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Integer Programming: State of the art

max c>x : x ∈ P ∩ Z n

Dual methods

based on
outer
description
of
conv(P∩Z n)

well explored

branch-and-
cut-
algorithms

Primal-dual methods

based on intermediate
representations

new variables and
inequalities

not explored at all

Primal methods

inner descriptions of P ∩ Z n

integral basis method

reformulations with new vars
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Intermediate representation of multi knapsack problems
An example

Consider the set x ∈ {0, 1}8 such that

8x0 − x1 − 2x2 − 3x3 − 4x4 − 5x5 − 6x6 − 7x7 ≤ 0.

Convex hull: 13 non-trivial facets

x0 − x3 − x5 − x6 − x7 ≤ 0
x0 − x4 − x5 − x6 − x7 ≤ 0
x0 − x1 − x2 − x5 − x6 − x7 ≤ 0
x0 − x1 − x3 − x4 − x6 − x7 ≤ 0
x0 − x2 − x3 − x4 − x5 − x7 ≤ 0
x0 − x2 − x3 − x4 − x6 − x7 ≤ 0
x0 − x1 − x2 − x3 − x4 − x5 − x6 ≤ 0

2x0 − x1 − x2 − x3 − x4 − x5 − x6 − x7 ≤ 0
2x0 − x2 − x3 − x4 − x5 − x6 − 2x7 ≤ 0
2x0 − x1 − x3 − x4 − x5 − 2x6 − 2x7 ≤ 0
3x0 − x1 − x2 − x3 − x4 − 2x5 − 2x6 − 2x7 ≤ 0
3x0 − x1 − x2 − 2x3 − 2x4 − x5 − 2x6 − 2x7 ≤ 0
5x0 − x1 − x2 − 2x3 − 2x4 − 3x5 − 4x6 − 4x7 ≤ 0
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An intermediate representation:

Introduce new variables for the subsets {1, 2} and {3, 4}.

Reformulation

8x0 − x1 − 2x2 − 3x3 − 4x4 − 5x5 − 6x6 − 7x7 − 3x9 − 7x10 ≤ 0
x1 + x2 + x9 ≤ 1

x3 + x4 + x10 ≤ 1

Convex hull: 9 non-trivial facets

x0 − x5 − x6 − x7 − x10 ≤ 0
x0 − x1 − x2 − x5 − x6 − x7 − x9 ≤ 0
x0 − x3 − x4 − x6 − x7 − x9 − x10 ≤ 0
x0 − x2 − x3 − x4 − x5 − x7 − x9 − x10 ≤ 0
x0 − x1 − x2 − x3 − x4 − x5 − x6 − x9 − x10 ≤ 0

2x0 − x1 − x2 − x3 − x4 − x5 − x6 − x7 − x9 − x10 ≤ 0
2x0 − x2 − x3 − x4 − x5 − x6 − 2x7 − x9 − 2x10 ≤ 0

+ x3 + x4 + x10 ≤ 1
x1 + x2 + x9 ≤ 1
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How to obtain intermediate representations?

starting point: a knapsack relaxation, for instance

P = conv{x ∈ {0, 1}n :
nX

j=1

ajxj ≤ b}

one tool: value disjunctions

Partition N = {1, . . . , n} into subsets N1, . . . , NK .

Reformulation based on Ni

Let {d1, . . . , dni } = {
P

i∈S ai | S ⊆ Ni}. For each value dk we introduce a binary variable

yNi ,k .

linking constraints: X
j∈Ni

ajxj =

niX
k=1

dky
Ni ,k

packing constraints:
niX

k=1

yNi ,k ≤ 1
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M. Köppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006 5 / 18



How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 4x4 + 5x5 ≤ 9.

