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Abstract

An explicit construction of central extensions of Lie superalgebras of Krichever-Novikov
type is given. In the case of Jordan superalgebras related to the superalgebras of Krichever-
Novikov type we calculate a 1-cocycle with coefficients in the dual space.
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1 Introduction

In 1987, I. M. Krichever and S. P. Novikov [11], [12] and [13] introduced and studied a family
of Lie algebras generalizing the Virasoro algebra. Krichever-Novikov algebras are obtained as
central extensions of the Lie algebras of meromorphic vector fields on a Riemann surface of
arbitrary genus g with two marked points. M. Schlichenmaier studied the Krichever-Novikov
Lie algebras for more than two marked points [23], [24] and [25]. He showed, in particular,
the existence of local 2-cocycles and central extensions for multiple-point Krichever-Novikov
algebras [27] extending the explicit formula of 2-cocycles due to Krichever and Novikov. De-
formations on theses algebras were studied in [4] and [5].

The notion of Lie antialgebra was introduced by V. Ovsienko in [21], where the geometric
origins were explained. It was then shown in [15] that these algebras are particular cases of
Jordan superalgebras. The most important property of Lie antialgebras is their relationships
with Lie superalgebras see [21], [19], [15] and [16]; different from the classical Kantor-Koecher-
Tits construction for general Jordan superalgebras. One of the main example of [21] is the
conformal Lie antialgebraAK(1) closely related to the Virasoro algebra and the Neveu-Schwarz
Lie superalgebraK(1). In [19], S. Morier-Genoud studied an other important finite dimensional
Lie antialgebra: K3, called the Kaplansky Jordan superalgebra which is related to osp(1|2).

Lie superalgebras of Krichever-Novikov type, denoted Lg,N and the relation with Jordan
superlagebras of Krichever-Novikov type, denoted Jg,N , were studied by S. Leidwanger and
S. Morier-Genoud in [16]. In this article, they found examples of Lie antialgebras generalizing
AK(1), as the same way that Lg,N generalizes K(1). In this article, we are studying extensions
on Lg,N and Jg,N .

Our first theorem is an explicit formula for a non-trivial 2-cocycle on Lg,N . This for-
mula uses projective connections and is very similar to the formula of Krichever-Novikov and
Schlichenmaier. We prove that the cohomology class of this 2-cocycle is independent of the
choice of the projective connection. In the case of punctured Riemann sphere (g = 0), the
constructed cocycle is unique provided it vanishes on the Lie subalgebra osp(1|2).
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Our second theorem is an explicit formula for a 1-cocycle on Lg,N with coefficient in the
dual space. Recently, P. Lecomte and V. Ovsienko introduced a cohomology theory of Lie
antialgebras in [14]. In particular, they discovered two non-trivial cohomology classes of the
conformal Lie antialgebra AK(1) analogous to the celebrated Gelfand-Fuchs class and to the
Godbillon-Vey class. The cocycle on Lg,N studied in this article satisfies similar properties
than those found in [14]. It is given by a very simple and geometrically natural formula that,
perhaps, explains the geometric nature of Lie antialgebras associated to Riemann surfaces.

Interesting explicit examples of superalgebras arise in the case of the Riemann sphere
with three marked points. These examples were thoroughly studied in [23] and [16]. The Lie
superalgebra is denoted by L0,3 and the corresponding Jordan superalgebra by J0,3. These
two algebras are closely related since L0,3 is the adjoint superalgebra of J0,3. Moreover, these
algebras contain the conformal algebras:

L0,3 ⊃ K(1) ⊃ osp(1|2) and J0,3 ⊃ AK(1) ⊃ K3.

We calculate explicitly the 2-cocycle on the Lie superalgebra L0,3 that is unique provided it
vanishes on the Lie subalgebra osp(1|2). This 2-cocycle induces a 1-cocycle on L0,3 with values
in its dual space. Finally, we give an explicit formula for the 1-cocycle on J0,3 with values in
its dual space.

The paper is organized as follows. In section two, we recall some definitions and main
results on the Krichever-Novikov Lie algebras. In particular, we consider 2-cocycles on these
Lie algebras and recall some tools that we will use in the computation of cocycles in the case
of the Riemann sphere. In Section 3, we give the basic definitions of Lie superalgebras and
of Lg,N with significant examples : K(1) and L0,3. We give a non trivial 2-cocycle on Lg,N
(Theorem 1) and also go further with the structure L0,3. In Section 4, we recall the basic
notions of Lie antialgebras with examples and relations to Lie superalgebras. In section 5,
first We construct a 1-cocycle on L0,3 related to the 2-cocycle found in section 3. After, we
give a 1-cocycle on Jg,N (Theorem 2) and construct the unique 1-cocycle on J0,3 that vanishes
on K3.

