Brief technical note on “Entropy as a measure for uncertainty”

Marc Van Droogenbroeck
4th December 2003

1 Context

Shannon’s famous paper [1] paved the way to a theory called “information theory”. In essence, the challenge raised by Shannon consists in how to measure the information content (more or less the inverse of uncertainty) of a source that emits symbol, like the numbers on the top face of a dice.

In mathematical terms, we assume there is a source \(S \) that produces outcomes all contained in the set of possible outcomes \(O \). For simplicity, we also assume that \(O \) contains \(N \) elements:

\[
O = \{o_1, o_2, \ldots, o_N\}
\]

Note that \(O \) encompasses all the possible outcomes. Furthermore we impose all the outcomes to be disjoined. If so, each outcome \(o_i \) has a probability to occur \(p(o_i) \) and the sum of probabilities is equal to 1:

\[
\sum_{i=1}^{N} p(o_i) = 1
\]

2 Measure of information

First remark that we want to characterize the source \(S \), not \(O \) as there may be several ways to represent the outcomes of a random process. For example, in the case of the dice, the outcomes could be \{1, 2, 3, 4, 5, 6\} or \{even, odd\}.

So we have to work hard to find the best “atomic representation” of our source. In other words, we have to find \(O \) that is the closest possible to the source\(^1\).

When struggling to define a measure of information, Shannon thought a few requirements:

- information should be additive. So information of \(o_1 \) + information of \(o_2 \) should be equal to information of \(\{o_1, o_2\} \).
- information should be positive or nil.
- information should be measurable in practice.

A function that meets these requirements is the logarithmic function in base 2 (\(\log_2 \)). Therefore he defined the information of event \(o_i \) as

\[
I(o_i) = -\log_2 p(o_i)
\]

Here are some numerical values.

\(^1\)In practice, the modelization of a random source is the hardest part.
If \(p(o_1) = 0.5 \) then \(I(o) = 1 \).

- If \(p(o_1) = 0.25 \) then \(I(o_1) = 2 \).
- If \(p(o_1) = 0.125 \) then \(I(o_1) = 4 \).

So the lower the probability, the higher the information that the realization of that event brings to the observer.

Information does characterize an event, not a source. In order to evaluate the information/uncertainty contained in a source, we should multiply the information of individual events by their frequency of occurrence (thus their probability). This results in a notion, called entropy of a source \(S \) and defined as

\[
H(S) = \sum_{i=1}^{N} p(o_i) I(o_i) = -\sum_{i=1}^{N} p(o_i) \log_2 p(o_i)
\] (4)

It is expressed (=unit) in information bits or more commonly bits and characterize the average entropy of an event\(^2\). Figure 1 shows the entropy of a source that contains two events \(\{o_1, o_2\} \) whose probabilities are respectively \(p(o_1) = k \) and \(p(o_2) = 1 - k \). When \(k = 0 \) or \(k = 1 \), one event never occurs. So there is no information to be expected from the observation and \(H(S) = 0 \). However when both events have equal probabilities \((k = 0.5)\), it is impossible to predict the next outcome and the information brought by an observation is at it highest (1 information bit in this particular case).

But this is not the end of the story. We can define the mutual entropy, the conditional entropy, and so on...

\(^2\)This is confusing because the size of a file is given in bytes. A byte is equal to 8 bits. However these bits have nothing to do with information bits! In fact, Shannon showed that the entropy is a lower bound to the actual size of the transcription of a result of an observation.
References