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Abstract 
In today’s urbanising world, effective urban management and planning strategies are 
needed to temper the impact of urban change processes on the natural and human 
environment. To develop and monitor such strategies, and to assess their spatial impact, 
analysing changes in urban structure is essential. Data from earth observation satellites 
provide regular information on urban development and, as such, may contribute to the 
mapping and monitoring of cities and the modelling of urban dynamics. Especially 
images of medium resolution (Landsat, SPOT, …), which are cheap, widely available 
and often part of extensive historic archives, offer a wealth of information that may be 
useful for urban monitoring purposes. The lower resolution of this type of imagery, 
however, hampers the study of urban morphology and change processes at a more 
detailed, intra-urban level. Spectral unmixing approaches, which allow characterising 
land-cover distribution at sub-pixel level, may partly compensate for this lack of spatial 
detail, and may render medium-resolution imagery more useful for urban studies.     
 
The main research question addressed in this paper is how medium-resolution imagery 
could be used to describe urban morphology, by combining spectral unmixing 
approaches with spatial metrics. Spatial metrics derived from satellite imagery may be 
useful to quantify structural characteristics of expanding cities, and may provide 
indications of functional land use. In this study, we develop a set of urban metrics for 
use on continuous sealed surface data produced by sub-pixel classification of Landsat 
ETM+ imagery. Two sub-pixel classification approaches are examined for that purpose. 
In a first approach, we use a linear spectral mixture model with a vegetation and a non-
vegetation endmember to deconvolve each pixel’s spectrum into fractional abundances 
of the two end member spectra, which are determined by visualising mixture space with 
principal component analysis. In a second approach, we use a linear regression model to 
estimate the proportion of vegetation cover within each Landsat pixel. In both 
approaches, an urban mask is used to indicate pixels belonging to urban land cover. 
Only pixels within the urban mask are subjected to sub-pixel classification. We hereby 
assume that the urban area does not contain bare soil and that the area of a pixel not 
covered by vegetation fully consists of sealed surface cover. The resulting sealed 
surface proportion map is then used to characterise urban morphology and land use by 



means of the shape of the cumulative frequency distribution of the estimated sealed 
surface fractions within a building block. A transformed logistic function is fitted to this 
distribution with a least-squares approach to obtain function parameters that are used as 
variables in a supervised classification approach, together with spatially explicit metrics 
(spatial variance and Moran’s I).  
 
Our study demonstrates that images from medium resolution sensors can be used to 
characterise intra-urban morphology, and that the structure of a building block as 
described by the proposed metrics gives an indication of its membership to certain 
morphological/functional urban classes. In future research we will incorporate socio-
economic data in the metric analysis to further improve the distinction of urban land-use 
categories. The spatial metrics approach developed in this study will be used in 
experiments to improve the calibration of the MOLAND urban growth model, which is 
currently calibrated with historical land-use maps available for approximately 10-year 
intervals.  
 
Introduction 
More than half of the world’s population lives in urbanised areas, and in the future cities 
will house an increasing number of people in both absolute and relative terms (Martine, 
2008). While spatial expansion of cities is a natural consequence of demographic and 
economic trends and changes in lifestyle on which local and regional policy-makers 
have seemingly little grasp, local policy should be concerned about how population 
growth is translated into spatial patterns of urban growth. Urban sprawl and increased 
soil sealing provide symptomatic evidence for the fact that many European and North-
American cities grow faster spatially than demographically. A study of the European 
Environment Agency confirms this by reporting that European cities have expanded on 
average by 78% since the mid-1950s, while during the same period the population 
increased by only 33% (EAA, 2006). This dilution of the urban fabric has both direct 
and indirect impacts on the environment and the well-being of urban residents. For 
instance, uncontrolled sprawl increases energy consumption, pollution and greenhouse 
gas emissions, demands more transport infrastructure, may lead to increased flood risks 
and encroaches on natural landscapes. Effective urban management and planning 
strategies at different levels of government are therefore essential to temper the 
environmental consequences of urban land consumption. To develop and monitor such 
strategies and to assess their spatial impact, analysing and characterising changes in 
urban structure is important. Data from earth observation satellites provide regular 
information on urban development and could in that way contribute to mapping and 
monitoring structural characteristics of expanding cities. A rather novel approach in this 
research area is to describe urban form by means of spatial metrics, i.e. quantitative 
measures of spatial pattern and composition that have recently shown considerable 
potential for structural analysis of urban environments (Herold, et al., 2005; Torrens, 
2008). Spatial metrics derived from satellite imagery may also help to describe the 
morphological characteristics of urban areas and their changes through time (Ji, et al., 
2006). Because previous studies have demonstrated a relationship between the spatial 