2 Lie algebras of Krichever-Novikov type

In [11], [12] and [13], Krichever and Novikov introduced some generalizations of the well known
Witt algebra and its central extension the Virasoro algebra 1. In this section, we recall the
definitions and main facts needed for the sequel. All the structures in this article will be
considered over the field C.

2.1 Definition and examples

Let M be a compact Riemann surface of genus g (i.e., a smooth projective curve over C).
Consider the union of two sets of ordered disjoint points called punctures

A = (P1, . . . , PK)︸ ︷︷ ︸
:=I

∪ (Q1, . . . , QN−K)︸ ︷︷ ︸
:=O

where N,K ∈ N\{0} with N ≥ 2 and 1 ≤ K < N . We call I, the set of in-points, and O
the set of out-points. Denote by ag,N the associative algebra of meromorphic functions on M
which are holomorphic outside of A.

1A global overview (made in 2003) of this theory can be found in [29].
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The Krichever-Novikov algebra gg,N is the Lie algebra of meromorphic vector fields on M
which are holomorphic outside of A (gg,N is equipped with the usual Lie bracket of vector
fields). We will use the same symbol for the vector field and its local representation so that
the Lie bracket is [

e(z)
d

dz
, f(z)

d

dz

]
=
(
e(z)f ′(z)− f(z)e′(z)

) d
dz
.

If g = 0, one considers the Riemann sphere CP1 with punctures. The moduli spaceM0,N

is of dimension N − 3. This means that, for N ≤ 3, the points can be chosen in an arbitrary
way providing isomorphic algebraic structures. Note also that CP1 can be equipped with a
“quasi-global” coordinate z.

In the case g = 0 and N = 2, one can take I = {0} and O = {∞} and the Krichever-
Novikov algebra g0,2 is nothing but the Witt algebra. It admits a basis {en = zn+1 d

dz : n ∈ Z}
satisfying the relations:

[en, em] = (m− n)en+m.

The (unique) non-trivial central extension of the Witt algebra is well-known, it is called the
Virasoro algebra. This algebra has a basis {en = zn+1 d

dz : n ∈ Z} together with the central
element c, such that

[en, em] = (m− n)en+m +
1

12
(m3 −m)δn,−mc, [en, c] = 0.

The algebra of functions a0,2 is the algebra of Laurent polynomials C[z, z−1].
Another simple example considered in [26] and further in [4] is the case g = 0 and N = 3.

The marked points are then chosen as follows: I = {α,−α} and O = {∞}, where α ∈ C\{0}.
The Lie algebra g0,3 is spanned by the following vector fields, for all k ∈ Z :

V2k(z) = z(z − α)k(z + α)k
d

dz
, V2k+1(z) = (z − α)k+1(z + α)k+1 d

dz
. (1)

2.2 Construction of a 2-cocycle on gg,N

Let us recall the construction of a 2-cocycle on gg,N due to Krichever and Novikov [11] and
[12] also studied by Schlichenmaier [27].

Given a Riemann surface and (Uα, zα)α∈J a covering by holomorphic coordinates with tran-
sition functions zβ = gβα(zα), a projective connection is a system of functionsR = (Rα(zα))α∈J
transforming as

Rβ(zβ).
(
g′βα
)2

= Rα(zα) + S(gβα),

where

S(g) =
g′′′

g′
− 3

2

(
g′′

g′

)2

is the Schwarzian derivative (see [22]) and where ′ denotes differentiation with respect to
the coordinate zα. It is a classical result that every Riemann surfaces admits a holomorphic
projective connection, see [8] or [10] (p202).

Krichever and Novikov defined a 2-cocycle on gg,N :

γC,R

(
e(z)

d

dz
, f(z)

d

dz

)
=

1

2iπ

∫
C

(
1

2
(e
′′′
f − ef ′′′)−R(e′f − ef ′)

)
dz, (2)
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where C can be taken as follows: C =
∑K

i=1 Ci and where Ci are (small) circles around the
points in I. Note that, in the case g = 0, one can consider R ≡ 0. The 2-cocycle (2) can be
understood as a generalization of the famous Gelfand-Fuchs cocycle, see [6].

M. Schlichenmaier [27] proved that the cohomology class of γC,R does not depend on the
chosen connection R (one can prove it by simple calculation). He also showed that this cocycle
is cohomologically non-trivial, local and that every cocycle of gg,N is either a coboundary or
a scalar multiple of γC,R with R a meromorphic projective connection which is holomorphic
outside A.

This integral in (2) is written in the complex analytic setting, since one integrates over a
circle around a point, the result is given by the theorem of residues. The Riemann sphere can
be viewed as the structure of the extended complex plane Ĉ, see [17]. In the next section, we
calculate the residue at ∞ and considering the function f1/z : z 7→ f(1

z ), one has:

Res∞(f) = −Res0

(
f1/z

z2

)
,

and moreover, if z0 ∈ C is a pole of f , of order p ∈ N\{0}, then

Resz0f =
1

(p− 1)!
lim
z→z0

Dp−1[(z − z0)pf(z)].

