Rapport 2012 : Anévrismes intracrâniens : clip ou coil

Atteinte des nerfs crâniens par les anévrismes intracrâniens : implications stratégiques

F. Scholtes*, D. Martin

Service de neurochirurgie, université de Liège, CHU, Sart Tilman, bâtiment B135, 4000 Liège, Belgique

1. Introduction

Les anévrismes intracrâniens, rompus ou non, peuvent se maniester par l’atteinte de structures nerveuses adjacentes. Il peut par exemple s’agir d’une épilepsie due à l’irritation du parenchyme cérébral adjacent, ou d’une atteinte de nerfs crâniens, déficitaire ou irritative (Friedman et al., 2001).

L’atteinte des nerfs crâniens la plus classique est la paralysie oculomotrice due à l’atteinte du nerf oculomoteur (III). Elle est habituellement provoquée par des anévrismes de la paroi postérieure de la carotide, souvent à l’origine de l’artère communicante postérieure, (Barnes et al., 1981) plus rarement par des anévrismes carotidiens intracaverneux ou du système vertébrobasilaire (Ajtai et al., 2004 ; Huang et al., 1996 ; Jefferson, 1947 ; Kim et al., 2003 ; Nistri et al., 2007). Les autres atteintes oculomotrices sont plus rares et peuvent notamment être vues en présence de volumineux anévrismes carotidiens intracaverneux.


D’autres atteintes, comme l’hémispasme facial dû à l’irritation du nerf crâniens VII, sont plus rares.

Notons que des atteintes de novo ou aggravations d’atteintes de nerfs crâniens et des pertes visuelles ont été également décrites dans les suites d’un traitement, chirurgical (Almer and Miller, 2008) ou endovasculaire, (Kim et al., 2003 ; Lee et al., 2011 ; Nishino et al., 2009 ; Turner et al., 2008) et le traitement peut parfois aggraver un déficit préexistant.

Ce chapitre s’intéresse aux anévrismes pour lesquels un choix entre les deux modalités thérapeutiques, endovasculaire et chirurgicale est possible. Cela exclut notamment la dopplerastie intracrânienne, les dissections artérielles, les anévrismes vertébraux fusiformes et les anévrismes intracaverneux du siphon carotidien.

2. Paralysie oculomotrice

La littérature concernant les paralysies oculomotrices d’origine anévrismale est abondante et hétérogène. En 1996, une revue avait recensé plusieurs centaines de cas traités par chirurgie et notamment soulevé le sujet de l’utilité de la rapidité du traitement (Leivo et al., 1996).

La situation spécifique de l’atteinte du nerf III par un anévrisme à l’origine de l’artère communicante postérieure est l’atteinte anévrismale des nerfs crâniens la plus fréquente (Fig. 1). La littérature est cependant retrospective et hétérogène. Dans beaucoup de publications, divers anévrismes et déficits sont regroupés (Guresir et al., 2011). L’analyse systématique est en outre compliquée par la petite taille de la plupart des séries et par des différences méthodologiques (comme la résolution chirurgicale du dôme avec
potentielle manipulation du nerf III, les problèmes de définition d’une atteinte et/ou d’une récupération complète ou partielle, l’utilisation exceptionnelle d’une échelle de récupération standardisée et donc l’absence d’outcome standardisé (Chen et al., 2006; Richling, 2010; Zhang et al., 2010).

Néanmoins, un anévrisme devenir symptomatique par une paralysie oculomotrice, même non rompu, porte un risque de saignement significatif.

2.1. Indication du traitement

Pour un anévrisme rompu avec hémorragie sous-arachnoidienne démontrée par tomodensitométrie ou ponction lombaire, l’indication de traiter l’anévrisme se pose de manière habituelle.

Pour les anévrismes non rompus, l’apparition d’une paralysie oculomotrice est un signe évolutif qui les rend symptomatiques. Leur risque de rupture est ainsi augmenté (Komotor et al., 2008; Wermel et al., 2007). L’apparition brutale de symptômes pourrait traduire l’élargissement du sac anévrismal. La paralysie oculomotrice est d’ailleurs souvent associée à une douleur rétroorbilaire et dans le territoire du V-1, qui peut précéder la paralysie oculomotrice et qui est probablement attribuable à un contingent de fibres du trijumeau dans le nerf oculomoteur (Lanzino et al., 1993).

