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Integer Programming: State of the art

maxc ' x:x€PNZ" J
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o well explored

@ branch-and-
cut-
algorithms

M. Koppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006



Integer Programming: State of the art

maxc ' x:x€PNZ" J

Dual methods Primal-dual methods Primal methods
o based on o based on intermediate @ inner descriptions of PN Z"
outer representations ° integral basis method

description A . .

¢ P ® new variables and o reformulations with new vars
© inequalities
conv(PNZ")

@ not explored at all
o well explored

@ branch-and-
cut-
algorithms

M. Koppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006



Intermediate representation of multi knapsack problems

An example

Consider the set x € {0,1}® such that

8x0 —x1 —2x2 — 3x3 — 4x4 — Bxs — 6x6 — Tx7 < 0.
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Intermediate representation of multi knapsack problems

An example

Consider the set x € {0,1}® such that

8x0 —x1 —2x2 — 3x3 — 4x4 — Bxs — 6x6 — Tx7 < 0.

Convex hull: 13 non-trivial facets

2xp — X1 — X3 — X4 — X5 — 2Xg — 2X7
30 —x1 —x2 —Xx3 — x4 — 2x5 — 2x5 — 2Xx7
3xg — x1 — xp — 2x3 — 2x4 — X5 — 2Xg — 2X7
5xp — x1 — x2 — 2x3 — 2x4 — 3x5 — 4xp — 4x7

X0 — X3 —x5 —xp —x7 <0
X0 x4 —x5 —x¢ —x7<0
Xg — X1 — X2 —x5 —Xxp —x7 <0
X0 — X1 —x3 —Xx4 —x6 —x7<0
X0 — X2 —X3 —X4 — X5 —x7 <0
X0 —X —X3 —Xxa —x6 —x7 <0
Xp—X|—X2 —X3 —X4 —X5 —Xp <0
2Xg — X1 — X2 —X3 —X4 —X5 —Xg —x7<0
2xp — X —Xx3 —Xx4 —Xx5 —Xp—2x7<0
<0
<0
<0
<0
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An intermediate representation:

Introduce new variables for the subsets {1,2} and {3,4}.

Reformulation

8X0—X1 —2X2—3X3—4X4—5X5—6X6—7X7—3X9—7X10 SO
X1 +Xx2 + Xo <1
X3 + Xxa +x10<1
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An intermediate representation:

Introduce new variables for the subsets {1,2} and {3,4}.

Reformulation

8Xo — X1 — 2X2 — 3X3 —4X4 — 5X5 — 6X6 — 7X7 — 3X9 — 7X1o S 0
X1 + X2 + Xo <1
X3 +xa +x0 <1
v
Convex hull: 9 non-trivial facets
X0 — X5 —Xg — X7 —x10<0
X0 — X1 — X2 — X5 — X — X7 — X9 <0
X0 — X3 — X4 —X6 —Xx7—x9 —x10 =<0
X0 — X2 — X3 — X4 — X5 —x7—Xx9 —x10<0
X0 — X1 — X2 — X3 — X4 — X5 — X —x9 —x10<0
2X0 — X1 —Xp — X3 — X4 — X5 — Xg — X7 —X9 —x10 <0
2xp —Xp— X3 — X4 — X5 — Xg — 2x7 — X9 — 2x10 < 0
+x3+ x4 +xp0 <1
X1 + x2 + x9 <1

.
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How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

P = conv{x € {0,1}" : Z ajx; < b}

j=1
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How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

P = conv{x € {0,1}" : Z ajx; < b}

j=1

one tool: value disjunctions

Partition N = {1,..., n} into subsets Ni, ..., Nk.
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How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

P = conv{x € {0,1}" : Z ajx; < b}

=1

one tool: value disjunctions

Partition N = {1,..., n} into subsets Ni, ..., Nk.

