)j=1,...,p and is orthogonal.

As we indicated earlier, this procedure cannot be applied in the integer case.
Indeed it may happen that some µkj defined by (1.35) are not integer which
implies that the operation (1.36) is not unimodular. Nevertheless the Gram-
Schmidt vectors are a model to aim for. Furthermore they are included in the
definition of a reduced basis.

Definition 1.13 A basis (bj)j=1,...,p of a lattice L of Z
n is reduced if

(i) |µjk| ≤
1

2
for all 1 ≤ j < k ≤ p (1.37)

(ii) ‖b̂j + µj−1,j b̂j−1‖
2 ≥

3

4
‖b̂j−1‖

2 for all j > 1, (1.38)

where µjk are the coefficients given by (1.35) and b̂j are the Gram-Schmidt
vectors given by (1.36).

We now explain the geometric meaning of these two conditions.

(i) The inequality (1.37) enforces the vectors of the basis to be nearly or-
thogonal and short. Remark that if |µjk| > 1

2 , we can replace bk by
bk − bµjkebj and this would not change the Gram-Schmidt vectors but

would make bk closer to orthogonality with b̂j i.e. with bj .

(ii) Remark that if the first Gram-Schmidt vectors of the basis are shorter,

then the first condition is stronger. Indeed µjk =
〈bk,b̂j〉

〈b̂T
j

,b̂j〉
. If ‖b̂j‖ is smaller

and we keep |µjk| ≤
1
2 , it is clear that bk will be smaller. Therefore, it is

always preferable to have shorter Gram-Schmidt vectors in the first ele-
ments of the basis. The second condition tests what is the influence on
the length of the Gram-Schmidt vectors when exchanging two vectors of
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the basis. The left-hand-side of (1.38) is the length of the new (j − 1)th

Gram-Schmidt vector if bj−1 and bj are exchanged in the basis. The right-
hand-side of (1.38) is the length of the current (j − 1)th Gram-Schmidt
vector. The second condition checks whether there is no substantial de-
crease in the length of the (j − 1)th Gram-Schmidt vector if we exchange
bj−1 and bj in the basis.

Remark that the coefficient 3
4 can be taken in ] 14 , 1[, the condition (1.38) being

stronger if the coefficient is larger. The best basis one could hope would be to
ask that

‖b̂j + µj−1,j b̂j−1‖
2 ≥ ‖b̂j−1‖

2 for all j > 1.

Unfortunately asking for such a condition would lead to a basis that is too hard
to compute. If we keep a coefficient in ] 14 , 1[, the reduced basis is computable
in polynomial time [40]. If we ask for a condition (1.38) with a coefficient of 1,
the algorithm to compute a reduced basis becomes exponential, and therefore
too time-consuming.

This discussion about the reduced bases allows us to present the reformula-
tion of integer programs that is based on lattice basis reduction. Recall that the
major ingredient of this method is to suppose that we have an algorithm that
given a lattice basis, computes a reduced basis of the same lattice in polynomial
time, i.e. a basis satisfying the two conditions of Definition 1.13.

Suppose that we want to find feasible solutions to

Ax = b
x ∈ Z

n
+,

(1.39)

with A ∈ Z
m×n and b ∈ Z

m. We now explain a method to reformulate (1.39)
using lattice basis reduction. We have explained that finding feasible solutions
to

Ax = b
x ∈ Z

n (1.40)

is polynomially solvable. The goal is to construct a basis of the integer null
space

Ax = 0
x ∈ Z

n,
(1.41)

and a particular solution of (1.40). Indeed any solution x of (1.40) can be
written in the form x = q +

∑

i λipi, with λi ∈ Z if q is a particular solution of
(1.40) and P is an integer basis of the null space (1.41), pi being its columns.
We make use of a lattice basis reduction to do this. The idea of the method of
Aardal, Hurkens and Lenstra [2] is to construct the lattice of integer points

(x1, . . . , xn, N1t, N2(Ax − bt)), (1.42)
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with N1, N2 large integers. This is a lattice generated by the columns of















1
. . .

1
N1

N2A −N2b















. (1.43)

A vector y of the form (1.42) with yn+1 = 0 and yn+2 = 0 is such that y1:n is
a homogeneous solution of (1.40), i.e. a solution of (1.41). A vector y of the
form (1.42) with yn+1 = N1 and yn+2 = 0 is such that y1:n is a solution of
(1.40). We reduce the basis (1.43). Since a reduced basis tends to have short
vectors, it can be shown that if N1 and N2 are sufficiently large, we obtain a
reduced basis of the form





P q ×
0 N1 ×
0 0 ×



 . (1.44)

In other words, reducing the basis yields a basis P of homogeneous solutions
and a vector q particular solution of (1.40). Furthermore by the reduced basis
properties, it can be shown that P and q are “short”. Given P and q, we are
now able to reformulate (1.39) as finding λ ∈ Z

n−m such that

0 ≤ q +

n−m
∑

i=1

λipi. (1.45)

In some cases, the formulation (1.45) is easier to solve with a traditional method
like branch-and-bound than the original formulation (1.39). We show an ex-
ample of this in Chapter 5 and discuss an improvement of the method on a
structured problem.

1.3 Outline of the thesis

We now come to an outline of the thesis. For each subject, we also review the
main references in the literature and present more formally what are the main
questions that are raised. First, let us mention that the four chapters of this
thesis are based on three papers. Chapters 2 and 3 are based on [45]. Chapter
4 presents the result of the report [37]. Finally Chapter 5 is based on the article
[44].

In Chapter 2 we discuss an important problem when trying to generate
strong valid inequalities for the branch-and-cut algorithm: the lifting problem.
The lifting procedure consists of the generation of valid inequalities for a set
X from valid inequalities that have been generated in a lower dimensional set
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Y ⊂ X . The basic model that we choose is the following. We study the set Z
defined as the set of solutions of

τ
∑

k=1

Akzk ≤ b + s

zk ∈ Zk, s ∈ R
m
+ , k = 1, . . . , τ.

The goal is to find valid inequalities for Z, but as Z may be too complicated,
it is useful to consider a restriction of Z by setting the variables of each block
Zk, k = 2, . . . , τ to a fixed value. This simplifies the model and it is therefore
easier to derive a valid inequality for

A1z1 ≤ b + s
z1 ∈ Z1, s ∈ R

m
+ .

(1.46)

Let π1z1 ≤ µ + νs be such a valid inequality. This inequality is not necessarily
valid for Z. The next step is thus to “lift” in the variables in the block Z2, then
Z3, . . . By lifting we mean finding coefficients π2 such that π1z1+π2z2 ≤ µ+νs
is valid for

A1z1 + A2z2 ≤ b + s

z1 ∈ Z1, z2 ∈ Z2, s ∈ R
m
+ .

Lifting was first used by Gomory [19] in the group framework. Lifting in itself
has been defined by Padberg [54] in the early 1970’s and extended in [63]. In
[64] the crucial link between lifting and superadditivity was raised. In [26] the
authors propose a method to lift more than one variable at a time, in the case
of mixed-integer programming. Lifting has also been used to derive interesting
theoretical results like [7, 46].

In Chapter 2, we review the basic concepts of lifting and try to give a
simplified presentation of the method. Two main simplifications are made
in the procedure to make it easy to present. First we assume that all the
variables fixed during the procedure are fixed to zero. This does not look
completely general but can be done up to a substitution of variables. The other
simplification is to keep the continuous variables s in the model (1.46). This
restricts the generality of the method. However it allows us to make convenient
assumptions of existence and continuity of the crucial lifting function. The
procedure described can still be applied without continuous variables s but in
that case, we no longer have the guarantee that the lifting can be carried out
in general. In the chapter, we also raise the question of lifting several blocks
of variables sequentially. The computation may be greatly simplified when the
lifting function is superadditive. We introduce the notion and show how it is
used in lifting. This last topic is related to the results of [64] and [26].
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In Chapter 3 we deal with an important set in mixed integer programming,
the single node flow set, denoted XN(n1, n2, b, a, u) =

∑

j∈N1
xj −

∑

j∈N2
xj − s ≤ b

xj ≤ ajyj for j ∈ N1 ∪ N2

yj ≤ uj for j ∈ N1 ∪ N2

x ∈ R
n1+n2
+ , y ∈ Z

n1+n2
+ , s ∈ R

1
+,

where n1 = |N1|, n2 = |N2|, n = n1 + n2, b ∈ Z
1, a ∈ R

n, u ∈ Z
n
+. This set

arises as a subproblem of a fixed charge network flow problem. Furthermore
it can be shown that a general mixed integer row can be represented in the
form XN . The first polyhedral results for XN were derived by Padberg, Van
Roy and Wolsey [55] in 1985 introducing the so called flow cover inequalities.
Van Roy and Wolsey [58] later showed how to use the flow cover inequali-
ties computationally. Stallaert [57] extended the flow cover inequalities to a
generalization obtained by reversing the arcs of the network and obtained the
reverse flow cover inequalities. Other results on related sets were obtained in
[5, 17, 48, 66, 33]. In [27], Gu, Nemhauser and Savelsbergh showed how to
lift pairs of variables (xk, yk) in flow cover inequalities. The viewpoint taken
in this text in Chapter 3 is closed to theirs, to that of Marchand and Wolsey
[46] and of Atamtürk [6]. The idea is to show how to derive valid inequalities
from a general procedure. This procedure works as follows. We first partition
the variables into different sets and for each set we either fix its variables to a
certain value or leave them in the model. We obtain then a simpler model to
which we apply the basic MIR inequality introduced in Proposition 1.4. Then
we lift the remaining variables and obtain a valid inequality for the set XN .
The family of valid inequalities that we obtain is closely related to the flow
cover inequalities. Our model seems, therefore, to show that an MIR operation
combined with lifting are the simplest operations needed to obtain strong valid
inequalities for the single node flow set. We apply our procedure to both the 0-1
and the general integer single node flow sets. We also show how superadditive
lifting can be used in order to strengthen the obtained inequalities.

From Chapter 4 on, we study non standard approaches to integer program-
ming. In Chapter 4, we show how the group relaxation approach can be used
in a reformulation framework. The group relaxation has been first introduced
by Gomory in 1969 [19]. Let us recall briefly the context, already presented in
Section 1.2.7. We start with an integer linear program

max cx
s.t. Ax = b

x ∈ Z
n
+.

(1.47)

Choosing a subset B of the variables as a basis, we can write (1.47) at a vertex
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of the corresponding linear relaxation polyhedron. It gives

max c̄NxN

s.t. xB + ĀNxN = b̄
x ∈ Z

n
+.

(1.48)

Now we relax the nonnegativity constraints on xB and this produces the relax-
ation for (1.47)

Y (b̄) = {ĀNxN ≡ b̄ (mod 1)|xN ∈ Z
|N |
+ }. (1.49)

The set (1.49) is called a group problem. From this relaxation, one can try to
derive valid inequalities for (1.47). In [19] and [20] for the mixed case, they
investigate the structure of the facets of conv(Y (b̄)). They provide a complete
implicit description of it. Although the theory of the group approach was
rather complete, little computational work was reported using this approach.
The main study was that of Gorry, Northup and Shapiro [24]. They developed a
branch-and-bound code in which the bounds were obtained by solving relaxed
group problems by dynamic programming. The major obstacle encountered
was the huge size of the groups arising in practice (108 to 1010) while the
group problems that could be solved were of the order of 104. The dynamic
programming methods for the group problems were reported by Wolsey in [61].
More recently theoretical and empirical results on the facets of corner polyhedra
were published [4, 16, 23].

The main objective of Chapter 4 is to study extended formulations of a
group relaxation instead of the description of the convex hull by linear in-
equalities. This opens up the possibility to use a group reformulation in any
framework using reformulations by variables. In the chapter we first study four
possible ways of reformulating the group relaxation. Three among the four
relaxations use the concept of irreducible solutions of a system of equations.
The difference between them lies in the possibility to aggregate variables in
the original problem in order to reduce the number of new variables in the
reformulation. A fourth way to reformulate is presented in which the path
representation of the group problem is used. This is related to [61]. In a next
step we study the strength of these different reformulations. It is shown that
two formulations using irreducible solutions and the path reformulation are as
tight as possible in the sense that the projection of these formulations onto the
space of original variables give the convex hull of the original problem. This
property is not true for the formulation using the most complicated aggrega-
tion of the variables. Nevertheless we can strengthen it by proposing a series
of linear inequalities coming from the polyhedral study of another corner poly-
hedron. In the chapter we also show how the irreducible solutions of a group
problem can be computed. Finally some computational results are reported.
Two algorithms are tested. A first algorithm simply computes a sequence of
LP optimal points and reformulates at each step in order to come closer to the
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integral optimal. The second algorithm is based on the primal method of Haus,
Köppe and Weismantel [29] presented in Section 1.2.6. The idea is to use the
group problem as a tool to generate new variables. We report on some limited
computational results related to that.

In Chapter 5 we propose a study of the banker’s problem, i.e. the finan-
cial form of the problem of sharing an attic. As we told earlier, this problem
cannot be solved by the standard methods like branch-and-bound whereas a
reformulation using lattice basis reduction makes the problem easy to solve.
The banker’s problem has an interesting structure and the reduced basis can
become heavy to compute for large sizes of the input. The main focus of the
chapter is to show that one can decompose the problem in order to compute
the reduced basis. Furthermore we show that the fact to decompose the com-
putation does not affect the reduced character of the final basis obtained. We
close the section with some computational results showing the benefit of the
reformulation and the decomposition.

The sixth chapter of the thesis is dedicated to a conclusion summarizing
the main results and proposing directions for future research in the areas that
were studied in the text.



54 CHAPTER 1. INTRODUCTION



Chapter 2

Lifting of valid inequalities

2.1 Introduction

In this chapter we study the question of lifting valid inequalities. The central
line of this problem is to see how to generate valid inequalities for a set X
from valid inequalities for a lower-dimensional restriction of X . The structure
of the chapter is the following. In the first section, we introduce the notion
of lifting. We try to capture the intuition of the operation on a simple two
dimensional example. The next section presents our procedure of lifting in
detail. We present all the assumptions that are needed to apply our procedure
and present the theoretical results related to lifting. Section 4 is related to the
difference of lifting several blocks of variables sequentially or simultaneously.
However in some particular case, the two approaches coincide. That is the case
when the lifting function is superadditive. Finally we conclude by discussing
some variations of our hypotheses. Remark that this chapter is inspired by
Sections 1 to 3 of [45].

2.2 The Context of Lifting: Generating Valid In-

equalities from Sub or Supersets

Throughout we consider mixed integer sets described by integer (or rational)
coefficients of the form

X = {z ∈ R
n1

+ × Z
n2

+ : Az ≤ b}

with n = n1 + n2. Here we also consider a second lower-dimensional subset

Y = X ∩ {z : Cz = e}.

55



56 CHAPTER 2. LIFTING OF VALID INEQUALITIES

2
x

x1

Figure 2.1: The set X

2.2.1 Valid Inequalities from Supersets

Observation 2.1 If Cz ≤ e for all z ∈ X, then conv(Y ) is a face of conv(X),
and

conv(Y ) = conv(X) ∩ {z : Cz = e}.

Thus every facet-defining inequality of conv(Y ) corresponds to a facet-defining
inequality of conv(X).

Example: Consider the simple set

X = {x ∈ Z
2
+ : 12x1 − 7x2 ≤ 35, 5x1 + 4x2 ≤ 25}.

The set is represented in Figure 2.1. The convex hull of the set is shown in
Figure 2.2. We have

conv(X) = {x ∈ R
2
+ : x1 + x2 ≤ 6, 3x1 + 2x2 ≤ 13, x1 ≤ 3, x1 − x2 ≤ 2}.

Now consider the set Y = X ∩{x1 = 3}. First observe that Y = {(3, 1), (3, 2)}.
Then we see that x1 ≤ 3 holds for every valid point of X . Therefore, conv(Y ) is
a face of conv(X) and the conditions of Observation 2.1 are satisfied. Therefore
the facet-defining inequalities of conv(Y ) are given by replacing x1 by 3 in every
facet-defining inequality of conv(X). Doing this we obtain that

conv(Y ) = {x ∈ R
2
+ : x2 ≤ 3, x2 ≤ 2, x2 ≥ 1} ∩ {x1 = 3}.

We see in Figure 2.2 that the inequalities x2 ≤ 2 and x2 ≥ 1 give the complete
description of conv(Y ) besides the trivial equality x1 = 3.
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2
x

x1

x 1 = 2 x 1 = 3

Figure 2.2: conv(X) and its two restrictions

On the other hand, we do not always obtain the convex hull if we con-
sider a restriction of X that is cut in the middle of conv(X). Consider, for
example, Z = X ∩ {x1 = 2}. Checking in Figure 2.2, we see that Z =
{(2, 0), (2, 1), (2, 2), (2, 3)}. If we replace x1 by 2 in the inequalities describ-
ing conv(X), we obtain

x2 ≤ 4, x2 ≤
7

2
, x2 ≥ 0.

This set of inequalities does not provide the complete description of conv(Z)
although all three inequalities are valid. �

This example is really basic but this observation can be applied to more
complicated sets. For example, if we consider the so called single node flow set
(which we discuss in Chapter 3 in detail)

XN(n1, n2, b, a) = { (x, y, s) ∈ R
n1+n2
+ × {0, 1}n1+n2 × R+ :

∑

j∈N1
xj −

∑

j∈N2
xj ≤ b + s

xj ≤ ajyj for j ∈ N1 ∪ N2 }

and the continuous knapsack

Y CK = {(y, s) ∈ {0, 1}n1+n2 × R+ :
∑

j∈N1

ajyj −
∑

j∈N2

ajyj ≤ b + s},

we remark that Y CK is obtained from XN by setting xi = aiyi. Obviously
by the definition of XN , xi ≤ aiyi hold for all i for the valid points in XN .
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Therefore all the facets of conv(Y CK) can be obtained by setting xi = aiyi in
all the facets of conv(XN ).

Example: The facet

x1 − y1 + x2 − y2 + x3 − y3 − y4 − x5 ≤ 3 + s (2.1)

of the convex hull of the single node flow set

XN(3, 2, 4, (3, 4, 5, 2, 3)) = { (x, y, s) ∈ R
5
+ × {0, 1}5 × R+ :

x1 + x2 + x3 − x4 − x5 ≤ 4 + s
x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4, x5 ≤ 3y5}

leads to the valid inequality

2y1 + 3y2 + 4y3 − y4 − 3y5 ≤ 3 + s, (2.2)

for the set

Y CK = {(y, s) ∈ {0, 1}5 × R+ : 3y1 + 4y2 + 5y3 − 2y4 − 3y5 ≤ 4 + s},

when one replaces xi by aiyi for all i in the facet (2.1). The inequality (2.2) is
indeed facet-defining for conv(Y CK). �

Another consequence of Observation 2.1 concerns the separation problem
arising when one wishes to find a valid inequality for X cutting off a point z∗.

Observation 2.2 If Cz ≤ e for all z ∈ X and z∗ satisfies Cz∗ = e, then
z∗ /∈ conv(X) if and only if z∗ /∈ conv(Y ).

Thus to solve the separation problem over X , it suffices to solve the separation
problem over Y , and then convert the violated valid inequality for Y into a vio-
lated inequality for X . The advantage is that the set Y has a simpler structure
since it is in a lower dimension and one can hope that the separation problem
is easier to solve. The counterpart is that one needs to convert the violated
inequality for Y to an inequality for X and this needs some computation. The
conversion from the Y space to the X space is precisely the lifting problem
that we now consider.

2.2.2 Valid Inequalities from Subsets

In the previous subsection, we were interested in generating valid inequalities
for a small set from the knowledge of valid inequalities of supersets, i.e. more
complicated sets. However usually the convex hull description of the larger set
is not known and harder to derive.

The question of deriving valid inequalities for X from valid inequalities for
Y = X ∩ {z : Cz = e} is called the “ lifting problem”. Again the fact that
X ⊆ {z : Cz ≤ e} and thus conv(Y ) is a face of conv(X) is crucial.
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Observation 2.3 If conv(Y ) is a face of conv(X) and π1z ≤ π0 is a valid
inequality for conv(Y ), there exists a vector π2 such that

π1z + π2(e − Cz) ≤ π0

is valid for conv(X).

It is easily verified that the inequality is valid if one takes π2
j = −M for all

j ∈ N with M sufficiently large.

Example: Let us go back to the previous example with

X = {x ∈ Z
2
+ : 12x1 − 7x2 ≤ 35, 5x1 + 4x2 ≤ 25} and Y = X ∩ {x1 = 3}.

In the last subsection, we used the facet description of conv(X) to derive the
facet-description of conv(Y ). Observation 2.3 states that it is possible, at least
theoretically, to go the other way, i.e. to use the facet-defining inequalities
of conv(Y ) to derive valid inequalities of conv(X). Let us see what happens
geometrically. The sets conv(X) and conv(Y ) are represented in Figure 2.3.
The dotted area is conv(X) while the vertical bold line is conv(Y ). It is shown

2
x

x1

Figure 2.3: A facet of conv(Y ) can be lifted to a valid inequality of X

in the figure that the facet-defining inequality x2 ≤ 2 for conv(Y ) can be lifted
to a valid inequality

π(3 − x1) + x2 ≤ 2

for X , by finding the right coefficient π. Geometrically the problem is to rotate
the line x2 ≤ 2 around the point (3, 2) until a valid inequality is found. The
picture shows that in this case, it is clearly possible. �
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2
x

x1

Figure 2.4: When Y2 is not a face of X , the lifting problem may be impossible

On the other hand, when Cz = e cuts through the interior of conv(X), it
is known that the required multipliers may not exist. This is demonstrated by
the following simple example.

Example: We consider again

X = {x ∈ Z
2
+ : 12x1 − 7x2 ≤ 35, 5x1 + 4x2 ≤ 25}

and Z = X ∩ {x1 = 2}. A facet-defining inequality for conv(Z) is x2 ≤ 3.
Now if π(2 − x1) + x2 ≤ 3 is a valid inequality for X , the point (3, 2) ∈ X
implies π ≥ −1 whereas the point (0, 6) ∈ X implies π ≤ − 3

2 . Both conditions
are obviously disjoint. Therefore the lifting is impossible. Geometrically the
problem is to find a rotation of the line x2 ≤ 3 around the point (2, 3) which
leads to a valid inequality for X . This is impossible as Figure 2.4 shows. �

In the next section we consider how to find the multipliers π2 or show that
there are none.

2.3 Lifting Valid Inequalities

2.3.1 Lifting: Basic Method

We consider the mixed integer sets, denoted Zτ (b), of the form

∑τ
k=1 Akzk ≤ b + s (2.3)

zk ∈ Xk for k = 1, . . . , τ, s ∈ R
m
+ ,
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where Ak ∈ R
m×nk for k = 1, . . . , K, b ∈ R

m, Xk = {zk ∈ R
n1

k × Z
n2

k : Ckzk ≤
ck} with nk = n1

k + n2
k is a mixed integer set in R

nk for all k and 0 ∈ Xk for
k = 2, . . . , K. Here we study how to find valid inequalities for ZK(b), starting
from valid inequalities for Z1(b). The lifting approach consists of the following:

1. Fix zk = 0 for k = 2, . . . , K.

2. Find a tight valid inequality π1z1 ≤ π0 + νs for Z1(b).

3. Iterations τ = 2, . . . , K. Given a tight valid inequality
∑τ−1

k=1 πkzk ≤ π0 +νs
for Zτ−1(b), lift the variables zτ and derive coefficients πτ ∈ R

nk such that

τ−1
∑

k=1

πkzk + πτzτ ≤ π0 + νs (2.4)

is valid for Zτ (b), or determine that no such πτ exists.

Each of these steps needs some comments. Let us take them one by one.

1. As it appears in the introduction of this chapter, we do not only want to
restrict our procedure to fixing variables to 0 because it is often useful to
consider setting inequality Cx ≤ e to equality Cx = e as we proposed earlier.
Nevertheless, by a simple substitution, it is always possible to equivalently
fix some other variables to 0. Indeed if we consider the slack variable x̂ =
Cx − e, fixing x̂ = 0 is equivalent to fixing Cx = e. We show some more
examples of this fact later in the chapter.
Relative to the description in Section 2.3.1, X = ZK(b) and Y = ZK(b) ∩
{(z1, . . . , zK) : z2 = · · · = zK = 0} = Z1(b).

2. In this chapter we do not focus on the way to find a valid inequality for
Z1(b). But this relies on the fact that since the set Z1(b) is smaller, it is
easier to find valid inequalities for Z1(b) than for the complete set. The next
chapter focuses on generating valid inequalities for single node flow sets by
lifting MIR inequalities.

3. The core of this chapter is to handle this step. We develop this topic in the
next section.

2.3.2 Determining the lifting coefficient

When computing the lifting coefficient, a crucial concept is that of lifting func-
tion. It computes the slack remaining in the valid inequality when the variables
fixed earlier at 0 take non zero values.

Definition 2.1 The lifting function φk : R
m → R

1 is

φk(u) = min{π0 + νs −
k
∑

τ=1

πτzτ : (z1, . . . , zk, s) ∈ Zk(b − u)}.
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The following example illustrates the intuition of such a definition.