structure of the built-up environment and its functional characteristics (Barr & Barnsley, 
1997), quantifications of urban morphology through spatial metrics can also be related 
to land use.   
 
Despite the currently available high resolution satellite images, which provide 
increasingly detailed information about urban surface materials, most of the historic 
archive imagery consists of medium resolution (MR) data such as from the Landsat or 
SPOT programmes. Therefore, to study urban growth patterns over a time-span that 
exceeds the availability of high resolution imagery, spatial metrics that succeed in 
capturing structural information from images with a pixel size of 20 meters or more 
should be used.  In this study, we aim to characterise urban structure and land use in the 
Greater Dublin area by developing spatial metrics for use on continuous sealed surface 
data produced by sub-pixel classification of Landsat images. The spatial metrics are 
calculated for building blocks that are homogeneous in terms of land use, and are used 
as variables that enable us to allocate each block to a particular morphological / 
functional urban class. The proposed approach makes it possible to tap into the 
extensive historic archives of MR images to characterise urban growth patterns at a 
reasonably detailed level, on an intra-urban basis and at low cost. 
 
Study area and data 
The study area for this research is Dublin, the political and economical capital of Ireland 
and home to over 40% of the country’s population. Dublin experienced rapid urban 
expansion in the 1980’s and 1990’s, fuelled by the building of new roads that drove 
residential and commercial development rapidly outward into the urban fringe (Kitchen, 
2002).  
 
A Landsat TM image (path 206, row 23) acquired on May 24th 2001 was used to derive 
a sealed surface map for the study area. The image was geometrically co-registered to 
the Irish Grid projection system and the raw digital numbers were converted to 
exoatmospheric reflectance according to the formulas and calibration parameters 
presented by The Landsat 7 Users Handbook (Irish, 2009). An existing high resolution 
land-cover map, derived from a Quickbird image acquired on August 4th 2003, was used 
to obtain reference data for training and validation of the sub-pixel classifiers. 
Homogeneous blocks for structural analysis were defined by overlaying a TeleAtlas 
road database for the area with the European MOLAND land-use map of 2000. 
 
Deriving continuous sealed surface data 
The downside of using MR data for urban analysis is the relatively low spatial 
resolution, which limits the level of structural detail that can be resolved from the 
imagery, and which may also lead to low mapping accuracies because the sensor’s 
instantaneous field of view (IFOV) often contains different types of land cover. To 
overcome this drawback we applied spectral unmixing, a technique that relates a pixel’s 
spectrum to fractions of its surface constituents. One of the most common methods to 
approach this problem is linear spectral mixture analysis (LSMA), whereby a pixel’s 



observed reflectance is modelled as a linear combination of spectrally pure 
“endmember” reflectances (van der Meer, 1999). LSMA has recently received quite 
some attention in studies that aim to characterise urban environments (Rashed, et al., 
2005). Some of these studies resort to the components of the Vegetation, Impervious 
surface and Soil (VIS) model proposed by Ridd (1995) to represent the endmembers of 
the LSMA model. However, not all pure vegetation, man-made impervious surface or 
soil pixels necessarily occupy well-defined, extreme positions in feature space and can, 
as such, not directly be used as endmembers for linear unmixing. One reason for this is 
that pure pixels are spectrally variable because of brightness differences, even though 
they may represent a similar surface type. This problem can be dealt with by applying 
brightness normalisation prior to the unmixing (Wu, 2004). Another reason is spectral 
confusion between VIS components, such as dry bare soils and bright sealed surfaces, 
which in some cases take up similar positions in feature space.  
 