Reformulation based on N;

Let {di,...,dy} ={> ;csai | S C Ni}. For each value dx we introduce a binary variable
N,k
ylik

linking constraints:

n;

N;,k

> apg = dey™
k=1

JEN;

packing constraints:
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How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 4x4 + 5x5 < 9.
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How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 4x4 + 5x5 < 9.

v

Two blocks and six new variables

Block M {1,2,3} Values: 3,6,9 New variables: y1,y»,y3

Block N> {4,5} Values: 4,5,9 New variables: zi, 22, z3
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How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 4x4 + 5x5 < 9.

Two blocks and six new variables

Block M {1,2,3} Values: 3,6,9 New variables: y1,y»,y3

Block N> {4,5} Values: 4,5,9 New variables: zi, 22, z3

Reformulation

3y1 +6y2 +9y3 +4z1 + 52 + 923 <9
3x1 +3x2 + 3x3 = 3y1 + 6y2 + 9y3
4x4 4+ 5x5 = 421 + 520 + 923
n+ty+ys<1

zi+z2+2z3<1
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How to obtain intermediate representations?

Reformulations based on value disjunctions

@ generalizes single variable multiplication;
X1+X=21+22 < z20=x1X

@ is more compact than full enumeration;

S|
Zx,- — ZZT =1 versus Zx,- = Zkzk; sz <1
ies TCS ies k=1 K
@ avoids projection;
@ is much stronger than reformulation Y, cxi —z =0, z € Z;
@ yields a much nicer description than using the binary expansion of z, i.e.,
Llog(IS1)]
ZX,‘ = 2ka, Zx € {0, 1}
i€s k=0
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How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 3x4 + 4x5 + 7x6 + 8x7 + 9xg + 13x9 + 15x10 < 45.

Formulation Equations # Facets
original 328
integer expansion X1 +x2 + x3 + x4 = z 328
binary expansion X1 +Xo+x3+X4s =21+ 22 + 4z 217

value disjunction xi+xx+x3+xa =21+22+3z+4z 77
zi+n+z+z2<1
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Structural theorem for value disjunctions
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Structural theorem for value disjunctions
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Structural theorem for value disjunctions

value disjunction polytope

Vi = comef (") € 0.1 x 0,2}

> a = 3l

JEN; k=1

ZyN"’k <1 }
k=1
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Structural theorem for value disjunctions

value disjunction polytope aggregated polytope

Vi= conv{(XNivyNi) e {0, 1} x {0,1}" : Q= conv{y € {0,1}mt ok

n;

K n;
Zajxj _ Za(yNi’k)yNi’k Zza(ym,k)ym,k <b

JEN; k=1 i=1 k=1
n,' n,-
DINALES! } yMk <1 VI}
k=1 k=1
v v
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Structural theorem for value disjunctions

value disjunction polytope aggregated polytope

Vi= Conv{(XNivyNi) e {0, 1} x {0,1}" : Q= conv{y € {0,1}mt ok

n;

K n;
Zajxj _ Za(y’v"’k)y’vi’k Zza(ym,k)ym,k <b

JEN; k=1 i=1 k=1

n; n;j

ZyN"’kgl } ylik <1 Vi}
k=1 k=1

Theorem (structural theorem)

P = {X €[0,1]" : there is y € [0, 1]n1+4..+,,K

such that (X", yM) e Vi fori=1,...,K
andy e Q }.
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The value disjunction polytope V;: The cardinality case

Vi = conv{(x"1, y") € {0,1}M1 x {0,1}" : ij = Zky’v"’k7 ZyNi’k <1}
k=1 k=1

JEN;

is completely described by non-negativity constraints and:

S =3k
k=1

JEN;
[T] nj
Sx = k- > [TIn <0 for 0 # T C N;
JeT k=1 k=|T|+1
nj
DA
k=1
v

January 2006
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The value disjunction polytope V;: The cardinality case

Vi = conv{(x"1, y") € {0,1}M1 x {0,1}" : ij = Zky’v"’k7 ZyNi’k <1}
k=1 k=1

JEN;

is completely described by non-negativity constraints and:

