The antiangiogenic factor 16K hPRL induces endothelial cell cycle arrest by acting at both the G0-G1 and the G2-M phases

Abbreviated title: 16K hPRL induces cell cycle arrest

Authors’ names:

Sebastien F. Tubruyn, Ngoc-Quynh-Nhu Nguyen, Anne M. Cornet, Joseph A. Martial† and Ingrid Struman.

Laboratoire de Biologie Moléculaire et de Génie Génétique
CIBM (Center of Biomedical Integrative Genoproteomics)
Université de Liège
Allée du 6 Août B6A
B-4000 Liège, Belgium

†Corresponding author and requests for reprints
Joseph Martial
Laboratoire de Biologie Moléculaire et de Génie Génétique
Université de Liège
Allée du 6 Août B6A
B-4000 Liège, Belgium
Tel: +32-4-3663371
Fax: +32-4-3662968
martial@ulg.ac.be

Key words: 16K hPRL, anti-angiogenic, cell cycle.

We thank M. Lion for her excellent technical assistance and for 16K hPRL production.

This work was supported by grants from the FRIA (“Fond pour la recherche industrielle et agricole”) (to ST, NQNN), Télévie (to ST), FNRS (“Fond national pour la recherche scientifique”) (to IS), the Fédération Belge contre le Cancer and the Université de Liège (Fonds Spéciaux).

INTRODUCTION

Angiogenesis, the formation of new blood vessels from pre-existing ones, is necessary for many physiological processes, including embryonic vascular development and differentiation, wound healing, and organ regeneration. On the other hand, angiogenesis is also associated with pathological conditions such as cancer, rheumatoid arthritis, diabetic retinopathy, and atherosclerosis (1). Many angiogenic inhibitors are currently in clinical trials of treatments for such pathologies. Recently, some have received FDA approval (2). These inhibitors act by different mechanisms, including inhibition of proliferation, induction of apoptosis, or inhibition of migration. Better understanding of the basic mechanisms of action of inhibitors will lead to developing effective antiangiogenic therapy.

We have shown previously that recombinant 16-kDa N-terminal fragments of human PRL/GH-family members (like those of prolactin (16K PRL), growth hormone (16K GH), variant GH (16K GH-v), and placental lactogen (16K PL)) show antiangiogenic properties (3). New data strongly suggest that 16K hPRL has potential as an anti-cancer drug: in Rag1−/− mice having received a subcutaneous implant of HCT-116 human colon cancer cells stably transfected with an expression vector encoding 16K hPRL, expression and secretion of biologically active 16K hPRL led to inhibition of tumor growth and neovascularization (4). Furthermore, using an adenovirus transfer vector, Kim et al. have shown that expression of 16K hPRL in prostate cancer cells reduce markedly their ability to form tumors in a xenograft mouse model (5). Recently, 16K hPRL was shown to prevent angiogenesis in a non-cancer angiogenesis-dependent disease: administered by means of adenovirus-mediated gene transfer, it proved able to prevent retinal neovascularization in a mouse model of oxygen-induced retinopathy (6).

To date, the mechanisms underlying the anti-angiogenic action of 16K hPRL are only partially known. In capillary endothelial cells, the antiangiogenic effect appears to be mediated by a saturable high-affinity 16K hPRL binding site - as yet unknown but distinct from the PRL receptor (7). The formation of new microvasculature requires activation of proteases, including urokinase (uPA). Lee et al. have shown that 16K hPRL inhibits uPA activation by increasing expression of type I plasminogen activator inhibitor (PAI-1) (8).

Among the different biological processes leading to inhibition of angiogenesis, two of the most effective are induction of apoptosis and inhibition of cell proliferation. These may explain the effects of the most powerful inhibitors of angiogenesis. Martini et al. have demonstrated that 16K hPRL induces apoptosis of endothelial cells (9). Signaling events associated with 16K hPRL-induced apoptosis include increased DNA fragmentation and activation of caspase-1 and caspase-3. Recently we demonstrated that NF-κB activation plays a key role in the mechanism by which 16K hPRL induces apoptosis in vascular endothelial cells. We showed that NF-κB activation is required for the activation of caspase-8 and caspase-9, which in turn trigger caspase-3 activation and DNA fragmentation (10). Less studied are the mechanisms by which 16K hPRL prevents endothelial cell proliferation. Up to now, only one molecular mechanism has been linked to the anti-proliferative effect of 16K hPRL: inhibition by 16K hPRL of VEGF-induced Ras activation, causing MAPK activation to be blocked (11).

The control of cell proliferation by extracellular signals may occur at checkpoints located at different phases of the cell cycle. It is exerted by cyclin, cyclin-dependent kinases (CDKs), and CDK inhibitors (CKIs). Cell cycle progression is triggered by the activation of different CDKs. The association of CDKs with cyclins and inhibitors determines these activations. For example, cyclin-D and cyclin-E, in association with CDK4 and CDK6, contribute to the G1/S transition, whereas inhibition of the kinase activity of cyclin/CDK complex is mediated by several CKIs, including p21(cip1) and p27(kip1) (12).