3 Lie superalgebras of K-N type and their central extensions

In this section, we recall the notion of Lie superalgebra of Krichever-Novikov type, Lg,N . We
show the existence of a non-trivial 2-cocycle on Lg,N satisfying similar properties to those
of the cocycle (2). We consider, in particular, the case g = 0 and N = 3, namely, the Lie
superalgebra L0,3 and compute the 2-cocycle explicitly.

3.1 Definition and examples of Lie superalgebras

A Lie superalgebra is a Z2-graded vector space, L = L0⊕L1, equipped with a bilinear product
(Lie bracket), such that

(LS1) super skewsymmetry : [x, y] = −(−1)x̄ȳ[y, x]

(LS2) super Jacobi identity : (−1)x̄z̄ [x, [y, z]] + (−1)ȳx̄ [y, [z, x]] + (−1)z̄ȳ [z, [x, y]] = 0

for all homogeneous elements x, y, z in L. The subspace L0 is the space of even elements and
the subspace L1 is that of odd elements. The degree of a homogeneous element x is denoted
by x̄, i.e. x̄ = i for x ∈ Li.

Example 3.1. The conformal Lie superalgebra K(1) is an infinite-dimensional Lie superalge-
bra with basis {en, n ∈ Z} of the even part and {bi, i ∈ Z+ 1

2} of the odd part satisfying the
relations: 

[en, em] = (m− n)en+m

[en, bi] = 1
2(i− n

2 )bi+n

[bi, bj ] = ei+j .

The even part of K(1) coincides thus with the Witt algebra g0,2. The following elements
{b− 1

2
, b 1

2
, e−1, e0, e1} span the classical simple Lie superalgebra osp(1|2).
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3.2 The Lie superalgebras Lg,N
The Lie superalgebras of Krichever-Novikov type were studied in [16]. Let us briefly recall the
main definition.

We denote by Fλ, where λ ∈ Z∪ 1
2 +Z, the space of meromorphic tensor densities of weight

λ on M . The space F = ⊕λFλ is a Poisson algebra with the following bilinear operations
(given in local coordinates):

• : Fλ ×Fµ −→ Fλ+µ : (e(z)dzλ, f(z)dzµ) 7−→ e(z)f(z)dzλ+µ

{, } : Fλ ×Fµ −→ Fλ+µ+1 : (e(z)dzλ, f(z)dzµ) 7−→
(
µe′(z)f(z)− λe(z)f ′(z)

)
dzλ+µ+1.

One checks that the above operations are independent of the choice of the coordinate and,
therefore, are globally defined.

We have the Lie algebra isomorphism gg,N ∼= F−1, and the natural action of the Lie algebra
gg,N on F−1/2 is given by the above Poisson bracket.

Definition 3.2. The Lie superalgebra of Krichever-Novikov, denoted by Lg,N , is the vector
space (Lg,N )0 ⊕ (Lg,N )1 = gg,N ⊕F−1/2 with the Lie bracket defined by

[e(z)(dz)−1, f(z)(dz)−1] = {e(z)(dz)−1, f(z)(dz)−1}

[e(z)(dz)−1, ψ(z)(dz)−1/2] = {e(z)(dz)−1, ψ(z)(dz)−1/2}

[ϕ(z)(dz)−1/2, ψ(z)(dz)−1/2] =
1

2
ϕ(z)(dz)−1/2 • ψ(z)(dz)−1/2.

The axioms of Lie superalgebras can be easily checked.
More precisely, we can write in coordinates:

[
e(dz)−1, f(dz)−1

]
= (−e′f + ef ′) (dz)−1[

e(dz)−1, ψ(dz)−1/2
]

=
(
−1

2e
′ψ + eψ′

)
(dz)−1/2[

ϕ(dz)−1/2, ψ(dz)−1/2
]

= 1
2 ϕψ(dz)−1.

Example 3.3. a) In the case of two marked points A = {0} ∪ {∞} on the Riemann sphere,
we can identify L0,2 with K(1), see example 3.1. We have the following identification:

en = zn+1(dz)−1, bi = zi+1/2(dz)−1/2.

b) Consider the Lie superalgebra L0,3 associated with the Riemann sphere with three
punctures A = {−α, α} ∪ {∞}, where α ∈ C\{0}. According to [26], see also [4], the even
part of L0,3, namely g0,3, has the basis (1). The odd part, F−1/2, according to [16], has the
basis, for all k ∈ Z :

ϕ2k+ 1
2
(z) =

√
2z(z − α)k(z + α)k dz−1/2, ϕ2k− 1

2
(z) =

√
2(z − α)k(z + α)k dz−1/2. (3)

The explicit Lie bracket of this algebra is expressed in details in [16] and, moreover, it is shown
that the sub-superalgebra L−0,3 =

〈
Vn : n ≤ 0 ; ϕi : i ≤ 1

2

〉
of L0,3 is isomorphic to K(1).
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3.3 A non-trivial 2-cocycle on Lg,N
In this section, we show that every Lie superalgebra Lg,N has a non-trivial central extension.
To this end, we construct a non-trivial 2-cocycle quite similar to (2).

