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Abstract. This paper investigates the use of reinforcement learning in
electric power system emergency control. The approach consists of using
numerical simulations together with on-policy Monte Carlo control to
determine a discrete switching control law to trip generators so as to
avoid loss of synchronism. The proposed approach is tested on a model
of a real large scale power system and results are compared with a quasi-
optimal control law designed by a brute force approach for this system.

1 Introduction

Reinforcement learning techniques are currently being investigated for suitability
of use in a wide variety of environments. These range from game playing envi-
ronments such as backgammon where these machine learning techniques have
been successfully applied to develop systems capable of Master-level play ([8])
to self-adjusting algorithms for packet routing in computer networks ([1]).
In the field of automatic control Reinforcement Learning starts also to be well-
known. Its principle is to learn how to control by associating a certain benefit to
being in a particular state and taking a particular action in that state. We can
divide such control learner (agent) in two categories. First we can plug the agent
and wait for him to know enough about the system to control it. Unfortunately
this is not always possible. Let us imagine a car driven by an agent which doesn’t
now anything about driving rules. We will have to buy lots of cars before having
a capable agent. It leads to the second category, the agent which learns from
simulated experience before being used in real-life.

In the electric power system community, Dynamic Security Assessment (DSA)
has long been recognized to be an issue of great practical concern ([2]). The
recent deregulated practices make the need for effective DSA methods more
urgent than ever. What holds true for predictive DSA holds even more true for
emergency DSA. Predictive DSA concerns what can be done in study mode and
then used in the control center to enhance security. Emergency DSA concerns
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implementation of control systems to deal with emergency situations. It becomes
a necessity, given the trend to operate the systems increasingly closer to their
limits and given the difficulties in predicting the operating conditions and the
troublesome contingencies likely to occur.
This paper deals with during transient emergency TSA (Transient Stability As-
sessment) and control. The purpose is to demonstrate that an agent using rein-
forcement learning techniques can appraise and trigger control actions so as to
prevent the electrical power system from serious degradation.

2 Reinforcement Learning

2.1 Basics

The idea that we learn by interacting with our environment is probably the
first to occur to us when we think about the nature of learning. Reinforcement
learning is learning what to do, i.e. how to map situations to actions, so as to
maximize a reward signal ([7]). The goal is to discover the actions which yield the
most reward, by trying them out. In the most interesting and challenging case,
actions may affect not only the immediate reward but also the next situation
and all the subsequent rewards.
One of the challenges in reinforcement learning is the trade-off between explo-
ration and exploitation. To obtain a high reward, an agent must prefer actions
that it has tried before and found to be rewarding. But some other actions could
be better, i.e. actions not yet taken, it must then try them out. The first beha-
vior is called exploitation, the second exploration. The challenge is that neither
exploration nor exploitation can be pursued exclusively without failing the task
([9]).
As we will use the terms policy, reward function and value function, we will
define them. A policy (π) defines the agent’s way of behaving at a given time.
A policy is thus a mapping from perceived states to actions. A reward function
defines the goal in a reinforcement learning problem. This function defines what
are the good and the bad events for the agent. The value function is more
complicated. It specifies what is good in the long run. The value of a state is
the reward (R) an agent can expect to accumulate over the future, starting from
that state.
Two kinds of value functions exist: the state-value function V (s), where s denotes
the state, and the action-value function1 Q(s, a) where a denotes the action. The
first says how good it is to be in a particular state, the second how good it is to
take a particular action in a particular state.
The agent makes its decisions as a function of a signal from the environment
(state). Certainly, state signal should include the immediate sensations, e.g. mea-
surements, but it has to contain more than that. This state signal is of course
not expected to inform the agent of everything about the environment, or even
everything that would be useful to it in making decision. Ideally it must sum-
1 Also called state-action function.
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marize past sensations compactly, in such a way that all relevant information
is retained. A state signal that succeeds in retaining all relevant information is
said to have the Markov property2. Of course this is very restrictive, but even
when the state signal doesn’t have the Markov property, one can consider it as
an approximation of a Markov state, i.e. the more the state signal approaches
the Markov property, the better the performance from reinforcement learning
systems will be.