In this paper we demonstrate that 16K hPRL can induce cell cycle arrest in endothelial cells. By flow cytometry analysis, we show that this arrest occurs at both the G1/S and G2/M transitions. These blockades seem to be caused, respectively, by

ABSTRACT

The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent antiangiogenic factor that has been shown to prevent tumor growth in a xenograft mouse model. In this paper we first demonstrate that 16K hPRL inhibits serum-induced DNA synthesis in adult bovine aortic endothelial (ABAE) cells. This inhibition is associated with cell cycle arrest at both the G0-G1 and the G2-M phase. Western blot analysis revealed that 16K hPRL strongly decreases levels of cyclin-D1 and cyclin-B1, but not cyclin-E. The effect on cyclin-D1 is at least partially transcriptional, since treatment with 16K hPRL both reduces the cyclin-D1 mRNA level and down-regulates cyclin-D1 promoter activity. This regulation may be due to inhibition of the MAPK pathway, but it is independent of the GSK-3β activity. This regulation may be due to inhibition of the MAPK pathway.
down-regulation of cyclin-D1 and cyclin-B1. Down-regulation of cyclin-D1 may result from the inhibition of serum-induced activation of the MAPK pathway. We further identify p27kip1 and p21cip1 as key potential mediators in 16K hPRL-induced multi-phase cell cycle arrest.

RESULTS

16K hPRL inhibits DNA synthesis in endothelial Cells

Previous studies have shown that 16K hPRL can inhibit bFGF-stimulated growth of cultured endothelial cells (13). In the present work, we stimulated ABAE cell proliferation with fetal bovine serum (FBS), which contains many growth factors and cytokines that promote signaling through multiple pathways. To examine the effect of 16K hPRL on serum-induced proliferation of ABAE cells, we synchronized ABAE cells by subjecting them to a 48-h contact inhibition period and then allowed cell cycle progression by replating the cells in medium containing 10% FBS.

First, cell proliferation was assessed by measuring "H-thymidine incorporation into DNA (Fig 1A). FBS at 10% concentration substantially induced "H-thymidine incorporation. Treatment with increasing concentrations of 16K hPRL for 16 h inhibited this incorporation in a dose-dependent manner. The amount of "H-thymidine incorporated into cells treated with the highest concentration of 16K hPRL (10 nM) was similar to that observed in cells cultured for 16 h in the absence of serum (0% FBS) (data not shown). As the 16K hPRL used in these experiments was produced in Escherichia coli, it was necessary to demonstrate that the observed effects were not due to bacterial endotoxin. The amount of endotoxin (0.02 ng/ml) present in 10 nM 16K hPRL (Endo-C) was found to cause only a slight decrease in "H-thymidine incorporation that could not account for the observed effect of the 16K hPRL preparation. To further dissociate the action of 16K hPRL from contaminants in the preparation, immunoneutralization experiments were carried out (Fig 1B). The 16K hPRL (10 nM) activity was abolished when 16K hPRL was preincubated with polyclonal antiserum raised against 16K hPRL before the addition to the cell culture. This immunoneutralization is dose-dependent since increasing dilution of the antiserum progressively restores the 16K hPRL activity. This experiment demonstrates that the ability of 16K hPRL to inhibit DNA synthesis is dependent on the peptide activity and not on endotoxin or any other eventual contaminant proteins present in the preparation.

To study more precisely the effect of 16K hPRL on cell proliferation, we used flow cytometry to determine the proliferation state of single cells, and hence to estimate the percentage of proliferating adherent cells (Fig 1C). To distinguish the effect of 16K hPRL preparation from the cell cycle arrest. The importance of cyclin-D1 in the G1-to-S-phase transition. Treatment with 16K hPRL did not modify the time course of the cyclin-D1 level. In contrast, it did result in lower levels of cyclin-D1. This reduction was observed already after 6 h and remained considerable up to hour 24. To further analyze the effect of 16K hPRL on cyclin-D1, we treated ABAE cells for 16 h with increasing 16K hPRL concentrations (from 2 to 10 nM). 16K hPRL was found to decrease the cyclin-D1 level in a dose-dependent manner (Fig 3C). Endotoxin tested at 0.02 ng/ml (the concentration present in the highest dose of 16K hPRL) had no significant effect (Fig 3D).

16K hPRL affects the level of cyclin-D1 mRNA and inhibits cyclin-D1 promoter activity.