Les anévrismes non rompus de l’artère communicante postérieure, comme ceux de la circulation vertébrobasilaire, ont déjà un risque de rupture plus élevé (Wiebers, 1998; Komotor et al., 2008; Wermel et al., 2007). Quand ils deviennent symptomatiques, ils devraient donc tous être traités.

2.2. Récupération oculomotrice

La paralysie oculomotrice peut en principe récupérer sans traitement (Foroozan et al., 2002; Guresir et al., 2011; Jefferson, 1947), après l’exclusion chirurgicale de l’anévrisme (Leivo et al., 1996; Guresir et al., 2011) (Fig. 1) et après traitement endovasculaire (Birchall et al., 1999; Kassis et al., 2010; Panagiotopoulos et al., 2011; Zhang et al., 2010). La plupart des récupérations se font de manière précoce (Leivo et al., 1996), mais elles peuvent se voir après plusieurs mois, voire après plus d’un an et demi (Kassis et al., 2010). Il faut en prévenir les patients.

Il n’est pas possible d’agir sur des facteurs de risque de non-récupération propres au patient ou à l’anévrisme, comme l’âge ou la présence d’un diabète sucré (Ahn et al., 2006), la taille de l’anévrisme (Yanaka et al., 2003), le degré de paralysie oculomotrice à l’admission (Chen et al., 2006; Kyriakides et al., 1989; Panagiotopoulos et al., 2011; Zhang et al., 2010) ou la présence ou non d’une hémorragie sous-arachnoidienne, (Albuquerque, 2010; Kassis et al., 2010; Zhang et al., 2010) on peut agir sur deux facteurs : la modalité thérapeutique utilisée et le délai entre l’apparition de la paralysie et le traitement.

2.2.1. Traitement chirurgical versus endovasculaire

La question des avantages d’une modalité thérapeutique par rapport à l’autre a été sujet d’une série de publications récentes. Elle est particulièrement intéressante pour les anévrismes de l’origine de l’artère communicante postérieure qui sont accessibles au traitement chirurgical et endovasculaire en proportions assez équivalentes.

Il n’y a aucune étude randomisée qui permettrait d’éliminer les facteurs confondants, significatifs, dans la sélection des patients pour un traitement ou l’autre. Néanmoins, quatre publications ont tenté de faire la comparaison entre traitements chirurgical et endovasculaire (Ahn et al., 2006; Chen et al., 2006; Guresir et al., 2011; Nam et al., 2010).

2.2.2. Comparaison directe des approches thérapeutiques


Cette analyse comprend la série de 12 patients de l’année 2006 provenant de l’équipe de Spetzler (Chen et al., 2006), où, après six mois, la récupération était complète dans 85 % des cas chirurgicaux versus 33 % des cas endovasculaires, et restait partielle dans 15 % des cas chirurgicaux versus 67 % des cas endovasculaires. Parmi les cas suivis pendant plus qu’un an, la récupération était complète dans 100 % des cas chirurgicaux et 50 % des cas endovasculaires.

Deux autres séries comparatives méthodologiquement moins convaincantes (Ahn et al., 2006; Nam et al., 2010) n’ont pas été reprises dans la méta-analyse citée ci-dessus. Elles n’apportent pas d’élément décisif.
2.2.3. Études récentes du traitement endovasculaire

Les séries récentes rapportant le traitement endovasculaire des anévrismes de l’origine de l’artère communicante postérieure avec atteinte du nerf III montrent des récupérations. Néanmoins, les récupérations complètes restent moins fréquentes que dans beaucoup de séries chirurgicales (Kassis et al., 2010; Panagiotopoulos et al., 2011; Zhang et al., 2010). Notons que les re-canalisations, nombreuses mais souvent modérées, ne s’accompagnaient habituellement pas de nouvelles atteintes oculomotrices (Kassis et al., 2010).

