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INTRODUCTION GÉNÉRALE 

 

 

 

Face à des marchés fluctuants et à une intensification de la compétition, la recherche de flexibilité et de 

maîtrise des coûts a conduit de nombreuses entreprises à externaliser certaines activités jugées 

périphériques ou nécessitant des ressources spécifiques que d’autres entreprises détiennent, et à se centrer 

sur ce qu’elles définissent comme le cœur de leur métier. Suivant cette démarche, les entreprises 

d’aujourd’hui construisent leur offre de produit ou de service en s’appuyant (plus ou moins durablement) 

sur d’autres entreprises dont elles mobilisent les ressources et les compétences. Ainsi, les entreprises 

d’aujourd’hui appartiennent généralement à des réseaux d’entreprises, autrement appelées des chaînes 

logistiques inter-organisationnelles, reposant sur des nombreux acteurs spécialisés : les entreprises 

fabriquant les composants, les produits intermédiaires ou les produits finis, les sous-traitants, les 

distributeurs, les détaillants, les prestataires de services logistiques, etc.  

Savoir gérer le flux au sein de ces chaînes logistiques est essentiel au niveau opérationnel et est porteur de 

nombreux enjeux. Si la gestion de flux n’est pas toujours considérée comme un vecteur stratégique à part 

entière, elle est néanmoins de plus en plus sollicitée en tant que support aux stratégies organisationnelles 

pour satisfaire effectivement une demande et créer de la valeur à la fois pour le client et l’actionnaire, 

mais aussi pour les parties prenantes du réseau. Puisque les entreprises d’aujourd’hui doivent gérer de 

multiples interfaces avec d’autres entreprises et que leur réussite individuelle est largement liée aux 

réactions, aux compétences et à la réussite de chaque participant, l’importance de la dimension inter-

organisationnelle du pilotage de flux n’est plus contestée. Elle est, d’ailleurs, essentielle pour faire face 

aux besoins fluctuants et personnalisés des clients et à la chrono-compétition qui se développe depuis la 

fin des années 1990 visant à raccourcir les cycles de vie des produits/services et des projets de 

conception/production/diffusion/retrait, mais aussi à accélérer les flux physiques et d’information. En 

analogie avec la gestion de projet, les chaînes logistiques deviennent des chemins critiques où le moindre 

incident peut, par propagation, se répercuter jusqu’au client final. Pour faire face à ces changements, 

l’ambition affichée est de répondre au double objectif d’amélioration des niveaux de service et de 

réduction des coûts, en synchronisant des flux tout au long de la chaîne logistique.  

Les travaux que nous avons développés s’intègrent dans le cadre de pilotage de flux inter-

organisationnelle dans les chaînes logistiques multi-acteurs. Nous nous intéressons aux politiques de 

pilotage en flux tirés par les demandes finales, en particulier à la politique de stock nominal dont 
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l’application est appropriée dans les cas où les coûts de commande sont relativement faibles. Le pilotage 

des flux physiques au sein des réseaux d’entreprises reste fragile à cause du caractère aléatoire des 

variations dues au marché et aux partenaires commerciaux. Ainsi, l’analyse de ces caractéristiques 

conduit à étudier des modèles qui intègrent des représentations probabilistes des phénomènes aléatoires 

liés à l’offre et à la demande. En outre, les modèles proposés doivent de préférence être capables 

d’évoquer les problèmes liés aux ressources à capacité limitée des entreprises industrielles. Dans ce cadre, 

nous analysons les modèles simplifiés des chaînes logistiques à deux niveaux ayant des demandes finales 

aléatoires et des systèmes de fabrication à capacité limitée avec des aléas liés aux temps de fabrication. 

Afin de modéliser les systèmes étudiés, nous nous appuyons sur la théorie des files d’attente qui permet 

d’analyser analytiquement des effets de congestion provoqués par des aléas et des limites de capacité dans 

les réseaux de production de biens et de services.  

Pour les chaînes logistiques étudiées, nos travaux visent à réduire globalement les stocks tout en gardant 

un niveau de service satisfaisant en termes de délai de livraison aux clients finaux. Dans ce but, nous 

adoptons deux approches.  