Example: As earlier we start with the set

X = {x ∈ Z
2
+ : 12x1 − 7x2 ≤ 35, 5x1 + 4x2 ≤ 25},

represented in Figure 2.1, and Y = X ∩{x1 = 3}. As we pointed before, x2 ≤ 2
is facet-defining for conv(Y ) and therefore we look for a coefficient π such that

π(3 − x1) + x2 ≤ 2 (2.5)

is valid for X .

Consider x̂1 = 3 − x1. When x̂1 = 0, the set X is restricted to Y and (2.5)
is always valid for X . The role of the lifting function is to study all the possible
values of x̂1 and for each case, show which values of π are acceptable in order
to obtain a valid inequality for X .

When x̂1 = 1, i.e. x1 = 2, the two main constraints become

−7x2 ≤ 11 and 4x2 ≤ 15,

which basically means that x2 ≤ 3. Therefore when x̂1 = 1, the lifting function

φ(1) =min 2 − x2

s.t. −7x2 ≤ 11

4x2 ≤ 15

x2 ∈ Z+

takes the value -1. This means that the slack in the inequality (2.5) can go
down to -1 when x̂1 = 1. In other words, the inequality πx̂1 ≤ 2− x2 has -1 as
smallest right hand side when x̂1 = 1. Therefore a necessary condition on π is
that 1π ≤ −1.

When x̂1 = 2, the two main constraints are

−7x2 ≤ 23 and 4x2 ≤ 20,

i.e. x2 ≤ 5. Therefore, φ(2) = min {2 − x2 : 0 ≤ x2 ≤ 5} = −3. This means
that when x̂1 = 2, the slack in (2.5) can go down to -3. For this case, this
implies the necessary condition on π : 2π ≤ −3.

Finally, when x̂1 = 3, we have x2 ≤ 6 and φ(3) = −4. Therefore we also need
that 3π ≤ −4. These four cases show that we have to take π ≤ − 3

2 in (2.5)
in order to obtain a valid inequality for X . This can be seen geometrically in
Figure 2.5. For each value of x̂1 (i.e. x1), the lifting function computes the
minimum slack obtained in the inequality x2 ≤ 2, which thus has to be rotated.
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2
x

x1

conv(Y)

< 22x

: slack

Figure 2.5: An illustration of what the lifting function computes

Each slack is shown in the figure and determines a minimum angle of rotation.
If we now rotate the inequality using the coefficient π = − 3

2 , we obtain

3x1 + 2x2 ≤ 13

which is one of the facet-defining inequalities of conv(X). �

We now come back to the theory, based on Definition 2.1. Note that for
any u ∈ R

m and any (z1, . . . , zk) ∈ X1 × . . . × Xk, there exists s ∈ R
m
+ such

that (z1, . . . , zk, s) ∈ Zk(b−u), so φk(u) is finite for all u ∈ R
m. Also from the

definition, it follows that
φ1 ≥ . . . ≥ φK .

We also introduce the set

Πk = {π ∈ R
nk : πt ≤ φk−1(Akt) for all t ∈ Xk}

of lifting coefficients. For most of the results, it will suffice to consider the case
where K = 2.

Proposition 2.1 If π1z1 ≤ π0 + νs is a tight valid inequality for Z1(b), then

π1z1 + π2z2 ≤ π0 + νs

is valid for Z2(b) if and only if π2 ∈ Π2.

Proof: Suppose π2 ∈ Π2 and consider a point (z̄1, t, s̄) ∈ Z2(b). Then

π2t ≤ φ1(A2t) as t ∈ X2

≤ π0 + νs̄ − π1z̄1 as (z̄1, s̄) ∈ Z1(b − A2t)
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and so the inequality is valid.

Conversely if π2t > φ1(A2t) for some t ∈ X2, take a point (z1, s) ∈ Z1(b −
A2t) with π1z1 = π0 + νs − φ1(A2t). Now (z1, t, s) ∈ Z2(b), but π1z1 + π2t >
π0 + νs, and the inequality is not valid. �

We now consider briefly the structure of the functions φk and the sets Πk,
and whether the required calculations can be carried out.

Observation 2.4 φk(u) is the value function of a mixed integer program. Thus
there exists a finite set of polyhedra P q = {u ∈ R

m : Dqu ≤ dq} whose union
is R

m and vectors (αq, βq) ∈ R
m × R

1 such that for all q

φk(u) = αqu + βq for u ∈ P q.

Proposition 2.2 If each set Xk = {(x, y) ∈ R
n1

k

+ × Z
n2

k

+ : Ck
1 x + Ck

2 y ≤ ck} is
a bounded mixed integer set, then Πk is a polyhedron.

Proof: We consider Π2. Now for fixed y ∈ projy(X
2) and fixed region q, with

π = (λ, µ) ∈ Π2 and t = (x, y) ∈ X2, π ∈ Π2 if and only if

πt = λx + µy ≤ φ2(A2t) ≤ αq(A2
1x + A2

2y) + βq

for all u = A2t = A2
1x+A2

2y satisfying Dqu ≤ dq, with A2 = (A2
1, A

2
2) and C2 =

(C2
1 , C2

2 ). In other words π ∈ Π2 if and only if (λ−αqA2
1)x+(µ−αqA2

2)y ≤ βq

for all x such that Dq(A2
1x+ A2

2y) ≤ dq, C2
1x ≤ c−C2

2y, x ≥ 0. For fixed y and
q, the latter set is a bounded polyhedron in x with a finite number of extreme
points {xt}T

t=1. Thus enumerating over the finite set of feasible integer vectors
y, the finite number of regions q and the finite set of extreme points, we obtain
an explicit description:

Π2 = {π = (λ, µ) : λxt + µy ≤ αq(A2
1x

t + A2
2y) + βq ∀q, y, t}.

�

Proposition 2.2 states that the lifting coefficients can be determined as
feasible solutions of a finite set of linear inequalities. This finite set of linear
inequalities comes from the inequality

πt ≤ φk−1(Akt) (2.6)

expressed for every t such that there exists zk = t feasible for Zk, and all
pieces of φk−1, since we know that φ is piecewise affine (by Observation 2.4).
This implies that it suffices to express the inequalities (2.6) on every extreme
point of the polyhedra P q = {u ∈ R

m : Dqu ≤ dq} i.e. for every t such that
φk−1(Akt) is a break point of the lifting function.

Next if Π2 6= ∅ and lifting coefficients π2 ∈ Π2 have been selected, one
needs to calculate the new lifting function φ2. Rather than calculating it from
scratch, it can also be obtained by updating.
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Proposition 2.3

φ2(u) = min
t∈X2

[φ1(u + A2t) − π2t].

Proof: By definition φ2(u)

= min
z1,z2,s

{π0 + νs − π1z1 − π2z2 :

A1z1 + A2z2 ≤ b + s − u, zi ∈ X i for i = 1, 2, s ≥ 0}

= min
t∈X2

{min
z1,s

{π0 + νs − π1z1 : A1z1 ≤ b + s − u − A2t, z1 ∈ X1, s ≥ 0} − π2t}

= min
t∈X2

{φ1(u + A2t) − π2t}.

�

Example: This example is divided in four parts. We show that the four cases
presented by Gu, Nemhauser and Savelsbergh [26] can be treated in a unified
way in our framework and that two distinct lifting functions are not needed.
In each of the four examples, we start from a different single node flow set
X1, X2, X3, X4 and by projecting one variable, we obtain the same set

Y = {x ∈ R
5
+, y ∈ {0, 1}5 : x1 + x2 + x3 − x4 − x5 ≤ 4 + s,

0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, 0 ≤ x3 ≤ 5y3, 0 ≤ x4 ≤ 2y4, 0 ≤ x5 ≤ 3y5 }.

A valid inequality for this set is

x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s. (2.7)

In each of the four examples, we lift this inequality. The four cases from Gu
et al. come from two binary choices that have to be made. The first choice is
on the variable to fix. It comes either from N+, i.e. its coefficient in the flow
constraint is 1, or from N−, i.e. coefficient equal to -1. The second choice is
the value at which we fix the variable. It is either at 0 (lower bound) or at the
upper bound of the variable.

Case 1 We fix the variable x0 ∈ N+ at 0 and y0 = 0.
The starting set is

X1 = {x ∈ R
6
+, y ∈ {0, 1}6 : x0 + x1 + x2 + x3 − x4 − x5 ≤ 4 + s,

0 ≤ x0 ≤ 6y0, 0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, . . . }.

If we fix x0 = 0, we obtain the set Y and the valid inequality (2.7). The lifting
function can be computed for u ∈ [0, 6] as

φ1(u) = min 3 − x1 + 2y1 − x2 + y2 − x3 + 2y3 + x5 + s
s.t. x1 + x2 + x3 − x4 − x5 ≤ 4 + s − u

0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, 0 ≤ x3 ≤ 5y3, . . .
x ∈ R

5
+, y ∈ {0, 1}5.
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The lifting function φ(u)

u

φ(
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Figure 2.6: The lifting function used for the four cases
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The value of φ1(u) is shown in Figure 2.6. For this case, the admissible values
of u are the admissible values of x0, i.e. from 0 to 6. If we now try to lift the
variables (x0, y0) with the coefficients (λ1

0, µ
1
0), we have to satisfy the following

conditions coming from the singular points of both the domain of the variables
and the function φ1(u), namely

u = 0 : µ0 ≤ 0
u = 2 : 2λ1

0 + µ1
0 ≤ 0

u = 5 : 5λ1
0 + µ1

0 ≤ 3
u = 6 : 6λ1

0 + µ1
0 ≤ 3

Two extreme solutions are (λ1
0, µ

1
0) = (0, 0) and (λ1

0, µ
1
0) = (3

4 ,− 3
2 ). These

coefficients are computed by finding an affine support to the lifting function on
the valid domain of u. One of the affine supports is shown in Figure 2.7. The
other is provided by the x axis and leads to the lifting coefficients (0, 0). The

63

1

u

Φ(u)

Figure 2.7: An affine support to the lifting function on [0, 6]

case (λ1
0, µ

1
0) = (3

4 ,− 3
2 ) yields the valid inequality

3

4
x0 −

3

2
y0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s.

for X1.
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Case 2 We fix the variable y0 = 1 and x0 ∈ N+ at its upper bound.
In this case, the starting set is

X2 = {x ∈ R
6
+, y ∈ {0, 1}6 : x0 + x1 + x2 + x3 − x4 − x5 ≤ 10 + s, (2.8)

0 ≤ x0 ≤ 6y0, 0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, . . . }.

Since we want to fix x0 = 6, we have to complement the variables in order to
be able to fix to 0. Therefore we define x̂0 = 6 − x0 and ŷ0 = 1 − y0. By
substituting in (2.8), we obtain

x1 + x2 + x3 − x̂0 − x4 − x5 ≤ 4 + s

for the flow constraint. The corresponding variable upper bound is now x̂0 ≤ 6
and x̂0 ≥ 6ŷ0. If we fix x̂0 = 0, we obtain the set Y and the valid inequality
(2.7). The lifting function is exactly the same as in Case 1 and is depicted in
Figure 2.6. But in this case, the interesting values of u are those corresponding
to the feasible values of −x0, namely the interval [−6, 0]. The lifting coefficients
(λ2

0, µ
2
0) of x̂0 and ŷ0 are determined by

u = −3 : 3λ2
0 ≤ −3

u = −5 : 5λ2
0 ≤ −3

u = −6 : µ2
0 + 6λ2

0 ≤ −4

An extreme solution is (λ2
0, µ

2
0) = (−1, 2). Therefore the inequality

−x̂0 + 2ŷ0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s,

which can be rewritten as

x0 − 2y0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 7 + s

is a valid inequality for X2.

Case 3 We fix the variable y0 = 0 and x0 ∈ N− to 0.
In this case, the starting set is

X3 = {x ∈ R
6
+, y ∈ {0, 1}6 : x1 + x2 + x3 − x0 − x4 − x5 ≤ 4 + s,

0 ≤ x0 ≤ 6y0, 0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, . . . }.

By fixing again x0 = 0, we obtain the set Y and for example the valid inequality
(2.7). The lifting function can be computed and is the same as for the two
previous cases. It is shown in Figure 2.6. The interesting values of u are
exactly the feasible values of −x0 i.e. the interval [−6, 0] again. To obtain
the valid lifting coefficients (λ3

0, µ
3
0) corresponding to the variables (x0, y0), we
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must find values of (λ3
0, µ

3
0) satisfying

u = 0 : µ3
0 ≤ 0

u = −3 : 3λ3
0 + µ3

0 ≤−3

u = −5 : 5λ3
0 + µ3

0 ≤−3

u = −6 : 6λ3
0 + µ3

0 ≤−4

Two extreme solutions to this system are (λ3
0, µ

3
0) = (−1, 0) and (λ3

0, µ
3
0) =

(− 1
3 ,−2). Therefore, the best valid inequalities for X3 that can be obtained

from this lifting are

−x0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s and

−
1

3
x0 − 2y0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s.

Case 4 We fix the variable x0 ∈ N− at its upper bound.
The initial problem is therefore

X4 = {x ∈ R
6
+, y ∈ {0, 1}6 : x1 + x2 + x3 − x0 − x4 − x5 ≤ −2 + s,

(2.9)

0 ≤ x0 ≤ 6y0, 0 ≤ x1 ≤ 3y1, 0 ≤ x2 ≤ 4y2, . . . }.

We want to fix x0 = 6, therefore we again need to change the variables in order
to be able to apply our framework. Therefore we introduce x̂0 = 6 − x0 and
ŷ0 = 1 − y0. If we substitute in (2.9), we obtain

x̂0 + x1 + x2 + x3 − x4 − x5 ≤ 4 + s,

and by fixing x̂0 = ŷ0 = 0, we again obtain the set Y . If we compute the
lifting function corresponding to the valid inequality (2.7), it yields the same
lifting function as in the three previous cases (see Figure 2.6). The domain of
interesting values of u corresponds to the values of x̂0, i.e. the interval [0, 6].
The conditions to be satisfied by the lifting coefficients are

u = 2 : 2λ4
0 ≤ 0

u = 5 : 5λ4
0 ≤ 3

u = 6 : 6λ4
0 + µ4

0 ≤ 3.

An extreme solution for this system is (λ4
0, µ

4
0) = (0, 3) which leads to the valid

inequality for X4

3ŷ0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 3 + s

which can be rewritten as

−3y0 + x1 − 2y1 + x2 − y2 + x3 − 2y3 − x5 ≤ 0 + s.
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It is interesting to remark here that the four cases have a graphic illustration.
For Case 1 and 3, the lifting problem consists in finding an affine support to
the lifting function on the domain of x. The slope of the support gives the
coefficient of x while the y-intersect gives the coefficient of y. For Cases 2 and
4, the situation is slightly different. Indeed the link between the two variables to
lift is not like a standard variable upper bound constraint due to the variable
substitution. Therefore, the lifting problem consists now in finding a linear
support to the lifting function on the domain of x. The slope of the function
gives the coefficient of x̂, while the slack at the end of the domain provides
the coefficient of ŷ. These affine supports always include the point (0, 0). This
is illustrated in Figure 2.8. For each of the four cases, the place where the
coefficient µ is computed is indicated. The coefficient λ is always the slope of
the support. �
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Figure 2.8: Lifting as finding affine supports to the lifting function

A second example shows a variant of the four cases presented above. Here
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there is both a variable upper and lower bound. Furthermore the discrete
variables yk take three different values instead of two.

Example: (The Lifting Function and the Set of Lifting Coefficients).
Consider the set

5y1 + 5y2 + 5y3 + x4 + 2y4 ≤ 12 + s

1y4 ≤ x4 ≤ 3y4

yi ∈ {0, 1} for i = 1, . . . 3, y4 ∈ {0, 1, 2}, x4 ∈ R
1
+.

This can be modelled in the form (2.3) with A1 = (5, 5, 5), A2 = (1, 2), b =
12, X1 = {0, 1}3, X2 = {(x4, y4) ∈ R

1
+ × Z

1
+ : 1y4 ≤ x4 ≤ 3y4, y4 ≤ 2}.

As valid inequality for Z1(b), we take

3y1 + 3y2 + 3y3 ≤ 6 + s. (2.10)

The lifting function φ1 is given, see Figure 2.9, by

φ1(u) =















































−3 if u ≤ −3
u if −3 ≤ u < 0
0 if 0 ≤ u < 2

u − 2 if 2 ≤ u < 5
3 if 5 ≤ u < 7

u − 4 if 7 ≤ u < 10
6 if 10 ≤ u < 12

u − 6 if 12 ≤ u.

Now we wish to find lifting coefficients π2 = (λ, µ) ∈ Π2. We note that
3 ≤ x4 + 2y4 ≤ 10 and y4 ∈ {1, 2} for (x, y) ∈ X2 \ {(0, 0)}.
For y4 = 1, 1 ≤ x4 ≤ 3 and thus 3 ≤ u = x4 + 2y4 ≤ 5. This just intersects the
region/segment u ∈ [2, 5], and the extreme points are x4 = 1 and x4 = 3.

For y4 = 2, 6 ≤ u = x4 + 2y4 ≤ 10, and two segments [5, 7] and [7, 10] are
intersected leading to the extreme points x4 = 2, x4 = 3 and x4 = 6. So Π2 is
described by the inequalities

1λ + 1µ ≤ φ1(3) = 1
3λ + 1µ ≤ φ1(5) = 3
2λ + 2µ ≤ φ1(6) = 3
3λ + 2µ ≤ φ1(7) = 3
6λ + 2µ ≤ φ1(10) = 6

with extreme points π = (−1, 2) and π = (1, 0) giving the valid inequalities

3y1 + 3y2 + 3y3 − z4 + 2y4 ≤ 12 + s and

3y1 + 3y2 + 3y3 + z4 ≤ 12 + s.

�



72 CHAPTER 2. LIFTING OF VALID INEQUALITIES
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Figure 2.9: Lifting function

2.3.3 Superadditive Lifting

The question of updating the lifting function is crucial because it is usually
computationally intractable to lift too many variables at a time. That is why
one has to include variables into blocks lifted sequentially. Between each com-
putation of coefficients, the lifting function has to be updated. In the general
case, the order in which we consider the blocks to lift is relevant. A different
ordering leads to different coefficients. However when the lifting function has
more structure, the lifting can be sequence independent.

Definition 2.2 A function F : D → R is superadditive on D ⊆ R
m if

F (u) + F (v) ≤ F (u + v)

for all u, v for which u, v, u + v ∈ D.

Throughout we will assume that D is a cone, so that u, v ∈ D implies u+v ∈ D.
We also limit our attention to superadditive functions that are continuous, with

the property that F̄ (d) =limt→0
F (td)

t exists for all d ∈ D, and with F (0) = 0.
Two classes of functions will be very useful later.

Definition 2.3 For 0 < α < 1, the mixed integer rounding function Fα :
R

1 → R
1 is defined by

Fα(d) = bdc +
(fd − α)+

1 − α
,

where fd = d − bdc.
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This function is superadditive on R
1 and is shown in Figure 2.10. Note that

F̄α exists, and F̄α(d) = min[0, d
1−α ].

F

d

Figure 2.10: Superadditive MIR Function

Definition 2.4 Suppose that a ∈ R
n
+ with ai1 ≥ ai2 ≥ . . . ≥ air

> λ ≥

air+1 . . . ain
> 0, and let At =

∑t
j=1 aij

for t ≤ r with A0 = 0 and Ar+1 = ∞.

Define Ga,λ : R
1
+ → R

1
+ by

Ga,λ(u) =







(j − 1)λ if Aj−1 ≤ u ≤ Aj − λ j = 1, . . . , r
(j − 1)λ + [u − (Aj − λ)] if Aj − λ ≤ u ≤ Aj j = 1, . . . , r − 1
(r − 1)λ + [u − (Ar − λ)] if Ar − λ ≤ u.

This function is superadditive on R
1
+ and an instance with a = (10, 7, 4, 2)

and λ = 3 is shown in Figure 2.11. Though we will not use it directly here,
superadditive functions are basic to mixed integer programming as the next
Proposition indicates.

Proposition 2.4 [31, 30] If XMIP = {(x, y) ∈ R
n1

1
+ × Z

n2
1

+ : A1x + A2y ≤ b},
F : R

m → R
1 is superadditive and nondecreasing, and F̄ exists, then

n1
1
∑

j=1

F̄ (a1j)xj +

n2
1
∑

j=1

F (a2j)yj ≤ F (b)

is a valid inequality for XMIP , where a1j and a2j are the columns of A1 and
A2 respectively.
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Figure 2.11: Superadditive Function Ga,λ on R
1
+

Now we consider what happens when the lifting function φ1 is superadditive
on some cone D.

Proposition 2.5 If φ1 is superadditive on D, and A2t ∈ D for all t ∈ X2,
φ2 = φ1 on D.

Proof: For t ∈ X2 and u ∈ D,

φ1(u + A2t) − π2t ≥ φ1(u + A2t) − φ1(A2t) as π2t ≤ φ1(A2t)

≥ φ1(u) by superadditivity.

On the other hand as 0 ∈ X2, mint∈X2 [φ1(u + A2t) − π2t] ≤ φ1(u). Therefore
for u ∈ D, φ2(u) = mint∈X2 [φ1(u + A2t) − π2t] = φ1(u). �

This proposition is important for practical issues. Whenever a lifting func-
tion is superadditive, the ordering in which we lift the different blocks of vari-
ables is irrelevant. Furthermore the lifting function need not to be computed
again between the different computations of coefficients.

When the lifting function is not superadditive, it may change after each
computation of a coefficient. However one can avoid the updating of the lifting
function by using a weaker version and obtain the same behaviour. Any func-
tion φ̂ ≤ φ1 is called a valid lifting fuction for X2 because π2t ≤ φ̂(A2t) for all

t ∈ X2 implies that π1z1 + π2z2 ≤ π0 + νs is valid for Z2(b). We say that φ̂ is

used for lifting if π2 satisfies π2t ≤ φ̂(A2t) for all t ∈ X2. When in addition φ̂
is superadditive, we keep the property of sequence independent lifting.

Proposition 2.6 Suppose that φ̂ ≤ φ1 on D and φ̂ is superadditive on D. If
A2t ∈ D for all t ∈ X2 and φ̂ is used for lifting, then φ1 ≥ φ2 ≥ φ̂ on D.

Proof: As φ̂ is used for lifting, π2t ≤ φ̂(A2t) for t ∈ X2. Now for t ∈ X2 and

u ∈ D, φ1(u+A2t)−π2t ≥ φ1(u+A2t)− φ̂(A2t) ≥ φ̂(u+A2t)− φ̂(A2t) ≥ φ̂(u)
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where the last two inequalities follow from φ̂ ≤ φ1 and the superadditivity of
φ̂ on D respectively. Therefore φ2(u) = mint∈X2 [φ1(u + A2t)− π2t] ≥ φ̂(u) for
u ∈ D. �

So φ̂ remains a valid lifting function for φ2, . . . , φK . Thus if such a superadditive
function φ̂ is used for lifting, the ordering of the sets X2, . . . , XK and of the
calculations is irrelevant, as shown by the following result.

Corollary 2.7 If φ̂ ≤ φ1 and φ̂ is superadditive on D, π̂kt ≤ φ̂(Akt) and
Akt ∈ D for all t ∈ Xk and k = 2, . . . , K, then

π1z1 +

K
∑

k=2

π̂kzk ≤ π0 + νs

is valid for ZK(b).

Proof: If (z1, . . . , zK , s) ∈ ZK(b),

π1z1 +
K
∑

k=2

π̂kzk ≤ π0 + νs − φ1(
K
∑

k=2

Akzk) +
K
∑

k=2

φ̂(Akzk)

≤ π0 + νs − φ1(
K
∑

k=2

Akzk) + φ̂(
K
∑

k=2

Akzk) by superadditivity

≤ π0 + νs as φ̂ ≤ φ1. �

It is natural to ask whether functions such as φ̂ always exist.

Proposition 2.8 φ∗(u) = minv∈D[φ1(u + v) − φ1(v)] is superadditive on D,
and φ∗ ≤ φ1 on D.

Proof: For u, v ∈ D, u + v ∈ D and so, for some w ∈ D,
φ∗(u+v) = φ1(u+v+w)−φ1(w) = φ1(u+v+w)−φ1(v+w)+φ1(v+w)−φ1(w)
≥ φ∗(u) + φ∗(v). Also φ∗(u) ≤ φ1(u + 0) − φ(0) = φ1(u) for all u ∈ D. �

If a superadditive function has been used to generate the initial valid inequality
π1z1 ≤ π0 + νs for Z1(b), there is a natural candidate to be used as a valid
lifting function.