2.2.4. En résumé

Sous réserve de l’impact décisionnel limité de ce type d’études « épidémiologiques » (Raymond et al., 2011), on peut conclure que :

- la récupération de la paralysie oculomotrice survient dans beaucoup de cas après traitement chirurgical ou endovasculaire. Aucun traitement n’apporte une garantie de récupération complète ;
- la notion intuitive que la décompression chirurgicale du nerf III puisse être plus efficace que le remplissage endovasculaire du sac anévrismal semble se confirmer. Sur base de séries montrant des taux de résolution très importants après traitement chirurgical précoce (voir ci-dessous), celui-ci est indiqué s’il peut se faire en sécurité.

2.3. Délai d’intervention

La littérature classique indique l’utilité d’une chirurgie précoce (Feely et Kapoor, 1987). En 1996, Leivo et al. (Leivo et al., 1996) avaient révélé un recensement de 283 cas d’anévrismes de l’artère communicante postérieure avec paralysie oculomotrice pour lesquels le délai d’apparition des symptômes et traitement était connu et ajouté 28 cas. Sans juxtaposition entre le degré d’atteinte préopératoire et le degré de récupération, les délais de traitement plus courts étaient néanmoins corrélatifs à la proportion des récupérations complètes. Et, malgré le fait que l’association ne soit pas toujours statistiquement significative (Chen et al., 2006; Kyriakides et al., 1989), la majorité des autres publications décrivent une proportion plus élevée de récupérations complètes en cas de traitement précoce (Feely and Kapoor, 1987; Giombini et al., 1991; Kassis et al., 2010; Perneczky and Czech, 1984; Yanaka et al., 2003; Yang et al., 2008; Zhang et al., 2010).

3. Déficit visuel

Une seconde atteinte classique de nerfs crâniens par les anévrismes est la compression du nerf (Fig. 2) ou chiasma optique (Schuss et al., 2011), ou même leur pénétration (Beatty, 1986; Fujita et al., 2002; Jea et al., 2003; Joo et Kim, 2007; Kanamaru et al., 2001; Wang et al., 2010) par les anévrismes de la circulation antérieure, typiquement carotido-ophtalmiques.

![Fig. 2. Anévrisme carotido-ophtalmique gauche. Le patient s'était présenté avec une cécité sans hémorragie sous-arachnoïdienne au CT mais des globules rouges dans le liquide céphalorachidien, et avec un trouble visuel sous forme d’une impression de scintillement. A-C. Fusion entre une tomodensitométrie en fenêtre osseuse et une IRM en pondération T2, coupes axiales. La flèche montre le conflit entre le sac anévrismal et le nerf optique gauche. D. Reconstruction IRM-T1D montant l’anévrisme (flèche blanche) dirigé vers le haut à partir du segment ophthalmoïde de l’artère carotide. E et F. CT scan postopératoire en coupe axiale montrant la position du clip (flèche blanche) juste au dessus de l’apophyse clinoides antérieure.](image-url)
Il ne faut pas confondre cette atteinte directe du nerf avec d'autres causes de déficit visuel en présence d'un anévresme intra-crânien. Ce déficit peut être dû à l'hémorragie du vitré dans l'hémorragie sous-arachnoïdienne, ou une neuropathie optique d'origine ischémique (Hara et al., 2003 ; Kang et al., 1997), survenant parfois dans un contexte de vasospasme (Carney et Oatey, 1983). On peut aussi voir apparaître un déficit visuel après chirurgie pour des anévrismes paracalendriens sans manipulation ou lésion peropératoire du nerf optique ou même de sa vascularisation (Rizzo, 1995).

3.1. Traitement chirurgical versus endovasculaire

Depuis longtemps, le traitement précoce des anévrismes responsables d'une atteinte visuelle est considéré efficace pour prévenir la perte visuelle définitive (Sundt et Whisnant, 1978 ; Tawk et al., 2006 ; Winn et al., 1977). Dans bon nombre de cas, on peut même attendre une amélioration visuelle après décompression chirurgicale, (de Oliveira et al., 2009 ; Ferguson et Drake, 1981 ; Heros et al., 1983) de manière analogue aux anévrismes qui compriment le nerf III, mais aussi dans une certaine mesure après traitement endovasculaire (Vargas et al., 1994).