Dans la première approche, nous analysons les effets des stratégies multi-fournisseurs sur les 

performances des chaînes logistiques. Malgré leurs avantages potentiels, les études théoriques sur 

l’implémentation des stratégies multi-fournisseurs sont peu fréquentes dans la littérature. Dans un 

environnement aléatoire où les variations des délais de livraison des fournisseurs ne sont pas prévisibles, 

le délai moyen d’approvisionnement et les coûts moyens de stockage et de rupture peuvent être réduits en 

adoptant une stratégie multi-fournisseurs.  

Dans la deuxième approche, nous analysons des relations contractuelles entre les entreprises adjacentes 

des chaînes logistiques permettant aux entreprises d’améliorer le niveau de service tout en minimisant les 

coûts encourus par chacun des partenaires. Nous nous focalisons sur le caractère multi-acteurs des chaînes 

logistiques où chaque entreprise particulière a le but principal d’optimiser sa politique 

d’approvisionnement par rapport à ses critères locaux. Ceci se traduit par une optimisation individuelle 

souvent effectuée d’une façon concurrentielle. Nous parlons alors de la décentralisation des décisions 

conduisant souvent à une perte d’efficacité pour l’ensemble de la chaîne. Pour comprendre et maîtriser 

l’organisation des transactions entre partenaires d’une chaîne logistique, il est donc essentiel de 

représenter les antagonismes entre leurs objectifs économiques, ainsi que les éventuelles relations de 

dominance entre les entreprises concernées. L’outil mathématique privilégié pour cette analyse est la 

théorie des jeux. Dans ce contexte, nous analysons la gestion compétitive des stocks dans les chaînes 

logistiques à deux niveaux. L’objectif de ce travail est d’exploiter la capacité de prévision et 

d’anticipation de la théorie des jeux pour évaluer les performances globales de la chaîne logistique 

étudiée et leur dégradation due à la décentralisation des décisions. Nous utilisons la notion de 
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coordination qui consiste à élaborer des contrats entre les acteurs afin d’améliorer les performances du 

fonctionnement global.  

L’exposé de nos travaux est organisé en quatre chapitres. 

Le premier chapitre présente les concepts généraux de la gestion de chaînes logistiques et un état de l’art 

sur les principales politiques de pilotage de flux, plus particulièrement les politiques de gestion des stocks 

à point de commande, les politiques de stock nominal, les politiques Kanban et les politiques MRP. Nous 

décrivons le principe de fonctionnement de ces différentes politiques de pilotage de flux et mettons en 

évidence leurs similarités et leurs différences ainsi que leurs avantages et inconvénients dans un contexte 

multi-échelons. Ensuite, nous nous consacrons à la modélisation des systèmes de stock nominal avec 

capacité finie de production par le formalisme des files d’attente. Nous développons le modèle de base, 

nommé la file d’attente de production pour stock, pour un système de production et de stockage mono-

étage et mono-produit. Nous reprenons le modèle de base présenté et nous l’étendons dans le troisième 

chapitre en considérant un système de production qui fonctionne comme un réseau ouvert des files 

d’attente en parallèle et dans le quatrième chapitre pour un système à deux étages de production et de 

stockage.  

Dans le deuxième chapitre, nous présentons les concepts de base de la théorie des jeux et nous effectuons 

un état de l’art sur les applications de cette théorie dans le domaine de la gestion de chaînes logistiques. 

Nous exposons les problèmes qu’on peut rencontrer en raison du caractère distribué des décisions dans le 

contexte multi-acteurs des chaînes logistiques et les apports de la théorie des jeux dans différents 

situations d’information et d’interaction entre les acteurs. Nous nous concentrons sur les applications des 

jeux non-coopératifs, plus particulièrement des jeux statiques, des jeux dynamiques, et des jeux avec 

information asymétriques.  