Previous data have demonstrated both protein-level and mRNA-level regulation of cyclin-D1. By Northern blot analysis we determined the cyclin-D1 mRNA level in ABAE cells exposed or not to 16K hPRL (Fig 4A). Treatment for 8 h with 10 nM 16K hPRL was found to decrease the cyclin-D1 mRNA level. As such an effect might reflect reduced transcription, reduced stability, or both, we transfected ABAE cells with a cyclin-D1 promoter reporter construct (CD1-Luc) and examined the effect of 16K hPRL on activation of this promoter (Fig 4B). Treatment with 16K hPRL was found to down-regulate transcriptional activation in a dose-dependent manner. The highest 16K hPRL concentration (10 nM) reduced activation of the cyclin-D1 promoter by 50%. The amount of endotoxin present in the highest dose of 16K hPRL caused no significant reduction in cyclin-D1 promoter activation. Taken together, these results show that 16K hPRL decreases both the level of cyclin-D1 and that of cyclin-D mRNA, probably by interfering with transcriptional activation of the cyclin-D1 promoter.

Involvement of the MAPK pathway in 16K hPRL-triggered cell cycle arrest

Among the pathways that might regulate transcription of the gene coding for cyclin-D1, the GSK-3β and MAPK pathways are the most important. We therefore tested the ability of 16K hPRL to interfere with one or both of these pathways and thus to inhibit transcription of the cyclin-D1 gene.

GSK-3β might down-regulate transcription of cyclin-D1 at both the protein level, by inducing its degradation, and the mRNA level, by inducing β-catenin degradation. GSK-3β kinase activity is regulated by its phosphorylation state. Unlike most kinases, GSK-3β is active in resting cells; stimulation with mitogens or growth factors leads to its inactivation by phosphorylation of the serine residue at position 9 (15). To test whether 16K hPRL can inhibit this phosphorylation and activate GSK-3β, we
performed Western blot analysis with an antibody raised against Ser9-phosphorylated GSK-3β (Fig 5A). In this experiment, treatment for various times (from 0 to 6 h) with 10 nM 16K hPRL failed to abolish phosphorylation of GSK-3β on serine 9. The total GSK-3β level also remained unaltered by 16K hPRL treatment.

Since β-catenin is degraded following phosphorylation by GSK-3β (16), we measured the level of β-catenin in nuclear extracts of ABAE cells treated for various times with 10 nM 16K hPRL (from 0 to 6 h) (Fig 5B). Treatment with 16K hPRL caused no significant modification of the β-catenin level. This confirms that the effect of 16K hPRL on the cyclin-D1 level is not due to interference with the GSK-3β pathway.

Previous studies suggest that cyclin-D1 can also be regulated by the MAPK pathway, ERK1 and ERK2 activations having been shown to increase transcription of the cyclin-D1 gene (17). To determine the effect of serum on MAPK pathway activation, we exposed serum-deprived ABAE cells to 10% FBS for 0 to 3 h (Fig 5C). Western blot analysis with an antibody raised against the phosphorylated forms of ERK1 and ERK2 revealed the following pattern. ERK1/2 activation within 20 minutes, a decrease to near basal phosphorylated ERK over the next hour, these levels being maintained for the next 2 h. Controls showed that levels of total ERK1 and ERK2 remained unaltered. This result indicates that serum can activate ERK1/2 but that activation is restricted in time. We then tested whether 16K hPRL can inhibit serum-induced activation of ERK1 and ERK2, as shown for stimulation with bFGF (18). Treatment with 10 nM 16K hPRL was found to inhibit serum-induced as well as bFGF-induced ERK activation (Fig 5D). No treatment had any effect on the total level of ERK-1 or ERK-2. This experiment highlights a potential role of the MAPK pathway in 16K hPRL regulation of the cyclin-D1 level.

16K hPRL down-regulates cyclin-B1.

Cyclin-B1 is required for the activation of mitosis. To examine whether the G2-M cell cycle arrest induced by 16K hPRL might be triggered by an altered level of cyclin-B1, we analyzed by Western blotting cells treated or not with 10 nM 16K hPRL (Fig 6A). In untreated cells, the cyclin-B1 level began to rise at 12 h and peaked at 24 h. This time course is in agreement with previous studies on eukaryotic cells, indicating that the level of cyclin-B1 protein is minimal in G1, rises in S, and peaks in the G2 phase (19). Cells treated with 16K hPRL showed a strongly reduced cyclin-B1 level at all times (Fig 6B). This effect was unrelated to endotoxin contamination (Fig 7C). We conclude that 16K hPRL treatment causes the p27(kip1) level to rise in ABAE cells.

To investigate whether 16K hPRL induces up-regulation of p21(cip1), ABAE cells were treated for various lengths of time (from 0 to 6 hours) with 10 nM 16K hPRL and Northern blot analysis was performed (Fig 5A). We observed an increased p21(cip1) mRNA level at 2 h, maintained at 4 h and beginning to decline at 6 h. To further characterize the effect of 16K hPRL on p21(cip1), we stimulated ABAE cells for 2 h with increasing concentrations of 16K hPRL (from 2 to 10 nM) (Fig 8B). 16K hPRL was found to increase the p21(cip1) mRNA level in a concentration-dependent manner. The effect was unrelated to the presence of endotoxin (Fig 8C).