While some authors did succeed in defining a soil endmember for their study area (e.g. 
Phinn, et al., 2002), this was not possible for the Dublin case. We therefore decided to 
use a sub-pixel classification approach in which soil is not used as a separate surface 
component. Because the distinction between urban and non-urban surface cover (sealed 
surfaces versus bare soil) cannot be explicitly made in that case, a mask was developed 
to indicate pixels belonging to urban land cover prior to performing the unmixing. The 
urban masks were created through unsupervised classification, and were subsequently 
enhanced by a knowledge-based post-classification approach (Van de Voorde, et al., 
2007, 2009).  Within the bounds of the urban mask, it was assumed that no bare soil 
occurs. Hence a pixel’s sealed surface fraction can be considered as the complement of 
the vegetation fraction. Only pixels within the urban mask were subjected to sub-pixel 
analysis. Two sub-pixel classification models were compared: LSMA with a vegetation 
and a non-vegetation endmember, and a simple linear regression model that estimates 
the proportion of vegetation cover for each pixel.  
 
To define the regression model and for validating both models, reference samples were 
randomly selected from the part of the Landsat image that overlaps the high resolution 
land-cover classification derived from the Quickbird image. Pixels in the sample set that 
were suspected to have undergone changes in vegetation cover between the acquisition 
dates of the Landsat image and the Quickbird image were filtered out by a temporal 
filtering technique based on iterative linear regression between NDVI values (Van de 
Voorde, et al., in press).  
 
Characterising urban structure with spatial metrics 
Spatial metrics are calculated within a spatial domain, i.e. a relatively homogeneous 
spatial entity that represents a basic landscape element. The definition of the spatial 
domain directly influences the metrics and will depend on the aims of the study and the 
characteristics of the landscape (Herold et al., 2005). In this study, the spatial domain 
was defined by intersecting a detailed road network with the MOLAND land-use map 
of 2000. Entities smaller than 1 ha were topologically removed by merging them with 



neighbouring blocks because they were too small compared to the image resolution and 
therefore contained too few pixels for reliable metric analysis. This resulted in a vector 
layer consisting of 5767 blocks, all relatively homogeneous in terms of land use for the 
year 2000.   
 
A simple but effective approach to relate the sub-pixel sealed surface proportions within 
a spatial entity to urban morphology is to calculate the percentage sealed surface cover 
for each block, i.e. the mean of the per-pixel sealed surface fractions. This provides a 
variable that expresses built-up density at block level. Based on this variable we 
produced a built-up density map by dividing the blocks into 4 classes according to their 
degree of soil sealing: 0-10%, 10-50%, 50-80% and more than 80% (fig. 1, right). The 
definition of these four classes is based on criteria used in the MOLAND scheme to 
distinguish non-urban land, discontinuous sparse residential urban fabric, discontinuous 
residential urban fabric and continuous residential urban fabric. With the resulting map, 
the study area was stratified according to its built-up density. Blocks with less than 10% 
sealed surfaces were labelled as non-urban land (fallow land, large vegetated areas, sea, 
etc.). Blocks with more than 80% sealed surface cover were considered as continuous, 
dense urban fabric which cannot be characterised further in terms of morphology. The 
remaining 3494 blocks with 10%-80% sealed surface cover, which belong to different 
morphological / functional land-use types, such as sparse residential areas or industrial 
zones with empty, vegetated plots, that cannot be distinguished based on the average 
sealed surface cover only, were subjected to further analysis.  
 