Nous consacrons le troisième chapitre à nos contributions sur les stratégies multi-fournisseurs dans les 

chaînes logistiques. Nous analysons le problème d’approvisionnement d’une entreprise ayant une 

demande aléatoire d’un produit. Les fournisseurs disponibles pour l’approvisionnement de produit sont 

homogènes en termes de prix et de qualité mais hétérogènes en termes de taux moyen de production des 

commandes. L’entreprise a l’option d’envoyer chaque commande d’approvisionnement à un fournisseur 

différent. L’application d’une politique d’acheminement de commande probabiliste avec laquelle chaque 

commande est affectée à un des fournisseurs selon des probabilités fixées en avance est analysée. Nous 

fournissons l’expression analytique de l’espérance de la somme des coûts de stockage et de rupture en 

fonction des variables de décision, notamment le niveau de stock nominal et les probabilités d’affectation. 

Pour le cas de la production à la commande où le niveau de stock nominal de l’entreprise est nul, nous 

déterminons les valeurs optimales des probabilités d’affectation des commandes aux fournisseurs. Pour le 
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cas de la production pour stock, nous proposons une méthode approximative pour résoudre le problème 

d’optimisation.  

Le quatrième chapitre expose nos contributions sur la coordination des chaînes logistiques décentralisées. 

Nous analysons un maillon élémentaire d’une chaîne logistique qui est constitué de deux étages de 

production et de stockage gérés par deux acteurs différents : un producteur ayant une demande aléatoire 

d’un produit fini et son fournisseur de produit intermédiaire. Chaque étage est confronté aux effets de 

congestion à cause du système de fabrication à capacité limité et des demandes et des temps de 

fabrication aléatoires. Nous utilisons les niveaux moyens de stock possédé et les niveaux moyens de 

rupture de stock des entreprises comme mesures de performances du système analysé. L’analyse exacte 

des mesures de performances est possible seulement dans des cas particuliers. Nous adoptons une 

méthode approximative issue de la littéraire afin de développer des résultats analytiques. Dans cette 

chaîne logistique décentralisée, chaque entreprise est une entité individuelle qui décide de son niveau de 

stock nominal dans le but de maximiser son profit moyen. Nous analysons le résultat d’un jeu de 

Stackelberg entre les acteurs en supposant que le producteur est l’acteur dominant dans le jeu. Étant 

l’acteur dominant, le producteur propose un contrat à son fournisseur. Nous étudions l’application d’un 

contrat de coordination fixant le prix d’achat de produits intermédiaires et imposant une pénalité pour les 

livraisons retardées du fournisseur. 

Finalement, nous présentons les conclusions obtenues pendant les études effectuées et les portes que ces 

travaux ont ouvertes pour la continuité des recherches sur le sujet.  



   

CHAPITRE I 

1. Pilotage de flux dans les chaînes logistiques 

 

 

 

1.1. INTRODUCTION 

Selon la terminologie actuelle, les chaînes logistiques coordonnent les séquences d’activités nécessaires 

au fonctionnement de toute une filière industrielle : l’approvisionnement en composants et matières 

premières, la production de produits semi-finis, l’assemblage de produits finis, la livraison aux clients. 

Les objectifs principaux dans les chaînes logistiques sont la compétitivité et la réactivité croissante pour 

faire face aux exigences des clients. Pour garantir un niveau de service satisfaisant vis-à-vis des clients, 

tous les flux physiques traversant les différents niveaux de la chaîne logistique doivent être pilotés 

efficacement. Dans ce contexte, différentes politiques de pilotage de flux ont vu le jour depuis plusieurs 

décennies.  

Dans ce chapitre introductif, nous présentons un état de l’art des principales politiques de pilotage de flux 

étudiées dans la littérature et nous définissons les concepts utilisés lors de cette thèse. La deuxième 

section de ce chapitre est consacrée à la notion de gestion de chaînes logistiques. Nous présentons ensuite 

les principaux concepts liés au pilotage de flux dans les chaînes logistiques. Nous effectuons dans la 

quatrième section une description des principales politiques de pilotage de flux issues de la littérature. La 

cinquième section est consacrée à la modélisation des systèmes de pilotage de flux étudiés dans cette 

thèse par le formalisme des files d’attente. 

