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Introduction

In 1878, Cantor constructed a bijection between [0, 1] and [0, 1]2, bijection defined via
continued fractions.

@ G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal fir die reine und

angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.
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Notations

E=[0,1, D=ENQ and I=E\D.
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Continued Fractions
@ A. Ya. Khintchine, Continued fractions, P. Noordhoff, 1963.

Leta = (a;);eq1,... n) @ finite sequence of positive real numbers (n € N); the

expression [ay, . . ., a,] is recursively defined as follows:
1 1
all]=— and |ai,...,Qm| = ,
[oa] ai [ ] a + [az, ..., am)
foranym € {2,...,n}. Ifa € N", we say that
1
[a1,...,an] = N N
a
1 | 1
a
2T
o
27
is a (simple) finite continued fraction
Proposition
Forany a € N" (n € N), [aq,...,a,] belongs to D. Conversely, for any z € D, there

exists a natural number n and a sequence a € N” such that z = [ay, . . ., a,].
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Continued Fractions and Convergents

Leta € N". Forall j € N, the quantities p;(a) and ¢;(a) are recursively defined as
follows:

p-1(a) =1, ¢g-1(a) =0, po(a) =0, go(a) =1
and, fork € {1,...,j},
{ pr(a) = arpr—1(a) + pr_2(a)
qx(a) = arqr—1(a) + qr—2(a)

pi(a)
q;(a)

The quotient is called the convergent of order j of a.

Proposition

Leta € NV, For all 7 € N, we have

pjla
[al,...,aj] = J( )
a5(a)
With the properties of convergents, we can show that the sequence z; = [a1, ..., a;]

converges. The limit is called an infinite continued fraction  and is denoted [a1, . . .].

L. Simons (ULg) Cantor’s Bijection May 6-12, 2012 4/14



Continued Fractions

If the real number z € E'is equal to [a1, . . .], we say that [a] = [a1, .. .] is a continued
fraction corresponding to x.

Theorem — Representation of the real numbers (of E)

Any element of D can be expressed as a finite continued fraction. We have x € [ if
and only if there exists an infinite continued fraction corresponding to z; moreover, this
infinite continued fraction is unique.

Remark

An element z of I is a quadratic number if and only if the corresponding continued
fraction [a] is ultimately periodic, i.e. there exist k, J € N such that a1 = a; for any
j>J.
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Metric Theory of Continued Fractions

Forany a € NV, [a] corresponds to an irrational number z: € I. Let us consider, for
each j € N, the term a; as a function of z : a; = a;(z).

e Function a;
We can write

1
—=a %—[ag,...k
x

For any k € N, we have

a1(x)

ag=kk & —<x<l
te k—+1 =%

Then, a; is a piecewise constant and
non-increasing function.

0 Vs 13 12 1
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Metric Theory of Continued Fractions

e Function ay (Representation with a; = 1)

We can write

Tr = s =
[ay, 7] .
ar + —
T2
with 7o € [1, 00). Forany k € N, we have

axs=k & k<ryo<k+1.

Then, ao is a piecewise constant and

1/(11112) 1/(111/3) " 1 . .
z non-decreasing function.
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Metric Theory of Continued Fractions

e Function ay (Representation with a; = 1)

We can write

x =lay,ra) = .
ar + —
T2

with 7o € [1, 00). Forany k € N, we have

axs=k & k<ryo<k+1.

. ‘ L Then, ao is a piecewise constant and
12 U(1+1/2)  1U(1+1/3) 1 . .
z non-decreasing function.

e Functiona; (j € N)

If j is odd, a; is non-increasing If j is even, a; is non-decreasing
piecewise constant function. piecewise constant function.
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Metric Theory of Continued Fractions

Let z = [a] be an irrational number; for n € N, we set
Ln(z)={y=[b]€l:bj=a;ifje{l,...,n}}.