Proposition 2.9 Suppose that the initial valid inequality for Z1(b) is of the
form

n1
1
∑

j=1

F̄ (a1j)x
1
j +

n2
1
∑

j=1

F (a2j)y
1
j ≤ F (b)

with F superadditive and nondecreasing on R
m. Then F̂ (u) ≡ F (b)−F (b− u)

is a valid lifting function with F̂ (u) ≤ φ1(u) for all u ∈ R
m.
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Proof: φ1(u) = F (b)−max{
∑n1

1

j=1 F̄ (a1j)x
1
j +

∑n2
1

j=1 F (a2j)y
1
j : A1

1x
1 + A1

2y
1 ≤

b−u, (x1, y1) ∈ R
n1

1×Z
n2

1} ≥ F (b)−F (b−u) as
∑n1

1
j=1 F̄ (a1j)x

1
j+
∑n2

1
j=1 F (a2j)y

1
j ≤

F (b − u) is a valid inequality for Z1(b − u). �

Now suppose that the MIR function Fα is used to generate the first inequality.

Observation 2.5 If fb = α, F̂ (u) = Fα(b)−Fα(b−u) = Fα(u) for all u ∈ R
m.

Thus Fα is itself a valid superadditive lifting function.

Example: (Simultaneous Lifting)
Consider the initial set X

5y1 + 5y2 + 5y3 + x4 − x5 ≤ 4 + s

0 ≤ x4 ≤ 6y4, 0 ≤ x5 ≤ 8y5

y ∈ {0, 1}5, s ∈ R
1
+.

Setting x4 = 0, y4 = 0, x5 = 8, y5 = 1, we obtain the set Y

5y1 + 5y2 + 5y3 ≤ 12 + s

y ∈ {0, 1}3, s ∈ R
1
+.

We now rewrite the set X in the form (2.3).

5y1 + 5y2 + 5y3 +x4 +x̄5 − s ≤ 12
(y1, . . . , y3) ∈ X1, (x4, y4) ∈ X2, (x̄5, ȳ5) ∈ X3, s ∈ R

1
+,

where x̄5 = 8 − x5, ȳ5 = 1 − y5,
X1 = {0, 1}3, A1 = (5, 5, 5)
X2 = {(x4, y4) ∈ R

1
+ × {0, 1} : x4 ≤ 6y4}, A2 = (1)

X3 = {(x̄5, ȳ5) ∈ R
1 × {0, 1} : 8 ≥ x̄5 ≥ 8ȳ5}, A3 = (1) and b = 12.

Taking the same valid inequality (2.10), it is easily checked that its lifting
function φ1 is superaditive on R

1
+. As A2t ∈ R

1
+ for all t ∈ X2 and A3t ∈ R

1
+

for all t ∈ X3, Corollary 2.7 of Proposition 2.6 is applicable.

For the set X2, we have

Π2 = {(λ, µ) : λx4 + µy4 ≤ φ1(x4) for (x4, y4) ∈ X2},

and, as shown in [26], we obtain valid lifting coefficients by taking a support
to the lifting function φ1 over the range [0,6]. There are two extreme solutions
(λ, µ) = (0, 0) and (λ, µ) = (3

4 ,− 3
2 ).

For the set X3,

Π3 = {(λ, µ) : λx̄5 + µȳ5 ≤ φ(x̄5) for (x̄5, ȳ5) ∈ X3}
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with unique extreme point (λ, µ) = (0, φ(8)) = (0, 4).

So simultaneously lifting on the sets X2 and X3 gives the valid inequalities

3y1 + 3y2 + 3y3 + 4(1 − y5) ≤ 6 + s and

3y1 + 3y2 + 3y3 + (
3

4
x4 −

3

2
y4) + 4(1 − y5) ≤ 6 + s.

�

2.4 Other Remarks

2.4.1 The Role of the Continuous Variables s

The inclusion of the continuous variables s in the description (2.3) of Zk(b) for
all k = 1, . . . , K simplifies the presentation, but clearly restricts the inequalities
that can be obtained by lifting. When the variables s are kept, it guarantees
that the lifting function is defined for all u and is continuous everywhere on the
domain. These statements are expressed in the two following lemmas. Recall
that we handle a set Zτ (b) of the form

∑τ
k=1 Akzk ≤ b + s (2.11)

zk ∈ Xk for k = 1, . . . , τ, s ∈ R
m
+ ,

where Ak ∈ R
m×nk for k = 1, . . . , K, b ∈ R

m, Xk = {zk ∈ R
n1

k × Z
n2

k : Ckzk ≤
ck} with nk = n1

k + n2
k is a mixed integer set in R

nk for all k and 0 ∈ Xk for
k = 2, . . . , K. Suppose that we lift a valid inequality

τ−1
∑

k=1

πkzk ≤ π0 +

m
∑

i=1

νisi (2.12)

with νi ≥ 0 for all i = 1, . . . , m. The lifting function is defined by

φτ (u) = min

{

π0 +
m
∑

i=1

νisi −
τ−1
∑

k=1

πkzk : (z1, . . . , zτ−1, s) ∈ Zτ−1(b − u)

}

.

(2.13)

Lemma 2.10 If the continuous variables s are included in the model and not
fixed to zero, the lifting function is defined everywhere and is such that for all
ε ∈ R

m
+ and all u ∈ R

m,

φτ (u + ε) ≤ φτ (u) +

m
∑

i=1

νiεi.
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Proof: Let us fix τ ≥ 2. The lifting function φτ is defined everywhere since
we assume that 0 ∈ Xτ−1 and there always exist some s ∈ R

m
+ such that

b + s − u ∈ R
m
+ .

We now prove the second property. We fix u ∈ R
m. Since φτ is defined

everywhere, there exists (z∗, s∗) ∈ Zτ−1(b−u) for which φτ (u) reaches its value.
We now look at the value taken by the point (z∗, s∗ + ε) in the integer program
(2.13) defining φτ (u + ε). The point is feasible. Indeed (z∗, s∗) ∈ Zτ−1(b − u)
implies (z∗, s∗ + ε) ∈ Zτ−1(b − u + ε). The objective function for this point is

π0 +

m
∑

i=1

νi(si + εi) −
τ−1
∑

k=1

πkz∗k = φτ +

m
∑

i=1

νiεi.

The optimal value for (2.13) defining φτ (u + ε) cannot be greater. Therefore
we have φτ (u + ε) ≤ φτ (u) +

∑m
i=1 νiεi. �

Corollary 2.11 When continuous variables s are included in (2.11), the lifting
function φτ (u) is continuous.

Proof: This follows immediately from Lemma 2.10 and the fact that the func-
tion φ is nondecreasing. �

If the variables s are set to zero and lifted later, we no longer have that
Zk(b − u) 6= ∅ for all u, with the result that φk can be discontinuous, and is
not defined everywhere. Calculating φk and new coefficients πk+1, and finding
a valid lifting function that is superadditive remain difficult problems. The
resulting lifting functions φk are potentially stronger, but the final inequality
may not be valid until the variables s are lifted in. Examples of such functions
can be found in [26] among others.

2.4.2 Facet-defining Inequalities

We have not discussed at all the question when the lifted inequalities are facet-
defining. The brief answer is that if the set Z1(b) is full-dimensional, the initial
inequality is facet-defining, the exact lifting function is used to define Πk and
πk is an extreme point of Πk for all k, then the final inequality (2.4) is facet-
defining for ZK(b). When the sets are not full-dimensional, more conditions
are needed. See [53] for a detailed study of this question.

2.4.3 The complexity of the lifting procedure

We have seen that the subproblems arising in the computation of the lifting
function are new (mixed) integer problems. For an arbitrary valid inequality,
they are NP-hard problems. Hence, the lifting procedure may turn out to be
an expensive task. However there are some cases in which the computation
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simplifies and for which the lifting approach becomes computationally interest-
ing. For example in the next chapter, we study an approach to generate valid
inequalities for the single node flow set. In this approach, the lifting functions
that we obtain during the process always have the same structure. Furthermore
it is always possible to find an analytic form of such functions. In this case
the lifting procedure is easy and cheap to apply. Another example of tractable
lifting includes the case of knapsacks. In that case the subproblems arising
to compute the lifting function are other knapsacks but with smaller coeffi-
cients. These problems are therefore suitable for pseudo-polynomial methods
like dynamic programming.
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Chapter 3

Single Node Flow Sets

3.1 Introduction

As indicated in the previous chapter, single node flow sets XN are a natural
generalization of knapsack sets. As we also suggested in the previous chapter,
we can take two approaches to tackle them. The first: studying conv(XN) in
depth and thereby obtaining complete information about the special cases Y
(for example the knapsack set with a continuous variable XCK) is unfortunately
still an important challenge. The second, using knowledge about special cases
to obtain important, but partial knowledge about the superset XN , is pursued
here. Suprisingly we show that by using mixed-integer rounding (combined
with superadditive lifting), one obtains inequalities at least as strong as all the
flow cover inequalities proposed earlier. Again the results presented here come
from [45].

Let us now define the basic set studied in this chapter, for which we try to
generate valid inequalities.

Definition 3.1 The single node flow set, denoted XN(n1, n2, b, a, u) is the set
of (x, y, s) ∈ R

n1+n2
+ × Z

n1+n2
+ × R+ satisfying

∑

j∈N1
xj −

∑

j∈N2
xj ≤ b + s

xj ≤ ajyj for j ∈ N1 ∪ N2

yj ≤ uj for j ∈ N1 ∪ N2,

where n1 = |N1|, n2 = |N2|, n = n1 + n2, b ∈ Z, a ∈ R
n, u ∈ Z

n
+.

In this chapter, we focus on two cases of Definition 3.1: the 0-1 single node
flow set XN(n1, n2, b, a, 1) and the integer single node flow set where u is finite
and different from 0. The 0-1 single node flow set was first studied as natural

81
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generalizations of 0-1 knapsack sets. Then it was shown that every mixed
integer row can be rewritten as a restrivtion of a single node flow set. The
following development comes from [50].

Observation 3.1 Any mixed integer set T of the form

T = {(x, y) ∈ R
|J1∪J2| × Z

|J1∪J3| :
∑

j∈J1

(αjxj + βjyj) +
∑

j∈J2

αjxj +
∑

j∈J3

βjyj ≤ b

0 ≤ xj ≤ ajyj for j ∈ J1

0 ≤ xj ≤ aj for j ∈ J2

0 ≤ yj ≤ bj for j ∈ J1 ∪ J3 }

can be written in the single node flow set XN form.

Proof: Let J+
1 = {j ∈ J1 : αj > 0}, J−

1 = J1 \ J+
1 , J+

2 = {j ∈ J2 : αj >
0}, J−

2 = J2\J
+
2 , and similarly for J3. We define now, for all j, a new continuous

variable wj as

wj =































αjxj + βjyj for j ∈ J+
1

−(αjxj + βjyj) for j ∈ J−
1

αjxj for j ∈ J+
2

−αjxj for j ∈ J−
2

βjyj for j ∈ J+
3

−βjyj for j ∈ J−
3 ,

and we introduce some values uj that will be used as upper bounds of wj ,

uj =































αjaj + βj for j ∈ J+
1

−(αjaj + βj) for j ∈ J−
1

αjaj for j ∈ J+
2

−αjaj for j ∈ J−
2

βj for j ∈ J+
3

−βj for j ∈ J−
3 .

Now T is exactly the single node flow set determined by the constraint

∑

j∈N+

wj −
∑

j∈N−

wj ≤ b

0 ≤ wj ≤ ujyj for j ∈ N+ ∪ N−,

with N+ = J+
1 ∪ J+

2 ∪ J+
3 and N− = N \ N+, and the additional constraints

yj = 1 for j ∈ J2 and wj = ujyj for j ∈ J3. �

The single node flow set is also the simplest subproblem of a fixed charge
network flow problem. It represents the flow conservation constraint in a node
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of the network. The variables xi, i ∈ N1(N2 respectively) represent the flow
in each of the arcs i ∈ N1(N2 resp.) entering (leaving resp.) the node. The
variables yi are the so-called set-up variables, indicating whether an arc is
“open” or not. An example of such a single node flow set is shown in Figure
3.1 with n1 = 3, n2 = 2, b = 4, a = (3, 4, 5, 2, 3) and u = 1.

4

s

x  <= 3y
1 1

x  <= 4y

x  <= 5y

x  <= 2y

x  <= 3y
2

3

4

5

2

3

4

5

Figure 3.1: An example of Single Node Flow Set

The MIR approach Throughout we will use a standard approach to gen-
erate valid inequalities for the single node flow set XN and its variants, which
is a minor modification of the c − MIR approach in [46].

Step 1 Using slack variables for the variable upper bound constraints, re-
lax XN to obtain a knapsack set with a continuous variable XKC .
Step 1b (Optional) Fix the values of some variables giving a restricted set
XKC−F .
Step 2 Complement certain integer variables - those in an appropriately cho-
sen “cover”.
Step 3 Rescale the row.
Step 4 Generate a mixed integer rounding inequality for XKC or XKC−F , and
rescale the inequality.
Step 4b If variables have been fixed in Step 1b, calculate the lifting function
φ1. If the lifting function is not superadditive on some appropriate domain,
look for a valid superadditive lifting function φ̂. Generate a valid inequality for
XKC .
Step 5 By complementing again, and eliminating the slack variables introduced
in Step 1, generate a valid inequality for XN .

This chapter is organized as follows. The next two sections show how to
generate valid inequalities using the MIR approach, for the 0-1 and integer
single node flow sets respectively. In these sections, it is also shown how to
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strengthen these valid inequalities. In the last section, we finally discuss par-
ticular cases of the single node flow sets and show that the projection of the
flow cover inequalities provide sets of known valid inequalities for these smaller
sets.

3.2 The 0-1 Single Node Flow Set

3.2.1 Generating the MIR flow cover inequalities

Consider the set XN(n1, n2, b, a, 1). We now use the MIR approach described
above to derive basic valid inequalities for this set.

Definition 3.2 (C1, C2) is a flow cover for XN if
i) C1 ⊆ N1, C2 ⊆ N2

ii)
∑

j∈C1
aj −

∑

j∈C2
aj − b = λ > 0.

Proposition 3.1 Suppose that (C1, C2) is a flow cover, and choose ā ∈ R
1
+

with ā > λ. Then the MIR flow cover inequality

∑

j∈C1

{xj + [aj + λF (−
aj

ā
)](1 − yj)}

+
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ā
)]yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF (
aj

ā
)(1 − yj)

−
∑

j∈L2

λF (−
aj

ā
)yj +

∑

j∈R2

xj + s (3.1)

is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα,
with α = ā−λ

ā , is the mixed integer function defined in Definition 1.8.

Proof:
Step 1 Starting from the inequality

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the
nonnegativity of xj for j ∈ R1 and of tj for j ∈ C2 ∪ L2 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.
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Step 2 Now introducing variables ȳj = 1 − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1

aj ȳj +
∑

j∈L1

ajyj +
∑

j∈C2

aj ȳj −
∑

j∈L2

ajyj ≤ −λ +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s.

Step 3 We now divide by ā > λ.
Step 4 Generate the mixed integer rounding inequality giving

∑

j∈C1

F (−
aj

ā
)ȳj +

∑

j∈L1

F (
aj

ā
)yj +

∑

j∈C2

F (
aj

ā
)ȳj +

∑

j∈L2

F (−
aj

ā
)yj

≤ −1 +
1

λ
(s +

∑

j∈R2

xj +
∑

j∈C1∪L1

tj).

Step 5 Multiplying by λ, and restating the inequality in terms of the original
variables gives the required inequality. �

Observation 3.2 i) λF (−
aj

ā ) ≥ −max[min[λ, aj ], aj − (ā − λ)] with equality
for aj ≤ ā + λ.
ii) λF (−aj

ā ) = −min[λ, aj ] for aj ≤ ā.
iii) λF (

aj

ā ) ≥ min[max[(aj − (ā − λ), 0], λ] with equality for aj ≤ 2ā − λ.
iv) λF (

aj

ā ) = max[(aj − (ā − λ), 0] if aj ≤ ā.

Corollary 3.2 If ā = maxj∈C1 aj, the MIR flow cover inequality (3.1) takes
the form

∑

j∈C1
{xj + [aj − λ]+(1 − yj)} +

∑

j∈L1
xj −

∑

j∈L1
[aj − λF (

aj

ā )]yj

≤ b +
∑

j∈C2
aj −

∑

j∈C2
λF (

aj

ā )(1 − yj) −
∑

j∈L2
λF (−aj

ā )yj +
∑

j∈R2
xj + s

and is at least as strong as the GFC2 inequality [58]

∑

j∈C1

xj +
∑

j∈C1

[aj − λ]+(1 − yj) +
∑

j∈L1

xj −
∑

j∈L1

(max[aj , ā] − λ)yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

min[λ, (aj − (ā − λ))+](1 − yj)

+
∑

j∈L2

max[aj − (ā − λ), λ]yj +
∑

j∈R2

xj + s.

Corollary 3.3 If ā = maxj∈C1∩L2 aj and aj > λ for all j ∈ L2, the MIR flow
cover inequality (3.1) takes the form

∑

j∈C1

{xj + [aj − λ]+(1 − yj)} +
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ā
)]yj

≤ b +
∑

j∈C2

aj −
∑

j∈C2

λF (
aj

ā
)(1 − yj) +

∑

j∈L2

λyj +
∑

j∈R2

xj + s (3.2)
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and is at least as strong as the GFC1 inequality [58]

∑

j∈C1

{xj + [aj − λ]+(1 − yj)} ≤ b +
∑

j∈C2

aj +
∑

j∈L2

λyj +
∑

j∈R2

xj + s.

3.2.2 A Strengthened MIR Flow Cover Inequality

Now we strengthen the inequality.

Proposition 3.4 Suppose that (C1, C2) is a flow cover and ā = maxj∈C1∪L2 aj >
λ. Then the lifted inequality

∑

j∈C1

{xj + [aj − λ]+(1 − yj)}

+
∑

j∈L1

[xj − (aj − φ1(aj))yj ]

≤ b +
∑

j∈C2

aj −
∑

j∈C2

φ1(aj)(1 − yj)

−
∑

j∈L2

λyj +
∑

j∈R2

xj + s (3.3)

is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and φ1 = Ga,λ

on R
1
+ with a = (aC1 , aL2).

Proof: Proceeding as in the proof of Proposition 3.1, we modify as follows:
Step 1b Set yj = 0 for j ∈ L1 and ȳj = 0 for j ∈ C2.
Step 2 The restricted set takes the form:

−
∑

j∈C1

aj ȳj −
∑

j∈L2

ajyj ≤ −λ +
∑

j∈R2

xj +
∑

j∈C1∪L1

tj + s.

Step 3. Divide by ā = maxj∈C1∪L2 aj .
Step 4. Generate the MIR inequality and multiply by λ

λ
∑

j∈C1

F (−
aj

ā
)ȳj + λ

∑

j∈L2

F (−
aj

ā
)yj ≤ λF (−

λ

ā
) + λ

σ/ā

λ/ā
,

or, by using Observation 3.2,

−
∑

j∈C1

min[λ, aj ]ȳj −
∑

j∈L2

λyj ≤ −λ + σ
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where σ =
∑

j∈R2
xj +

∑

j∈C1∪L1
tj + s, and when we relax the coefficients of

yj , j ∈ L2.
Step 4b Calculate the lifting function

φ1(u) = min
∑

j∈C1
min[λ, aj ]ȳj +

∑

j∈L2
λyj − λ + σ,

−
∑

j∈C1
aj ȳj −

∑

j∈L2
ajyj − σ ≤ −λ − u

ȳj ∈ {0, 1} for j ∈ C1, yj ∈ {0, 1} for j ∈ L2, σ ≥ 0.

It can be shown that on R
1
+, φ1 is precisely the superadditive function Ga,λ

with a = (aC1 , aL2).

Lift to obtain the inequality

−
∑

j∈C1

min[λ, aj ]ȳj −
∑

j∈L2

λyj +
∑

j∈L1

Ga,λ(aj)yj +
∑

j∈C2

Ga,λ(aj)ȳj ≤ −λ + σ.

Step 5. Uncomplement variables and substitute for tj . �

Example: Consider the single node flow set

x1 + x2 − x3 + x4 + x5 − x6 ≤ −8 + s

x1 ≤ 10y1, x2 ≤ 9y2, x3 ≤ 7y3, x4 ≤ 16y4, x5 ≤ 5y5, x6 ≤ 19y6

x ∈ R
6
+, s ∈ R

1
+, y ∈ [0, 1]6.

Taking as flow cover C1 = {1, 2}, C2 = {6}, we obtain λ = 10 + 9− 19 + 8 = 8.
With L1 = {4}, L2 = ∅, we take ā = maxj∈C1∪L2 aj = 10, α = 10−8

10 .
The resulting MIR flow cover inequality (3.2) is

x1 + 2(1 − y1) + x2 + 1(1 − y2) − x3 + x4 − 4y4 ≤ 11 − 15(1 − y6) + s.

To obtain the strengthened inequality (3.3), we calculate the lifting function
φ1. With a = (10, 9), λ = 8

Ga,λ(u) =















0 if 0 ≤ u ≤ 2
u − 2 if 2 ≤ u ≤ 10

8 if 10 ≤ u ≤ 11
u − 3 if 11 ≤ u.

As Ga,λ(16) = 13 and Ga,λ(19) = 16, we obtain the inequality

x1 + 2(1 − y1) + x2 + 1(1 − y2) − x3 + x4 − (16 − 13)y4 ≤ 11 − 16(1 − y6) + s

which in this case is stronger than the MIR inequality. �
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3.2.3 The MIR Reverse Flow Cover Inequality

We now present an explicit expression for the reverse flow cover inequality for
this set. This inequality is obtained by applying the results of the previous
subsection to the single node flow set in which the directions of the flows are
all reversed.

Definition 3.3 (T1, T2) is a reverse flow cover for XN if
i) T1 ⊆ N1, T2 ⊆ N2

ii)
∑

j∈T1
aj −

∑

j∈T2
aj − b = −µ < 0.

Proposition 3.5 Suppose that (T1, T2) is a reverse flow cover and ā > µ.
Then the MIR reverse flow cover inequality

∑

j∈T1

xj +
∑

j∈T1

µF (
aj

ā
)](1 − yj)

+
∑

j∈L1

xj +
∑

j∈L1

µF (−
aj

ā
)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

[aj + µF (−
aj

ā
)](1 − yj)

+
∑

j∈L2

[aj − µF (
aj

ā
)]yj +

∑

j∈R2

xj + s. (3.4)

is valid for XN , where (Ti, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα

with α = ā−µ
ā .

Corollary 3.6 If ā = maxj∈T2 aj, the MIR reverse flow cover takes the form
∑

j∈T1

xj +
∑

j∈T1

µF (
aj

ā
)(1 − yj) +

∑

j∈L1

xj +
∑

j∈L1

µF (−
aj

ā
)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj) +
∑

j∈L2

[aj − µF (
aj

ā
)]yj +

∑

j∈R2

xj + s,

and is at least as strong as the inequality

∑

j∈T1

xj +
∑

j∈T1

min[aj − (ā − µ)+, µ](1 − yj)

+
∑

j∈L1

xj −
∑

j∈L1

max[min(µ, aj), aj − (ā − µ)]yj

≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj)

+
∑

j∈L2

[max(aj − µ, min{aj, ā − µ}]yj +
∑

j∈R2

xj + s,
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obtained by fixing the variable lower bounds to zero in the inequalities of Stal-
laert [57].

Corollary 3.7 If ā is large, the MIR reverse flow cover takes the form
∑

j∈T1

xj +
∑

j∈L1

(xj − µyj) ≤
∑

j∈T1

aj −
∑

j∈T2

(aj − µ)+(1 − yj) +
∑

j∈L2∪R2

xj + s.

3.2.4 Further Remarks

The main difference between the MIR approach proposed here and the c−MIR
approach in [47] is the role of the cover in determining which variables to
complement. None of the inequalities proposed in this section is really new.
In particular the strengthened MIR flow cover inequality is essentially derived
in [46] and can also be seen as a special case of the LSGFCI inequality in [26]
when there is an unbounded continuous variable. Also as remarked above, the
reverse flow cover inequalities are nothing but flow cover inequalities, and arc
reversal was already used in [59].

3.3 Integer Single Node Flow Sets

3.3.1 The MIR Flow Cover Inequality

Consider now the set XN(n1, n2, b, a, u) with uj > 1 for some j ∈ N . We now
derive an MIR flow cover inequality for this set.

Definition 3.4 (C1, C2) is an integer flow cover for XN if
i) C1 ⊆ N1, C2 ⊆ N2

ii) there exists k ∈ C1 such that
∑

j∈C1\k ajuj −
∑

j∈C2
ajuj < b and there

exists unique values λ and ηk such that

akηk +
∑

j∈C1\k

ajuj −
∑

j∈C2

ajuj = b + λ

with 0 < λ < ak, and ηk ∈ Z
1 with 1 ≤ ηk ≤ uk.

Proposition 3.8 Suppose that (C1, C2) is an integer flow cover. Then the
integer flow cover inequality

∑

j∈C1

xj + (ak − λ)(ηk − yk) +
∑

j∈C1\k

[aj + λF (−
aj

ak
)](uj − yj)

+
∑

j∈L1

xj −
∑

j∈L1

[aj − λF (
aj

ak
)]yj

≤ b +
∑

j∈C2

ajuj −
∑

j∈C2

λF (
aj

ak
)(uj − yj)

−
∑

j∈L2

λF (−
aj

ak
)yj +

∑

j∈R2

xj + s (3.5)
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is valid for XN , where (Ci, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα

with α = ak−λ
ak

.