S =3k
k=1

JEN;
[T| n;
ij_Zkyk— Z [ Tlyx <0 for@#T C N;
jer k=1 k=|T|+1

The separation problem over V; can be solved in polynomial time.
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The knapsack with three distinct coefficients

The problem

Z/“LXJ—'_ZAXJ'—‘FZUXJSB’

JEN, JEN; JEN3
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The knapsack with three distinct coefficients

ZNXJ‘FZAXJ*”ZUXJS@

JEN, JEN; JEN3

v

An extended formulation
D+ D Mgt o5 <h

JEN; JEN; JEN3
[Ni|

ij:ZkyL fori=1,2,3
JEN; k=1
[NV
ZyLSl fori=1,2,3
k=1

x € {0, 1}\’V1\+\N2|+|N3|

y' e {0,1}/Ml fori=1,2,3.

A\
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The knapsack with three distinct coefficients

The aggregated polyhedron

[N [N | [N3|
qule’k +)\Zkywz,k +0_ZkyN3,k <8
k=1 k=1 k=1
| N;|
> oyt < fori=1,2,3
k=1
yM € {0,1}!™! for i =1,2,3.
v
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The knapsack with three distinct coefficients

The aggregated polyhedron

[Ny | [N | [N3|
pY_ k" A kM oY k<
k=1 k=1 k=1
[N; |
> oyt < fori=1,2,3
k=1
yNi e {0, 1}1M! fori=1,2,3.
v
v
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The knapsack with three distinct coefficients

The aggregated polyhedron

[Ny | [N | [N3|
qule’k +)\Zkywz,k +0_ZkyN3,k <8
k=1 k=1 k=1
[N; |
> oyt < fori=1,2,3
k=1

yNi e {0, 1}1M! fori=1,2,3.

o Let {v},...,vP} C {0, 1}/Mil*IN2l+INsl pe 3| the vertices of the aggregated
polyhedron.
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The knapsack with three distinct coefficients

The aggregated polyhedron

[Ny | [N | [N3|
qule’k +)\Zkywz,k +0_ZkyN3,k <8
k=1 k=1 k=1
[N; |
> oyt < fori=1,2,3
k=1

yNi e {0, 1}1M! fori=1,2,3.

o Let {v},...,vP} C {0, 1}/Mil*IN2l+INsl pe 3| the vertices of the aggregated
polyhedron.

o Notice that p < (1 + |Ni]) - (1 + [N2]) - (1 + [ Ns]).
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The complete facet description in an extended space is:
p .
y=) Vs
j=1
P
> z=1
j=1

z >0 forj=1,...,p
Sox =S kMo fori=1,2,3
JEN; k=1
ij’vfz Z (|T|—|—k—n;)yN”k fori=1,2,3and D # T C N,
JET ke{1,...,n;}:
| T|+k>n;

N; N N-
x € RN N |+ Vs |

= RN+ N |+ N5

z € RP.
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Experiments with branching

The simplification effect of branching

Initial Problem
2 constraints and 12 variables

13083 facets
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Experiments with branching

The simplification effect of branching

Q Fixx =0, =0
690 facets

Initial Problem

2 constraints and 12 variables

13083 facets
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Experiments with branching

The simplification effect of branching

Q Fixx =0, =0
690 facets

Q Fixxx =0, x¢ =1

Initial Problem 425 facets

2 constraints and 12 variables

13083 facets

M. Koppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006



Experiments with branching

The simplification effect of branching

Q Fixx =0, =0

690 facets
. Q Fixx =0, xs=1
Initial Problem 425 facets
2 constraints and 12 variables Q@ Fixx =1, =0
91 facets

13083 facets
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Experiments with branching

The simplification effect of branching

Q Fixx =0, =0

690 facets
. Q Fixx =0, xs=1

Initial Problem 425 facets
2 constraints and 12 variables Q@ Fixx =1, =0

— 91 facets
iz

aces Q@ Fixxo=1 x =1

541 facets
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Experiments with branching