DISCUSSION

We have observed an inhibition of DNA synthesis in 16K hPRL-treated endothelial cells. To better understand the signaling mechanisms involved, we have focused here on how 16K hPRL affects cell cycle progression and on molecules that regulate this process.

We show that 16K hPRL acts at more than one phase of the cell cycle. Our flow cytometry analysis of endothelial cells labeled with propidium iodide shows that 16K hPRL blocks the cell cycle at both the G0/G1 and G2/M transitions. This dual effect highlights the potent antiproliferative effect of 16K hPRL and suggests that 16K hPRL might stop proliferation of an endothelial cell whatever its stage in the cell cycle. To our knowledge, curcumin is the only other antiangiogenic molecule shown to trigger G0/G1- and G2-M-phase cell cycle arrest in endothelial cells (ECV-304 cells) (22).

In the present study, proliferation was induced by a large concentration of fetal bovine serum. Although serum contains many growth factors and cytokines that can induce proliferation through multiple pathways, 16K hPRL is able to abolish serum-induced progression of endothelial cells through the cell cycle. On this basis we hypothesize that 16K hPRL acts powerfully on the cell cycle via different pathways.

Cell cycle progression is controlled by several CDK complexes, such as cyclin-D1/CDK4 and cyclin-E/CDK2 in the G1/S transition and cyclin-B1/CDK1 in the G2/M transition. The activities of these complexes depend on the balance between cyclins and CKIs such as p27(kip1) and p21(cip1) (20). To examine whether 16K hPRL-triggered inhibition of cell proliferation is caused by cyclin down-regulation, CKI up-regulation or both, we have analyzed the expression of these cell cycle regulators in ABAE cells treated with 16K hPRL. Our studies reveal that treatment with 16K hPRL results in a significant down-regulation of cyclin-D1 and cyclin-B1, but we have not found any evidence of an effect on cyclin-E.

Down-regulation of cyclin-D1 occurs at least at the transcriptional level, since 16K hPRL treatment reduces the cyclin-D1 mRNA level and cyclin-D1 promoter activity. Many studies have shown that the transcriptional regulation of cyclin-D1 can be attributed to various pathways, notably the MAPK (23) and GSK-3β (24) pathways. GSK-3β is a multifunctional protein kinase that can alter the cyclin-D1 level by several mechanisms. Active GSK-3β phosphorylates cyclin-D1 at Thr286 to promote its export from the nucleus and subsequent proteasomal degradation. GSK-3β can also degrade β-catenin, preventing it from activating transcription of cyclin-D1 by association with the TCF transcription factor (25). The GSK-3β pathway does not appear to be altered by 16K hPRL, since levels of phospho-GSK-3β and nuclear β-catenin remain unchanged after treatment with 16K hPRL. The MAPK pathway, on the other hand, is affected by 16K hPRL treatment: our analysis of the phosphorylation state of ERK1 and ERK2 in the presence and absence of 16K hPRL suggests that 16K hPRL can inhibit serum-induced activation of this pathway. Since activated ERK1/2 trigger a cyclin-D1 level increase by translocating to the nucleus and phosphorylating transcription factors like the Ets and AP-1 family members (26), we suggest that 16K hPRL down-regulates cyclin-D1 by interfering with the MAPK pathway.
We have further examined the ability of 16K hPRL to cause cell cycle arrest at the G2/M transition by analyzing cyclin-B1 production. Cyclin-B1 is a key regulator of the cell cycle, central to controlling the G2/M transition. Cyclin-B1 is involved in regulating the events of mitosis. Its synthesis, which is increased in the early G2 phase, is necessary for transition from G2 through M (27). Here we show that ABAE cells arrested in G2-M have a reduced cyclin-B1 content. Our results suggest that this reduction leads to accumulation of endothelial cells in the G2 phase and inhibits transition to the M phase.

Our data also demonstrate a significantly increased level of p27(kip1) protein and p21(cip1) mRNA in 16K hPRL-treated endothelial cells. It has been reported previously that these two inhibitors may inhibit both the G1/S and G2/M transitions (20). For lack of a good antibody against bovine p21(cip1) we were unable to detect this protein in our bovine endothelial cells. Nevertheless, since the main regulation of p21(cip1) appears to be transcriptional (28), we believe that the increased p21(cip1) mRNA level observed in response to 16K hPRL is likely to correlate with an increased level of p21(cip1) protein.