2.2 On-Policy Monte Carlo Control

Monte Carlo methods require only experience-sample sequences of states, actions
and rewards from on-line or simulated interaction with an environment. Learning
from on-line experience is striking because it requires no prior knowledge of the
environment’s dynamics, yet can still reach an optimal behavior in the long
run. Learning from simulated experience is also powerful. Although a model
is required, the model only generates sample transitions, not all the possible
transitions.
We assume experience is divided into episodes. An episode is a sequence of state-
action pairs and rewards. All episodes terminate no matter what actions are
selected. Monte Carlo methods are incremental in an episode-by-episode sense.
The idea of the Monte Carlo Control method is to maintain both approximate
policy and approximate value function. In this scheme, the value function is
repeatedly altered to more closely approximate the value function for the current
policy, and the policy is repeatedly improved with respect to the current value
function. These two changes work against each other as each creates a target for

Policy Value Function

Improvement (I)

Evaluation (E)

Fig. 1. Approach Scheme

the other, but together they cause both policy and value function to approach
optimality.

Q0 I−→ π0
E−→ Q1 I−→ π1

E−→ Q2 I−→ π2
E−→ · · · E−→ Q∗ I−→ π∗

Policy evaluation (E) is done in the following manner: for each state-action pair
(s, a) appearing in the episode k,

Qk+1(s, a) = Qk + α[R − Qk(s, a)]
2 Or to be Markov



Application of Reinforcement Learning 89

where R is the reward following that state-action pair. Two techniques have been
tested in this paper:

1. α = 1
ns,a

, where ns,a is the number of times the agent has passed through
the state-action pair (s, a)3, which corresponds to estimate the state-action
values as a sample average of observed rewards;

2. α = Cst indicating that the estimates never completely converge but conti-
nue to vary in response to the most recently received rewards4.

Policy improvement (I) can be done making the policy greedy, i.e. a policy that
selects the action which has the higher expected reward, with respect to the
current action-value function.

πk(s) = arg max
a

Qk(s, a)

This procedure is modified by introducing the exploration part in it. Instead of
using the greedy policy described above, one can use an ε-greedy policy, i.e. a
policy that selects another action than the one with the higher expected reward
with a probability of ε.
The general algorithm used to implement the Monte Carlo control is thus based
on the following scheme.

1. Initialize Q0(s, a) → π0 .
2. Generate an episode using πk.
3. Evaluate the policy and update the state-action function → Qk+1(s, a).
4. Improve the policy → πk+1.
5. Return to point 2 (loop forever).

The method is called on-policy Monte Carlo control because it attempts to esti-
mate the value of a policy while using it. In opposition is the off-policy Monte
Carlo control method which uses separate policies: one policy is used to generate
the episodes (behavior policy) which can be unrelated to the second policy that
is evaluated and improved, the estimation policy.

3 The Practical Problem

Transient stability concerns the ability of an electrical power system to main-
tain synchronism when subjected to a severe transient disturbance, e.g. a three
phase short-circuit cleared by opening a line. The resulting system response
involves large excursions of generator rotor angles and is influenced by the non-
linear power angle relationship. When the excursions becomes too large, a loss
of synchronism may occur: the system is driven to instability.
3 This method is called every-visit Monte-Carlo method by opposition to the first-visit

Monte-Carlo method which consists in using only the rewards associated to the first
visit to (s, a) in each episode.

4 This is desirable in a nonstationary environment.
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The selective tripping of generating units for a severe disturbance which weakens
the system transfer capabilities can be used as a method of improving system
stability. The rejection of an appropriate amount of generation in the system
reduces power to be transferred over the critical transmission interface. Since
generating units can be tripped rapidly, the method constitutes a very effective
means of improving transient stability ([6]).
The illustration is based on a lightly modified Brasilian power system. The resul-
ting system comprises 63 machines, 1180 busses and 1968 lines and is modeled in
its usual detailed way. The generation shedding scheme is applied to the Itaipu
transmission system (figure 2): 8 machines of 700 WM, at 60Hz side of Itaipu).

4 x 1650 MVA9 x 768 MVA8 x 700 MW

ITAIPU

266 km310 km7 km

18 KV
(bus #16)
500 KV

system
power

Southeast

330 MVAR

330 MVAR

system
power

ELETROSUL
500 KV

South

2 x 1650 MVA

(bus #105)
9 x 180 MVAR

(bus #89)
750 KV

330 MVAR

330 MVAR

50 %
50 %

FOZ DO IGUACU IVAIPORA ITABERA

Fig. 2. Topology of the Itaipu transmission system (60 Hz)