Recall that a 2-cocycle on a Lie superalgebra L is an even bilinear function c : L×L −→ C
satisfying the following conditions:

(C1) super skewsymmetry: c(u, v) = −(−1)ūv̄c(v, u)

(C2) super Jacobi identity: c (u, [v, w]) = c ([u, v], w) + (−1)ūv̄c (v, [u,w])

for every homogeneous elements u, v, w ∈ L. As in the usual Lie case, a 2-cocycle defined
a central extension of L. A 2-cocycle is called trivial, or a coboundary if it is of the form
c(u, v) = f([u, v]), where f is a linear function on L. Otherwise, c is called non-trivial. The
space of all 2-cocycles is denoted by Z2(L) and the space of 2-coboundaries by B2(L), the
quotient-space H2(L) = Z2(L)/B2(L) is called the second cohomology space of L. This space
classifies non-trivial central extensions of L.

The first result of this paper is the following.

Theorem 1. (i) The even bilinear map c : Lg,N × Lg,N → C given by

c
(
e(z) ddz , f(z) ddz

)
=
−1

2iπ

∫
C

1

2
(e
′′′
f − ef ′′′)−R(e′f − ef ′)dz,

c
(
ϕ(z)dz−1/2, ψ(z)dz−1/2

)
=

1

2iπ

∫
C

1

2

(
ϕ
′′
ψ + ϕψ

′′
)
− 1

2
Rϕψdz,

c
(
e(z) ddz , ψ(z)dz−1/2

)
= 0

(4)

is a non-trivial 2-cocycle (where C is as described in (2)).
(ii) The cohomology class of c does not depend on the choice of the projective connection.

Proof. Part (i). To show that the above integral is well defined, one notices that, after co-
ordinate changes zβ = gβ,α(zα), the expressions in the both parts of (4) are transformed as
1-forms. The cocycle condition is then straightforward. Note that the minus sign in the first
equation comes from the super Jacoby identity in the definition of a 2-cocycle. To check that
the cocycle c is non-trivial, it suffices to notice that the corresponding central extension of
Lg,N always contains the Virasoro algebra. Or either, since c is cohomologically non-trivial
on the even part (see [4], p933) it is also the case on Lg,N .

Part (ii). Let R′ be a different projective connection, then R−R′ is a well-defined quadratic
differential. The 2-cocycle c− c′ depends only on the Lie bracket of the elements, on the odd
part, we have :

cR(ϕ,ψ)− c′R′(ϕ,ψ) =
1

2iπ

∫
C
−1

2
(R−R′)ϕψdz =

1

2iπ

∫
C

[
(R′ −R)(dz)2 • [ϕ,ψ](dz)−1

]
and therefore is a coboundary. On the even part, Schlichenmaier has already done it in [27],
p64.
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3.4 The case of genus zero

Let us now assume that g = 0 and consider the Lie superalgebra L0,N . Choose the projective
connection R ≡ 0 (in the standard flat coordinate z) adapted to the standard projective
structure on CP1.

An important property of L0,N is that it contains a subalgebra isomorphic to osp(1|2) that
consists in holomorphic vector fields and −1/2-densities. The Lie superalgebra L0,N also con-
tains many copies of the conformal Lie superalgebra K(1) consisting in densities holomorphic
outside two points of the set A.

Proposition 3.4. There exists a unique (up to a constant) 2-cocycle on L0,N that vanishes
on the Lie subalgebra osp(1|2).

Proof. The cocycle (4) with R ≡ 0 vanishes on osp(1|2). When N = 2, since the cocycle
vanishes on osp(1|2), it is unique (see [20], section 3.2). We conclude by induction using the
embedding L0,N−1 ⊂ L0,N .

Let us now compute the explicit formula for the 2-cocycle (4) with R ≡ 0 on L0,3.

Proposition 3.5. Up to a constant, the 2-cocycle on the Lie superalgebra L0,3 is given by

c
(
ϕ2k+ 1

2
, ϕ2l+ 1

2

)
= 0

c
(
ϕ2k− 1

2
, ϕ2l− 1

2

)
= 0

c
(
ϕ2k+ 1

2
, ϕ2l− 1

2

)
= 4k(2k + 1)δk+l,0 + 8α2k(k − 1)δk+l,1

c (V2k, V2l) = −2k(4k2 − 1)δk+l,0 − 8α2k(k − 1)(2k − 1)δk+l,1

−8α4k(k − 1)(k − 2)δk+l,2

c (V2k+1, V2l+1) = −8α2(k + 1)k(k − 1)δk+l,0 − 4k(k + 1)(2k + 1)δk+l,−1

c (V2k, V2l+1) = 0,

(5)

for all k, l ∈ Z.