Proof: We again use the MIR approach from the previous section. Starting
from the inequality

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s,

we introduce variables tj = ajyj − xj for j ∈ C1 ∪ L1 ∪ C2 ∪ L2. Using the
nonnegativity of xj for j ∈ R1 gives the relaxation

∑

j∈C1∪L1

ajyj −
∑

j∈C2∪L2

ajyj −
∑

j∈R2

xj ≤ b +
∑

j∈C1∪L1

tj + s.

Now introducing variables ȳj = uj − yj for j ∈ C1 ∪ C2, we obtain

−
∑

j∈C1
aj ȳj +

∑

j∈L1
ajyj +

∑

j∈C2
aj ȳj −

∑

j∈L2
ajyj

≤ ak(ηk − uk) − λ +
∑

j∈R2
xj +

∑

j∈C1∪L1
tj + s. (3.6)

We now divide by ak, and then generate the mixed integer rounding inequality
giving

∑

j∈C1

F (−
aj

ak
)ȳj +

∑

j∈L1

F (
aj

ak
)yj +

∑

j∈C2

F (
aj

ak
)ȳj +

∑

j∈L2

F (−
aj

ak
)yj

≤ (ηk − uk) − 1 +
1

λ
(s +

∑

j∈R2

xj +
∑

j∈C1∪L1

tj).

Multiplying by λ, and restating the inequality in terms of the original variables
gives the required inequality. �

3.3.2 Strengthening the Integer Flow Cover Inequality

To obtain stronger inequalities, we use results of Atamturk [6] on integer knap-
sack sets. We start from inequality (3.6) in the proof of validity of Proposition
3.8 which we write more compactly, after recomplementing ȳk, as

akzk −
∑

j∈I− ajzj +
∑

j∈I+ ajzj ≤ akηk − λ + σ

zj ≤ uj, zj ∈ Z
1
+ for j ∈ {k} ∪ I− ∪ I+, σ ∈ R

1
+.

where I− = C1 \ {k} ∪L2, I
+ = C2 ∪L1, σ = s +

∑

j∈R2
xj +

∑

j∈C1∪L1
tj and

zj represents either yj or ȳj as appropriate.

Setting zj = 0 for j ∈ I− ∪ I+, leads to the reduced system

akzk − σ ≤ akηk − λ

zk ≤ uk, zk ∈ Z
1
+, σ ∈ R

1
+
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with valid inequality

λzk ≤ λ(ηk − 1) + σ.

The lifting function for this inequality is easily calculated, is identical to
λF ak−λ

ak

around the origin, and explicitly takes into account the upper and

lower bounds on zk:

φ(v) =































(ηk − uk − 1)λ if v ≤ ak(ηk − uk) − λ
(j − 1)λ + [v − (jak − λ)] if jak − λ ≤ v ≤ jak,

j = (ηk − uk), . . . , ηk − 1
jλ if jak ≤ v ≤ (j + 1)ak − λ,

j = (ηk − uk), . . . , ηk − 1
(ηk − 1)λ + [v − (ηkak − λ)] if ηkak − λ ≤ v.

This function is superadditive on R
1
+ and it is also superadditive on R

1
−. Here

we just consider the case where we first lift in the variables in I−, and then
the variables in I+. Because φ is superadditive on R

1
−, the lifting function

does not change as these variables in I− are lifted in. After lifting in the
variables in I−, we obtain the lifting function φ+. This function turns out to
be superadditive on R

1
+ . In the general case, we obtain a valid lifting function

H+ superadditive on R
1
+ by dropping the nonnegativity constraint on zk in the

mixed integer program defining φ+, namely

H+(v) = min{λ(ηk − 1) − λzk + σ −
∑

j∈I−

φ(−aj)zj :

akzk −
∑

j∈I−

ajzj − σ ≤ akηk − λ − v,

zk ≤ uk, zk ∈ Z
1, zj ≤ uj , zj ∈ Z

1
+ for j ∈ I−, σ ∈ R

1
+.}

To describe H+ (and φ+), we define an ordering on the indices in I−, i1, · · · , i|I−|

such that ai1 ≥ ai2 ≥ · · · ≥ ai
|I−|

. We also define the set I−− = {i : i ∈

I− and ai ≥ ak(uk − ηk + 1)} with r̄ = max{r : ir ∈ I−−}. We also define
ρr = ak(ηk − uk)−λ + air

for r = 1, . . . , r̄. Finally, for an index r ≤ r̄, we con-
sider two types of aggregate, Ur = ui1 +· · ·+uir

, and Mr = ai1ui1 +· · ·+air
uir

.

It is not difficult to see that as v increases from 0, the mixed integer program
defining H+(v) has optimal solutions in which the variables i1, . . . , ir ∈ I−−

are used in that order. Thus when zis
= uis

for s < r and zir
= t, j = uk − zk

takes values increasing from 0 to uk − ηk. Once all of the variables in I−− are
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at their upper bound, zk then takes negative values. Specifically H+(v) =































































































































(uk − ηk + 1)λ(Ur−1 + t) if
Mr−1 + tair ≤ v ≤ Mr−1 + tair + ρr

r = 1, . . . , r̄, t = 0, · · · , uir − 1

(uk − ηk + 1)λ(Ur−1 + t) + jλ

+v − Mr−1 − tair − jak − ρr

if

Mr−1 + tair + ρr + jak ≤ v ≤

Mr−1 + tair + ρr + jak + λ

r = 1, . . . , r̄, t = 0, · · · , uir − 1,

j = 0, · · · , uk − ηk

(uk − ηk + 1)λ(Ur−1 + t)
+(j + 1)λ

if

Mr−1 + tair + ρr + jak + λ ≤ v ≤

Mr−1 + tair + ρr + (j + 1)ak

r = 1, . . . , r̄, t = 0, · · · , uir − 1,

j = 0, · · · , uk − ηk − 1

(uk − ηk + 1)λUr̄ + jλ if
Mr̄ + jak ≤ v ≤ Mr̄ + (j + 1)ak − λ

j = 0, · · ·

(uk − ηk + 1)λUr̄ + (j − 1)λ
+v − Mr̄ − jak + λ

if
Mr̄ + jak − λ ≤ v ≤ Mr̄ + jak

j = 1, · · ·

An example of the valid superadditive lifting function H+ and an exact
lifting function φ+ are depicted in Figure 3.2. Finally H+ can be used to lift

0 10 20 30 40 50 60 70
−5

0
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10

15

20

25

30

φ
upd

H+

Figure 3.2: Lifting functions H+ and φ+

in all the variables in I+.
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Proposition 3.9 The inequality

λyk +
∑

j∈C1\{k} φ(−aj)(1 − yj) +
∑

j∈L2
φ(−aj)yj

+
∑

j∈C2
H+(aj)(1 − yj) +

∑

j∈L1
H+(aj)yj

≤ λ(ηk − 1) +
∑

j∈R2
xj +

∑

j∈C1∪L1
(ajyj − xj) + s

is valid for XN .

In [6], similar functions are also calculated for the case when one first lifts
variables in I+, and then those in I−, which leads to another family of strong
inequalities.

Example: Consider the set XN (2, 2, 4, (3, 4, 5, 2), (2, 3, 2, 3)), namely

x1 + x2 − x3 − x4 ≤ 4 + s

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4

y1 ≤ 2, y2 ≤ 3, y3 ≤ 2, y4 ≤ 3

x ∈ R
4
+, y ∈ Z

4
+, s ∈ R

1
+.

Suppose that one wishes to cut off the fractional solution

x∗ = (2, 12, 10, 0), y∗ = (
2

3
, 3, 2, 0), s∗ = 0.

C = {1, 2, 3} with k = 1 is an integer flow cover with ak = 3, λ = 1 and ηk = 1.
Inequality (3.5) with L1 = L2 = ∅ gives

x1+(3−1)(1−y1)+x2+[4+F 2
3
(−

4

3
)](3−y2) ≤ 14−F 2

3
(
5

3
)](2−y3)+x4+s, or

x1 + 2(1 − y1) + x2 + 2(3 − y2) ≤ 14 − 1(2 − y3) + x4 + s

which cuts off the fractional point, but is not facet-defining for XN .

To try to obtain a stronger inequality, we again choose C1 = {1, 2}, C2 = {3}
as a cover with k = 1. Thus we consider

3y1 + 4y2 − 5y3 − x4 ≤ 4 + t1 + t2 + s.

Complementing gives

3y1 − 4ȳ2 + 5ȳ3 − x4 ≤ 2 + t1 + t2 + s.

Setting ȳ2 = ȳ3 = 0 leaves the system

3y1 − x4 ≤ 2 + t1 + t2 + s

with valid inequality
y1 − x4 ≤ t1 + t2 + s.
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Now the lifting function φ is given above. If we first lift in ȳ2, φ(−4) = −2 and
we obtain

y1 − 2ȳ2 − x4 ≤ t1 + t2 + s.

Using the superadditive function H+ to lift the variable ȳ3, H+(5) = 1, so we
obtain the same inequality as above. If we calculate the exact lifting function
function, it turns out that φ+(5) = 2 giving the inequality

x1 − 2y1 − 2ȳ2 + 2ȳ3 − x4 ≤ t2 + s,

or
x1 − 2y1 + x2 − 2y2 − 2y3 − x4 ≤ 2 + s,

which is facet-defining. �

3.3.3 The MIR Reverse Flow Cover Inequality

Here we give an explicit formula for the reverse flow cover inequality when the
bounds are integer. We modify ii) in Definition 3.4.

Definition 3.5 (T1, T2) is an integer reverse flow cover for XN if
i) T1 ⊆ N1, T2 ⊆ N2

ii) there exists k ∈ T2 such that
∑

j∈T1
ajuj −

∑

j∈T2\k ajuj > b and there exist
unique values µ and ηk such that

∑

j∈T1

ajuj −
∑

j∈T2\k

ajuj − akηk = b − µ

with 0 < µ < ak and ηk ∈ Z
1 with 1 ≤ ηk ≤ uk.

Proposition 3.10 Suppose that (T1, T2) is an integer reverse flow cover for
XN . The following inequality

∑

j∈T1

[xj + µF (
aj

ak
)(uj − yj)] +

∑

L1

[xj + µF (−
aj

ak
)yj ]

≤
∑

j∈T1

ajuj − (ak − µ)(ηk − yk) −
∑

j∈T2\k

[aj + µF (−
aj

ak
)](uj − yj)

+
∑

j∈L2

[aj − µF (
aj

ak
)]yj +

∑

j∈R2

xj + s (3.7)

is valid for XN , where (Ti, Li, Ri) is a partition of Ni for i = 1, 2 and F = Fα

with α = ak−µ
ak

.

Example: We consider the same set XN as before,

x1 + x2 − x3 − x4 ≤ 4 + s

x1 ≤ 3y1, x2 ≤ 4y2, x3 ≤ 5y3, x4 ≤ 2y4

y1 ≤ 2, y2 ≤ 3, y3 ≤ 2, y4 ≤ 3

x ∈ R
4
+, y ∈ Z

4
+, s ∈ R

1
+.
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Suppose that one wishes to cut off the fractional solution

x∗ = (0, 12, 2, 6), y∗ = (0, 3,
2

5
, 2), s∗ = 0.

T = {2, 3, 4} with k = 3 is an integer reverse flow cover with ak = 5, ηk = 1
and µ = 3. Inequality (3.7) with L1 = L2 = ∅ gives

x2 + 3F 2
5
(
4

5
)(3 − y2) ≤ 12 − (5 − 3)(1 − y3) − (2 + 3F 2

5
(−

2

5
)(3 − y4) + s, or

x2 + 2(3 − y2) ≤ 12 − 2(1 − y3) + s,

which cuts off the fractional solution, and turns out to be facet-defining for
conv(XN ). �

3.4 Particular cases

As we explained in the previous chapter, we can use the knowledge of simple
sets to derive valid inequalities for supersets. But once a complicated set has
been studied deeply, its knowledge can be used to generate valid inequalities for
all its subsets. In this section, we explore this other direction and summarize
the inequalities that can be deduced from the flow cover inequalities presented
earlier in the chapter. We also show that some of the well-known inequalities for
these sets are nothing but particular cases of MIR flow cover inequalities. In this
section, we focus on giving simple inequalities by dropping some complicated
terms.

Inflow arcs As a first particular case, we study the set where only entering
arcs are considered. We try to find valid inequalities for

Y ≤ = {(x, y) ∈ R
n
+ × {0, 1}n :

n
∑

j=1

xj ≤ b + s, 0 ≤ xj ≤ ajyj for all j}. (3.8)

By fixing the outflow arcs to 0, we easily get the following proposition.

Proposition 3.11 Let C be a cover, i.e. such that
∑

j∈C aj = b + λ, with
λ > 0. The inequality

∑

j∈C

xj +
∑

j∈C

(aj − λ)+(1 − yj) ≤ b + s

is valid for (3.8).

Proof: The result follows from Proposition 3.1 by ignoring the variables in N2,
and by relaxing the coefficients of variables in N \ C. �
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Proposition 3.12 Let T be a reverse cover, i.e. such that
∑

j∈T aj = b − µ
with µ > 0. The inequality

∑

j∈T

xj +
∑

j∈N\T

(xj − µyj) ≤
∑

j∈T

aj + s

is valid for (3.8).

Proof: The result follows from Proposition 3.5, by relaxing the coefficients of
ȳj , for j ∈ T and since −µ ≤ µF (

−aj

ā ) if ā ≥ aj for all j. �

Outflow arcs The second special case is the set related to outgoing arcs only.
We consider thus

Y ≥ = {(x, y) ∈ R
n
+ × {0, 1}n :

n
∑

j=1

xj + s ≥ b, 0 ≤ xj ≤ ajyj for all j}. (3.9)

If we fix the inflow arcs to 0 in the flow cover inequalities, we obtain again
inequalities for this particular case. This is contained in the next two proposi-
tions.

Proposition 3.13 Let C be a cover, i.e. such that
∑

j∈C aj = b + λ, with
λ > 0. The inequality

∑

j∈C

(aj − λ)+(1 − yj) ≤
∑

j∈N\C

xj + s

is valid for (3.9).

Proof: The set Y ≥ can be rewritten as

Y ≥ = {(x, y) ∈ R
n
+ × {0, 1}n : −

n
∑

j=1

xj ≤ −b + s, 0 ≤ xj ≤ ajyj}.

If
∑

j∈C aj = b + λ, then −
∑

j∈C aj = −b − λ. Therefore, C is a reverse
cover without any ingoing arcs. Applying Proposition 3.5 yields the result if
we suppose that L2 = ∅. �

Proposition 3.14 Let T be a reverse cover, i.e. such that
∑

j∈T aj = b − µ,
with µ > 0, and let (T, L, R) be a partition of N = {1, . . . , n}. The inequality

∑

j∈L

λyj +
∑

j∈R

xj ≥ µ − s

is valid for (3.9).
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Proof: The set Y ≥ can be rewritten as

Y ≥ = {(x, y) ∈ R
n
+ × {0, 1}n : −

n
∑

j=1

xj ≤ −b + s, 0 ≤ xj ≤ ajyj}.

If
∑

j∈T aj = b − µ, then −
∑

j∈T aj = −b + µ. Therefore T is a cover without
any ingoing arcs. Applying Corollary 3.3 and relaxing the coefficients of ȳj for
j ∈ T provides the result. �

Continuous knapsack The continuous knapsack was studied by Marchand
and Wolsey [46]. We show here that some valid inequalities for it can be found
as a particular case of basic flow covers. The set studied here is

Y CK = {(y, s) ∈ {0, 1}n × R+ :

n
∑

j=1

ajyj ≤ b + s}. (3.10)

Proposition 3.15 Let C be a cover, i.e.
∑

j∈C aj = b + λ, with λ > 0. The
inequality

s +
∑

j∈C

min{λ, aj}(1 − yj) ≥ λ

is valid for (3.10).

Proof: Remark that

Y CK = Y ≤ ∩ {xj = ajyj for all j}.

Therefore a valid inequality for Y ≤ is also valid for Y CK when one replaces xj

by ajyj in the inequality. Applying Proposition 3.11, we obtain

∑

j∈C

ajyj +
∑

j∈C

(aj − λ)+(1 − yj) ≤ b + s

∑

j∈C

aj −
∑

j∈C

aj(1 − yj) +
∑

j∈C

(aj − λ)+(1 − yj) ≤ b + s

λ ≤ s +
∑

j∈C

(aj − (aj − λ)+)(1 − yj)

λ ≤ s +
∑

j∈C

min{λ, aj}(1 − yj)

which is the expected result. �

Proposition 3.16 Let T be a reverse cover, i.e.
∑

j∈T aj = b−µ, with µ > 0,
the inequality

∑

j∈N\T

(aj − µ)+yj ≤
∑

j∈T

aj(1 − yj) + s

is valid for (3.10).
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Proof: We still have

Y CK = Y ≤ ∩ {xj = ajyj for all j}.

Applying Proposition 3.12 and replacing xj by ajyj yields

∑

j∈T

ajyj +
∑

j∈N\T

(ajyj − µyj) ≤
∑

j∈T

aj + s

∑

j∈N\T

(aj − µ)yj ≤
∑

j∈T

aj(1 − yj) + s.

Note that if (aj − µ) < 0, we can replace (aj − µ)yj by 0 (because then we can
choose to put j in R+ in Proposition 3.5). This remark provides the expected
result. �

Binary knapsack We now turn to one of the simplest set that can also be
viewed as a particular case of the single node flow set. Consider

Y BK = {y ∈ {0, 1}n :

n
∑

j=1

ajyj ≤ b}. (3.11)

This set is obtained by fixing s to 0 in Y CK . Hence we can obtain valid
inequalities by applying Propositions 3.15 and 3.16.

Proposition 3.17 If C is a cover, i.e.
∑

j∈C aj = b + λ, with λ > 0, then

∑

j∈C

min{λ, aj}(1 − yj) ≥ λ (3.12)

is a valid inequality for (3.11). If C is a minimal cover, then aj ≥ λ for all j
and (3.12) can be written as

∑

j∈C(1 − yj) ≥ 1, or in the familiar form

∑

j∈C

yj ≤ |C| − 1.

Proof: Straightforward. �

Proposition 3.18 If T is a reverse cover, i.e.
∑

j∈T aj = b − µ with µ > 0,
then

∑

j∈N\T

(aj − µ)+yj ≤
∑

j∈T

aj(1 − yj)

is a valid inequality for (3.11).



Chapter 4

Reformulations of group

relaxations

4.1 Introduction

In the two previous chapters, we have focused on generating strong valid in-
equalities for the branch-and-cut algorithm. In this chapter, we propose alter-
natives to it based on other relaxations and reformulations. The new relaxation
proposed is the group relaxation introduced by Gomory in 1969. We presented
an example of a group relaxation in Section 1.2.7. Let us now recall the prin-
ciple. We start with a linear integer program

max cT x
s. t. Ax = b

x ∈ Z
n
+,

(4.1)

with A ∈ Z
m×n, b ∈ Z

m, c ∈ Z
n. We partition the set of variables N =

{1, . . . , n} into two disjoint sets of basic and non-basic variables, N = (B, B̄),
with |B| = m. We can therefore write (4.1) as

max
∑

j∈B cjxj +
∑

j∈B̄ cjxj

s. t. ABxB + AB̄xB̄ = b
x ∈ Z

n
+.

(4.2)

If we relax the nonnegativity requirements on the basic variables, the set of
feasible non basic variables becomes, if we suppose that AB is nonsingular,

Y (A−1
B b) = {xB̄ ∈ Z

|B̄|
+ : A−1

B AB̄xB̄ ≡ A−1
B b (mod 1)}. (4.3)

We want now to study this set Y (A−1
B b). A complete study of the polyhedral

structure of sets of type (4.3) has been carried out by Gomory in 1969 [19].

99
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We propose here to study the set differently and in particular, we would like
to use the information of sets of type (4.3) in a primal method like the Integral
Basis Method proposed by Haus, Köppe and Weismantel [29]. Let us recall
briefly what are the main ideas of the algorithm. The Integral Basis Method is
a primal simplex algorithm based on a sequence of feasible all-integer tableaux.
Rather than adding cutting planes, they use an extended formulation of the
problem involving additional variables. The extended formulation is typically
obtained from a row (or a relaxation of a row) of the all-integer tableau

X = {xN ∈ Z
|N |
+ :

∑

j∈N

ājxj ≤ b̄}

with a distinguished variable x1 for which ā1 > b̄. The set X is then replaced
by an extended formulation

Y = {xN : xN = Cλ, λ ≥ 0 and integer}

where X ⊆ Y and the columns of C form a generating set for Y . This has
two possible advantages. The main objective is to find an augmenting vector
allowing one to move to an improved primal feasible solution, and the columns
of C or simple integer combinations of these columns should provide good
candidates for augmentation. The second advantage is that, after addition of
the extended formulation, the new linear relaxation is stronger than before.

We suggest to use a group relaxation as a way to add new variables to
the primal tableau. Therefore we propose to study different ways to produce
extended formulations of a group relaxation. In the following sections of this
chapter, we examine such sets. In Section 4.2 we present four straightforward
(but probably not well-known) extended formulations for the group relaxation.
The first one uses the concept of irreducible solutions of the group problem.
We call it the disaggregated formulation. The second one is a first general-
ization where we reduce the number of new variables by aggregating variables
with identical residue class. We call it the aggregated formulation. The third
reformulation is based on an advanced aggregation technique that reduces even
further the number of new variables. Finally we present a reformulation, re-
lated to [61], based on the representation of groups by paths in a digraph.
Section 4.3 analyzes the different formulations. We show that the extended,
the aggregated and the path reformulation satisfy the convex hull property, i.e.
their projections onto the space of original variables coincide with the convex
hull of the group problem. We also show how to generate valid inequalities
tightening the advanced aggregation formulation. In Section 4.4 we address
the question of how to generate the complete sets of irreducible solutions used
in the extended formulations proposed in Section 4.2. In practice we can com-
pute these sets for groups of order 30. We also show how for composite groups
G = G1 ×G2, it is possible to generate the irreducibles for G from those of G1

and G2. In Section 4.5 we outline possible algorithms based on these extended
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formulations. Finally Section 4.6 reports on some computational results. We
first test the proposed extended formulations in a pure “relax and reformulate”
algorithm that relies on linear relaxation. The second test shows how the group
reformulations can be used within the Integral Basis Method. The results of
this chapter are taken from [37].

4.2 Extended Formulations for Group Relaxations

4.2.1 Irreducible solutions

We consider a set of the form

S(d) = {x ∈ Z
n
+ : Bx ≡ d (mod ∆)},

where ∆ ∈ Z
r, B ∈ Z

r×n, and d ∈ Z
r
+. Associated with S(d) is the abelian

group

G = {y ∈ Z
r
+ : yi ∈ {0, . . . , ∆i − 1}, i = 1, . . . , r}

= (Z/∆1Z) × · · · × (Z/∆rZ),

consisting of all residue classes of Z
r modulo the vector ∆. For a set S(d), we

now examine several possible extended formulations. To do this we need to
introduce the notion of irreducible solutions.

Definition 4.1 A vector x ∈ Z
n
+ is an irreducible solution of S(d) if x ∈ S(d),

and there is no other distinct non zero x̃ ∈ S(d) with x̃ ≤ x. Every irreducible
vector x in S(0) is called homogeneous. An irreducible vector x in S(d) is
called inhomogeneous whenever d 6= 0.

An important property is that, for d 6≡ 0 (mod ∆), every integer point in
S(d) can be represented as the sum of exactly one inhomogeneous irreducible
solution of S(d) and a nonnegative integer combination of the homogeneous
irreducible solutions of S(0).

4.2.2 The disaggregated reformulation

In order to come up with a first reformulation, we investigate a group relaxation

Y (f) = {x ∈ Z
n
+ : Bx ≡ f (mod ∆)}. (4.4)

We determine a matrix C whose column vectors correspond to all inhomo-
geneous irreducible solutions of Y (f). Accordingly we introduce a matrix D
whose column vectors are all the homogeneous irreducible solutions of Y (0). We
associate integer λ and µ variables with the columns of C and D, respectively,
to define the first formulation.
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Proposition 4.1

Y (f) = {x ∈ R
n
+ : x = Cλ + Dµ, 1λ = 1, λ ∈ Z

s
+, µ ∈ Z

t
+}.

Therefore the right-hand side of the equation is a valid extended formulation
for Y (f) referred to as the disaggregated formulation.

Example: Consider the set X = {x1, x2, x3 ∈ Z+ : 3x1 +7x2 +9x3 = 22}. By
taking the equation (mod 4), we obtain the valid group relaxation

Y (2) = {x1, x2, x3 ∈ Z+ : 3x1 + 3x2 + x3 ≡ 2 (mod 4)}. (4.5)

The inhomogeneous irreducible solutions of Y (2) are represented in the matrix

C =





2 1 0 0
0 1 2 0
0 0 0 2



 .

The homogeneous irreducible solutions of Y (0) are represented in the matrix

D =





1 0 4 3 2 1 0 0
0 1 0 1 2 3 4 0
1 1 0 0 0 0 0 4



 .