1.2. GESTION DE CHAÎNES LOGISTIQUES 

Jusqu’au milieu des années 1970, le produit a été le centre d’intérêt des entreprises industrielles. La 

tendance générale dans l’industrie a été de fournir des produits répondant aux spécifications des 

concepteurs, lesquelles étaient établies pour réaliser des fonctionnalités bien précises, et de pousser la 

production dans l’objectif d’inonder le marché. L’analyse des systèmes de production de bien et de 

service était conduite sur la base de regroupement d’activités fédérées par les départements 

(réapprovisionnement, gestion des stocks, comptabilité, fabrication, contrôle de la qualité, expédition, 

maintenance, etc.). Pour des raisons organisationnelles (périmètre de responsabilité lié aux départements) 

et intellectuelles (réduction de la complexité), les responsables d’activités analysaient et résolvaient les 
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problèmes concernant leurs activités de manière indépendante, sans se préoccuper des répercussions de 

ces décisions sur l’ensemble des activités de l’entreprise. Cette vision verticale a été considérée suffisante 

jusqu’aux années 1980.  

La compétition mondiale s’est considérablement renforcée depuis le début des années 1980, dû aux 

progrès techniques et économiques comme la disparition de nombreuses frontières douanières, 

l’amélioration considérable des moyens de transport et de diffusion de l’information, et la dissémination 

des technologies et des connaissances. Cette concurrence intense et la saturation des marchés ont crée une 

économie de l’offre dont le but ultime est la satisfaction des clients. Afin de survivre, les entreprises se 

trouvaient dans l’obligation de fournir des produits plus variés et d’accentuer la notion de service (service 

après-vente, échange et remboursement, prise en compte des risques de vol ou de détérioration, livraison 

à domicile, formation de l’utilisateur, etc.) et de qualité tout en maintenant des prix compétitifs.  

L’industrie a d’abord réagi par l’automatisation, gage de productivité et de régularité de la qualité. Même 

si l’automatisation s’est révélée très efficace pour la fabrication de masse, le niveau des investissements à 

consentir et la rigidité des systèmes de fabrication automatisés ont rapidement montré leurs limites face à 

la variabilité croissante de la demande des consommateurs et à l’évolution rapide des technologies. 

Désormais, les variations de la demande concernent la nature même des produits (fonctionnalités, 

technologies, esthétique etc.), réduisant ainsi considérablement la durée de vie des produits et exigeant 

des systèmes de production capables de s’adapter à ces variations en profondeur de la demande. En outre, 

la date de disponibilité de l’objet est devenue un nouvel attribut de la concurrence qui joue à la fois sur la 

rapidité de mise sur le marché de produits nouveaux et sur celle de livraison des commandes en produits 

existants. Ainsi, nous observons un changement dans les marchés vers des produits personnalisés 

exigeant des systèmes de fabrication agiles pour répondre à l’évolution des demandes et de la 

technologie. Ceci nécessite flexibilité des processus et coordination entre les sites. L’organisation 

classique qui accentue la fragmentation des processus et la spécialisation des acteurs induit des besoins 

croissants de coordination pour faire face à ce durcissement de la concurrence et aux exigences de la 

clientèle.  

Entre les années 1975 et 1990, la plupart des entreprises ont commencé à cartographier les processus dans 

le but d’évaluer leur efficacité, sans changer l’organisation classique, centrée autour d’activités. 

L’industrie a ensuite réalisé les avantages de l’intégration des activités, aussi bien en conception de 

produits qu’en fabrication. À partir des années 1980, un mouvement s’appuyant sur une vision 

horizontale centrée sur le processus a fait son apparition. L’industrie a adopté les techniques ayant une 

vision processus comme les normes ISO, la Qualité Totale, et le Juste-à-Temps. Les études sur la 

coordination des unités organisationnelles ont débuté par les contributions sur l’effet de coup de fouet 