Proof. Let us give the details for one calculation, the others can be done in the same way.

c (V2k+1, V2l+1) =
−1

2iπ

1

2

∫
Cα∪C−α

{(z2 − α2)k+1}′′′(z2 − α2)l+1

−{(z2 − α2)l+1}′′′(z2 − α2)k+1dz

=
1

2iπ

∫
C∞

6z{(k + 1)k − (l + 1)l}(z2 − α2)k+l

+4z3{(k + 1)k(k − 1)− (l + 1)l(l − 1)}(z2 − α2)k+l−1dz

= −6{(k + 1)k − (l + 1)l}Res0

(
(1− z2α2)k+l

z2k+2l+3

)
−4{(k + 1)k(k − 1)− (l + 1)l(l − 1)}Res0

(
(1− z2α2)k+l−1

z2k+2l+3

)
.

Consider the residues, if k + l ≤ −2 the functions are holomorphics near 0 and the residues
vanish and if k+ l ≥ 1 they also vanish taking into account the Taylor development. So, focus
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when

k + l = 0, then Res0

(
1

z3

)
= 0 and Res0

(
(1− z2α2)−1

z3

)
= α2

k + l = −1, then Res0

(
(1− z2α2)−1

z

)
= 1 and Res0

(
(1− z2α2)−2

z

)
= 1.

Finally, we obtain

c (V2k+1, V2l+1) = −6{(k + 1)k − (l + 1)l}δk+l,−1

−4{(k + 1)k(k − 1)− (l + 1)l(l − 1)}(α2δk+l,0 + δk+l,−1)

= −8α2(k + 1)k(k − 1)δk+l,0 − 4k(k + 1)(2k + 1)δk+l,−1.

Hence the result.

4 Jordan superlagebras of Krichever-Novikov type

In this section, we consider a special type of Jordan superalgebras, introduced by V. Ovsienko
in [21] under the name of “Lie antialgebras”. Lie antialgebras were studied in [19], [21] and
[16] and the cohomology theory of theses algebras is developed in [14]. Lie antialgebras of
Krichever-Novikov type, Jg,N , were introduced in [15]. We calculate a non-trivial 1-cocycle
on Jg,N with values in the dual space J ∗g,N . The construction is very similar to that of the
2-cocycle (4) and extends the cocycle found in [14].

4.1 Definition and examples of Lie antialgebras

Definition 4.1. A Lie antialgebra on C is a Z2-graded supercommutative algebra A = A0⊕A1

with a product:
x � y = (−1)x̄ȳy � x,

for all homogeneous elements x, y ∈ A, satisfying the following conditions.

(i) The subalgebra A0 is associative.

(ii) For every a ∈ A1, the operator of right multiplication by a is an (odd) derivation of A,
i.e.,

(x � y) � a = (x � a) � y + (−1)x̄ x � (y � a) , (6)

for all homogeneous x, y ∈ A.

Note that, in the case where A is generated by its odd part A1, the first axiom of associativity
is a consequence of (6), cf. [21].

Example 4.2. The first example of finite-dimensional Lie antialgebra is the famous tiny
Kaplansky superalgebra, denoted by K3. It was first studied by K. McCrimmon in [18] and
after by Morier-Genoud in [19] under the name of asl2. The basis is {ε; a, b} where ε is even
and a, b are odds. It is defined by the following relations:

ε � ε = ε

ε � a = 1
2a ε � b = 1

2b

a � b = 1
2ε.

The algebra K3 is an example of exceptional simple Jordan superalgebra.
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Example 4.3. The second important example is an infinite-dimensional algebra, denoted by
AK(1). Its geometric origins are related to the contact structure on the supercircle S1|1. The
basis of AK(1) is {εn : n ∈ Z} ⊕ {ai : i ∈ Z + 1

2} and the relations are
εn � εm = εn+m

εn � ai = 1
2ai+n

ai � aj = 1
2(j − i)εi+j .

Note that we can see 〈ε0, a−1/2, a1/2〉 as a subalgebra of AK(1) isomorphic to K3.

4.2 Relations to Lie superalgebras

A natural way to link Lie antialgebras and Lie superalgebras is to consider the Lie superalgebra
of derivations Der(A). In particular, one has : Der(K3) ∼= osp(1|2) and Der(AK(1)) ∼= K(1),
cf. [21].

An other way to associate a Lie superalgebra GA to an arbitrary Lie antialgebra A, called
the adjoint Lie superalgebra, was elaborated in [21]. Consider the Z2-graded space GA = G0⊕G1

where, G1 = A1 and G0 := (A1 ⊗A1)/S and where S is the ideal generated by

{a⊗ b− b⊗ a, a � α⊗ b− a⊗ b � α | a, b ∈ A1, α ∈ A0 }.