We refer to Section 4.4 for more details on how to compute these matrices of
irreducibles. A valid reformulation for Y (2) is thus to associate a new variable
to each irreducible solution and hence write

Y (2) = {x ∈ R
3
+ :





x1

x2

x3



 =





2 1 0 0
0 1 2 0
0 0 0 2











λ1

...
λ4






+





1 0 4 3 2 1 0 0
0 1 0 1 2 3 4 0
1 1 0 0 0 0 0 4











µ1

...
µ8






,

λ1 + · · · + λ4 = 1
λ1, . . . , λ4 ∈ {0, 1}, µ1, . . . , µ8 ∈ Z+ }.

�

4.2.3 The aggregated reformulation

Inspecting the irreducible solutions in detail suggests that we can classify some
of the irreducible solutions according to the value given by the sum of the first

and second component. For instance, all the vectors





4 3 2 1 0
0 1 2 3 4
0 0 0 0 0



 have

the property that the sum of the two first components is 4. This property can
be highlighted for some other sets of vectors of C and D and is due to the
fact that x1 and x2 have the same coefficient in the group equation of (4.5).
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This suggests the idea of aggregating these two variables into one variable w
so as to reduce the size of the reformulation. We now let N = {1, . . . , n} and
Nα = {j ∈ N : B:j ≡ α (mod ∆)}, where α ∈ G and B:j denotes the jth

column of B. We aggregate the variables with the same coefficients into a new
variable wα =

∑

j∈N(α) xj and consider the set

W (f) = {w ∈ Z
|G̃|
+ :

∑

α∈G̃

αwα ≡ f (mod ∆)},

where G̃ = {α ∈ G : there exists j with B:j ≡ α (mod ∆)}. We denote by

C̃ ∈ Z
n×s̃ and D̃ ∈ Z

n×t̃ the matrices whose columns are the inhomogeneous
and homogeneous irreducibles of W (f) and W (0) respectively. Now we are
able to write a second formulation for Y (f).

Proposition 4.2

Y (f) = {x ∈ Z
n
+ : w = C̃λ + D̃µ, 1λ = 1, λ ∈ Z

s̃
+, µ ∈ Z

t̃
+,

wα =
∑

j∈N(α) xj , w ∈ Z
|G̃|
+ }.

Therefore {x ∈ Z
n
+ : w = C̃λ + D̃µ, 1λ = 1, λ ∈ Z

s̃
+, µ ∈ Z

t̃
+, wα =

∑

j∈N(α) xj , w ∈ Z
|G̃|
+ } is a valid extended formulation for Y (f) referred to

as the aggregated formulation.

Example: Consider again the group relaxation (4.5),

Y (2) = {x ∈ Z
3
+ : 3x1 + 3x2 + x3 ≡ 2 (mod 4)}.

We aggregate the first two variables in w = x1 + x2 and now consider an
aggregated version of Y (2),

W (2) = {w, x3 ∈ Z+ : 3w + x3 ≡ 2 (mod 4)}.

The correponding matrices of irreducibles of W (2) and W (0) are

C̃ =

(

2 0
0 2

)

and D̃ =

(

1 4 0
1 0 4

)

.

The aggregated reformulation of Y (2) is

Y (2) = {x ∈ Z
3
+ : x1 + x2 = w1

(

w1

x3

)

=

(

2 0
0 2

)(

λ1

λ2

)

+

(

1 4 0
1 0 4

)





µ1

µ2

µ3





λ1 + λ2 = 1, λ ∈ Z
2
+, µ ∈ Z

3
+, w ∈ Z+}.

Compared to the disaggregated formulation presented earlier, the aggregated
formulation is much more compact, but we now need to keep the integrality
constraints on x1 and x2. �
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4.2.4 Advanced aggregation

One way of further reducing the size of the reformulation of Y (f) consists in
generalizing our aggregation technique to variables with different coefficients.
We study here the case of a recursive aggregation of variables whose residue
classes are integer multiples of each other. Consider any ordering of the vari-
ables. Without loss of generality, we assume that {1, . . . , n} reflects the order-
ing. We partition L = {1, . . . , n} iteratively in the following way:

(1) Initialize L := {1, . . . , n}, I := ∅.
(2) While L 6= ∅ do
(3) Let i be the first list element of L.
(4) Set I := I ∪ {i}.
(5) Define a number ui ∈ Z+ \ {0} and a subset L′(i) ⊆ L.
(6) Set N(i) := {j ∈ L′(i) : ∃λ ∈ Z+, λ ≤ ui

with B:j ≡ λB:i (mod ∆)}.
(7) Update L := L \ N(i).
(8) Return I and N(i) for i ∈ I.

For every i ∈ I, we define a new variable zi that collects all integer variables xj

with j ∈ N(i). To define the coefficients of every variable in the aggregation,
we denote by hj the smallest positive integer such that B:j ≡ hjB:i (mod ∆).
The “aggregated” variable is then

zi =
∑

j∈N(i)

hjxj .

Using the z variables we can define a group relaxation

Z(f) =
{

z ∈ Z
|I|
+ :

∑

i∈I

B:izi ≡ f (mod ∆)
}

.

We denote by Ĉ ∈ Z
n×ŝ and D̂ ∈ Z

n×t̂ the matrices whose columns are the
inhomogeneous and homogeneous irreducibles of Z(f) and Z(0) respectively.
We are now able to present a third formulation for Y (f).

Proposition 4.3

Y (f) = {x ∈ Z
n
+ : z = Ĉλ + D̂µ, 1λ = 1, λ ∈ Z

ŝ
+, µ ∈ Z

t̂
+,

zi =
∑

j∈N(i) hjxj , for all i ∈ I

z ∈ Z
|I|
+ }.

(4.6)

Therefore the right hand side of (4.6) is a valid extended formulation of Y (f).
We refer to it as the advanced aggregation reformulation.

The advanced aggregation formulation is quite general and includes, in partic-
ular, the special cases discussed earlier. If we define L′(i) = {i} in step (5) for
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all i ∈ {1, . . . , n}, then the advanced aggregation formulation coincides with
the disaggregated formulation. Similarly setting L′(i) = L and ui = 1 for all
i ∈ I in step (5) yields the aggregated formulation. A natural generalization of
the latter is obtained by setting ui = 2 or ui = 3 in step (5), respectively. We
will show in Section 4.3 that we can analyze the strength of the corresponding
extended formulation and enrich it by linear inequalities so as to come closer
to the convex hull property.

Example: We study the set

X =
{

x ∈ Z
5 : x1 + 7x2 + 9x3 + 8x4 + 6x5 = 22

3x1 + 2x2 + 6x3 + 4x4 + 5x5 = 13
}

,

and a corresponding group relaxation

Y

(

2
1

)

=

{

x ∈ Z
5
+ :

(

1
3

)

x1 +

(

2
2

)

x2 +

(

4
2

)

x3 +

(

3
0

)

x4 +

(

1
3

)

x5 ≡

(

2
1

)

mod

(

5
4

)}

.

The aggregation is obtained as follows. We first set L = {1, . . . , 5} and I = ∅.
For the first iteration, we choose L′(1) = {2, . . . , 5} and u1 = 3. We note that
the residue class of x2 is twice the residue class of x1. We put them together
in the same aggregation. Therefore, N(1) = {1, 2}. Now i = 3 and with the
parameters L′(3) = {4, 5} and u3 = 3, we note that the residue class of x4

is twice that of x3. We also observe that x2 could be included in the same
aggregation but as it is already in N(1), we do not consider it here. Hence
N(3) = {3, 4}. Finally, the last step provides N(5) = {5} and I = {1, 3, 5}. The
advanced aggregation provides the three variables z1 = x1 +2x2, z3 = x3 +2x4

and z5 = x5. Now to write the advanced aggregation formulation, we need to
compute the irreducible solutions of

Z

(

2
1

)

=

{

z ∈ Z
3
+ :

(

1
3

)

z1 +

(

4
2

)

z3 +

(

1
3

)

z5 ≡

(

2
1

)

mod

(

5
4

)}

,

which we do not do in this small example since it would involve too many
vectors. �

4.2.5 Path reformulation

Finally we present a fourth reformulation that is based on the “path” structure
of the group equation [61]. Let (V, A) be a digraph with |G| nodes corresponding
to each element of the group G, and arcs (α, α + B:j (mod ∆)) for all α ∈ G
and j ∈ N . Figure 4.1 shows such a graph related to the x1 +2x2 ≡ 2 (mod 4)
group problem. The arcs above the nodes correspond to x1 while the dotted
arcs below the nodes correspond to 2x2. In the figure, any solution corresponds
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1 2 30

Figure 4.1: The path representation of x1 + 2x2 ≡ 2 (mod 4), x ∈ Z
2
+.

to a walk from 0 to 2, or equivalently to the pushing of one unit of flow from 0
to 2. Now if we go back to the general case, any walk from 0 to f corresponds to
a point in Y (f). Specifically let wj

α be the number of times the arc (α, α+B:j)
occurs in the walk. Then

∑

α∈G

∑

j∈N

B:jw
j
α ≡ f (mod ∆).

We can now formulate the group problem by flow constraints on each node of
the graph, with a flow of 1 coming into node 0 and a flow of 1 going out of f ,
the new variables being the flow variables w.

Proposition 4.4

Y (f) = {x : xj =
∑

α∈G

wj
α

∑

j∈N

wj
0 −

∑

j∈N

wj
∆−B:j

= 1

∑

j∈N

wj
β −

∑

j∈N

wj
β−B:j

= 0 for β 6= 0, f

∑

j∈N

wj
f −

∑

j∈N

wj
f−B:j

= −1

w ∈ Z
n|G|
+ },

The right hand side of the equation above is a valid extended formulation of
Y (f) referred to as the path reformulation of Y (f).

Example: Let us consider the following knapsack

x1 + 5x2 − 3x3 = 3

and a corresponding group relaxation

Y (3) = {x ∈ Z
3
+ : x1 + x2 + 2x3 ≡ 3 (mod 4)}.
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The path approach provides the following extended formulation

Y (3) = { x ∈ Z
3
+ :

x1 = w1
0 + w1

1 + w1
2 + w1

3

x2 = w2
0 + w2

1 + w2
2 + w2

3

x3 = w3
0 + w3

1 + w3
2 + w3

3

w1
0 + w2

0 + w3
0 − w1

3 − w2
3 − w3

2 = 1
w1

1 + w2
1 + w3

1 − w1
0 − w2

0 − w3
3 = 0

w1
2 + w2

2 + w3
2 − w1

1 − w2
1 − w3

0 = 0
w1

3 + w2
3 + w3

3 − w1
2 − w2

2 − w3
1 = −1

w ∈ Z
12
+ . }

A solution w2
0 = w3

1 = 1 corresponds to x2 = x3 = 1. �

Example: The following example illustrates the sizes of the different formula-
tions. We consider the single row group problem

3x1 + 3x2 + 3x3 + 6x4 + 5x5 + 10x6 + 7x7 ≡ 1 (mod 11).

Table 4.1 shows the number of new variables for each of the different formu-
lations. We remark that the corner polyhedron corresponding to this group
problem has 18 nontrivial facets. �

Irreducibles

Formulation Homogeneous Inhomogeneous Variables

Disaggregated 378 76 454
Aggregated 54 26 80
Advanced aggregated 13 8 21
Path 77

Table 4.1: The sizes of the different formulations

4.3 Analysis of the reformulations

In this section we analyze the four formulations presented in the previous sec-
tion. We focus on showing under which conditions the convex hull property is
satisfied for each formulation. We denote by P 1

Y the corresponding polyhedron
when the integrality requirement of λ and µ is dropped in the disaggregated
reformulation. Similarly we denote by P 2

Y , P 3
Y , P 4

Y the polyhedra correspond-
ing to the aggregated, the advanced aggregation and the path reformulation
respectively, when all the integrality constraints are dropped.
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4.3.1 Tight reformulations

An important result is that the convex hull property holds for three among
the four reformulations, namely for the disaggregated, the aggregated and the
path reformulation. By convex hull property, we mean that the projection of
an extended formulation onto the space of original variables is the convex hull
of the original problem. To prove this result, two intermediate propositions are
needed.

Proposition 4.5 For f 6= 0, every extreme point of conv(Y (f)) is an irre-
ducible inhomogeneous solution.

Proof: Let y be a vertex of conv(Y (f)). We certainly have that y is an inho-
mogeneous solution of (4.4). Let us suppose now that y is reducible. Therefore
there exists y1 ≤ y, y1 6= y, inhomogeneous solution of (4.4). We also have that
z = y−y1 is nonnegative and is an homogeneous solution of the group problem.
Hence y2 = y + z is also a solution of (4.4) different from y. Furthermore

y =
1

2
y1 +

1

2
y2,

contradicting the fact that y is a vertex. �

It can also be noticed that every unit vector multiplied by the product of all ∆i,
for i = 1, . . . , r is definitely an homogeneous solution of the problem. Therefore
there always exists a vector in the same direction which is irreducible.

Proposition 4.6 For all α ∈ G̃,
∏r

i=1 ∆ieα ∈ W (0). Therefore conv(W (0)) =

R
|G̃|
+ . Similarly, conv(Y (0)) = R

|N |
+ .

Based on Propositions 4.5 and 4.6, it can be shown that the disaggregated, the
aggregated and the path formulation not only model the group problem, but
define “ideal formulations” in the sense that they produce the Gomory corner
polyhedron, i.e., the convex hull of all the integer points of a group problem.

Theorem 4.1 P 1
Y = P 2

Y = P 4
Y = conv(Y (f)).

Proof: For P 1
Y , the proof follows immediately from Proposition 4.5 and 4.6 as

the extreme points are columns of C, and the extreme rays kjej are columns
of D.

For P 2
Y , let us fix x ∈ P 2

Y and show that we also have that x ∈ P 1
Y . The

other inclusion is trivial. We have

w = C̃λ + D̃λ, 1λ = 1 and wα =
∑

j∈N(α)

xj , x, w, λ, µ ≥ 0.

Let us fix some α such that wα 6= 0. Then we can write

wα = x1
α + · · · + x|N(a)|

α =

s̃
∑

i=1

C̃αiλi +

t̃
∑

j=1

D̃αjµj ,
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where x1
α, . . . , x

|N(α)|
α represent all the variables included in the set N(α). We

also have







x1
α
...

x
|N(α)|
α






=

s̃
∑

i=1











C̃αi

0
...
0











λi
x1

α

wα
+ · · · +

s̃
∑

i=1











0
...
0

C̃αi











λi
x
|N(α)|
α

wα

+

t̃
∑

j=1











D̃αj

0
...
0











µj
x1

α

wα
+ · · · +

t̃
∑

j=1











0
...
0

D̃αj











µj
x
|N(α)|
α

wα
.

This can be rewritten using the unit vectors ek as







x1
α
...

x
|N(α)|
α






=

|N(α)|
∑

k=1

s̃
∑

i=1

C̃αiλi
xk

α

wα
ek +

|N(α)|
∑

k=1

t̃
∑

j=1

D̃αjµj
xk

α

wα
ek. (4.7)

The expression (4.7) is valid when one fixes some α. We can write a similar
expression for the complete vector x. In the summation, we need to consider
all possible combinations of choosing an index k(α) for each α = 1, . . . , |G|.

Remark that, to simplify the notation, we consider that
xk

α

wα
= 0 whenever

wα = 0. We then have

x =

s̃
∑

i=1

|N(1)|
∑

k1=1

· · ·

|N(|G|)|
∑

k|G|=1

xk1
1 · · ·x

k|G|

|G|

w1 · · ·w|G|
λiC̃αi







ek1

...
ek|G|







+

t̃
∑

j=1

|N(1)|
∑

k1=1

· · ·

|N(|G|)|
∑

k|G|=1

xk1
1 · · ·x

k|G|

|G|

w1 · · ·w|G|
µjD̃αj







ek1

...
ek|G|






(4.8)

The result follows from (4.8) since all the terms C̃αi







ek1

...
ek|G|






lie in C and

similarly for D. Furthermore we can check that the sum of the coefficients of
those terms is 1, fulfilling the constraint 1λ = 1.

For P 4
Y , the result follows from the fact that the matrix of flow constraints

on the arcs w is totally unimodular. Hence every extreme point has integer
values for w. Therefore x is integer as well. �
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4.3.2 A bounded version of the path reformulation

The structure of the path reformulation is interesting because it leads to a
totally unimodular matrix. This fact can be further used. We can also produce
the convex hull for a bounded corner polyhedron as we outline below. Consider
a bounded group relaxation

YB(f) = {x ∈ Z
n
+ : Bx ≡ f (mod ∆), x ≤ u}, (4.9)

where the vector u ∈ Z
n
+ contains the bounds on the variables. We construct

a digraph (V, A) with n + 1 levels of nodes, one level per variable and a source
level. Specifically the digraph has (n + 1)|G| nodes denoted by V0α for the
source level and by Viα for i = 1, . . . , n, α ∈ G, corresponding to a group
element at the ith level. For each variable i, and each group element α, the
arcs

(V(i−1),α, Vi,α), (V(i−1),α, Vi,((α+B:i) mod ∆)), · · · , (V(i−1),α, Vi,((α+uiB:i) mod ∆))

belong to the graph. A solution to (4.9) is now any walk from the source node
V0,0 to the “target node” Vn,f . If we denote by w(V(i−1)α, Viβ) the flow going
through the arc (V(i−1),α, Vi,β), for any i ∈ N, α, β ∈ G, we have

∑

α∈G

n
∑

i=1

ui
∑

k=0

kB:iw
(

V(i−1),α, Vi,((α+kB:i) mod ∆)

)

≡ f (mod ∆).

Hence in any solution, the value of the variables is given by

xi =

ui
∑

k=0

∑

α∈G

kw
(

V(i−1),α, Vi,((α+kB:i) mod ∆)

)

,

for all i = 1, . . . , n. Figure 4.2 shows such a graph for the x1 +2x2 ≡ 2 (mod 4)
group problem with x1 ∈ {0, 1, 2} and x2 ∈ {0, 1}. A walk from V0,0 to V2,2

represents a solution. We note that several nodes can be removed from the
formulation because all incident arc variables are fixed to zero in any solution
(dashed in the figure).
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1
x2 =

x1 = 10 2

0

V12

V20 V21 V22 V23

V13V11V10

V00

Figure 4.2: The graph related to the group problem x1+2x2 ≡ 2 (mod 4), x1 ∈
{0, 1, 2}, x2 ∈ {0, 1}.

Proposition 4.7

YB(f) = {x ∈ Z
n
+ :

xi =

ui
∑

k=0

∑

α∈G

kw
(

V(i−1),α, Vi,((α+kB:i) mod ∆)

)

, for i = 1, . . . , n

u1
∑

k=0

w(V0,0, V1,(kB:1)) = 1

ui
∑

k=0

w(V(i−1),(α−kB:(i−1)), Vi,α) −

ui+1
∑

k=0

w(Vi,α, V(i+1),(α+kB:i)) = 0

for all i = 1, . . . , n, and α ∈ G, (i, α) 6= (n, f)
un
∑

k=0

w(V(n−1),(f−kB:i), Vn,f ) = 1

w ∈ Z
M
+ },

where M = |G|
∑n

i=1(ui + 1). Therefore, the expression in brackets is a valid
extended formulation for YB(f), referred to as the bounded path reformulation.

The key argument to prove that the bounded path reformulation provides the
convex hull of YB(f) is again that the flow conservation constraints form a
totally unimodular matrix. If we denote by P 5

Y the polyhedron obtained from
the bounded path reformulation by relaxing the integrality constraints on the
variables, we have the following result.

Proposition 4.8
P 5

Y = conv(YB(f)).



112 CHAPTER 4. REFORMULATIONS OF GROUP RELAXATIONS

4.3.3 Strengthening the advanced aggregation reformula-

tion

Here we suppose that we have used the advanced aggregation procedure out-
lined in Section 4.2.4. In general, the convex hull property does not hold any
more for such a reformulation. However, we show in this section that we obtain
a stronger formulation by adding inequalities and in one special case we can
recover the convex hull property.

We consider the case in which each set N(k) contains at most two elements.
Thus we handle substitutions of the form

zk = xk + hkxk′ ,

for k ∈ I, and N(k) = {k, k′}. Now the reformulation of Proposition 4.3 can
be written row wise as

P̃ =

{

(x, λ, µ) : xk + hkxk′ =

s
∑

i=1

C̃kiλi +

t
∑

j=1

D̃kjµj for k ∈ I,

x ∈ Z
n
+, λ ∈ Z

s
+, µ ∈ Z

t
+,

s
∑

i=1

λi = 1

}

.

This can be viewed as P̃ =
⋂

k∈I

{

(x, λ, µ) : x ∈ Z
n
+, (xk, xk′ , λ, µ) ∈ P̃k

}

where

P̃k =

{

(xk, xk′ , λ, µ) : xk + hkxk′ =

s
∑

i=1

C̃kiλi +

t
∑

j=1

D̃kjµj ,

(xk, xk′ ) ∈ Z
2
+, λ ∈ Z

s
+, µ ∈ Z

t
+,

s
∑

i=1

λi = 1

}

.

Let Pk be the corresponding polyhedron obtained by dropping the integrality
requirements on the variables.

Observation 4.1 For fixed k,

Pk 6= conv(P̃k)

unless hk divides C̃ki for all i and hk divides D̃kj for all j.

If hk = 1, the advanced aggregation can be viewed as a standard aggregated
formulation. In this case, we have seen that the convex hull property is satisfied.
But in general, the polyhedron Pk has fractional extreme points. However the
convex hull of P̃k can be related to the convex hull of a group problem modulo
hk. We present a partial result. Let

P̃kl =
{

(xk, x′
k, µ) : (xk, x′

k, λ, µ) ∈ P̃k, λl = 1 },
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i.e. we fix some λl = 1 in P̃k. The next proposition states that the convex
hull of P̃kl is exactly obtained by adding all the corner polyhedron facets of the
problem obtained by taking the equation defining P̃kl modulo hk.

Proposition 4.9

conv(P̃kl) = conv

{

(xk, xk′ , µ) : −xk +
t
∑

j=1

D̃kjµj ≡ −C̃kl (mod hk),

xk ∈ Z+, x′
k ∈ R, µ ∈ Z

t
+

}

(4.10a)

∩

{

(xk, xk′ , µ) : xk′ =
1

hk

(

C̃kl +
t
∑

j=1

D̃kjµj − xk

)}

. (4.10b)

Proof: Let us denote

Qkl =

{

(xk, xk′ , µ) : −xk +

t
∑

j=1

D̃kjµj ≡ −C̃kl (mod hk),

xk ∈ Z+, x′
k ∈ R, µ ∈ Z

t
+

}

.

Every integer point in P̃kl is also clearly in Qkl since the modulo constraint
(4.10a) is valid for the set P̃kl. The difference is that xk′ can be negative and
not integer in Qkl. We show now that every extreme point of (4.10a) with the
definition (4.10b) is such that xk′ is nonnegative and integer.

First, xk′ is clearly integer for every extreme point by (4.10a). Then, we
know that every extreme point of a modulo constraint of the type (4.10a) has
the property that all variables take values less than the order of the group and
thus xk ≤ hk − 1. Hence

C̃kl +

t
∑

j=1

D̃kjµj − xk ≥ −hk + 1,

as C̃kl, D̃kj , µj ≥ 0. But from (4.10a), we also know that the expression is a
multiple of hk. Therefore

C̃kl +

t
∑

j=1

D̃kjµj − xk ≥ 0,

which proves that xk′ ≥ 0 for every extreme point. �

This proposition shows that we can strengthen a reformulation obtained
by an advanced aggregation using the facets of a corner polyhedron. The size



114 CHAPTER 4. REFORMULATIONS OF GROUP RELAXATIONS

of the group problem considered is related to the coefficient with which the
aggregation is made in the case of the aggregation of two variables. It is well
known that the number of facets of a group problem grows with the value of
the modulus. Therefore, if the coefficient of the aggregation remains small,
the number of facets to add to the reformulation stays small. The limit is, of
course, if the coefficient hk = 1, no facets have to be added.

The results of Proposition 4.9 can be partially extended to the set Pk.
For this extension, we recall some results about corner polyhedra and integer
programs. We define the corner polyhedron P (Cn,r) as the convex hull of the
elements of the set

Cn,r = {x ∈ Z
n−1
+ :

n−1
∑

i=1

ixi ≡ r mod n}.

Let (π, γ), i.e.
∑n−1

i=1 πixi ≥ γ be a non-trivial facet of P (Cn,r). One can prove
that it satisfies the following properties

πi ≥ 0 for all 1 ≤ i ≤ n − 1 (4.11)

πi + πj ≥ πk for all 0 ≤ i, j, k < n such that i + j ≡ k mod n (4.12)

πi + πj = γ for all 0 ≤ i, j < n with i + j ≡ r mod n (4.13)

πr = γ (4.14)

We refer to (4.12) as the subadditivity property of the facets of the corner
polyhedron, while (4.13) is the complementarity property. In the definition, we
consider that π0 = 0. These results initially come from [19] but can also be
found in [4, 23, 16]. Applying a subadditive function to a valid equality of an
integer program creates a new valid inequality for this problem [50].