Two blocks and six new variables

Block N1 {1, 2, 3} Values: 3,6,9 New variables: y1, y2, y3

Block N2 {4, 5} Values: 4,5,9 New variables: z1, z2, z3

Reformulation

3y1 + 6y2 + 9y3 + 4z1 + 5z2 + 9z3 ≤ 9

3x1 + 3x2 + 3x3 = 3y1 + 6y2 + 9y3

4x4 + 5x5 = 4z1 + 5z2 + 9z3

y1 + y2 + y3 ≤ 1

z1 + z2 + z3 ≤ 1

M. Köppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006 6 / 18



How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 4x4 + 5x5 ≤ 9.

Two blocks and six new variables

Block N1 {1, 2, 3} Values: 3,6,9 New variables: y1, y2, y3

Block N2 {4, 5} Values: 4,5,9 New variables: z1, z2, z3

Reformulation

3y1 + 6y2 + 9y3 + 4z1 + 5z2 + 9z3 ≤ 9

3x1 + 3x2 + 3x3 = 3y1 + 6y2 + 9y3

4x4 + 5x5 = 4z1 + 5z2 + 9z3

y1 + y2 + y3 ≤ 1

z1 + z2 + z3 ≤ 1
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How to obtain intermediate representations?

Reformulations based on value disjunctions

generalizes single variable multiplication;

x1 + x2 = z1 + 2z2 ⇐⇒ z2 = x1x2

is more compact than full enumeration;

X
i∈S

xi →
X
T⊆S

zT = 1 versus
X
i∈S

xi =

|S|X
k=1

kzk ;
X

k

zk ≤ 1

avoids projection;

is much stronger than reformulation
P

i∈S xi − z = 0, z ∈ Z+;

yields a much nicer description than using the binary expansion of z , i.e.,

X
i∈S

xi =

blog(|S|)cX
k=0

2kzk , zk ∈ {0, 1}.
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How to obtain intermediate representations?

An example

3x1 + 3x2 + 3x3 + 3x4 + 4x5 + 7x6 + 8x7 + 9x8 + 13x9 + 15x10 ≤ 45.

Formulation Equations # Facets

original 328

integer expansion x1 + x2 + x3 + x4 = z 328

binary expansion x1 + x2 + x3 + x4 = z1 + 2z2 + 4z3 217

value disjunction x1 + x2 + x3 + x4 = z1 + 2z2 + 3z3 + 4z4 77
z1 + z2 + z3 + z4 ≤ 1
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Structural theorem for value disjunctions

value disjunction polytope

Vi = conv


(xNi , yNi ) ∈ {0, 1}|Ni | × {0, 1}ni :

X
j∈Ni

ajxj =

niX
k=1

a(yNi ,k)yNi ,k

niX
k=1

yNi ,k ≤ 1

ff
.

aggregated polytope

Q = conv


y ∈ {0, 1}n1+···+nK :

KX
i=1

niX
k=1

a(yNi ,k)yNi ,k ≤ b

niX
k=1

yNi ,k ≤ 1 ∀i
ff

Theorem (structural theorem)

P =
˘

x ∈ [0, 1]n : there is y ∈ [0, 1]n1+···+nK

such that (xNi , yNi ) ∈ Vi for i = 1, . . . , K

and y ∈ Q
¯
.
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The value disjunction polytope Vi : The cardinality case

Theorem

Vi = conv{(xNi , yNi ) ∈ {0, 1}|Ni | × {0, 1}ni :
X
j∈Ni

xj =

niX
k=1

kyNi ,k ,

niX
k=1

yNi ,k ≤ 1}.

is completely described by non-negativity constraints and:

X
j∈Ni

xj =

niX
k=1

kyNi ,k

X
j∈T

xj −
|T |X
k=1

kyk −
niX

k=|T |+1

|T |yk ≤ 0 for ∅ 6= T ⊂ Ni

niX
k=1

yNi ,k ≤ 1

Theorem

The separation problem over Vi can be solved in polynomial time.
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The knapsack with three distinct coefficients