If we denote by a� b the image of a⊗ b in G0, one can write the Lie (super) bracket :

[a, b] = a� b

[a� b, c] = a � (b � c) + b � (a � c)

[a� b, c� d] = 2a � (b � c)� d+ 2b � (a � d)� c
There is a natural action of GA on the corresponding Lie antialgebra A, so that there is a

Lie algebra homomorphism
GA → Der(A).

Indeed, the action of the odd part G1 is given by the right multiplication and this generates
the action of G0, cf [21]. Note that, in the above examples, one has : GK3

∼= osp(1|2) and
GAK(1)

∼= K(1).
In general, the adjoint Lie superalgebra is not isomorphic to the Lie superalgebra of deriva-

tions.

4.3 Definition of Jg,N
A new series of Lie antialgebras extendedAK(1) was found by Leidwanger and Morier-Genoud,
see [16]. These algebras are related to Riemann surfaces with marked points and are called
the Jordan superalgebras of Krichever-Novikov type, Jg,N . The even part of Jg,N is the space
of meromorphic functions, ag,N ∼= F0, while the odd part is the space of −1/2-densities.

Definition 4.4. The Lie antialgebra Jg,N is the vector superspace ag,N ⊕ F−1/2 equipped
with the product

e(z) � f(z) = e(z) • f(z)

e(z) � ψ(z)(dz)−1/2 =
1

2
e(z) • ψ(z)(dz)−1/2

ϕ(z)(dz)−1/2 � ψ(z)(dz)−1/2 = {ϕ(z)(dz)−1/2, ψ(z)(dz)−1/2}.
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More precisely, we can write:
e � f = ef

e � ψ (dz)−1/2 = 1
2eψ (dz)−1/2

ϕ (dz)−1/2 � ψ (dz)−1/2 = −1
2ϕ
′ψ + 1

2ϕψ
′

It is shown in [16], that the adjoint Lie superalgebra of Jg,N coincides with Lg,N .

Example 4.5. a) In the case of two marked points A = {0} ∪ {∞} on the Riemann sphere,
the algebra J0,2 can be identified with AK(1).

b) A beautiful example in the case of three punctures on the Riemann sphere is considered
in [16]. One can fix A = {−α, α}∪{∞}, where α ∈ C\{0}. The Jordan superalgebra J0,3 has
the basis

G2k(z) = (z − α)k(z + α)k, G2k+1(z) = z(z − α)k(z + α)k,

ϕ2k+ 1
2
(z) =

√
2z(z − α)k(z + α)k dz−1/2, ϕ2k− 1

2
(z) =

√
2(z − α)k(z + α)k dz−1/2,

where k ∈ Z. Remark that the generators of the odd parts of Lg,N and Jg,N are the same. The
sub-superalgebra J −0,3 =

〈
Gn : n ≤ 0 , ϕi : i ≤ 1

2

〉
is isomorphic to AK(1). More precisely, the

embedding ι : AK(1) ↪→ J0,3 is defined on the generators as follows:

ι(ε−1) = G0 + 2αG−1 + 2α2G−2, ι(ε1) = G0 − 2αG−1 + 2α2G−2, ι(ε0) = G0

ι(a− 1
2
) = 1

2
√
α

(ϕ1/2 + αϕ−1/2), ι(a 1
2
) = 1

2
√
α

(ϕ1/2 − αϕ−1/2),

see [16] for the details.

5 1-cocycles with values in the dual space

In this section, we construct 1-cocycles on Lg,N and Jg,N with values in the dual space. In
the Lie case, existence of such a 1-cocycle is almost equivalent to the existence of a 2-cocycle
with trivial coefficients (4). In the Jordan case, the situation is different. It was proved in [21]
and [14] that the Jordan superalgebra Jg,N has no non-trivial central extensions. Therefore,
there is no 2-cocycle on Jg,N analogous to (4). However, there exists a nice construction of
1-cocycle that has very similar properties.

5.1 1-cocycle on the K-N Lie superalgebras

Given a 2-cocycle on a Lie (super)algebra c : L×L → C, one can define a 1-cocycle, C, on L
with values in the dual space L∗. The definition is as follow

〈C(x), y〉 := c(x, y), (7)

for all x, y ∈ L. The 1-cocycle condition:

C ([x, y]) = ad∗x(C(y))− (−1)x̄ȳad∗y(C(x))

follows from the 2-cocycle condition for c. Note that the converse construction does not work
since c is not necessarily skewsymmetric.
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The 2-cocycle (4) defines, therefore, a 1-cocycle on every Lie superalgebra Lg,N . Note
that the dual space L∗g,N has a nice geometric interpretation. Its even part coincides with the
space F2 of meromorphic quadratic differentials, while the odd part consists in meromorphic
3/2-densities, F3/2. The coadjoint action of Lg,N reads:

ad∗
ϕ(z)(dz)−1/2

(
u(z)(dz)2 ⊕ w(z)(dz)3/2

)
=

(
3

2
ϕ′w +

1

2
ϕw′

)
(dz)2 ⊕−1

2
ϕu (dz)3/2

ad∗e(z)(dz)−1

(
u(z)(dz)2 ⊕ w(z)(dz)3/2

)
=

(
2e′u+ eu′

)
(dz)2 ⊕

(
3

2
e′w + ew′

)
(dz)3/2

where u,w, e and ϕ are some meromorphic functions on the surface.