Proposition 4.10 Let G : R → R be a subadditive function, i.e. such that

G(x) + G(y) ≥ G(x + y) for all x, y, x + y ∈ R,

and let
∑

i aixi = b be an equality satisfied for all x ∈ X ⊂ Z
n
+. Then

n
∑

i=1

G(ai)xi ≥ G(b)

is a valid inequality for X.

Using Proposition 4.10 and the properties of the facets of the corner polyhedron,
we can now write valid inequalities for the set Pk.

Lemma 4.11 Let (πl, γl) be a facet-defining inequality for P̃kl, the function
Πl : R → R defined by

Πl(x) =πl(ξ) if x ∈ Z

F(ξ)(πl(dξe) − πl(bξc)) + πl(bξc) if x ∈ R \ Z,
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is subadditive, when ξ = x (mod hk) and F(x) = x − bxc.

Proof: This follows from the subadditivity property (4.12) of πl and from the
fact that the fill in function preserves the subadditivity (see [3]). �

Proposition 4.12 Let (πl, γl) be a facet-defining inequality for P̃kl, and let Πl

be the function defined by Lemma 4.11. The inequality

Πl(1)xk +

t
∑

j=1

Πl(−D̃kj)µj ≥
s
∑

i=1

Πl(C̃ki)λi (4.15)

is valid for P̃k.

Proof: From Lemma 4.11, we know that Πl is subadditive. Now we fix a point
x ∈ P̃k and show that (4.15) is satisfied by x. Since x ∈ P̃k, we have that
λl̄ = 1 for some 1 ≤ l̄ ≤ s and also that

xk + hkxk′ −
t
∑

j=1

D̃kj = C̃kl̄

is valid for x. Since λm = 0 for all m 6= l̄, we also have that

xk + hkxk′ −
t
∑

j=1

D̃kj =

s
∑

i=1

Πl(C̃ki)λi

is valid for x. Therefore

Πl(1)xk +

t
∑

j=1

Πl(−D̃kj)µj ≥ Πl(C̃kl̄)λl̄ (4.16)

is valid for x which shows the result. �

Proposition 4.9 has been shown for the particular case of a fixed λl =
1. In general Proposition 4.12 allows one to add valid inequalities to any
reformulation obtained by an advanced aggregation, but does not guarantee
the convex hull property. When hk = 2, the result of Proposition 4.9 can be
generalized to obtain the convex hull property.

Proposition 4.13 The polyhedron

P 2
k =

{

(x1, x2, λ, µ) ∈ R
2+s+t :

x1 + 2x2 −
t
∑

j=1

D̂ljµj =

s
∑

i=1

Ĉliλi (4.17)

x2 −
t
∑

j=1

d
D̂lj

2
eµj ≤

s
∑

i=1

b
Ĉli

2
cλi (4.18)

s
∑

i=1

λi = 1
}
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is integral.

Proof: We must show that every extreme point of P 2
k is integer. First we

consider the extreme points for which exactly one λi is non zero. Let us fix
1 ≤ k ≤ s such that λk = 1. The inequality (4.18) is the only facet that needs
to be added to obtain the convex hull of the group problem

x1 −
t
∑

j=1

D̂ljµj ≡ Ĉlk (mod 2).

Therefore we can apply Proposition 4.9 and we now that every extreme point
corresponding to λk = 1 is integer.

We show now that no extreme point x∗ can be such that λ∗
i1 , λ

∗
i2 6= 0, for

i1 6= i2. If this were the case, then exactly one other variable would be non
zero making the three constraints tight. It clearly cannot be one of the other µ
variables because it would not fulfill (4.17). Suppose x∗

1 6= 0. From (4.17), we
have x∗

1 = Ĉli1λ
∗
1 + Ĉli2λ

∗
2. This is the convex combination of the two feasible

points (x1
1 = Ĉli1 , λ

1
i1 = 1, λ1

i2 = 0) and (x2
1 = Ĉli2 , λ

2
1 = 0, λ2

2 = 1). Therefore,
x∗ cannot be extreme. Suppose now that x∗

2, λ
∗
i1

, λ∗
i2

6= 0. As (4.17) and (4.18)

are tight, it means that Ĉli1 and Ĉli2 are even because otherwise (4.17) cannot
be tight. Then x∗ is a convex combination of two points with λi1 = 1 and
λi2 = 1 respectively like in the case where x1 is non zero. Therefore no point
with more than one λi non zero can be extreme.

Now, all the possible cases have been explored, and they all lead to either an
integer extreme point or to an unbounded solution. Therefore, all the extreme
points of the polyhedron are integer. �

Example: Consider the set

Q ={ (x1, x2, λ1, λ2, µ1, µ2, µ3) ∈ Z
7
+ :

x1 + 2x2 = λ1 + 2λ2 + 7µ1 + 2µ2 + 9µ3

λ1 + λ2 = 1 }

Its convex hull is given by Proposition 4.13. Therefore

Q∗ ={ (x1, x2, λ1, λ2, µ1, µ2, µ3) ∈ R
7
+ :

x1 + 2x2 = λ1 + 2λ2 + 7µ1 + 2µ2 + 9µ3

λ1 + λ2 = 1

x2 ≤ λ2 + 4µ1 + µ2µ3 + 5µ3

is integral and Q∗ = conv(Q). �
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4.4 Computation of irreducible group solutions

In this section, we explain how to obtain the matrices C and D of irreducible
solutions in order to be able to write the formulations presented in Section
4.2. The irreducible solutions of a group problem can be computed by using
a Buchberger-type algorithm (see [3]) or by lexicographic enumeration. Both
types of methods are very slow, and are therefore not suited to be used within
an iterative integer programming algorithm.

4.4.1 Connection to knapsack master solutions

In [29, 35], it was proposed to pre-compute tables of irreducible solutions, in
order to make use of them in an iterative algorithm. Tables of the irreducible
solutions to a knapsack master equation

n
∑

i=1

ixi −
n
∑

i=1

iyi = 0

x ∈ Z
n
+, y ∈ Z

n
+

(4.19)

up to n = 27 were computed with a specialized recursive algorithm. These
tables and the implementation of the algorithm are available at [36].

D Knapsack Group D Knapsack Group

2 1 2 15 58 171 6 375
3 5 7 16 99 328 9 369
4 15 15 17 181 514 17 208
5 47 38 18 287 239 18 852
6 102 56 19 502 116 36 591
7 276 143 20 775 710 40 031
8 578 209 21 1 239 710 63 472
9 1 261 402 22 1 956 334 87 618
10 2 465 598 23 3 210 736 145 717
11 5 362 1 267 24 4 660 786 147 231
12 9 285 1 445 25 7 297 823 258 184
13 18 900 3 238 26 10 997 235 318 010
14 33 269 4 054 27 16 536 803 450 183

Table 4.2: The cardinality of knapsack and group master sets

We can make use of these tables to read off the irreducible solutions to the
single-row master group problems

x1 + 2x2 + 3x3 + · · · + (D − 1)xD−1 ≡ D0 (mod D) (4.20)
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with varying right-hand side D0 as follows. Equation (4.20) can be written in
the form

x1 + 2x2 + 3x3 + · · · + (D − 1)xD−1 − D0y − Dz = 0, (4.21)

where the y variable can be left out in the homogeneous case D0 = 0. The
irreducible solutions to (4.21) are contained in the pre-computed table. The
solutions with y = 1 correspond to the inhomogeneous solutions to (4.20), and
the solutions with y = 0 correspond to the homogeneous solutions (D0 = 0).

Because there are only two variables with negative coefficients in (4.21) and
variable y is bounded above by 1, the knapsack master database stores more
solutions than we need. Table 4.2 shows the cardinality of both the knapsack
master database and the subset that contains the irreducible group solutions
for all possible right-hand sides D0. The irreducibke knapsack solutions do not
include trivial solutions of the form (ei, ei) and the symmetric solutions (x, y)
and (y, x) are only counted once.

4.4.2 The disaggregation procedure

Suppose, for example, that we construct a table TD of the irreducibles of the
master group problem

x1 + 2x2 + 3x3 + · · · + (D − 1)xD−1 ≡ D0 (mod D), (4.22)

for some D ∈ Z+ and all possible right-hand sides 0 ≤ D0 ≤ D − 1. Once this
table is precomputed, we are able to read off the irreducibles of every (mod D)
group problem from the irreducibles given in the table. Suppose that we want
to find the irreducibles for the group problem

∑

α∈G

ρα
∑

k=1

αxαk ≡ D0 (mod D), (4.23)

where ρα denotes the number of times the coefficient α appears in (4.23) for
α ∈ G.

It was shown in [29] how to read off solutions from master solution tables.
We summarize the procedure given there. The irreducible solutions to (4.23)
correspond to the solutions v to (4.22) where all components vα whose coeffi-
cients α do not occur in (4.23) are zero.

Now let v ∈ TD be such a solution where ρα = 0 implies vα = 0. For every
α ∈ G with ρα 6= 0, we consider all possible “number partitions”

vα =

ρα
∑

k=1

wαk, wαk ∈ Z+. (4.24)
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Set I := ∅.
For each vector v ∈ TD do

If for all α ∈ G, ρα = 0 implies vα = 0 then
Create irreducibles wj corresponding to the
solutions of the number partition problem

∑ρα

k=1 wαk = vα

for all α ∈ G such that ρα > 0.

Set I := I ∪
(

⋃

j{w
j}
)

.

Return I.

Table 4.3: Disaggregation Algorithm

There are
(

ρα+vα−1
ρα

)

number partitions. The combinations of all possible num-

ber partitions (4.24) for all α ∈ G define the irreducible solutions to (4.23).
We show the disaggregation algorithm in Table 4.3. In the following propo-

sition we summarize its properties.

Proposition 4.14 (i) The disaggregation algorithm provides the set of all
irreducibles of (4.23).

(ii) The number of irreducibles generated from a vector v for which ρα = 0
implies vα = 0 for all α ∈ G is

∏

α∈G:vα>1

(

ρα + vα − 1

ρα

)

. (4.25)

The number (4.25) of irreducible solutions of a group problem grows exponen-
tially with the size of ρα. This particularly affects the disaggregated formula-
tion. Conversely the other formulations based on irreducibles group together
the variables having the same coefficients so that ρα is small for all α ∈ G.

4.4.3 An iterative procedure using subgroups

It is computationally intractable to build tables for single-row master group
problems if the modulus D is too big. However, there is an alternative for
composite groups with D non prime, in the case of a single-row group problem.
It is possible to build up the set of irreducibles from the irreducibles of smaller
groups. Suppose specifically that D = pq with p, q > 1 integer. Starting from

W (a0) =
{

w ∈ Z
D
+ :

D−1
∑

j=1

ajwj ≡ a0 (mod D)
}

,
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we consider the relaxation

W̃ (g0) =
{

w ∈ Z
D
+ :

D−1
∑

j=1

gjwj ≡ g0 (mod p)
}

where aj = fjp + gj for all 0 ≤ j ≤ D − 1. Given the matrices of irreducibles

C̃ and D̃ for W̃ (g0), we have that

W̃ (g0) =
{

w : w = C̃λ + D̃µ, 1λ = 1, λi ∈ Z+, µj ∈ Z+

}

.

Substituting for w in W (a0), we obtain that

aT C̃λ + aT D̃µ ≡ a0 (mod D),

where at = pf t + g, gC̃ = g0(1 · · · 1), gD̃ = 0. In other words

pfT C̃λ + gT C̃λ + pfT D̃µ + gD̃µ ≡ f0p + g0 (mod pq)

1λ = 1.

Dividing by p, and using gT C̃λ + gµ̃ ≡ g0, we obtain

fT C̃λ + fT D̃µ ≡ f0 (mod q)

1λ = 1

We now consider the possible choices for λ separately. If λ is the s-th unit
vector, s ∈ {1, . . . , S}, let As be the matrix of inhomogeneous irreducibles for

{

µ : fT D̃µ ≡ f0 − fT C̃:s (mod q)
}

and B the matrix of homogeneous irreducibles. We now have the representation

µ = Asαs + Bβ
∑

j

αs
j = 1 (4.26)

λs = 1

By collecting all the matrices As for all s, we finally obtain the representation

µ =
∑

s

Asαs + Bβ (4.27a)

S
∑

s=1

αs = 1 (4.27b)

The columns of the representation (4.27) contain all the irreducible inhomoge-
neous and homogeneous solutions. We remark, however, that the same solu-
tion can appear multiple times, and it is also possible that reducible solutions



4.4. COMPUTATION OF IRREDUCIBLE GROUP SOLUTIONS 121

show up. As it is easy to remove the duplicates and the reducible solutions
from (4.27), the construction above opens up the possibility of computing the
set of irreducibles of bigger groups from the database that we have precom-
puted. In other words, it suffices to compute group master sets for cyclic
groups of prime order.

We remark that the iterative procedure above can be applied in a more
general situation. Above we applied it to compute irreducible solutions to a
group problem in Z/(pq)Z from the (homogeneous and inhomogeneous) irre-
ducible solutions to the group problems in the subgroup Z/pZ and in the factor
group Z/qZ. The procedure can be applied for an arbitrary (abelian) group G
to compute the irreducible solutions from the irreducible solutions to a given
subgroup G′ ≤ G and to the corresponding factor group G/G′. We will make
use of this observation when we deal with multi-row group relaxations.

Example: Consider the problem of finding irreducibles for

w1 + 2w2 ≡ 3 (mod 4)
w ∈ Z

2
+.

By first considering the equation (mod 2), it yields

w1 + 0w2 ≡ 1 (mod 2)
w ∈ Z

2
+,

which means that
(

w1

w2

)

=

(

1
0

)

λ1 +

(

2 0
0 1

)

µ

λ1 = 1.

(4.28)

Substituting gives
λ1 + 2µ1 + 2µ2 ≡ 3 (mod 4)

λ1 = 1.

By replacing λ1 by its value and by dividing by 2, we now have

µ1 + µ2 ≡ 1 (mod 2).

By using the representation by irreducibles, we can write
(

µ1

µ2

)

=

(

1 0
0 1

)

α +

(

2 1 0
0 1 2

)

β

α1 + α2 = 1.

(4.29)

By substituting (4.29) in (4.28), we finally obtain
(

w1

w2

)

=

(

1
0

)

+

(

2 0
0 1

)

α +

(

4 2 0
0 1 2

)

β

=

(

3 1
0 1

)

α +

(

4 2 0
0 1 2

)

β (4.30)
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with α1 + α2 = 1 and α, β ≥ 0 and integer. In this example, we obtain a
representation that consists of irreducible solutions only. �

4.4.4 Multi-row group relaxations

So far we have focused on single-row group relaxations, which lead to cyclic
groups Z/DZ. For multi-row group relaxations with moduli ∆1, . . . , ∆k, we
are investigating a group problem in the direct product

G = (Z/∆1Z) × · · · × (Z/∆kZ).

Its structure depends on the existence of common divisors of the moduli. If
∆1, . . . , ∆k are pairwise coprime, then

(Z/∆1Z) × · · · × (Z/∆kZ) ∼= Z/(∆1 · · ·∆k)Z. (4.31)

Therefore, we could read off the irreducible solutions to the multi-row group
relaxations from the single-row master group table of modulus ∆1 · · ·∆k.

In the more general case, we can consider a chain of subgroups of G and
apply the iterative construction above. For instance, we could take the chain

Z/∆1Z ≤ (Z/∆1Z) × (Z/∆2Z)

≤ (Z/∆1Z) × (Z/∆2Z) × (Z/∆3Z) ≤ · · · ≤ G.

Table 4.4 shows the number of irreducible solutions to two-row master group
problems. One can see that in the case of coprime moduli, we obtain the same
number of irreducible solutions as in the single-row master table of the product
of the moduli.

4.5 Algorithms based on reformulations

We now discuss two ways, one dual and one primal, to incorporate the ex-
tended reformulations presented above algorithmically. We are trying to solve
an integer program

max cT x
s. t. Ax = b

x ∈ Z
n
+.

(4.32)

For the primal algorithm we assume that a solution x0 ∈ Z
n
+ feasible for (4.32)

is given.

In Table 4.5 we present the dual scheme. On the other hand the primal
approach closely follows the Integral Basis Method; it is shown in Table 4.6.
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First modulusSecond
modulus 2 3 4 5

2 10
3 56∗ 252
4 132 1445∗ 5228
5 598∗ 6375∗ 40031∗ 169892
6 1048 12954 106022
7 4054∗ 63472∗

8 6324 147231∗

9 18852∗ 311253

Table 4.4: The number of irreducibles for two-row master group problems. An
asterisk marks the numbers corresponding to coprime pairs of moduli.



124 CHAPTER 4. REFORMULATIONS OF GROUP RELAXATIONS

1. Initialization
Take any valid formulation of the integer program.

2. Geometric Search for Fractionality
Compute a fractional point xfrac of the polyhedron, for instance the
linear relaxation optimum.
If no such point exists, return the linear relaxation optimum as an
optimal solution of (4.32).

3. Group Relaxation
Generate a group relaxation

Y G = {x ∈ Z
n
+ : Bx ≡ f (mod ∆)}

from a subset of tight constraints defining xfrac.

4. Reformulation
Compute an extended reformulation for Y G.

5. Make Compact
Use bounds on variables, as well as other problem constraints or
problem knowledge to eliminate as many of the new variables as
possible, adding also GUB or SOS constraints to the description of
Y G. The goal here is to prevent an excessive increase in the number
of variables. If the number is still too large, the set Y G must be
relaxed further.

6. Update Problem Formulation

7. Go to Step 2.

Table 4.5: The dual algorithmic scheme
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1. Initialization
Compute an integer tableau for which x0 is the basic feasible solu-
tion.

2. Group Relaxation
How to choose the appropriate group relaxation is less clear, as there
is no obvious point to be cut off.

3. Reformulation

4. Make Compact

5. Update Simplex Tableau
Update the integer tableau introducing the new columns and rows.
Select the right variables to enter the basis in order to recover a
tableau.

6. Augmentation
Check for augmentation, i.e., check if there exists a new column v of
positive reduced cost such that xi + v is feasible. In that case, pivot
in v in an integer fashion and obtain an integer tableau representing
the new feasible solution xi+1 = xi + v.

7. Go to Step 2.

Table 4.6: The primal algorithmic scheme

In our tests, we have combined the two in the sense that we take a primal
all-integer tableau to launch the dual algorithm, and we use the group relax-
ation of the dual scheme to provide a group for the primal. The Integral Basis
Method introduced by Haus, Köppe and Weismantel [29] provides the algorith-
mic frame for testing our algorithm. In particular the following four phases
have been described in [29]: Initialization, Make Compact, Update Simplex
Tableau, Augmentation. In Section 4.4, we addressed the question of comput-
ing the reformulation. In the following, we address some questions related to
the phases Search for Fractionality and Group Relaxation.

Geometric Search for Fractionality. We start from an integer point x.
Associated with this integer point is an algebraic tableau representation that
encodes the geometry of the underlying linear programming relaxation. Inves-
tigating a small subset of the rows of this tableau means geometrically that
we only consider the vicinity of x. However the “interesting” part of the linear
programming polyhedron is hidden. These heuristic arguments motivate to
inspect the linear programming optimum and use its tableau representation to
select few rows from which a group relaxation can be built that cuts off the
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fractional point.

Group Relaxation. We compute the linear programming optimum of our
current tableau using floating point arithmetic (with CPLEX). We extract one
or two fractional basic variables whose fractional part is closest to 1/2. For
those variables, we reconstruct in exact rational arithmetic the corresponding
rows. It turns out that on our entire test set, the least common multiple of
all the denominators occuring in a fractional row is gigantic, namely up to
hundreds of digits. Clearly one cannot work with a group of this size. Our
strategy is to define a tractable group problem by selecting a modulus (or two
moduli) between 2 and 20 (between 2 and 8) for which the irreducible solutions
have been tabulated in our database. Within this range, we choose a modulus
that

(i) is not a divisor of the right hand side, in order to cut off the optimum
point with our group relaxation,

(ii) is a divisor of the coefficient of the basic variable, if possible. Otherwise,
there always exists some optimal solution to the group problem that has
a zero reduced cost and the value of the dual bound does not change.

(iii) produces the maximum number of 0-residue coefficients in order to reduce
the size of the reformulation.

Example: Suppose that an interesting row provided by the fractional tableau
at the optimum LP point is

x0 +
930

1000
x1 +

1724

1000
x2 −

937

1000
x3 −

620

1000
x4 +

30

1000
x5 =

127

1000
,

where x0 is the basic variable. It can also be written in integer form

1000x0 + 930x1 + 1724x2 − 937x3 − 620x4 + 30x5 = 127.

As we pointed out before, it is computationally intractable to work with a
(mod 1000) group. We decide therefore to choose some modulus between 2 and
20 in order to be able to use our precomputed table of irreducible solutions.
We preferably choose a divisor of 1000. If we choose 5 or 10 as a modulus, four
variables will disappear from the group relaxation, which can be interesting in
the point of view of having a reformulation that is not too large. Furthermore,
as 127 is not divisible by 5, the group relaxation will cut off the fractional point.
Choosing 5 as the order of the group, we obtain

Y (2) = {x2, x3 ∈ Z+ : 4x2 + 3x3 ≡ 2 (mod 5)}.
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p0033, IP value 3089 lseu, IP value 1120

Iteration Columns LP bound Iteration Columns LP bound

0 33 2520.6 0 89 837.0
10 95 2610.2 10 146 854.8
20 155 2647.4 20 199 901.6
30 195 2687.8 30 223 1001.1
40 221 2824.1 40 281 1006.8
50 290 2830.9 50 329 1008.2
70 361 2832.7 60 414 1008.9

110 626 2833.9 70 454 1009.2
120 653 2840.6 80 490 1009.3

Table 4.7: Closing the IP gap for some MIPLIB instances

4.6 Computational experiments

4.6.1 Improving the dual bound

In our first set of computational experiments, we explored how the strength of
the formulation is changed by the reformulation steps. For several 0-1 problems
from the benchmark library MIPLIB, we set up an all-integer simplex tableau
corresponding to the optimal integer solution. Starting from this formulation,
we apply aggregated reformulations based on single-row group relaxations, in
order to improve the linear programming dual bound. Table 4.7 shows the
results on some instances.

Some of the MIPLIB instances, like the Padberg–Crowder–Johnson instances
p0548 and p2756, involve rows with big-M coefficients. It is clear that a group
reformulation with such rows is very weak or even meaningless. Therefore, we
ran these instances through the IP preprocessor of CPLEX 8.1 before starting
our procedure. Table 4.8 shows the results.

In other instances, such as the Padberg–Crowder–Johnson instance p0201,
we found that it was impossible to get an improvement of the LP value with
the reformulation technique unless we started from a formulation augmented
with strong cutting planes. To this end, we used CPLEX 8.1 to generate cutting
planes at the root node of its computation. For technical reasons, we disabled
all cut classes that lead to fractional coefficients. Table 4.9 shows the results
for the instance p0201, where GUB cover cuts and cover cuts were applied.
It also shows the results for the instance p0548, where only clique cuts were
applied. We remark that CPLEX 8.1 can solve the latter instance in the root
node, so we had to disable most cut classes for the experiment.

In all instances that we tested, we had to observe that after a number of
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p0548, IP value 8691 p2756, IP value 3124

Iteration Columns LP bound Iteration Columns LP bound

0 371 7665.6 0 1557 2808.8
10 464 7681.1 10 1659 2809.5
20 613 7699.4 20 1715 2814.6
30 736 7710.1 30 1782 2816.6
40 2070 7764.2 50 2225 2817.6
50 3307 7801.6 60 2311 2818.0
60 3574 7807.7 70 2379 2818.9
70 3893 7842.2 80 2431 2824.7
80 3979 7941.4 90 2486 2827.5
90 4034 7975.1 100 2564 2836.0

100 4129 7997.3 110 2633 2853.9
110 4199 8017.2 120 2703 2861.7
120 4251 8026.7 130 2764 2862.5
130 4355 8047.7 150 2939 2863.3

Table 4.8: Closing the IP gap for MIPLIB instances after IP preprocessing

p0201, IP value 7615 p0548, IP value 8691

Iteration Columns LP bound Iteration Columns LP bound

0 159 7185.0 0 362 8135.6
2 187 7235.5 5 376 8142.7
4 201 7239.6 10 394 8152.1
6 229 7243.5 15 437 8154.5
8 263 7250.7 20 477 8156.3

10 494 7260.1 25 528 8162.3
12 504 7276.0 30 567 8166.1
14 513 7281.6 35 676 8184.5
16 525 7284.6 40 1072 8191.1
18 570 7286.8 45 1584 8204.0
20 588 7288.3 50 1929 8212.2
22 655 7290.6 53 1934 8237.0

Table 4.9: Closing the IP gap for MIPLIB instances augmented with strong
cuts
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iterations, the LP bound will not change any more, or only improve by tiny
amounts. The reason is that the determinant of the optimal simplex basis of
the problem increases during the reformulation algorithm. This implies that
the effect of the group reformulations with small moduli becomes smaller.