What this experience attempts to demonstrate is that it is possible to use rein-
forcement learning method to control the shedding of the units at Itaipu to
maintain stability in terms of synchronism. The control center Itaipu receives
measurements of the δ (relative electrical angle, deg: δ − δinitial), ω (angular
speed, rad/s), Pm (mechanical power, MW ), Pe (electrical power, MW ) and
the status of the 8 units (on, stopping, off). This is clearly one of the possible
descriptions of the state of the system. At each time step, one can decide to shed
units. In our experiments one can only shed one machine by time step. As the
units are identical, two control actions are possible: to shed one of the 8 units
or to wait (shed-one-unit or no-shedding). Once the control action is decided,
a delay of 50ms is introduced before the transition actually occurs, so as to
better suit the real-life case5. A loss of synchronism will correspond to a bad
event (negative reward). A positive reward will be associated to a stable system
(system stable x seconds after the fault).
The Measurements. For want of real-world measurements, the illustration is
based on time-domain simulation using the ST600 program of Hydro-Québec

5 The stopping status of a unit: the control action is decided but the action will be
effective after the transmission delay.
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([10]). Real-time measurements are thus artificially created. The acquisition of
these measurements is supposed to have an observation rate of 5 ms.
The Contingencies. A simulation, i.e. an episode, consists of a three-phase
short-circuit applied at bus # 89. The starting time ts is randomly chosen bet-
ween ts min and ts max and the clearing time te is randomly chosen between
te min and te max to cover a wide variety of cases as a light warranty of genera-
lity. The non-zero ts and the use of a contingency without short-circuit (no-fault
contingency) prevent the systematic shedding of units. Several post-fault confi-
gurations (x-lines-tripped contingencies) are also used.
The Agent. Starting from a state s and taking action a one cannot determine
the resulting state s′, thus we must use a state-action function. The state-action
function is an associative table ((s, a) ↔ r); the continuous variation spaces of
δ, ω, Pm, Pe are thus discretized.
The policy followed by the agent is an ε-greedy policy. After evaluation of the
expected reward of each action, the agent chooses the action with the highest
reward. If several actions match the highest reward, it chooses one randomly
among them. To maintain exploration, a random action is selected with a pro-
bability of ε. The choice of this ε is difficult as we want to keep as much generation
as possible. This leads to a very small ε 6, so as to avoid excessive shedding.
The Discretizations are very simple. As the eight generators are exactly iden-
tical, only one combination of δ, ω and Pa (Pm −Pe) is enough to represent each
unit’s state. In addition, the number of running units Ur (0-8) and the number
of stopping units Us complete the description of the state.
The space of δ, ω and Pa are respectively divided into 41, 21 and 15 ranges
(respectively 40, 20 and 15 of identical length for each variable plus an additional
category to represent the no-unit-running case).
The Rewards. The goal of the agent is not only to save the system but also to
preserve as much generation as possible. When the system is stable, the reward
is positive and corresponds to the total amount of electrical power produced at
the end of the simulation so as to distinguish good stable situations (6 units
producing) from less good stable situations (e.g. 4 units only). When the system
is unstable, the reward is negative and corresponds to the loss of the starting
generation, i.e. −5600 (MW ).

4 The Simulation Results

Our experiments demonstrate that one can apply successfully reinforcement lear-
ning techniques to the transient stability emergency problem. On the figure 3
(Contingency: 4-lines-tripped, 50 < te < 60 ms, 0 < ts < 100 ms, α = 1

ns,a
,

ε = 0.005), one can see the evolution of the stability of the system (dots are
stable episodes and crosses unstable episodes) and the evolution of the final
production Pf when the number of simulations increases k.

6 ε < number of units
maximum number of time steps .
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Fig. 3. MW not rejected versus evolution of learning

The convergence is very fast in terms of saving the system (a small number of
unstable cases with low values of k). This agent learns also very fast to shed
as few generation as possible (Pf already high after 250 episodes). The goal is
of course to have higher MW not rejected points when the number of episodes
increases (later we will see that ideally the value of Pf should still increase up
to 2800 MW ).

4.1 α = Cst Versus α = 1
ns,a
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Fig. 4. MW not rejected versus evolution of learning for α = Cst (= 0.2)

We have observed that the second technique (α = 1
ns,a

) converges better and
faster than the first technique (α = Cst). The reason for that is the way we
defined the problem. As the state of the system is always the same at the begin-
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ning of the simulation, as the contingencies are always the same, as the models
behind the simulator are fixed, the problem can be considered as a stationary
problem. Thus there is no reason to use a constant α which is particularly useful
in a non-stationary environment.
Looking on the figures 4 and 5 (Contingency: 3-lines-tripped, 40 < te < 50 ms,
0 < ts < 100 ms, ε = 0.005), one can see that the technique using α = Cst (=
0.2) does not even converge to save the system (a lot of crosses during the whole
learning). but that the one using α = 1

ns,a
converges very fast (small number of

unstable cases with low values of k). Moreover it successfully succeeds in saving
as much production as possible (a already high Pf for low k) despite α = Cst

cannot.