Proposition 5.1. On Lg,N , a 1-cocycle is given by

C
(
e(z) ddz

)
= −

(
e
′′′ − 2Re′ −R′e

)
dz2,

C
(
ϕ(z)dz−1/2

)
=

(
ϕ
′′ − 1

2Rϕ
)
dz3/2

(8)

Proof. Straightforward from (4).

Example 5.2. In the case of Riemann sphere (g = 0), the 1-cocycle (7) related to (4) with
R ≡ 0, reads simply:

C

(
e(z)

d

dz

)
= −e′′′(z) dz2, C

(
ψ(z)

d

dz1/2

)
= ψ′′(z) dz3/2, (9)

where z is the standard coordinate.

5.2 1-cocycle on L0,3

In the case of the Lie superalgebra L0,3 ( and further with the Jordan superalgebra J0,3) the
constructed 1-cocycle can be calculated explicitly.

The space L∗0,3 has the following basis:

ϕ∗2k−1/2 =
1√
2
z(z2 − α2)−k−1(dz)3/2, V ∗2k = (z2 − α2)−k−1(dz)2,

ϕ∗2k+1/2 =
1√
2

(z2 − α2)−k−1(dz)3/2, V ∗2k+1 = z(z2 − α2)−k−2(dz)2,

dual to (1) and (3).

Proposition 5.3. The 1-cocycle on the Lie superalgebra L0,3 related to (9) that vanishes on
osp(1|2) is given by:

C(Vn) = − n(n− 1)(n+ 1)V ∗−n − 2α2n(n− 2)(n− 1)V ∗−n+2 − α4n(n− 2)(n− 4)V ∗−n+4

C(Vm) = − (m+ 1)m(m− 1)V ∗−m − α2(m+ 1)(m− 1)(m− 3)V ∗−m+2,

C(ϕi) = 2(i+ 1
2)(i− 1

2)ϕ∗−i + 2α2(i− 1
2)(i− 5

2)ϕ∗−i+2,

C(ϕj) = 2(j + 1
2)(j − 1

2)ϕ∗−j + 2α2(j + 1
2)(j − 3

2)ϕ∗−j+2,

where i− 1
2 , n are even and j − 1

2 , m are odd.

Proof. This is a simple application of the general formulas (8) with R ≡ 0.
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5.3 Modules and cocycles on Lie antialgebras

Cohomology of Lie antialgebras was studied in [14]. In particular, a (unique) 1-cocycle C :
AK(1) −→ AK(1)∗ vanishing on K3 was constructed.

Let us recall several basic notions from [14]. Let B be a Z2-graded vector space and
ρ : A → End(B) an even linear function. If A⊕ B equipped with the product

(a, b) � (a′, b′) = (a � a′, ρa(b
′) + (−1)ā

′b̄ρa′(b))

for all homogeneous elements a, a′ ∈ A and b, b′ ∈ B, is a Lie antialgebra then (B, ρ) is called
an A-module. This structure is called a semi-direct sum and denoted by A n B. Given an
A-module B, the dual space B∗ is also an A-module, the A-action being given by

〈ρ∗au, b〉 := (−1)āū 〈u, ρab〉 , (10)

for all homogeneous elements a ∈ A, b ∈ B and u ∈ B∗.
A 1-cocycle on a Lie antialgebra A with coefficients in an A-module B, is an even linear

map C : A −→ B such that

C (u � v) = ρu(C(v)) + (−1)ūv̄ρv(C(u)). (11)

A Lie antialgebra is tautologically a module over itself, the adjoint action ad : A −→ End(A)
defined such that ada(a′) = a �a′ for all a, a′ ∈ A. So that, the dual space, A∗, is an A-module
as well.

5.4 1-cocycles on Jg,N
It was already proved in [21] that a Lie antialgebra has no non-trivial central extensions,
provided the even part contains a unit element. It follows that the algebras Jg,N have no
non-trivial 2-cocycles. However, one has the following :

Theorem 2. (i) The expression

C (ε(z)) = −ε′(z)dz, C
(
ψ(z)dz−1/2

)
=

(
ψ′′(z)− 1

2
Rψ(z)

)
dz3/2 (12)

defines a 1-cocycle on Jg,N with coefficients in J ∗g,N .
(ii) The cocycle (12) with R ≡ 0 is the unique (up to a multiplicative constant) 1-cocycle

C : J0,N −→ J ∗0,N vanishing on the subalgebra K3.