The precise mechanism by which 16K hPRL induces p21(cip1) and p27(kip1) remains to be determined. Despite many studies demonstrating that regulation of p21(cip1) involves p53, other studies show that NF-κB may also be involved in this process. NF-κB is a transcription factor involved in the response of cells to various stimuli. It plays a central role in the immune and inflammatory responses, apoptosis, and proliferation (29). The human p21(cip1) promoter contains a functional NF-κB site (30). In addition, NF-κB activation can cause cell cycle arrest of primary keratinocytes through induction of p21(cip1) (31). As we have previously shown that 16K hPRL can activate NF-κB in endothelial cells (10), one might expect NF-κB to play a role in the induction of p21(cip1) in response to 16K hPRL.

We have also shown previously that full-length PRL and 16K PRL exert opposite effects on endothelial cells as regards angiogenesis (3). Several studies have explored the effects of full-length PRL on proliferation. As PRL stimulates cell cycle progression in epithelial tumor cells by up-regulating cyclin-D1 and down-regulating p21(cip1) (32), it might be interesting to determine whether this also occurs in endothelial cells.

In conclusion, this is the first study showing that 16K hPRL inhibits the cell cycle at more than one phase through combined effects on positive (cyclin-D1, cyclin-B1) and negative (p21(cip1) and p27(kip1)) regulators of CDK. This dual mechanism of action suggests that 16K hPRL might have potential as a potent antiancancer drug. Tumor-triggered angiogenesis may indeed be driven by many different angiogenic factors subject to regulation by different environmental and/or genetic factors. Hence, different tumors are likely to respond differently to an antiancancer drug. With 16K hPRL we have an antiancancerogenic compound that blocks serum-induced proliferation at more than one cell-cycle checkpoint and via more than one pathway. Used as an antiancancerogenic agent, it might thus show a fairly broad action spectrum.

MATERIALS AND METHODS

Production of recombinant protein and antibody

Recombinant 16K hPRL was produced and purified from E. coli as previously described (10). The purity of the recombinant protein exceeded 95% (as estimated by Coomassie Blue staining) and the endotoxin level was 0.125 pg/ng recombinant protein, as quantified with “the rapid endo test” of the European endotoxin testing service (Cambrex Bioprodu cts Europe). E. coli (serotype 055:B5) endotoxin was purchased from Sigma. In experiments where the action of 16K hPRL was compared with that of endotoxin, the amount of endotoxin used was the amount present in the highest 16K hPRL concentration used in the assay.

The anti-16K hPRL antisera use (no. 602) is a rabbit polyclonal antibody recognizing 16K hPRL.

Cell cultures

ABAE (adult bovine aortic endothelial) cells were isolated as previously described (37). The cells were grown and serially passaged in low-glucose Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum (FBS) and 100 U/ml penicillin/streptomycin (10% FCS medium). Recombinant human basic FGF (bFGF, Sigma) was added (1 ng/ml) to the culture every other day. Confluent cells corresponding to passages 8 to 13 were used in the experiments.

Measurement of [3H]-thymidine incorporation

ABAE cells were growth-arrested by contact inhibition for 48 h. The cells were harvested, plated in 24-well plates (3 X 10^5/well), and treated with 16K hPRL or endotoxin at the indicated doses. In the last 3 h of treatment, 1 μCi/ml [methyl-3H]-thymidine was added (specific radioactivity 6.7 Ci/mmol; ICN). Thereafter, the cells were washed with ice-cold 5% trichloroacetic acid and incubated on ice in 5% trichloroacetic acid. After two washes with ice-cold 5% trichloroacetic acid, the cells were solubilized with 0.25 N NaOH and transferred to counting vials containing 3 ml scintillation fluid (Ecolite, ICN).

BrdU incorporation analysis

ABAE cells were growth-arrested by contact inhibition for 48 h. The cells were harvested and plated in a 100-mm plate (5 X 10^5/well) for 18 h in medium containing 0 or 10% FBS with or without 16K hPRL or endotoxin. 10 μM BrdU was added to the cells during the last 3 h. BrdU incorporation was measured by means of the Fluos In Situ Cell Proliferation Kit (Roche Applied sciences) according to the manufacturer’s instructions. Briefly, the cells were washed with PBS and harvested by trypsinization. They were then washed again with PBS, fixed with cold 70% ethanol for 1 h, and centrifuged. The pellet was resuspended in 2 N HCl and incubated at room temperature for 30 min. The cells were then washed with PBS and incubated at room temperature for 45 min with a fluorescein-conjugated monoclonal anti-BrdU antibody. They were then washed with PBS, centrifuged, and resuspended in PBS before analysis with a Coulter Epics XL flow cytometer equipped with an argon laser emitting at 488 nm. Green fluorescence intensity (FL1) was measured using a 530 nm + 15 nm band pass filter. Graphical and population analyses were performed with FlowJo version 6.01 software (TreeStar).