(bullwhip effect), la planification de production hiérarchisée, la gestion des stocks dans les réseaux de 

production/distribution, et la différentiation retardée. 
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Au début des années 1990, à l’organisation classique par départements autour de métiers s’est substitué 

un mode de fonctionnement par réseau d'unités organisationnelles, dans le but d’avoir une structure 

globale cohérente, capable de s’ajuster rapidement à la demande du client final. Cette démarche est 

fortement liée à la prise de conscience que les objectifs individuels des différentes unités 

organisationnelles peuvent conduire à une perte d’efficacité et nécessitent des mécanismes de 

coordination permettant d’améliorer les performances globales. Ce concept a donné naissance à la notion 

de gestion de chaînes logistiques (supply chain management) dont le but ultime est la satisfaction du 

consommateur résultant de la performance d’un enchainement de processus à considérer dans leur 

ensemble et non de façon individuelle. 

Cette modification de l’organisation n’a été rendue possible que grâce aux progrès de l’informatique et de 

la communication. Depuis le début des années 1990, les entreprises s’intéressent au dialogue entre les 

activités au travers de progiciels intégrés tels que les ERP (Enterprise Resource Planning). Les relations 

instantanées avec des fournisseurs offrant le meilleur prix sont alors remplacées par une vision du coût 

total depuis les sources d’un produit jusqu’à sa consommation. Les entreprises dépendent de plus en plus 

des processus en amont et en aval et accroissent les échanges d’information avec leurs fournisseurs et 

leurs clients. Les améliorations des moyens de communication informatisés (internet, intranet, réseaux 

locaux (LAN), réseaux métropolitains (MAN), réseaux grand distance (WAN), etc.) et des techniques 

d’échange électronique d’information (EDI : Electronic Data Interchange, XML : Extensible Markup 

Language, etc.) permettent désormais à un système d’information de communiquer avec un autre système 

d’information avec un minimum d’interventions humaines. Afin d’automatiser le partage d’information, 

les partenaires utilisent de plus en plus les plateformes du commerce électronique. 

1.2.1. Externalisation et les chaînes logistiques 

À sa naissance, la gestion de chaînes logistiques était un concept de gestion de l’entreprise. Les cadres 

dirigeants étaient considérés comme les seules capables de concilier les objectifs antagonistes des unités 

organisationnelles. Cependant, bien que la coordination des flux physiques, des flux d’information et des 

flux financiers au sein d’une entreprise de grande taille soit déjà une tâche ambitieuse, la coordination 

d’une chaîne logistique constituée de différentes entreprises est évidement encore plus difficile. De nos 

jours, les gains potentiels de la coordination des unités organisationnelles, et de l’intégration des flux 

d’information et des efforts de planification tout au long des chaînes logistiques sont impressionnants. 

Pourtant, ces gains ne peuvent plus être accomplis au sein d’une seule entreprise car les entreprises se 

focalisent plus en plus sur le cœur de leurs compétences en externalisant la plupart des activités, y 

compris les activités de support (gestion du personnel, gestion du système d’information, transport, etc.).  

L’externalisation (outsourcing) est la délégation sur une période pluriannuelle de la gestion d’une ou de 

plusieurs fonctions de l’entreprise à un prestataire extérieur. L’externalisation diffère des pratiques de 
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sous-traitance (subcontracting). La sous-traitance est utilisée lorsqu’une entreprise (donneur d’ordre) 

confie une ou plusieurs fonctions, qu’elle est pourtant capable de réaliser en interne, à une autre entreprise 

(sous-traitant ou preneur d’ordres) pour des raisons diverses comme, par exemple, une surcharge 

ponctuelle de travail, une indisponibilité de machine ou de personnel qualifié. En revanche, 

l’externalisation est un modèle de gestion stratégique où l’entreprise ne dispose pas de compétences 

nécessaires pour réaliser les fonctions déléguées aux prestataires. Les décisions concernant 

l’externalisation sont parmi les plus stratégiques car elles déterminent la structure organisationnelle de 

l’entreprise en définissant les fonctions pour lesquelles les compétences nécessaires sont à développer et 

les fonctions qui sont à acheter.  