To characterise these blocks in more detail, we examined the cumulative frequency 
distribution (CFD) of the proportion sealed surface cover of the Landsat pixels within the 
blocks. Our assumption at this stage was that the shape of this distribution function 
should be related to the morphological characteristics of the block it represents, which 
also proved to be the case. Low and medium density residential land-use blocks, for 
instance, contain many mixed sealed surface-vegetation pixels because the buildings are 
small compared to the image resolution. The abundance of these mixed pixels is 
reflected by a sigmoid shaped CFD, whereas the predominance of pure sealed surface 
pixels, typical for industrial zones, results in a more exponentially shaped CFD (fig. 2). 
To express the CFD’s shape quantitatively, a function was fitted using a nonlinear least-
squares approach. The function’s parameters express the shape of the CFD and, as such, 
can be linked to the morphological characteristics of different urban land-use classes.   
 
Consider the following logistic function: 
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where Pi(f) is the predicted cumulative frequency within block i of impervious surface 
fraction f. The point of inflection for this function is 0.5 at a value for f of 0. This basic 
form can be generalised to allow numerical fitting to a sigmoid shaped CFD, as well as 



a CFD shape that is typical of non-residential areas by using the convex part of the 
function, left of the point of inflection only. For this purpose, the basic form is scaled 
and translated along the x and y axes: 
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where α and γ are the scaling parameters of the x and y axis respectively, and β and δ the 
translation parameters. In our analysis, we were only concerned with the part of the 
function domain and range that falls within the box defined by the interval 0 ≤ f ≤ 1 and 
0 ≤ Pi(f) ≤ 1.   
 
Because the function parameters only represent the block’s composition in terms of 
sealed surface pixels, additionally two spatially explicit metrics were used as 
classification variables: spatial variance and Moran’s I.  
 
To develop a morphology-based land-use map, the function parameters and spatially 
explicit metrics were used as variables in a supervised classification based on a multiple 
layer perceptron (MLP) neural network. To train the classifier, a random learning 
sample of about 100 blocks was selected for each of 3 major urban classes that were 
obtained by aggregation of more detailed land-use classes in the MOLAND scheme: 
urban green (comprised of urban parks, sports and leisure facilities), residential areas, 
and non-residential areas (comprised of industrial zones, commercial areas and public or 
private services). The classifier was then applied to all building blocks with 10-80% 
sealed surface cover. Its performance was assessed by comparing the predicted class 
memberships of an independent validation sample to the MOLAND land-use map, 
taking into account the size of the building blocks. The latter was achieved by putting an 
area based weight on each block in the error calculation. The reasoning behind this 
weighting is that misclassifying small blocks is considered less severe than 
misclassifying large blocks in producing the final land-use map. 
 
Results and discussion 
The accuracy of the sealed surface proportions predicted by the regression model and by 
LSMA was assessed with a temporally filtered validation sample that consisted of 2500 
ETM+ pixels, for which the reference proportions were determined from downsampling 
the land-cover classification derived from the Quickbird image. The mean absolute 
error, calculated from the validation sample by averaging the absolute differences 
between the observed and predicted proportions, tells us that on average an error of 0.10 
(or 10%) is made by the regression analysis in the estimation of the sealed surface 
fraction within each pixel. This is slightly better than the error of 13% made by applying 
the LSMA approach. Also in terms of error bias, i.e. the tendency of the model to over 
or underestimate sealed surface fractions, linear regression analysis performs best. The 
regression model has a bias very close to 0%. This means that overestimations on 
certain pixels are compensated by underestimations on others, a useful property if the 
per-pixel proportions are spatially aggregated. LSMA, on the other hand, lead to a 



stronger bias, with the model showing a tendency to overestimate the sealed surface 
fractions within the pixels. This result is not surprising given the vulnerability of the 
LSMA model to the choice of endmembers compared to the least-squares optimisation 
of the regression model. Combined with the urban mask, the sealed surface proportions 
estimated by linear regression provide a sealed surface map for the study area (fig. 1, 
left), from which the spatial metrics were derived. The average sealed surface cover for 
each of the building blocks can also be calculated from it. This results in a map that is 
useful to visualise the built-up density within the study area (fig. 1, right). It clearly 
shows the urban gradient: from a compact and dense city centre to a low density, 
sprawled sub-urban zone. 
 