Cell cycle analysis

ABAE cells were growth-arrested by contact inhibition for 48 h. The cells were harvested, plated (5 X 10^5/well) in a 100-mm plate, and incubated for 16 h in medium containing 0 or 10% FCS, with or without 16K hPRL or endotoxin. They were then harvested and fixed in ice-cold ethanol for 2 h at 4°C before being centrifuged and incubated at 37°C for 30 min) in PBS containing RNase (5 μg/ml) and propidium iodide (50 μg/ml). The cells were then washed with PBS, centrifuged, and resuspended in PBS before analysis on a Coulter Epics XL flow cytometer equipped with an argon laser emitting at 488 nm. Red fluorescence intensity (FL3) was measured using a 620 + 15 nm band pass filter. Graphical and cell cycle analyses were performed with FlowJo version 6.01 software (TreeStar).

Preparation of cell extracts

For total cell extracts, the cells were harvested, centrifuged, and lysed on ice for 30 min in lysis buffer (25 mM HEPES, pH 7.9, 150 mM NaCl, Triton X-0.5%, 1 mM DTT, 1 mM PMSF). Insoluble cell debris were removed by centrifugation at 10000 g for 15 min. Nuclear extracts were obtained as previously described (10). Aliquots of protein-containing supernatant were stored at −80°C. Protein concentrations were determined by the Bradford method using the Bio-Rad protein assay reagent.

Western blot analysis

Thirty micrograms of cytoplasmic cell lysate were resolved by SDS/PAGE (12%) and the bands transferred to a Polyvinylidene fluoride membrane (Millipore). The blots were blocked for 1 h with 8% milk in TBS with 0.1% Tween 20 (TBS-T) and probed for 1 h with primary antibodies: anti-cyclin-D1 (M-20), anti-cyclin-E (M-20), anti-cyclin-B1 (GNS1), anti-p27kip1 (C-19), anti-p-GSK-3β (Ser 9), or anti-GSK-3β (C-19) (Santa-Cruz) and p-MAPK antibody (C-20), or anti-MAPK antibody (C-20).
Figure 1: 16k hPRL DNA synthesis of ABAE cells. Synchronized ABAE cells were plated in 10% FBS medium and treated for 18 h with 16k hPRL. Endothelin-C (0.02 ng/ml) was added as a control for endothelin contamination. For the last three hours, cells were incubated with either [3H]thymidine (A,B) or BrdU (C). A) Dose-response curve for the action of 16k hPRL on [3H]thymidine uptake by ABAE cells. B) 16k hPRL (10 nM) was preincubated with a polyclonal antiserum raised against 16k hPRL to prevent DNA synthesis. Detection of BrdU-positive cells was estimated by Western blot analysis. Experiments were performed on ABAE cells plated in medium containing 10% FBS. D) ABAE cells were stimulated with 10% FBS for various times (0 to 3 h). E) ABAE cells were serum starved for 24 h in 0% FBS. F) ABAE cells were stimulated with 10% FBS for various times (0 to 3 h). G) ABAE cells were stimulated with 10% FBS for various times (0 to 3 h).

FIGURES

Figure 1: 16k hPRL DNA synthesis of ABAE cells. Synchronized ABAE cells were plated in 10% FBS medium and treated for 18 h with 16k hPRL. Endothelin-C (0.02 ng/ml) was added as a control for endothelin contamination. For the last three hours, cells were incubated with either [3H]thymidine (A,B) or BrdU (C). A) Dose-response curve for the action of 16k hPRL on [3H]thymidine uptake by ABAE cells. B) 16k hPRL (10 nM) was preincubated with a polyclonal antiserum raised against 16k hPRL at the indicated dilution. The results are expressed as the percentage of 16k hPRL activity. Triplicate samples were analyzed and the data presented are representative of at least three similar experiments. Values are means ± SD. C) Ability of 16k hPRL to reduce DNA synthesis. Detection of BrdU-positive cells by flow cytometry, using the “In Situ Cell Proliferation Kit Fluor” (Roche Applied Sciences) was used to monitor the ability of cells to synthesize DNA. The percentage of BrdU positive cells is defined as the ratio of the number of BrdU-positive cells to the total number, multiplied by 100. The results are representative of three similar and independent experiments.

Cruz Biotechnology, anti-p-Erk1/2 (E10) from Cell Signaling Technology, anti-ERK1/2 (CT) from Upstate, or anti-β-catenin from BD Biosciences. After three washes with TBST, antigen-antibody complexes were detected by means of peroxidase-conjugated secondary antibody and an enhanced fluorochromoluminometric system (ECL-plus; Amershams Biosciences).