4.2 Quality of the Control

For this experiment, we use two contingencies, the no-fault contingency and the
4-lines-tripped contingency. The fault duration varies between 40 ms and 100ms.
Analysis of the reinforcement learning control. The state-action values
are equal to the sample average of the observed rewards (α = 1

ns,a
). According

to the procedure previously established, 2500 simulations have been run. After
these simulations, the reward is not corrected anymore and the ε-greedy decision
process is changed to greedy. The decision process is thus deterministic7.
These two modifications having been done, we can study the evolution of the
controlled system to a no-fault contingency. The simulation shows that the me-
thod has learned that it was not necessary to exclude machines to stabilize the
system: the best reward associated to the current state s is always bound to
the no-action. Note that in such a scenario, if the decision to take an action is
7 Except when several actions have the same reward in a state s.
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not taken at the first instant, no action will be taken at all. This is the direct
consequence that the state s = (δ, ω, Pa, Ur, Us) is here constant if any action is
decided. 8 machines are thus still in activity at the end of the simulation, the
reward is maximum and equal to 5600 (8 ∗ 700 MW ).
For the 4-lines-tripped contingency each state of the period preceding the fault
is constant and the same as the constant state of a no-fault contingency. Such
an observation suggests that the instant of appearance of the fault does not
influence the control process of the system. The only relevant parameter is the
fault duration (te). The following table represents the number of shed machines
(Un) and the production (Pf ) at the end of the simulation for different values
of te. Even if all the machines are sometimes shed (8), no unstable simulations
occurs: the control process has always been able to stabilize the system. Note
that except for te = 85ms, the number of shed machines is an increasing function
of the fault duration.

te(ms) Un Pf te(ms) Un Pf te(ms) Un Pf te(ms) Un Pf

40 5 2100 55 5 2100 70 7 700 85 7 700
45 5 2100 60 5 2100 75 7 700 90 7 700
50 5 2100 65 7 700 80 8 0 95 8 0

To summarize, we can say that for a no-fault contingency the control of the
system is optimum because no machines are shed while avoiding loss of stability.
For the 4-lines-tripped contingency, the control also stabilizes the system but
the price to pay (the number of shed machines) is sometimes very high. Nothing
guarantees that the control designed here is for the 4-lines-tripped contingencies
the optimum or even close to the optimum.
Design of the optimal control. The reinforcement learning procedure that we
have applied here to the problem of generation shedding control is self-reliant in
the sense that to establish the control law, no human knowledge of the dynamics
of the system was required. Exploiting the knowledge of the system we have ([3]
and [5]) we are able to establish a near to optimum control law. We described
its design in an internal report ([4]).
The following table summarizes the results obtained with simulations carried
out using this near optimum control procedure. A comparison with the previous
table highlights better quality, but we have to keep in mind that it was only
possible to establish this law thanks to the perfect knowledge that we had of
the system dynamics and the restricted set of contingencies considered. The
comparison is just aimed to give an idea of how far we are from the optimum
when we use the reinforcement learning procedure to design a control.

te(ms) Un Pf te(ms) Un Pf te(ms) Un Pf te(ms) Un Pf

40 3 3500 55 4 2800 70 4 2800 85 5 2100
45 4 2800 60 4 2800 75 4 2800 90 5 2100
50 4 2800 65 4 2800 80 5 2100 95 5 2100

The disappointing performances of the reinforcement learning control law ori-
ginate from the state discretization which decreases the degree of observability
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of the system and thus the ability to associate to each state an optimal control
action.

5 Discussion

The interest of reinforcement learning for electrical power system emergency
control has been demonstrated. To improve the results, we believe that further
research is necessary, in particular in terms of choosing a better reward signal.
Problem enhancement. To be applied in Itaipu this procedure has of course to
be improved. First, one must consider noise and other uncertainties in the state
signal. Second, the experimentation domain should be enlarged by including
other starting states, other topologies and other perturbations.
Method enhancement. The first thing to improve is the discretization of
δ, ω and Pa. An alternative to that is the use of continuous variable spaces
using more sophisticated machine learning techniques such as regression trees or
neural networks (multi-layer perceptron) to generalize the state-action function
approximation.
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