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Articulations flexibles : avantages et inconvénients
Absence de jeu

Absence de frottement, donc

Pas d’hystérésis
Pas de particules d’usure

MAIS course limitée.

Applications:

Métrologie

Micromécanique

Micropompes d’injection de fluides dans le corps humain

Pour les concevoir, on a besoin d’un modèle de leur raideur sous
différentes sollicitations.
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Description géométrique

Posant
x = ` sinϕ

on a

h(x) = h0 + 2a− 2a cosϕ = 2a

[(
1 +

h0

2a

)
− cosϕ

]
=

2a

ε
(1− ε cosϕ)

avec

ε =
1

1 +
h0

2a
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Moment de flexion constant dans le plan

α =
12Mf

Eb

∫ `

−`

dx

h3∫ `

−`

dx

h3
=
ε3`

8a3

∫ π/2

−π/2

cosϕ

(1− ε cosϕ)3
dϕ =

ε3`

4a3
I1(ε)

avec

I1(ε) =

∫ π/2

0

cosϕ

(1− ε cosϕ)3

Ainsi,
α

Mf
=

3

Eb

`

a3
ε3I1(ε)
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Calcul exact de I1(ε)

Changement de variables de Sommerfeld (cf. lubrification)

cosϕ =
cosω + ε

1 + ε cosω

ϕ = 0 ↔ ω = 0

ϕ =
π

2
↔ ω = ω∗ = arcos(−ε)

Le calcul donne

I1(ε) =
1

(1− ε2)5/2

[(
1 +

ε2

2

)√
1− ε2 +

3ε

2
ω∗
]

... un peu compliqué !
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Expression asymptotique pour h0/a� 1

On a alors

ε ≈ 1, 1 +
ε2

2
≈ 3

2
, ω∗ ≈ π

ce qui donne

I1,as =

(
a

h0

)5/2

· 3

2
π

et, par conséquent, (
α

Mf

)
as

=
9π

2Eb

`

a

√
a

h
5/2
0

Dans le cas du col circulaire (` = a), la même expression a été obtenue par
Paros et Weisbord (1965)
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Expression approchée dans le cas général

On se propose d’écrire

α

Mf
=

(
α

Mf

)
as

· 1

K1(h0/a)

où K1(h0/a) a pour définition

K1 =

3π

2

(
a

h0

)5/2

ε3I1

Ajustement des valeurs numériques pour h0/a ≤ 0, 5 → approximation
simple de K1:

K1,app = 1 + 0, 136
h0

a

erreur relative : 0,08%
Ceci fournit une méthode simple de calcul.
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Extension u =
N

Eb

∫ `

−`

dx

h∫ `

−`

dx

h
=
`ε

a

∫ π/2

0

cosϕ

1− ε cosϕ
dϕ =

`

a
I2(ε)⇒ u

N
=

1

Eb

`

a
I2(ε)

Valeur exacte

I2(ε) = −π
2

+
ω∗

√
1− ε2

Expression asymptotique ( u

N

)
as

=
1

Eb

`

a
π

√
a

h0

Expression approchée

u

N
=
( u

N

)
as
· 1

K2
avec K2 ≈ 1 + 0, 97

√
h0

a

Erreur relative: 1,62%
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Torsion

ψ =
3Mt

Gb

∫ `

−`

dx

h3
=

3

4

Mt

Gb

ε3`

a3
I1(ε)

Même intégrale qu’en flexion, donc

ψ

Mt
=

9π

8Gb

`

a

√
a

h
5/2
0

1

K1
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Flexion transverse sous moment constant MfT

La rotation d’extrémité β se calcule par

β =
12MfT

Eb3

∫ `/2

−`/2

dx

h

Même intégrale qu’en traction, donc

β

MfT
=

12π

Eb3

`

a

1

K2
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Translation pure d’une extrémité dans le plan

Mf = −Qx

Déformée = terme de flexion vf + terme de cisaillement vc , à évaluer
séparément:

v = vf + vc
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Terme de flexion vf

dα

dx
=

12Mf

Ebh3
= −12Qx

Ebh3

vf =

∫ `

−`
αdx = [xα]`−` −

∫ `

−`
x

dα

dx
dx = −

∫ `

−`
x

dα

dx
dx

=
12Q

Eb

∫ `

−`

x2

h3
dx =

3Q

Eb

`3ε3

a3
I3(ε)

avec

I3(ε) =

∫ π/2

0

sin2 ϕ cosϕ

(1− ε cosϕ)3
dϕ

Valeur exacte (calcul un peu long):

I3(ε) =
1

(1− ε2)3/2

[
1

2ε

(
ω∗ − sin 2ω∗

2

)
+

1

ε

(
ε− 1

ε

)(
ω∗

ε
− sinω∗

)
+

(
ε− 1

ε

)2 π

2ε
√

1− ε2

]
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Expression asymptotique(
vf
Q

)
as

=
3π

Eb

(
`

a

)3( a

h0

)3/2

Expression approchée
vf
Q

=

(
vf
Q

)
as

1

K3

avec

K3,app = 1 + 1, 40
h0

a

Erreur relative: 0,9%

Terme de cisaillement

vc
Q

=
1

5
6 Eb

∫ `

−`

dx

h
=

6

5Eb

`

a
I2(ε) =

1

K2

6π

5Eb

`

a

√
a

h0

Généralement, cette contribution ∝ (a/h0)1/2 est petite devant
vf ∝ (a/h0)3/2.
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Translation pure hors plan

Même raisonnement, avec charge R et déplacement d’extrémité w .(wf

R

)
as

=
12`3

Eb3

`

a

(
1 +

π

4

)
wf

R
=
(wf

R

)
as

1

K4

K4,app = 1 + 1, 726

√
h0

a

(
1 +

√
h0

a

)
Erreur relative : 0,6%.

wc

R
=

1

K2

6π

5Eb

`

a

√
a

h0

On notera que
wc

wf
=

K4

17, 85K2

(
b

`

)2√ a

h0

n’est généralement pas petit devant l’unité.
Jean-François Debongnie (ULg, LTAS/LMF)Comportement des articulations flexibles à col elliptique February 27, 2012 14 / 15



Conclusions

Nos résultats permettent de traiter toutes les solutions du col : flexion
simple = flexion pure (Mf = cte) + translation pure (Mf = linéaire).

Pour chaque cas, nous avons dégagé la solution générale, la solution
asymptotique et une solution approchée originale et très simple.

Nos résultats constituent un outil très efficace au niveau de la
conception.
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