Luciferase reporter assays

ABAEC cells were harvested and plated into 24-well plates (3 X 10^5/well). After 24 h, ABAEC cells were transfected with 0.4 µg pCD1-Luc reporter plasmid in combination with 0.05 µg pcMV-βgal plasmid. Transfections were performed with FuGene 6 reagent (Roche Applied Sciences) according to the manufacturer's instructions. The pCD1-Luc plasmid contains, upstream from the luciferase gene, the human cyclin D1 promoter as previously described (33). Plasmid pCD1-Luc was kindly provided by R.G. Pell (Lombardi Comprehensive Cancer Center, Washington, DC). Cells were transfected as described above and treated or not for 16 h with various concentrations of 16k hPRL or endothrin. ABAEC cells were washed once with cold PBS before incubation in 200 µl lysis buffer (25 mM Tris-Phosphate; 8 mM MgCl2; 1 mM EDTA; 1% Triton; 15% Glycerol; 1 mM DTT; 0.2 mM PMSF) for 20 min. Luciferase activity was measured in 100 µl supernatant incubated in the presence of luciferin (Promega), with a 96-well plate reader (Wallac Victor2, PerkinElmer). Luciferase activity was normalized relative to β-galactosidase activity, measured according to the manufacturer's instructions (β-Gal Reporter Gene Assay, Roche Applied Sciences).

Northern blot analysis

Total RNA was extracted using the Rneasy kit (Qiagen) according to the manufacturer's instructions. The total RNA was harvested and Northern blot analysis was performed on total RNA loaded. Normalization was done with an internal control for the amount of total RNA loaded.

Figure 2: 16k hPRL induces cell-cycle arrest at both G0-G1 and G2-M.

A) Ability of 16k hPRL to block cells in the G0-G1 phase. Synchronized ABAEC cells were plated in medium containing 10% FBS and treated for 16 h with 10 nM 16k hPRL or Endo-C. B) Ability of 16k hPRL to block cells in the G2-M phase. Synchronized ABAEC cells were incubated in medium containing 10% FBS for 16 h before addition of 10nM 16k hPRL or Endo-C for 8h. Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination. ABAEC cells were treated with 16k hPRL (10 nM) or Endo-C for 16 h. All results are representative of three similar and independent experiments.

Figure 3: 16k hPRL treatment reduces the cyclin-D1 level but not the cyclin-E level. Levels of the cyclin-D1 and cyclin-E proteins were assessed by Western blot analysis, performed on total protein extracts. All experiments were performed on synchronized ABAEC cells plated in medium containing 10% FBS. A) and B): Time courses of cyclin-E (A) and cyclin-D1 (B) protein level variations in ABAEC cells treated or not with 16k hPRL (10 nM). C) Dose-response analysis of the effect of 16k hPRL on cyclin-D1 expression after a 16-h treatment. D) Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination, ABAEC cells were treated with 16k hPRL (10 nM) or Endo-C for 16 h. All results are representative of three similar and independent experiments.

Figure 4: 16k hPRL affects the level of cyclin-D1 mRNA and inhibits cyclin-D1 promoter activity.

A) Ability of 16k hPRL to reduce the cyclin-D1 mRNA level estimated by Northern blot analysis. Synchronized ABAEC cells were plated with 10% FBS and treated for 16 h with 10 nM 16k hPRL. Total RNA was harvested and Northern blot analysis was performed with a human cyclin-D1 cDNA probe. 28S and 18S ribosomal RNA stained with ethidium bromide was used as internal control for the amount of total RNA loaded.

B) Transcriptional regulation cyclin-D1 promoter activity by 16k hPRL. Luciferase activity was measured in ABAEC cells transfected with the pCD1-Luc reporter gene vector after incubation for 18 h with increasing concentrations of 16k hPRL. Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination. All luciferase activities are normalized with respect to galactosidase activity. Values for untreated cells are arbitrarily set at 100%. Each bar represents the mean ± SD, n = 3. The results were similar in three independent experiments.

Figure 5: Involvement of the MAPK and GSK-3β pathways in 16k hPRL-induced cell cycle arrest. Levels of phosphorylated GSK-3β and nuclear β-catenin are not altered in ABAEC cells treated with 16k hPRL. Experiments were performed on ABAEC cells plated in medium containing 10% FBS. The level of phospho-GSK-3β was estimated by Western blot analysis, performed on total protein extracts. A) Time course of phospho-GSK-3β variation in ABAEC cells treated or not with 16k hPRL (10 nM). Normalization was done with an antibody raised against GSK-3β. The level of β-catenin was estimated by Western blot analysis performed on nuclear extracts. B) Time course of β-catenin level variations in ABAEC cells treated or not with 16k hPRL (10 nM).