The simplification effect of branching

Q Fixx =0, =0

690 facets
. Q Fixx =0, xs=1

Initial Problem 425 facets
2 constraints and 12 variables Q@ Fixx =1, =0

— 91 facets
iz

aces Q@ Fixxo=1 x =1

541 facets
Q@ Total : 1747 facets
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Experiments with branching

The simplification effect of branching

Q Fixx =0, =0

690 facets
. Q Fixx =0, xs=1

Initial Problem 425 facets
2 constraints and 12 variables Q@ Fixx =1, =0

— 91 facets
iz

aces Q@ Fixxo=1 x =1

541 facets
Q@ Total : 1747 facets

Comparing Variable Branching with Value Disjunction

(%) possible choices of x;, x; () possible choices of x, xs, x:
Compute the number of facets for all four cases
xi=0,x=0,x=1,x=1 X+xs+x=0,x+x+x=1

x=1,x=0,x5=0,x=1 X+X+x=2, X+X+xt=3
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Branching on value disjunctions vs. 2-variable branching

It is efficient to use value disjunction on a set of variables that are similar (that have the
same structure).
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Branching on value disjunctions vs. 2-variable branching

Claim

It is efficient to use value disjunction on a set of variables that are similar (that have the
same structure).

| A

Ranking formula

We create a ranking formula that allows us to say whether a triple of variables is
structured or not.

7 8 7 .
< 11 9 10 > has a good ranking

4 -1 —14

( —23 12 -6 ) has a bad ranking
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Branching on value disjunctions vs. 2-variable branching (“unstructured”)

Histograms of the total number of facets in the subproblems

11 -7 9 10 -2 7 14 —-15 4 -5 =2 =ilY
6 18 —4 -9 17 -11 5 —-12 5 3 -—18 7

ININ
oo

3 best ranked choices

5 | T T
0 " I I I I “
1500 2000 2500 3000 3500 4000
5 best ranked choices
10 T T T
0 I I I
1500 2000 2500 3000 3500 4000
10% best ranked choices
40 T T
20} | ]
0 . . I
1500 2000 2500 3000 3500 4000
30% best ranked choices
40 T T T T
20 %
1500 2000 2500 3000 3500 4000
100% best ranked choices
40 T T T T
20
1500 2000 0 300 3500 4000
Two variables branching
T T
I I I I %
1500 2000 2500 3000 3500 4000
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Branching on value disjunctions vs. 2-variable branching (

Histograms of the total number of facets in the subproblems

7 6 7 15 -21 -—-15 -23 -—-12 12 -6 11 10 <O
10 10 9 -21 -3 4 13 -1 -14 2 -6 <O
Best choice
2 T T T
: %
0 I I I I I I I
1000 1500 2000 2500 3000 3500 4000 4500
5 best ranked choices
10 T T T
5 | |
I I I I I I
1000 1500 2000 2500 3000 3500 4000 4500
10% best ranked choices
50 | T T T
0 ( . . . . . I “
1000 1500 2000 2500 3000 3500 4000 4500
30% best ranked choices
50 T T T T T
0 . I “
1000 1500 2000 2500 3000 3500 4000 4500
100% best ranked choices
50 T T T T T T T
0
1000 1500 2000 2500 3000 3500 4000 4500
Two variables branching
50 T T T T T
0 I I I I I
1000 1500 2000 2500 3000 3500 4000 4500
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Branching for market split and mas instances

CPLEX 9.1 Value Disjunctions
Name Rows Cols Nodes (10°) Time (s) Nodes (10°) Time (s)

corn535-1 5 35 13.8 2431 3.8 809
corn535-2 5 35 119 2084 4.2 865
corn535-3 5 35 17 2946 9.8 1970
corn540-4 5 40 321 55918 105 20873
corn540-5 5 40 231 39787 87 17267
corn540-6 5 40 188 30532 97 19162
corn650-7 6 50 rok Ak 20400 44 M
mas74 13 151 53 0.7

mas76 12 151 0.413 0.093

Computation times in CPU seconds on a Sun Fire V890 with 1200 MHz UltraSPARC-IV processors
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