We will say that I, (x) is an interval of rank n. For any n € N, I,,(x) is an irrational
subinterval of I, I,,4+1(x) C I,(z) and lim,, I,,(z) = {z}. In fact, one gets

_ (pal@) pala)+pai(a)
Inz) = <qn<a>’ gn(a) + qn1(0)> n

if n is even (if n is odd, the endpoints of the interval are reversed). Every interval of
rank n is partitioned into a countable infinite number of intervals of rank n + 1. By
denoting |I,,(x)| the Lebesgue measure of I,,(x), one has

1
n(a)(an(@) + gn-1(a))’

[ In ()] =

L. Simons (ULg) Cantor’s Bijection May 6-12, 2012

8/14



Cantor’s Bijection
ﬁ G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal fur die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.

If x € I, let[aq,...] the corresponding continued fraction and define the applications
f1 and f as follows:
fl(ac) = [al,ag, cees 2541, - ] and fg(x) = [az,a4, cee, @25, ]
The application
[l =P ee (file), fa(2))

is the Cantor’s Bijection on I.
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Cantor’s Bijection

@ G. Cantor, Ein Beitrag zur Mannigfaltigkeitslehre, Journal fir die reine und
angewandte Mathematik (Crelle’s Journal), Vol. 84, 242-258, 1878.

If x € I, let[aq,...] the corresponding continued fraction and define the applications
f1 and f as follows:

fl(x) = [al,ag,.. cy 2541, - - ] and fg(x) = [ag,a4,.. <5 @25, . ]

The application
fiI—= e e (i), fa(z)
is the Cantor’s Bijection on I.

Remark
e If Q) denotes the quadratic numbers of I, f is a one-to-one mapping between )

to Q2.
e Since the cardinals of £ and I are equal, f can be extended to a one-to-one
mapping from E to E2.

e Foranyn € Nandany x € I, f; maps the interval I,,(x) to L,,(f1(x)), where
m =n/2ifnisevenand m = (n + 1)/2 if n is odd. This shows that f; is a
continuous function.

v
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Cantor’s Bijection

Representations of the functions f; (left panel) and f (right panel)
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Continuity of Cantor’s Bijection

Forall z € I, we write o(z) = a if a € N" satisfies z = [a].
A usual distance on N is given by

ifa = (a;)jen and b = (b;)jen are two elements of N''. We implicitly consider
that NV is equipped with this distance. The set I (like D and F) is endowed with the
Euclidean distance.

Proposition

The application ¢ is an homeomorphism between I and NN In particular, Cantor’s
bijection f is an homeomorphism between I and I2.

Remark

Since (NN, d) is a separable complete metric space, the space I is a Polish space.
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Continuity of Cantor’s Bijection

Netto’s theorem
Any bijective map ¢ : [0, 1] — [0, 1]? is necessarily discontinuous. J

@ H. Sagan, Space-filling curves, Universitext, New-York : Springer-Verlag, 1994.

Then, Cantor’s bijection f can not be extended to a continuous function from E to E?2.

Proposition J

Any extension of Cantor’s bijection to F is discontinuous at any rational number.
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Hoélder Regularity

@ S. Jaffard, Wavelet Techniques in Multifractal Analysis, In Proceedings of
Symposia in Pure Mathematics, Vol. 72, 91-152, 2004.

Let « € [0, 1]. A continuous and bounded real function g defined on A C R belongs to
the Holder space A®(x) with x € A if there exists a constant C' > 0 such that

lg(z) —g(y)| < Clz -y,
for any y € A. The Holder exponent hy(x) of g at x is defined as follows:

hg(z) = sup{a € [0,1] : g € A%(x)}.
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Holder Regularity of Cantor’s Bijection

Theorem
For almost every x € I, we have hy, (z) = 1/2and hy,(z) = 1/2. J

Remark

Leta € N the sequence defined by

0 = 27 if jis even
771 1 ifjisodd
forany j € N and set z = [a]. For this particular point, we have hy, (z) = 0, so that
f1 is a multifractal function.
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