Figure 6: 16k hPRL treatment reduces the cyclin-B protein level. The level of cyclin-B was estimated in total cell protein extracts by Western blot analysis. Experiments A) and B) were performed on synchronized ABAEC cells plated in medium containing 10% FBS. A) Time course of cyclin-B1 level variations. ABAEC cells were treated or not for the indicated time
with 10 nM 16K hPRL. B) Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination, ABAE cells were treated with 16K hPRL (10 nM) or Endo-C for 16 h. C) Level of cyclin-B1 in G2-phase cells. Cells were analyzed by flow cytometry for both expression of cyclin-B1 and cell cycle distribution (using a propidium-iodide-labeled DNA content method). Synchronized ABAE cells were incubated for 16 h in medium containing 10% FBS before addition of 10 nM 16K hPRL for 8 h. Cells were harvested, permeabilized, fixed, and subjected to immunofluorescence staining with anti-cyclin-B1 antibody prior to analysis by flow cytometry. Only cells in the G2-M phase (as shown for the 16K hPRL treated cells) were analyzed for cyclin-B1 expression. The results are representative of three similar and independent experiments.

Fig 7: 16K hPRL treatment increases the level of p27(kip1) protein
Levels of p27(kip1) protein were estimated by Western blot analysis, performed on total protein extracts. All experiments were performed on synchronized ABAE cells plated in medium containing 10% FBS. A) Time course of p27(kip1)-level variations in ABAE cells treated or not with 16K hPRL (10 nM). B) Dose-response analysis of the effect of 16K hPRL on the p27(kip1) level after a 16-h treatment. C) Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination, ABAE cells were treated with 16K hPRL (10 nM) or Endo-C for 16 h. All results are representative of three similar and independent experiments.

Fig 8: 16K hPRL treatment increases the level of p21(cip1) mRNA
Levels of p21(cip1) mRNA were estimated by Northern blot analysis performed on total cell RNA with a human p21(cip1) DNA probe. Levels of ethidium-bromide-stained rRNA demonstrate similar loading and RNA quality in each lane. A) Time course of p21(cip1) mRNA level variation in ABAE cells treated with 10 nM 16K hPRL. B) Dose-response analysis of the effect of 16K hPRL on the p21(cip1) mRNA level after a 2-h treatment. C) Endo-C (0.02 ng/ml) was added as a control for endotoxin contamination; ABAE cells were treated with 16K hPRL (10 nM) or Endo-C for 2 h. All results are representative of three similar and independent experiments.

Bibliography

Fig. 1

A

Bar graph showing 3H-Thymidine incorporation (cpm x 10^-4) for different treatments:
- Untreated
- 16K hPRL (nM) levels: 1, 2, 5, 10
- Endo-C

B

Bar graph showing 3H-Thymidine Incorporation (% of 16K hPRL activity) for different treatments:
- 16K hPRL
- anti-hPRL 1/100

C

Histograms for different treatments:
- 10% FBS
- 10% FBS + 16K hPRL
- 10% FBS + Endo-C

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percentage of BrdU positive cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% FBS</td>
<td>29%</td>
</tr>
<tr>
<td>10% FBS</td>
<td>49%</td>
</tr>
<tr>
<td>10% FBS + 16K hPRL</td>
<td>16%</td>
</tr>
<tr>
<td>10% FBS + Endo-C</td>
<td>42%</td>
</tr>
</tbody>
</table>
Fig. 2

A

- 16K hPRL
- 10% FBS

- G2-M
- G0-G1
- S

Analysis

- Untreated:
 - G0/G1 = 45%
 - S = 39%
 - G2/M = 16%

- 16K hPRL:
 - G0/G1 = 76%
 - S = 12%
 - G2/M = 15%

- Endo-C:
 - G0/G1 = 49%
 - S = 35%
 - G2/M = 16%

B

- 16K hPRL
- 10% FBS

- G2-M
- G0-G1
- S

Analysis

- Untreated:
 - G0/G1 = 62%
 - S = 16%
 - G2/M = 22%

- 16K hPRL:
 - G0/G1 = 54%
 - S = 10%
 - G2/M = 36%

- Endo-C:
 - G0/G1 = 63%
 - S = 14%
 - G2/M = 23%
Fig 5

A

16K hPRL Time (min)

<table>
<thead>
<tr>
<th>Untreated</th>
<th>30</th>
<th>60</th>
<th>180</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-GSK-3β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSK-3α</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSK-3β</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

16K hPRL Time (min)

<table>
<thead>
<tr>
<th>Untreated</th>
<th>30</th>
<th>60</th>
<th>180</th>
<th>360</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-Catenin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

10% FBS Time (min)

<table>
<thead>
<tr>
<th>0</th>
<th>20</th>
<th>60</th>
<th>120</th>
<th>180</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-Erk1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Erk2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erk1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erk2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

<table>
<thead>
<tr>
<th>16K hPRL</th>
<th>bFGF</th>
<th>/</th>
<th>10% FBS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>16K hPRL</td>
</tr>
<tr>
<td>p-Erk1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-Erk2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erk1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erk2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig 7

A

Untreated

16K hPRL

p27(kip1)

B

Untreated

16K hPRL (nM)

2 5 10

p27(kip1)

C

Untreated hPRL Endo-C

p27(kip1)