4.6.2 Search for augmentation

Some experiments were also carried out to check that the group reformulation
provides augmenting vectors in the reformulation. The algorithm used is the
same as presented above. However the focus has sometimes to be put differ-
ently when the search for augmentation is a priority. For example, when one
looks for a local augmentation, it seems better to inspect local rows. In this
respect, Step 2 “Geometric Search for Fractionality” is reduced to search for
interesting rows in the current tableau. The choice of the Group Relaxation in
Step 3, is done in the same way except that we do not need to chose moduli
that will likely cut off the fractional LP point. Indeed one only focuses on find-
ing augmenting vectors within the reformulation and even sometimes do not
use the reformulation further as explained now. In Step 4, if one uses an ag-
gregated or path reformulation, the augmenting vectors are still hidden in the
rows modeling the aggregation or in the rows modeling the flow conservation
constraints. On the other hand, a disaggregated reformulation shows explicitly
all the basic solutions to the group problem and therefore all the candidates
for an augmentation. That is why we chose to perform disaggregated refor-
mulations or aggregated reformulations with a heuristic to implicitly visit the
vectors.

We tested the search for augmentation on some instances of the MIPLIB.
Each time we find an augmentation, we recompute a tableau with the origi-
nal variables in order to keep a size for which disaggregated formulations are
computable. The computation is stopped when no augmentation vector can be
found on a row of the current tableau. The results are presented in Table 4.10
and 4.11.

Objective Row Modulus Gap closed

1660 R123 10 35 %
1472 R123 10 66 %
1303

Table 4.10: Augmentation for the MIPLIB instance lseu, IP value 1120
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Objective Row Modulus Gap closed

366 777 R1026 5 34 %
329 640 R1026 5 38 %
325 655 R1056 5 41 %
322 538

Table 4.11: Augmentation for the MIPLIB instance p0282, IP value 258411



Chapter 5

Basis reduction for a

structured problem

5.1 Introduction

In this chapter, we present the results of [44]. We introduced in Chapter 1
the problem of sharing objects of an attic in the fairest possible way. In this
chapter we treat the same problem but in its financial form. Consider a banker
who must establish a certain number of portfolios for his clients. Client i’s
portfolio must consist of di shares, and the banker holds aj shares of type j
whose estimated profit per share is pj. The banker’s problem is to divide up
the

∑

aj shares among the clients so that the expected profit per share of each
client is as close as possible to the average value. Mathematically, he has the
problem of finding a solution of



















∑

j xij = di 1 ≤ i ≤ m
∑

i xij = aj 1 ≤ j ≤ n
1
di

(

∑

j pjxij

)

' c̄ 1 ≤ i ≤ m

x ∈ Z
mn
+ ,

(5.1)

where c̄ is the average expected profit
∑

i

∑

j
pijxij

∑

xij
and ' means that we want

to be as close as possible to equality. One natural way to attempt to solve
this problem is to introduce nonnegative slack variables s+

i and s−i , write
1
di

∑

j pjxij + s+
i − s−i = c̄, take as objective function: min

∑

i s+
i +

∑

i s−i ,
and then solve the resulting mixed integer program with a commercial system
using branch-and-bound or branch-and-cut such as Cplex or Xpress. As we
already said in the introduction, this does not work. Even for small problems
with m = 6 clients and n = 15 share types, an optimal solution cannot be
found within hours.

131
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The banker’s problem is a variant with integer variables of the market share
problem [60]. An alternative viewpoint is to see it as a closest vector problem.
Specifically we have to find a nonnegative integer combination of the vectors
(ei, ej , pjei)

T that is as close as possible to the vector (d, a, c̄d)T .

The close relation to lattice problems suggests use of the reformulation
proposed by Aardal et al. [2] that was introduced in Section 1.2.8. Specifically
if we want to find points in the set

Z = {x ∈ Z
N
+ : Ax = b},

where A ∈ Z
M×N and b ∈ Z

M , we use the following two-step approach based
on basis reduction. In step 1 we use basis reduction on the associated lattice




I 0
0 1
A −b



 of dimension N +M +1 to construct an alternative representation

of the feasible set Z of the form

Z = {x : x = q + Pλ, λ ∈ Z
N−M , x ≥ 0}, (5.2)

where q, P are integer, Aq = b, P is an integral basis of the null space of A and
due to the basis reduction algorithm q and the columns of P are “short”. In
step 2, we use a standard approach to solve the problem on the reformulated
set Z with λ ∈ Z

N−M as the variables. The standard approach usually is a
branch-and-bound or branch-and-cut system such as Cplex or Xpress. For small
instances of the banker’s problem, this approach works whereas the original
MIP approach does not.

However difficulties arise when we try to solve larger instances by this ap-
proach. The dimension of the lattice to be reduced is (M +N +1), and the basis
reduction algorithm is O((M +N)4) [11, 32]. For M +N greater than 300, the
basis reduction algorithm becomes too time consuming. To overcome this dif-
ficulty, we propose to take advantage of the special structure of Z. Specifically
we consider sets of the form

Z = {X ∈ Z
m×n
+ : XA = C, BX = D}, (5.3)

where A ∈ Z
n×K , B ∈ Z

L×m, C ∈ Z
m×K and D ∈ Z

L×n. Note that with

A =

(

1 · · · 1
p1 · · · pn

)T

and B =
(

1 · · · 1
)

, we obtain the system (5.1)

arising in the banker’s problem presented above.

For the system (5.3), the direct approach of Aardal et al. involves reducing
a basis of dimension (mn + Km + Ln + 1) which is impractical. Instead, we
work with the separate lattices LA = {x ∈ Z

n : xA = 0} and LB = {x ∈ Z
m :

Bx = 0}, and we use the same approach to compute bases of LA and LB , and
use the resulting basis vectors to construct a reduced basis for the large lattice

L = {X ∈ Z
m×n : XA = 0, BX = 0}.
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In this chapter, it is important not to be confused by the different sizes of
the vectors and matrices. Therefore we choose to use a more careful notation
than in the previous chapters. Specifically

• An underlined letter a represents a vector (of any dimension).

• ai represents the ith component of the vector a.

• ap represents the pth vector of a collection of vectors.

• ap
i represents the ith component of the pth vector of the collection.

• A capital letter A or a double underlined letter a represents a matrix.

• 〈x, y〉 represents the standard inner product of x by y.

5.2 Constructing an integral basis for L

The problem we address in this section is to find an alternative representation
of

L = {X ∈ Z
m×n : XA = 0, BX = 0}, (5.4)

with given matrices A ∈ Z
n×K , with K ≤ n of rank K, and B ∈ Z

L×m, with L ≤
m of rank L.

Considering the second equation of (5.4), each column of X has to be a

solution of the system Bx = 0. Let β =
(

β1 · · · βm−L
)

denote an integral

basis of the lattice LB = {x ∈ Z
m : Bx = 0}. Thus each matrix X ∈ L can be

written

X = β







λ1

...

λm−L






, (5.5)

with λ1, · · · , λm−L ∈ Z
n. Similarly we can use an integer basis of the lat-

tice LA = {x ∈ Z
n : xT A = 0} to describe the vectors of L. Letting

α =







α1

...
αn−K






be such an integral basis, each solution X of (5.4) can be

written

X =
(

µ1 · · · µn−K
)

α, (5.6)

where µ1, · · · , µn−K ∈ Z
m.

Now we can state the main result of this section.
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Theorem 5.1 The matrices X ∈ L are precisely the matrices of the form

X = βΛα, (5.7)

with Λ ∈ Z
(m−L)×(n−K).

To prove this theorem, we need several intermediate results.

Observation 5.1 For fixed unimodular matrices M ∈ Z
m×m and N ∈ Z

n×n,
any Y ∈ Z

m×n can be written as

Y = MΛN, (5.8)

with Λ ∈ Z
m×n.

Proof: This is obvious by taking Λ = M−1Y N−1 which is integral. �

The next two lemmas use the notion of Smith normal form that we now need
to introduce.

Proposition 5.1 (Smith Normal Form) Let A be an integer matrix of Z
m×n

with m ≥ n and rank(A) = r. There exist unimodular matrices U ∈ Z
m×m and

V ∈ Z
n×n such that

UAV =















s1

. . .

sr

0
0
(m−n)×n















, (5.9)

with s1|s2| . . . |sr. For 1 ≤ k ≤ r, Πk
i=1si is the gcd of the determinants of all

k × k submatrices of A. The matrix in the right hand side of (5.9) is unique
and called the Smith normal form of A.

The Smith normal form allows us to characterize the bases of integral solutions
of linear systems.

Lemma 5.2 Consider the lattice {x ∈ Z
n : Cx = 0}, where C ∈ Z

m×n, m ≤ n
and rank(C) = m. Let Y = (y1, . . . , yn−m) ∈ Z

n×(n−m) be a set of solutions of
Cx = 0, then the following statements are equivalent

(i) The Smith normal form of Y is

(

I
0

)

.

(ii) Y is an integer basis of the lattice.
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Proof: (ii) ⇒ (i) As rank(Y ) = n − m, there exist two unimodular matrices
U and V such that

Y = U











s1

. . .

sn−m

0
m×(n−m)











V,

with U ∈ Z
n×n and V ∈ Z

(n−m)×(n−m) and sn−m ≥ 1. As V is unimodular,
its inverse exists, and we can write

Y V −1 = U











s1

. . .

sn−m

0
m×(n−m)











.

Then

U











s1

. . .

sn−m

0
m×(n−m)











=
(

s1u
1 · · · sn−mun−m

)

(5.10)

is also an integer basis of the integer solutions of Cx = 0 since it is obtained
by multiplying a basis by the unimodular matrix V −1. So sn−mun−m is a
solution of Cx = 0 and un−m is an integral solution as well. However it is only
spanned by the basis (5.10) if sn−m = 1. Hence, sn−m = 1 and si = 1 for
i = 1, · · · , n − m by the divisibility property of the Smith normal form.

(i) ⇒ (ii): There exists a basis of all the integer solutions of Cx = 0. Let
us call it W . By hypothesis, we can find two unimodular matrices U ∈ Z

n×n

and V ∈ Z
(n−m)×(n−m) such that

UY V =

(

In−m

0
m×(n−m)

)

. (5.11)

As each column of Y is a solution of Cx = 0, each of them is an integer
combination of the columns of W . Thus, there exists a nonsingular integer
matrix Λ ∈ Z

(n−m)×(n−m) such that

Y = WΛ. (5.12)

To prove that Y is an integer basis of the solutions of Cx = 0, we just have to
prove that this matrix Λ is unimodular. We now show that ΛV is unimodular.
Let S be its Smith normal form, so

PΛV Q = S,
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with P and Q unimodular. Rewriting (5.11), we now have

UWΛV = UWP−1SQ−1 =

(

I
0

)

.

As U and Q−1 are unimodular, the Smith normal form of WP−1S is

(

I
0

)

.

In WP−1S, all the elements of the last column are multiples of the last element
of the diagonal of S, and thus sn−m = 1. Therefore the Smith normal form of

ΛV is

(

I
0

)

, and ΛV is unimodular. Therefore Λ is unimodular and Y is a

basis. �

Lemma 5.3 A matrix Y ∈ Z
n×(n−m) whose Smith normal form is

(

I
0

)

can

be extended to a unimodular matrix.

Proof: There exist unimodular matrices M and N such that

Y =
(

M1 M2

)

(

I
0

)

N,

with M1 ∈ Z
n×(n−m), M2 ∈ Z

n×m. Thus, we have that

Y = M1N.

Now, consider the completion ( Y M2 ), we have that

(

Y M2

)

=
(

M1N M2

)

=
(

M1 M2

)

(

N 0
0 I

)

.

Thus,
| det( Y M2 )| = | detM || detN || det I| = 1,

and M2 completes Y as a unimodular matrix. �

Proof of Theorem 5.1: By using the two lemmas, we know that we can
complete α and β into unimodular matrices. We denote these completions by

αc and βc. Therefore, by Observation 5.1, X ∈ Z
m×n can be expressed as

X =
(

β βc
)

(

Λ1 Λ2

Λ3 Λ4

)(

α
αc

)

,

or expanding

X =
(

βΛ1 + βcΛ3 βΛ2 + βcΛ4

)

(

α
αc

)

= (βΛ1 + βcΛ3)α + (βΛ2 + βcΛ4)α
c.
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Recall that each solution of (5.4) can be written in both forms (5.5) and (5.6).
From the necessary condition (5.6), we see that X must be a combination of
the rows of α. Since α and αc are linearly independent, βΛ2 + βcΛ4 = 0. But

now, since the columns of β and βc are linearly independent, we can conclude

that, for each solution X of (5.4),

Λ2 = Λ4 = 0.

Identically, by taking the condition (5.5), we can conclude that

Λ3 = Λ4 = 0.

Hence,

X =
(

β βc
)

(

Λ1 0
0 0

)(

α
αc

)

.

and the set of solutions of (5.4) can be characterized as

X = βΛ1α,

for a Λ1 ∈ Z
(m−L)×(n−K). Conversely, it is clear that every X of this form is a

member of (5.4). �

We have a general form of the vectors of (5.4). Now, we introduce some classical
notions that allow us to simplify notation.

Definition 5.1 Given a matrix Y , vec(Y ) denotes the column composed of the
first column of Y followed by the second, etc.

Definition 5.2 The Kronecker product of two matrices C ∈ R
m×n and D ∈

R
p×q is

C ⊗ D =







c11D · · · c1nD
...

. . .
...

cm1D · · · cmnD






,

belonging to R
mp×nq.

Proposition 5.4 For matrices C, Y, D such that CY D exists,

vec(CY D) = (DT ⊗ C)vec(Y ).

Proof: See, for example, [38]. �

Proposition 5.5 (αT ⊗ β) is a basis for the vectorized solutions of (5.4).
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Proof: Applying Proposition 5.4 to the matrix X given by Theorem 5.1, we
obtain

vec(X) = (αT ⊗ β)vec(Λ).

�

So in other words, a basis for L is obtained by taking the Kronecker product
of the bases α and β of LA and LB respectively.

Example Consider the following linear system with m = 3 and n = 4.

x11 + x21 + x31 = 0
x12 + x22 + x32 = 0
x13 + x23 + x33 = 0
x14 + x24 + x34 = 0















Equations BX = 0

x11 + x12 + x13 + x14 = 0
16x11 + 57x12 + 23x13 + 66x14 = 0
x21 + x22 + x23 + x24 = 0
16x21 + 57x22 + 23x23 + 66x24 = 0
x31 + x32 + x33 + x34 = 0
16x31 + 57x32 + 23x33 + 66x34 = 0































Equations XA = 0

xij ∈ Z, for i = 1, · · · , 3 and j = 1, · · · , 4.

The set of solutions form a lattice L = {X ∈ Z
3×4 : XA = 0, BX = 0}, with

A =









1 16
1 57
1 23
1 66









, B =
(

1 1 1
)

and X =





x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34



 .

By Proposition 5.5 an integer basis can be found by computing the integer
bases of the two lattices separately. First of all, we consider the lattice LB

(

1 1 1
)





y1

y2

y3



 = 0, y1, y2, y3 ∈ Z.

It is readily verified that β =

(

1 −1 0
0 1 −1

)T

is an integer basis of LB (such

a basis can be found by basis reduction). Similarly, for the lattice LA,

(

y1 y2 y3 y4

)









1 16
1 57
1 23
1 66









=
(

0 0
)

, y1, y2, y3, y4 ∈ Z,



5.3. A REDUCED BASIS OF L 139

an integer basis α =

(

−1 −4 2 3
10 −3 −11 4

)

is obtained. Taking the Kronecker

product of the two bases, we obtain that

(αT⊗β) =









−1 1 0 −4 4 0 2 −2 0 3 −3 0
0 −1 1 0 −4 4 0 2 −2 0 3 −3
10 −10 0 −3 3 0 −11 11 0 4 −4 0
0 10 −10 0 −3 3 0 −11 11 0 4 −4









T

is a basis of the lattice L.

5.3 A reduced basis of L

In this section we show that, up to a reordering of the vectors, the basis con-
structed by computing the Kronecker product of reduced bases of the small
lattices is itself reduced.
Observe that each column of the Kronecker product of the two matrices α and
β is the Kronecker product of a row (basis vector) of α with a column of β

(basis vector). We also need to take inner products of such vectors.

Proposition 5.6 Let v1 := γ1 ⊗ δ1 and v2 := γ2 ⊗ δ2 with γi ∈ R
n and

δi ∈ R
m. Then

〈v1, v2〉 = 〈γ1, γ2〉〈δ1, δ2〉.

Proof:

〈v1, v2〉 = 〈(γ1
1δ1, · · · , γ1

nδ1), (γ2
1δ2, · · · , γ2

nδ2)〉

= γ1
1γ2

1〈δ
1, δ2〉 + · · · + γ1

mγ2
m〈δ1, δ2〉

= 〈γ1, γ2〉〈δ1, δ2〉. �

We also need to work with reduced bases. Let us recall Definition 1.13 of
Section 1.2.8.

Definition 5.3 Given r linearly independent vectors bj ∈ Z
n, (bj)j=1,··· ,r is a

reduced basis if

(i) |µij | ≤
1
2 for all i < j

(ii) ‖b̂
j+1

+ µj,j+1b̂
j
‖2 ≥ 3

4‖b̂
j
‖2 for 1 ≤ j ≤ r − 1

where µij = 〈bj ,b̂
i
〉

〈b̂
i
,b̂

i
〉
, and (b̂

j
)j=1,··· ,r is the Gram-Schmidt orthogonalization of

(bj)j=1,··· ,r.
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For the rest of this section, we study the integral basis V = (vpq) = (αp ⊗ βq)

constructed in Section 5.2, where (αp)P
p=1 and (βq)Q

q=1 are now reduced bases
with P = n−K and Q = m−L. To simplify the notation, we suppose that αp

represents the pth row of α while βq represents the qth column of β. Let (α̂p)p,

(β̂
q
)q denote the Gram-Schmidt orthogonalization of the bases (αp)p and (βq)q

respectively, with Gram-Schmidt coefficients denoted µα and µβ respectively.

We now consider possible orderings of the set V of basis vectors. Through-
out this section (p, q) < (p′, q′) means that p ≤ p′ and q ≤ q′ and (p, q) 6=
(p′, q′). On the other hand (i, j) ≺ (i′, j′) means that vij comes before vi′j′ in
the ordering.

Definition 5.4 A total ordering of the basis V is called a monotone ordering
if, for any distinct pair of vectors vpq and vp′q′

with (p, q) < (p′, q′), vpq precedes
vp′q′

in the ordering (or (p, q) ≺ (p′, q′)).

Proposition 5.7 For any monotone ordering ≺ of the integral basis V , (v̂pq) =

(α̂p ⊗ β̂
q
) is the Gram-Schmidt orthogonalization of V.

Proof: Clearly, v̂11 = v11 = α1 ⊗β1 = α̂1 ⊗ β̂
1
. We then proceed by induction

on ≺. We have

α̂p ⊗ β̂
q

= (αp −

p−1
∑

i=1

µα
ipα̂

i) ⊗ (βq −

q−1
∑

j=1

µβ
jq β̂

j
) by the Gram-Schmidt procedure

= vpq − αp ⊗ (

q−1
∑

j=1

µβ
jqβ̂

j
) − (

p−1
∑

i=1

µα
ipα̂

i) ⊗ βq +

p−1
∑

i=1

q−1
∑

j=1

µα
ipµ

β
jq(α̂

i ⊗ β̂
j
)

= vpq − (α̂p +

p−1
∑

k=1

µα
kpα̂

k) ⊗ (

q−1
∑

j=1

µβ
jqβ̂

j
) − (

p−1
∑

i=1

µα
ipα̂

i) ⊗ (β̂
q
+

q−1
∑

l=1

µβ
lqβ̂

l
)

+

p−1
∑

i=1

q−1
∑

j=1

µα
ipµ

β
jq(α̂

i ⊗ β̂
j
)

= vpq −
∑

(i,j)<(p,q)

µ̃ij(α̂
i ⊗ β̂

j
).

Now by induction, v̂ij = α̂i ⊗ β̂
j

for all (i, j) ≺ (p, q). Because (i, j) < (p, q)
implies (i, j) ≺ (p, q), it follows that

v̂ij = α̂i ⊗ β̂
j

for all (i, j) < (p, q).

Hence,

α̂p ⊗ β̂
q

= vpq −
∑

(i,j)<(p,q)

µ̃ij v̂
ij . (5.13)
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We now need to show that α̂p⊗β̂
q

is orthogonal to all the v̂ij with (i, j) ≺ (p, q).
Indeed, we have

〈(α̂p ⊗ β̂q), v̂ij〉 = 〈α̂p ⊗ β̂
q
, α̂i ⊗ β̂

j
〉 for all (i, j) ≺ (p, q)

= 〈α̂p, α̂i〉〈β̂q , β̂j〉 by Proposition 5.6

= 0 for all (i, j) ≺ (p, q),

because either i 6= p or j 6= q. �

Let us remark that in the expression (5.13), only the indices (i, j) < (p, q)
have a corresponding µ non zero. This leads to the following observation.

Observation 5.2 For a monotone ordering on V ,

µ(i,j)(p,q) = 0 for all (i, j) ≺ (p, q)with (i, j) 6< (p, q).

Proposition 5.8 For any monotone ordering of the basis V , condition (i) of
Definition 5.3 of a reduced basis is satisfied.

Proof: Let (p1, q1), (p2, q2) be a pair of indices, with (p1, q1) ≺ (p2, q2). If
(p1, q1) 6< (p2, q2), µ(p1,q1)(p2,q2) = 0 by Observation 5.2. Let us now consider
(p1, q1) < (p2, q2). We have

µ(p1,q1)(p2,q2) =
〈vp2q2 , v̂p1q1〉

〈v̂p1q1 , v̂p1q1〉

=
〈αp2 , α̂p1〉〈βq2 , β̂

q1
〉

〈α̂p1 , α̂p1〉〈β̂
q1

, β̂
q1
〉

by Proposition 5.6

= µα
p1p2

µβ
q1q2

.

Now as (αj) and (βi) are reduced bases, |µα
p1p2

|, |µβ
q1q2

| ≤ 1
2 , and thus

|µ(p1,q1)(p2,q2)| = |µα
p1p2

| |µβ
q1q2

|

≤
1

4
.

�

Now we need to refine the ordering of the basis V in order to satisfy condition
(ii) of Definition 5.3.

Definition 5.5 A monotone ordering of the basis V is called regular if when-
ever vp1q1 directly precedes vp2q2 in the ordering and (p1, q1) 6< (p2, q2), ‖v̂

p1q1‖ ≤
‖v̂p2q2‖.
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Proposition 5.9 If the basis V has a regular monotone ordering, it is a re-
duced basis.

Proof: It suffices to show that the Condition (ii) of Definition 5.3 of a reduced
basis is satisfied. Consider two pairs (p1, q1), (p2, q2) where (p1, q1) directly
precedes (p2, q2) in the ordering. There are two cases.
Case 1: (p1, q1) < (p2, q2). Because the ordering is monotone, this implies that
either p2 = p1 + 1 and q1 = q2 or p1 = p2 and q2 = q1 + 1. Suppose without
loss of generality that p2 = p1 + 1 and q1 = q2.

‖v̂p1+1,q1 + µ(p1,q1)(p1+1,q1)v̂
p1q1‖2

= ‖α̂p1+1 ⊗ β̂
q1

+
〈αp1+1,α̂p1 〉〈βq1 ,β̂

q1 〉

〈α̂p1 ,α̂p1〉〈β̂
q1 ,β̂

q1 〉
(α̂p1 ⊗ β̂

q1
)‖2

= ‖α̂p1+1 ⊗ β̂
q1

+ µα
p1,p1+1(α̂

p1 ⊗ β̂
q1

)‖2 since 〈βq1 , β̂
q1
〉 = 〈β̂

q1
, β̂

q1
〉

= ‖(α̂p1+1 + µα
p1,p1+1α̂

p1) ⊗ β̂
q1
‖2

= ‖α̂p1+1 + µα
p1,p1+1α̂

p1‖2‖β̂
q1
‖2

≥ 3
4‖α̂

p1‖2‖β̂
q1
‖2 since (αj) is reduced

= 3
4‖α̂

p1 ⊗ β̂
q1
‖2 = 3

4‖v̂
p1q1‖2.

Case 2: (p1, q1) 6< (p2, q2)
By Observation 5.2, we know that µ(p1,q1)(p2,q2) = 0. So

‖v̂p2q2 + µ(p1,q1)(p2,q2)v̂
p1q1‖2 = ‖v̂p2q2‖2

≥ ‖v̂p1q1‖2 as the ordering is regular

>
3

4
‖v̂p1q1‖2.

�

We now present an algorithm to construct a regular monotone ordering of the
basis V .

Definition 5.6 Given a vector vpq ∈ V , the direct successors of vpq are the
vectors vp+1,q and vp,q+1 (if they exist) and the predecessors are the vectors
vp′q′

with (p′, q′) < (p, q).
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Ordering Algorithm: RB is an ordered set of vectors from V .
S is a set of vectors from V .

Initialization: RB := {v11}
S := {v12, v21}.

Loop: While S 6= ∅ do
Choose v ∈ S such that v = argmin{‖x̂‖ : x ∈ S}
RB := RB ∪ {v}
S := S \ {v}
Add to S any direct successor of v
that has all its predecessors in RB.

end

Return RB in order.