La littérature concernant le traitement chirurgical et endovasculaire d'anévrismes de la circulation antérieure responsables d'une détérioration visuelle jusqu'à 2010 a également été revue très récemment et complétée par une série propre (Schuss et al., 2011) pour comparer l'efficacité chirurgicale et endovasculaire sur les symptômes visuels. La plupart des anévrismes analysés étaient non rompus, afin d'éviter l'inclusion d'atteintes visuelles par autre chose que l'anévrisme lui-même. Il s'agit de nouveau d'études rétrospectives avec leurs limites. Toutefois, cette analyse parle clairement en faveur du traitement chirurgical. Par ailleurs, après traitement endovasculaire, on peut voir une détérioration visuelle probablement multifactorielle, avec une composante inflammatoire et une composante compressive (Tawk et al., 2006).

L'analyse citée exclut d'autres traitements comme des anastomoses complexes (Kim et al., 2006). En outre, certains anévrismes peuvent nécessiter une approche combinée, endovasculaire et chirurgicale (Aranaoutovic et al., 1998). Enfin, notons que, dans les anévrismes qui ne peuvent être exclus par un clip, le traitement par wrapping par muslin a parfois été compliqué par aggravation fonctionnelle (Berger et al., 2003 ; Carney et Oatey, 1983 ; Felsberg et al., 1993 ; Gruber et al., 1983 ; McFadzean et al., 1991 ; Repka et al., 1984).

3.2. En résumé

La compression symptomatique du nerf optique nécessite un traitement le plus précoce possible. Le choix entre traitement chirurgical et endovasculaire peut être dicté par des facteurs indépendants du pronostic visuel. Néanmoins, sur base du raisonnement clinique et des données de littérature actuelles, il faut proposer la chirurgie avec décompression si elle peut se faire dans des conditions de sécurité au moins égales au traitement endovasculaire.

4. Hémispasme facial et névralgie du trijumeau

L'hémispasme facial et la paralysie faciale, et même parfois une névralgie du trijumeau, peuvent être vus, notamment avec les anévrismes de l'artère vertébrale, souvent fusiformes (Choi et al., 2008 ; Nakagawa et al., 2011 ; Sato et al., 2001 ; Uchino et al., 2005) mais aussi saciformes. Ces derniers sont rares (Maroon et al., 1978 ; Moriuichi et al., 1996 ; Neimat et al., 2005 ; Terao et al., 2001 ; Trotter et Choksey, 2000). Le traitement doit être adapté à chaque cas sur base du jugement clinique.

5. Conclusion

Les anévrismes symptomatiques doivent à priori être traités. La présence d'une atteinte de nerf crânien peut influencer le choix de la modalité thérapeutique, parmi d'autres éléments comme la morphologie anévrismale et ses rapports avec le vaisseau porteur qui influencent l'occlusion initiale et la stabilité à long terme du résultat d'embolisation (Sonsaeng et al., 2010, 2011).

L'atteinte d'un nerf crânien est attribuable à la masse anévrismale qui repose sur le nerf, la transmission du pulsus sur la structure nerveuse, la modification morphologique en cas d'expansion anévrismale, et, en cas de rupture, à la présence du caillot. L'exclusion chirurgicale de l'anévrisme peut traiter ces différents aspects. Le traitement endovasculaire peut diminuer la pulsativité du sac.

L'atteinte du nerf oculomoteur par un anévrisme à l'origine de l'artère communicante postérieure peut être le facteur décisif dans le choix du traitement chirurgical ou endovasculaire s'il y a équilibre entre les autres arguments (Golshani et al., 2010). Si la chirurgie peut être réalisée avec sécurité, il faut la proposer.

La compression du nerf optique par un anévrisme doit être traitée rapidement, par voie chirurgicale si possible. Si ce traitement s'accompagne d'un risque trop élevé par rapport au traitement endovasculaire, ce dernier peut aussi être suivi par une amélioration visuelle.

Déclaration d'intérêts

Les auteurs déclarent ne pas avoir de conflits d'intérêts en relation avec cet article.

Remerciements

Les auteurs remercient le Dr. Bernard Otto pour les fusions d'images de la figure 2.

Références