  
 
Figure 1. Per-pixel sealed surface proportions estimated with linear regression 
analysis from a Landsat 7 ETM+ image of May 24th 2001 (left) and derived 
urban density map (right). Hatched pattern indicates cloud cover. 

 
To further characterise the building blocks, equation (2) was fitted to the cumulative 
frequency distribution of each block. Figure 2 shows typical examples for blocks with 
industrial and residential land use. For industrial land use (fig. 2, right), the CFD takes 
an exponential form, because the sealed surface cover of the pixels within such blocks is 
either high or low. For residential land use (fig. 2, left), the CFD is S-shaped because of 
the abundance of mixed sealed/vegetation pixels. The shape of the fitted function is 
reflected by the function parameters and represents discriminatory information which is 
useful for land-use classification.  
 
The overall accuracy of the MLP classification is 86% without using spatially explicit 
variables (table 1). Only a marginal overall improvement is noted if spatial variance and 
Moran’s I are included. The relatively large difference between the area weighted and 
non area weighted results indicates that smaller blocks have a bigger chance of being 
wrongly classified. This is related to the increasing uncertainty of the relation between 
the CFD’s shape and a blocks’ morphology if less pixels are present.   



 
 
Figure 2. Morphology of a low density residential block (left) and an industrial block 
(right) expressed by the shape of curves numerically fitted (red) to the cumulative 
frequency distribution of sealed surface pixels (black) for the Landsat image of 2001. 
 
MOLAND land use class Scenario I Scenario II 
 Producer’s acc User’s acc Producer’s acc User’s acc 
Residential 71% (74%) 79% (68%) 72% (71%) 83% (72%) 
Non residential 93% (80%) 89% (80%) 91% (81%) 92% (80%) 
Green 77% (71%) 83% (77%) 84% (69%) 71% (70%) 
Overall area weighted  
(non area weighted) 

86% (76%) 87% (75%) 

 
Table 1. Accuracy of the MLP-based land-use classification with only the function 
parameters as variables (scenario I), and with both function parameters and spatially 
explicit metrics (scenario II). 
 
A more detailed morphological land-use map may be obtained if the MLP classification 
of blocks into three main land-use types is combined with the built-up density map (fig. 
3). This map represents the urban structure of Dublin rather well: a dense CBD, sparse 
residential areas south towards the Wicklow mountains and to the northwest (Clonsilla, 
Hartstown), and industrial estates near the M50 motorway (Broomhill, Ballymount, 
Park West).  
 
Conclusions 
In this research, the cumulative frequency distribution of sealed surface proportions 
obtained through spectral unmixing of Landsat ETM+ pixels was used to characterise 
urban morphology within building blocks.  
 



 

 
 
 
 

 

 
Figure 3. Morphological land-use map of Dublin derived from a map of sealed 
surface proportions. 

 
A linear regression model, spatially constrained by an urban mask, was found to be the 
most reliable approach to derive per-pixel sealed surface fractions. The shape of the 
frequency distribution of these fractions within blocks defined by the intersection of 
road network data and the MOLAND land-use map was quantified by the parameters of 
a fitted transformed logistic function. This function constitutes a type of spatial metric 
that exploits the advantages of continuous land-cover data, obtained through spectral 
unmixing of medium resolution satellite imagery. 
 
Our approach showed promising results when applied to distinguish general land-use 
types with clearly distinct morphological characteristics, such as residential versus non-
residential land. In combination with building block density information derived from 
the sealed surface map, it is possible to distinguish different residential and non-
residential morphologies. Using spatially explicit metrics (spatial variance, Moran’s I) 
in conjunction with the parameters of the fitted function did not significantly improve 
the results. A further distinction among functional land-use types such as commercial 
land and services was less successful. For that purpose, ancillary socio-economic data 
would be required.  
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