Proposition 5.10 The ordering algorithm terminates with a regular monotone
ordering of V .

Proof: The monotonicity is obvious because of the criterion of selection of
vectors entering S. Indeed, if (p, q) < (p′, q′), a vector vp′q′

cannot come before
vpq because it cannot enter S until vpq is in RB.

Now we have to prove the regularity. On each loop, we choose a vector
v ∈ S. None of the remaining vectors in S are direct successors of v, and
all the vectors that are added to S during the loop are direct successors of v.
Therefore on the following loop, either we choose a vector w that is not a direct
successor of v and thus ‖ŵ‖ ≥ ‖v̂‖ because v was chosen ahead of w on the
previous loop, or we choose a vector w that is a direct successor of v. Therefore
the condition of regularity is satisfied.

Finally we have to check that the algorithm terminates with |RB| = |V |.
On each loop, exactly one vector is added to RB. So the algorithm has to stop.
Suppose now that the algorithm terminates with RB ⊂ V . Select p := min{p :
∃ j with vpj 6∈ RB}. Now select q := min{q : vpq 6∈ RB}. Clearly, vpq can be
added to S since vp−1,q ∈ RB (or p = 1) and vp,q−1 ∈ RB (or q = 1) and
thus all its direct predecessors are in RB. Therefore S 6= ∅, and the algorithm
cannot have ended, a contradiction. So |RB| = |V |. �

Theorem 5.2 RB is a reduced basis of the lattice L.

To end this section, we observe that stronger properties hold for the reduced
basis RB of L than for a general reduced basis. The next two propositions give
the results for a general lattice [40] and for L respectively. We first recall the
notion of determinant of a lattice.
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Definition 5.7 Let Lγ ⊆ Z
n be a lattice and (γk)r

k=1 be one of its bases. The
determinant of Lγ is defined by

det Lγ =

r
∏

k=1

‖γ̂
k
‖,

and is independent of the chosen basis.

Proposition 5.11 Let (γk)r
k=1 be a reduced basis of a r-dimensional lattice Lγ

in R
n. Then,

(i) ‖γ1‖ ≤ 2(r−1)/4(detLγ)
1
r

(ii) ‖γ1‖ ≤ 2(r−1)/2 min{‖w‖ : w ∈ Lγ , w 6= 0}

(iii)

r
∏

k=1

‖γk‖ ≤ 2r(r−1)/4 det(Lγ).

Proposition 5.12 For the reduced basis (vpq)p=1,··· ,P,q=1,··· ,Q of L,

(i) ‖v11‖ ≤ 2(P+Q−2)/4(det L)
1

PQ

(ii) ‖v11‖ ≤ 2(P+Q)/2 min{‖w‖ : w ∈ L, w 6= 0}

(iii)

P
∏

p=1

Q
∏

q=1

‖vpq‖ ≤ 2PQ(P+Q−2)/4det L.

Proof: We start by proving (i). We first need to express the determinant of L.

We have det LA =
∏P

p=1 ‖α̂
p‖ and det LB =

∏Q
q=1 ‖β̂

q
‖. Therefore

det L =

P
∏

p=1

Q
∏

q=1

‖α̂p ⊗ β̂
q
‖ =

P
∏

p=1

Q
∏

q=1

‖α̂p‖‖β̂
q
‖

=

(

P
∏

p=1

‖α̂p‖

)Q( Q
∏

q=1

‖β̂
q
‖

)P

= (det LA)Q(det LB)P . (5.14)

By Proposition 5.11, we now have

‖α1‖‖β1‖ ≤ 2
P−1

4 (det LA)
1
P 2

Q−1
4 (det LB)

1
Q

‖v11‖ ≤ 2
P+Q−2

4

(

(det LA)Q
)

1
PQ
(

(det LB)P
)

1
P Q

‖v11‖ ≤ 2
P+Q−2

4 (det L)
1

P Q ,
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using (5.14) for the last line.

We now turn to (ii). Let l = arg min{‖w‖ : w ∈ L, w 6= 0}. As l ∈ L,

there exist λpq ∈ Z such that l =
∑P

p=1

∑Q
q=1 λpqvpq. By the Gram-Schmidt

procedure, we also know that for all p, q,

vpq = v̂pq +
∑

(i,j)≺(p,q)

µ(i,j)(p,q)v̂
ij .

Therefore l can be written as a linear combination of Gram-Schmidt vectors

l =

P
∑

p=1

Q
∑

q=1

νpq v̂pq.

Furthermore, if we consider the largest index (i, j) in the ordering ≺ for which
|λij | ≥ 1, we also have that |νij | ≥ 1. Since the Gram-Schmidt vectors are
orthogonal, we also have that

‖l‖2 ≥ ‖v̂ij‖2 = ‖α̂i‖2‖β̂
j
‖2. (5.15)

From the definition of a reduced basis, we can easily deduce that

‖α̂i‖2 ≥

(

1

2

)P

‖α̂1‖2 (5.16)

‖β̂
j
‖2 ≥

(

1

2

)Q

‖β̂
1
‖2. (5.17)

From (5.15) combined with (5.16) and (5.17), we now obtain

‖l‖ ≥

(

1

2

)P+Q

‖α1‖2‖β1‖2

since α̂1 = α1 and β̂
1

= β.

Finally we prove (iii). From Proposition 5.11,

P
∏

p=1

‖αp‖ ≤ 2P (P−1)/4 det(LA), and (5.18)

Q
∏

q=1

‖βq‖ ≤ 2Q(Q−1)/4 det(LB). (5.19)
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For the lattice L,

P
∏

p=1

Q
∏

q=1

‖vpq‖ =

P
∏

p=1

Q
∏

q=1

‖αp‖‖βq‖

=

(

P
∏

p=1

‖αp‖

)Q( Q
∏

q=1

‖βq‖

)P

≤ 2QP (P−1)/4(detLA)Q2PQ(Q−1)/4(detLB)P (5.20)

= 2PQ(P+Q−2)/4 detL, (5.21)

where the inequality (5.20) comes from (5.18) and (5.19), and the equality
(5.21) from (5.14) �

Thus we see that if we want to find the shortest vector of the lattice, (ii)

shows that we obtain a guarantee that ‖v11‖ ≤ 2
P+Q

2 min{‖w‖ : w ∈ L, w 6= 0}

while the general bound is ‖v11‖ ≤ 2
PQ−1

2 min{‖w‖ : w ∈ L, w 6= 0}.

5.4 The Banker’s problem

5.4.1 Theoretical point of view

Here we show how the results of Section 5.2 can be used to tackle the banker’s
problem. Specifically we want to solve the problem

Problem 5.1

min

m
∑

i=1

|si|

di

s.t.
m
∑

i=1

xij = cj for j = 1, · · · , n

n
∑

j=1

xij = di for i = 1, · · · , m

n
∑

j=1

pjxij + si = di

∑

cjpj
∑

di
for i = 1, · · · , m

x ∈ Z
mn
+ , s ∈ Z

m.

(5.22)

We rescale the last set of equations so that all the coefficients and variables are
integer. This yields

(

m
∑

k=1

dk)

n
∑

j=1

pjxij + s̃i = di(

n
∑

j=1

cjpj).
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We can see that this system is of the form studied in Section 5.2 except for the
additional variables si. However, the system still has the same structure. In-

deed, taking X =







x11 · · · x1n s̃1

...
. . .

...
...

xm1 · · · xmn s̃m






, A =

(

1 · · · 1 0
(
∑

di)p1 · · · (
∑

di)pn 1

)T

and B = ( 1 · · · 1 ), we get the system (5.22), with one more equation,
namely

∑m
i=1 s̃i = 0. However every solution of (5.22) automatically satisfies

this equation.

To use the method of Aardal et al., we need the two reduced bases α and β

of LA and LB respectively, and also an integer solution X = Q to the equation
system of (5.22) with the nonnegativity constraints on x dropped (this is easily
found by inspection). Now the MIP to be solved in Step 2 becomes

min
∑

i

s̃+
i

di

∑

k dk
+
∑

i

s̃−i
di

∑

k dk

s. t.







x11 · · · x1n s̃+
1 − s̃−1

...
. . .

...
...

xm1 · · · xmn s̃+
m − s̃−m






= Q + βΛα

x, s̃+, s̃− ≥ 0, Λ ∈ Z
(m−L)×(n−K).

5.4.2 Computational results

Our set of test instances are randomly generated feasible instances of the
banker’s problem with expected profits uniformly distributed between 5 and
105, based on a real instance. The supplies are uniformly distributed be-
tween 1 and 50, and the demands are randomly generated while maintaining
∑

i di =
∑

j aj. In all the computations, LiDIA was used to calculate the re-
duced bases and Cplex, version 6.6 to solve the MIPs, both running on a Sun
Sparc Ultra 60.

In Table 5.1, we compare the basis reduction approach with the direct
MIP approach on five relatively small instances. The basis reduction approach
permits us to solve all of the instances within a few seconds. On the other hand,
none of the instances were solved by the direct MIP approach because, for each
instance, memory problems were encountered after more than an hour. In fact,
the linear programming relaxations stay at zero throughout the enumeration
tree (column LB = lower bound), but good feasible solutions are found (column
UB = upper bound).

In Table 5.2, we compare the computation times of the basis composition
approach using the product of two small reduced bases, and the direct basis
reduction approach. For both approaches, Time part 1 is the time in seconds to
construct the alternative MIP formulation by computing the integral basis of
the homogeneous system, and Time B&B is the time spent to prove optimality
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Sizes Basis reduction Direct MIP approach
n m Time LB UB Time LB UB

B&B B&B
16 5 1 1.5 10−2 *** 0 1.5 10−2

16 5 1 2.5 10−2 *** 0 2.5 10−2

16 5 0 8.9 10−3 *** 0 8.9 10−3

16 5 1 1.4 10−2 *** 0 1.4 10−2

16 5 1 1.7 10−2 *** 0 1.7 10−2

*** : Memory limit reached. Average time: 2 hours

Table 5.1: Comparison of direct MIP or basis reduction

with Cplex. For both approaches, the variable selection rule used in Cplex is
“pseudo-reduced costs” as it leads to better and more stable results. For the
direct basis reduction approach, we observe that the time required for basis
reduction becomes a limiting factor as the problem gets bigger. On the other
hand, using the composite basis approach, the time required in the MIP step
increases, but only slightly. This suggests that the product vectors are perhaps
not as short as those from direct basis reduction. But if we consider the total
computation time, it is always more interesting to use the composite basis
approach.

In Table 3 we run some larger instances with just the composite basis ap-
proach as the direct approach is now too time consuming. It appears that
for the banker’s problem, the difficulty depends on the number m of clients.
Instances with m = 15 are more difficult than instances with m = 8, even for
large n. As m approaches 20, proving optimality becomes difficult.
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Sizes Composite basis Direct basis reduction
n m Time Time LB UB Time Time LB UB

part 1 B&B part 1 B&B
22 9 1 1 3.6 10−2 552 2 3.6 10−2

22 9 1 2 5 10−2 527 1 5 10−2

22 9 1 3 6 10−2 632 1 6 10−2

22 9 1 1 3.4 10−2 554 1 3.4 10−2

22 9 1 1 3.4 10−2 519 1 3.4 10−2

30 12 1 12 8.3 10−2 4121 669 8.3 10−2

30 12 1 *** 5.5 10−2 6.7 10−2 3955 7 5.5 10−2

30 12 1 36 6.4 10−2 4315 8 6.4 10−2

30 12 1 10 6.6 10−2 4003 16 6.6 10−2

30 12 1 11 7.5 10−2 4438 5 7.5 10−2

15 15 1 24 2.1 10−1 1110 10 2.1 10−1

15 15 1 438 1.9 10−1 1241 6 1.9 10−1

15 15 1 12 2.1 10−1 1415 23 2.1 10−1

15 15 1 128 2.2 10−1 1416 9 2.2 10−1

15 15 1 123 3.1 10−1 1083 6 3.1 10−1

60 8 2 11 1.1 10−2 10252 2 1.1 10−2

60 8 2 7 9.5 10−3 10482 6 9.5 10−3

60 8 2 17 1.3 10−2 11223 7 1.3 10−2

60 8 2 7 1.4 10−2 10965 6 1.4 10−2

*** = more than one hour

Table 5.2: Comparison of constructed and direct basis reduction

Sizes Composite basis approach
n m Time LB UB GAP

B&B
50 15 156 6.4 10−2

50 15 140 4.4 10−2

50 15 57 5.2 10−2

50 15 *** 5.37 10−2 5.48 10−2 2%
50 15 118 4.5 10−2

30 20 *** 2 10−1 6.6 10−1 69%
30 20 *** 8.54 10−2 6.8 10−1 88%
30 20 1177 2.2 10−1

30 20 409 1.1 10−1

30 20 *** 2 10−1 2.4 10−1 17%
*** = more than one hour

Table 5.3: Critical sizes of the problems solved by this method



150 CHAPTER 5. USING STRUCTURE AND BASIS REDUCTION



Chapter 6

Conclusion

We now review the main results presented in the thesis and propose some
directions of future research in the areas explored.

Lifting The second chapter proposed a theory for the lifting of valid inequal-
ities and is based on [45]. We consider the set

Z2(b) = {z1 ∈ X1, z2 ∈ X2, s ∈ R
m
+ : A1z1 + A2z2 ≤ b + s} (6.1)

for which we want to generate valid inequalities. As this set may be too com-
plicated, we want to first fix the value of the variables z2 in order to obtain an
easier set Z1. We generate a valid inequality for Z1 and then find coefficients
for z2 to lift the variables in the inequality and obtain a valid inequality for
Z2(b).

A first important point is how to fix the variables z2. We have shown on
an example that we have to consider a face of Z2(b), Cz2 ≤ e for the lifting
to be feasible. In other words, we find some valid inequality Cz2 ≤ e for all
the feasible points of Z2(b). Then we set Cz2 = e to obtain the set Z1. A
main characteristic of our method is that we always want to fix variables at
0. If we do not want to lose generality, we need to change the variables and
include variables t with Cz2 + t = e. Fixing t = 0 is now equivalent to setting
Cz2 = e. The advantage of setting variables to 0 only is that we avoid having
to compute two lifting functions. A second important point is the concept of
lifting function. We start again with a set of type (6.1) and consider that we
fix z2 = 0. We obtain the lower dimensional set

Z1(b) = {z1 ∈ X1, s ∈ R
m : A1z1 ≤ b + s}

with a corresponding valid inequality π1z1 ≤ λ+νs. The lifting function φ1(u)

151
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is computed by
φ1(u) = min λ + νs − π1z1

s. t. A1z1 ≤ b + s − u
z1 ∈ X1.

The lifting function allows us to compute the lifting coefficients by finding π2

such that π2v ≤ φ1(A2v) for all v in the domain of z2. We have shown that
the set of feasible π2 is a polyhedron and therefore that the computation can be
carried out. Another topic treated in the chapter is how to lift several blocks
of variables z2 ∈ X2, z3 ∈ X3, . . . We show how the lifting function changes
after each computation of a new block of coefficients. This computation sim-
plifies when the lifting function is superadditive. In that case, the blocks can
be lifted simultaneously as the lifting function does not change throughout the
computation. When φ1(u) is not superadditive, one can simplify the computa-

tion by finding φ̂(u) ≤ φ1(u) with φ̂ superadditive. We can use φ̂ to find the
coefficients. The inequalities obtained are weaker but the computation time
is reduced since we do not need to recompute the lifting function after each
computation of the lifted coefficients of a block.

We come now to the open questions and future research in this area. It
is worth exploring in further detail the field of application of our theory, i.e.
showing in which case fixing the variables to 0 can be easily carried out and
in which case the substitution of variables is hard. It is also interesting to
check whether the computation of the lifting coefficients can still be carried
out when the continuous variables s are not included in the model. A char-
acterization of when a lifted inequality is facet-defining is also missing in our
theory. Such a study is already present in [53]. Finally it is also interesting to
study more deeply superadditive lifting. This involves finding an efficient way
to characterize superadditive functions or at least an efficient way to compute
superadditive lower bounds. The strength of the valid inequalities obtained by
superadditive lifting is also a topic that has not been studied.

Single Node Flow Sets In Chapter 3, based on [45], we have studied a
particular set that often occurs in mixed integer programming, the single node
flow set

XN(n1, n2, b, a, u) = {(x, y) ∈ R
n1+n2
+ × Z

n1+n2
+ :

∑

j∈N1

xj −
∑

j∈N2

xj ≤ b + s

0 ≤ xj ≤ ajyj }. (6.2)

The main results about this set are the well-known flow cover inequalities pre-
sented in 1985 by Padberg, Van Roy and Wolsey [55]. What we did in this
chapter is to show how we can obtain the flow cover inequalities using two
basic operations: the MIR inequalities and the lifting presented in Chapter 2.
We show that using the same procedure but with different choices of variables
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to fix, we obtain the different variants: the flow cover, the reverse flow cover
inequalities and the corresponding inequalities for the integer case. We also
showed how we can strengthen these inequalities using superadditive lifting.
Finally we obtained valid inequalities for simpler sets from the flow cover in-
equalities. The simplest set we considered is the basic 0/1 knapsack set. We
showed that the well-known cover inequalities are nothing but particular cases
of the flow cover.

There is still some flexibility in the choices we made in our MIR procedure.
For example, we always divide the inequality by some ak before generating the
MIR inequality. It could be interesting to examine other possibilities such as
the consequences of dividing by any number. A number of papers study valid
inequalities for sets related to (6.2). In [45] it is shown that the inequalities
they find can often be viewed as particular cases of flow cover inequalities. It
may be interesting to see whether other valid inequalities are also particular
cases of flow cover inequalities. A more interesting question is, of course, to
determine other classes of inequalities for single node flow sets and in particu-
lar inequalities that cannot be obtained by the MIR procedure we described.
Finally we have not talked about the separation problem which is crucial in
practice, i.e. for a given fractional solution x∗ to the linear relaxation of (6.2),
find a flow cover inequality that cuts off the point x∗.

Group Relaxation Chapter 4 reports the results of [37]. The main subject
is to study extended formulations for the group relaxation. We start with the
set

Y (f) = {x ∈ Z
n
+ : Bx ≡ f (mod ∆)} (6.3)

for which we want to present various extended formulations. The main objects
that we use are irreducible solutions of Y (f). An irreducible solution of Y (f) is
a solution y ∈ Y (f) such that for every z ∈ Y (f), we have z 6≤ y. We compute
the homogeneous and inhomogeneous irreducible solutions of Y (b) (and Y (0)
resp.) and associate a new variable with each solution. This provides the first
extended formulation. However we have seen on some examples that the num-
ber of new variables added may be large which is impractical. It particularly
occurs when several variables have the same coefficient in the equations defining
(6.3). The second extended formulation therefore aggregates the variables with
the same coefficient in (6.3) into one new variable. Then we compute again the
irreducible solutions for the aggregated system and create a new variable for
each irreducible solution. This reduces the size of the extended formulation.
We propose a third reformulation that also aggregates variables with different
coefficients which can reduce even further the size of the extended formula-
tion. Finally a fourth extended formulation is presented that relies on the path
structure of the group problem.

In a second step, we analyze the different reformulations and in particular
we focus on comparing the projection of the different extended formulations
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onto the original space with conv(Y (f)). As among the inhomogeneous ir-
reducible solutions, we find the extreme points of conv(Y (f)) and among the
homogeneous irreducible solutions, we find the extreme rays of conv(Y (f)), the
projection of the formulation using all the irreducibles is exactly conv(Y (f)).
We also prove that this property still holds when we aggregate variables with
the same coefficient. In a similar way, the formulation using the path structure
of the group satisfies the same property. It means that, in terms of the linear
relaxation, reformulating with variables is as strong as using the facets of the
group problem. On the other hand, the property does not hold when we aggre-
gate variables with different coefficients. In that case, some fractional extreme
points appear in the projection. We studied how to tighten the formulation by
adding valid linear inequalities. For this purpose, we have studied the set

Xh = {x1, x2, µ1, . . . , µt ∈ Z+ : hx1 + x2 = b +

t
∑

j=1

ajµj}. (6.4)

We showed that its convex hull is given by the facet-defining inequalities of
the group problem coming from taking the equation (6.4) modulo h. This
means that the size of the representation of conv(Xh) grows with the size of
h. In particular we have seen that conv(X1) = LP (X1), where LP (X1) is
the polyhedron obtained from X1 by dropping the integrality constraints, and
the representation of conv(X2) needs only one more linear inequality compared
with LP (X2).

In a third step, we focus on the computation of the irreducible solutions used
for our extended formulations. In practice it is a slow operation to compute
the irreducible solutions. But it is possible to compute them in advance, store
them in a table and read off the irreducibles in the table once it is needed. The
reading operation is fast and can be done efficiently in an iterative algorithm.
In practice, it is possible to store the irreducible solutions of all group problems
up to a size of 30. However we can also combine the irreducible solutions of a
group mod p and of a group mod q in order to compute the irreducible solutions
of a group mod pq.

Finally in a fourth step, we present some computational results related to
the effect of using a group relaxation. We tested two algorithms. First we tested
the effect of the reformulation in itself. For some problems of the Miplib, we
compute the linear relaxation optimum x∗, find a small group problem that
cuts off x∗ and reformulate using for example the aggregated reformulation
then iterate. The results obtained with this algorithm lead to the same type
of conclusion as that obtained in the 1970’s. Using small groups is not enough
to completely close the duality gap of integer programs but it allows to make
some steps towards the integer optimum. The second algorithm we tested tries
to reformulate with a group relaxation within the Integral Basis Method. We
keep an integral tableau representing a feasible solution. At each iteration,
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we perform a well chosen reformulation of a group relaxation of a single row.
Among the new variables, we look for a good candidate for augmentation. Some
examples show that it is possible to find such augmenting vectors by a group
reformulation. However aggregating makes the search for augmenting vectors
difficult. Therefore we choose to use disaggregated reformulations. But it is
difficult to use several disaggregated reformulations subsequently because the
size quickly explodes. Therefore the approach is quickly limited.

We see two main topics of future research in this area: one theoretical and
one computational. First it should be interesting to study more deeply the
facial structure of sets of type (6.4) and see what the corner polyhedron can
bring with this respect. In particular a generalization of the result with several
variables in the left-hand side should be needed. It should also be interesting to
study the effect of adding a right hand side of the type

∑

i biλi +
∑

j ajµj with
∑

i λi = 1. On the computational side, it seems that some more effort is needed
to be able to use aggregated formulations in a clever way and in particular
finding augmentation vectors within an aggregated formulation. This would
also open the possibility of using aggregate formulations on other problems such
as mixed integer programs. All the tests carried out were on binary problems.
However it seems more natural to use the group approach on general integer
programs. Some computational experiments around this line would also be
interesting. Finally it seems important to use the knowledge of larger groups
since small groups do not seem to bring as much as wanted. Maybe a partial
formulation using the structure of large groups could be promising.

Lattice basis reduction Chapter 5 reports the results of [44]. We study
a particular problem, called the banker’s problem, that the standard methods
cannot solve in reasonable time. On the other hand, using a reformulation of
the problem based on lattice basis reduction allows us to solve the problem
very rapidly. However when the size of the problem becomes too big, the
computation of the reformulation (which can be achieved in polynomial time)
becomes a bottleneck. In the chapter we show that we can take advantage of
the particular structure of the problem to speed up the computation of the
reformulation. The structure of the problem is the following. We look for an
integer basis of

L = {X ∈ Z
m×n : XA = 0, BX = 0},

with A ∈ Z
n×K and B ∈ Z

L×m. Such a basis can be found by computing an
integer basis of

{x ∈ Z
n : xA = 0},

that we call α and an integer basis of

{x ∈ Z
m : Bx = 0},

that we call β. We have shown that the matrices X ∈ L are precisely the

matrices of the form X = βΛα, with Λ ∈ Z
(m−L)×(n−K). This can also be
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expressed by saying that (αT ⊗ β) is a basis for the vectorized elements of

L. Obtaining α and β separately is computationally cheaper than computing

directly a basis for L.

We also showed in the chapter that the reducedness property is not lost by
taking the Kronecker product. In other words, we have shown that if α and β

are reduced bases, then (αT ⊗ β) is also a reduced basis up to a reordering of

the vectors. Some computational results were also presented. They show that
trying to solve the banker’s problem directly with a branch and cut system is
hopeless whereas the reformulation can be handled. The computational results
also show that using a reduced basis coming from the Kronecker product of
two smaller reduced bases is more efficient than computing directly a reduced
basis. The respective strengths of the two bases obtained are similar.

Related to this topic, the main open question is to characterize the type
of problem that is well solved by a reformulation based on lattice basis reduc-
tion and to obtain an explanation to why the method works. We can also ask
whether there are other problems for which we can take advantage of a de-
composition of the type proposed. Finally a mathematical curiosity is to study
lattices of the form L(αT ⊗ β) and see which properties remain valid with re-

spect to the bases α and β. For example, if one knows a shortest vector vα of

L(α) and a shortest vector vβ of L(β), is it true that vα ⊗ vβ is the shortest

vector of L(αT ⊗ β)?
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