Proof. Part (i). Similarly to formula (4), the expression in the right-hand-side of (12) is
independent of the choice of the coordinate z. One now easily checks that this expression
indeed satisfies the condition (11) of 1-cocycle. This follows from the relations :

ad∗
ϕ(z)(dz)−1/2

(
u(z)dz ⊕ w(z)(dz)3/2

)
= −1

2ϕw dz ⊕−
(

1
2ϕu

′ + ϕ′u
)

(dz)3/2

ad∗ε(z)

(
u(z)dz ⊕ w(z)(dz)3/2

)
= εu dz ⊕ 1

2εw (dz)3/2

where u,w, ε and ϕ are some meromorphic functions on the surface.
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Part (ii). Let us first consider the case N = 2 and show that the cocycle (12) with R ≡ 0
from AK(1) to AK(1)∗ is the unique (up to a multiplicative constant) 1-cocycle that vanishes
on K3. The explicit formula in the basis is given in [14], for all n ∈ Z and all i ∈ Z + 1

2 :

C(εn) = −nε∗−n, C(ai) =
(
i− 1

2

) (
i+ 1

2

)
a∗−i. (13)

Assume that C : AK(1) −→ AK(1)∗ is a 1-cocycle. Since C is even, it is of the form

C (εn ⊕ ai) = C (εn)⊕ C (ai) =
∑
r∈Z

λrnε
∗
r ⊕

∑
k∈Z+ 1

2

µki a
∗
k.

The condition of 1-cocycle (11) gives :

C (εn � εm) = ad∗εnC (εm) + ad∗εmC (εn) ⇔ λrn+m = λr+nm + λr+mn

C (εn � ai) = ad∗εnC (ai) + ad∗aiC (εn) ⇔ µki+n = µk+n
i + (k − i)λi+kn

C (ai � aj) = ad∗aiC (aj)− ad∗ajC (ai) ⇔ (j − i)λri+j = − µr+ij + µr+ji ,

for all n,m, r ∈ Z and all i, j, k ∈ Z+ 1
2 . Since this cocycle vanishes on the Lie antialgebra K3

generated by 〈ε0, a−1/2, a1/2〉, by induction one has the following (unique) solution:

λrn = −nδr,−n and µki = (k2 − 1
4)δk,−i ∀n, r ∈ Z; ∀i, k ∈ Z + 1

2 ,

and thus obtains the cocycle (13).
Now, let us show the uniqueness for N = 3. As proved in [16], the subalgebra J −0,3 =

〈Gn : n ≤ 0; ϕi : i ≤ 1/2〉 is isomorphic to AK(1), cf. Example 4.5 b). Suppose that we have
a 1-cocycle C : J0,3 −→ J ∗0,3 and writing it with the elements of the basis as the same way than
in the first part of the proof (ii). Using the 1-cocycle condition (11), we can can show that if
we know the 1-cocycle C on J −0,3 (i.e. on AK(1)), then the cocycle is uniquely determined on
J0,3 entirely. Hence the result on J0,3 since the 1-cocycle on AK(1) is unique when it vanishes
on K3.

We conclude by induction using the fact that J0,N is generated by N copies (well chosen)
of J0,N−1, since we have the embedding J0,N−1 ⊂ J0,N .

Remark 5.4. The 1-cocycle (12) has a very simple and, geometrically, very natural form :
this is the De Rham differential of a function combined with the Sturm-Liouville equation
associated to a projective connection, applied to a −1/2-density.

5.5 An explicit formula of the 1-cocycle on J0,3

We finish the paper with an explicit formula of the 1-cocycle (12) in the case of 3 marked
points.

Proposition 5.5. The 1-cocycle (12) on the algebra J0,3 is given by

C(Gn) = − nG∗−n,

C(Gm) = −mG∗−m − α2(m− 1)G∗−m+2,

C(ϕi) = 2(i+ 1
2)(i− 1

2)ϕ∗−i + 2α2(i− 1
2)(i− 5

2)ϕ∗−i+2,

C(ϕj) = 2(j + 1
2)(j − 1

2)ϕ∗−j + 2α2(j + 1
2)(j − 3

2)ϕ∗−j+2,

where i− 1
2 and n are even and j − 1

2 , m are odd.
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Proof. The basis of the dual space J ∗0,3 is as follows:

ϕ∗2k−1/2 =
1√
2
z(z2 − α2)−k−1(dz)3/2, G∗2k = z(z2 − α2)−k−1dz,

ϕ∗2k+1/2 =
1√
2

(z2 − α2)−k−1(dz)3/2, G∗2k+1 = (z2 − α2)−k−1dz.

The computations are then straightforward.
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