The problem X
j∈N1

µxj +
X
j∈N2

λxj +
X
j∈N3

σxj ≤ β,

An extended formulation

X
j∈N1

µxj +
X
j∈N2

λxj +
X
j∈N3

σxj ≤ β

X
j∈Ni

xj =

|Ni |X
k=1

ky i
k for i = 1, 2, 3

|Ni |X
k=1

y i
k ≤ 1 for i = 1, 2, 3

x ∈ {0, 1}|N1|+|N2|+|N3|

y i ∈ {0, 1}|Ni | for i = 1, 2, 3.
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The knapsack with three distinct coefficients

The aggregated polyhedron

µ

|N1|X
k=1

kyN1,k + λ

|N2|X
k=1

kyN2,k + σ

|N3|X
k=1

kyN3,k ≤ β

|Ni |X
k=1

yNi ,k ≤ 1 for i = 1, 2, 3

yNi ∈ {0, 1}|Ni | for i = 1, 2, 3.

Let {v 1, . . . , vp} ⊆ {0, 1}|N1|+|N2|+|N3| be all the vertices of the aggregated
polyhedron.

Notice that p ≤ (1 + |N1|) · (1 + |N2|) · (1 + |N3|).
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Theorem

The complete facet description in an extended space is:

y =

pX
j=1

v jzj

pX
j=1

zj = 1

zj ≥ 0 for j = 1, . . . , pX
j∈Ni

xNi
j =

niX
k=1

kyNi ,k for i = 1, 2, 3

X
j∈T

xNi
j ≥

X
k∈{1,...,ni}:
|T |+k>ni

(|T |+ k − ni )y
Ni ,k for i = 1, 2, 3 and ∅ 6= T ⊂ Ni

x ∈ R|N1|+|N2|+|N3|

y ∈ R|N1|+|N2|+|N3|

z ∈ Rp.
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Experiments with branching

The simplification effect of branching

Initial Problem

2 constraints and 12 variables

13083 facets

1 Fix x2 = 0, x6 = 0
690 facets

2 Fix x2 = 0, x6 = 1
425 facets

3 Fix x2 = 1, x6 = 0
91 facets

4 Fix x2 = 1, x6 = 1
541 facets

5 Total : 1747 facets

Comparing Variable Branching with Value Disjunction`
12
2

´
possible choices of xi , xj

`
12
3

´
possible choices of xr , xs , xt

Compute the number of facets for all four cases
xi = 0, xj = 0, xi = 1, xj = 1 xr + xs + xt = 0, xr + xs + xt = 1
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M. Köppe, Q. Louveaux, R. Weismantel (Magdeburg) Intermediate IP representations January 2006 14 / 18



Branching on value disjunctions vs. 2-variable branching

Claim

It is efficient to use value disjunction on a set of variables that are similar (that have the
same structure).

Ranking formula

We create a ranking formula that allows us to say whether a triple of variables is
structured or not. „

7 8 7
11 9 10

«
has a good ranking„

−23 12 −6
4 −1 −14

«
has a bad ranking
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Branching on value disjunctions vs. 2-variable branching (“unstructured”)
Histograms of the total number of facets in the subproblems
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Branching for market split and mas instances

CPLEX 9.1 Value Disjunctions

Name Rows Cols Nodes (106) Time (s) Nodes (106) Time (s)

corn535-1 5 35 13.8 2 431 3.8 809
corn535-2 5 35 11.9 2 084 4.2 865
corn535-3 5 35 17 2 946 9.8 1 970
corn540-4 5 40 321 55 918 105 20 873
corn540-5 5 40 231 39 787 87 17 267
corn540-6 5 40 188 30 532 97 19 162
corn650-7 6 50 *** *** 20400 4.4 M
mas74 13 151 5.3 0.7
mas76 12 151 0.413 0.093

Computation times in CPU seconds on a Sun Fire V890 with 1200 MHz UltraSPARC-IV processors
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