L’externalisation permet aux entreprises de se focaliser sur le cœur de leur métier, de réduire les coûts 

fixes et d’améliorer la qualité (Chopra et Meindl, 2007). En effet, les impératifs croissants de réactivité et 

de compétitivité par les coûts et la qualité ne permettent plus aux entreprises la détention en leur sein de 

toutes les compétences requises. En outre, la complexité de certaines productions est telle qu’aucune 

entreprise n’est en mesure d’assurer seule la maîtrise d’œuvre de l’opération pour aboutir, en temps utile 

et à un coût acceptable, à un résultat technique satisfaisant, compte tenu de l’état de la concurrence 

internationale. Pour ces raisons, on assiste à une montée en puissance d’alliances plus ou moins stable 

conduisant à la création de réseaux d’entreprises, définis comme une structure flexible et adaptative 

mobilisant un ensemble coordonné et stabilisé de compétences (Stadtler, 2005).  

Par conséquent, les caractéristiques et la qualité d’un produit ou d’un service vendu aux clients dépendent 

largement des différentes entreprises qui contribuent à sa création. Ceci pose de nouveaux défis 

managériaux, en intégration d’entreprises juridiquement séparées et en coordination de divers flux au delà 

des frontières juridiques des entreprises.  

1.2.2. Définition de la chaîne logistique 

L’objet de la gestion de chaînes logistiques est évidement la chaîne logistique (supply chain). Une chaîne 

logistique est un réseau d’organisations qui contribuent aux différents processus et activités, à travers les 

interactions en amont et en aval, apportant une valeur ajoutée sous la forme de produits et de services 

pour les clients finaux. D’un point de vue conceptuel, une chaîne logistique peut être considérée comme 

une succession de processus d’approvisionnement, de fabrication, de distribution et de vente d’un produit, 

depuis le premier des fournisseurs jusqu’au client final. Une chaîne logistique est donc constituée de 

fournisseurs, de centres de production, d’entrepôts de stockage, de centres de distribution et de points de 

vente, le tout traversé par un flux physique qui transforme progressivement les matières premières et 

composantes en produits finis.  
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Au sens large, une chaîne logistique est constituée de deux ou plusieurs organisations juridiquement 

séparées, par ailleurs liées par des flux physiques, des flux d’information correspondants aux échanges 

d’information entre les organisations et des flux financiers ou monétaires associés aux flux physiques. 

Ces organisations peuvent être les fournisseurs de matières premières, les entreprises fabriquant les 

composants, les produits intermédiaires ou les produits finis, les prestataires de services logistiques, et 

même le client final. Au sens strict, le terme chaîne logistique est utilisé pour les entreprises de grande 

taille ayant souvent des sites géographiquement séparés. Une chaîne logistique au sens large est aussi 

appelée chaîne logistique inter-organisationnelle, tandis que le terme intra-organisationnelle se réfère 

aux chaînes logistiques au sens stricte.  

1.2.3. Définition de la gestion de chaînes logistiques 

La gestion de chaînes logistiques reprend l’idée que la satisfaction d’un client est le résultat de la mise en 

œuvre d’une succession de processus, qu’il s’agit de prendre en considération dans une approche 

systématique, sans trop se préoccuper du périmètre juridique de l’entreprise, en remontant, si nécessaire, 

jusqu’à l’approvisionnement des matières premières (Giard, 2003). Le but de la gestion de tous les efforts 

au sein d’une chaîne logistique est la compétitivité croissante. Il faut maintenant être capable de mettre 

sur le marché, avant les concurrents, des produits de bonne qualité, de faible coût, et qui répondent aux 

désirs exprimés ou latents des clients. Il faut aussi être capable d’accompagner le client tout au long de la 

vie de produits, et en recherche permanente d’innovation dans la production et les services.   

Selon la définition de  Smichi-Levi et al. (2003), la gestion de chaînes logistiques consiste à coordonner 

efficacement les fournisseurs, les producteurs, les entrepôts et les détaillants afin de produire et distribuer 

les produits en bonne quantité, au bon endroit et au bon moment, et de minimiser le coût global, tout en 

obtenant un niveau de service suffisant. Les outils nécessaires à cette coordination relèvent de la 

recherche opérationnelle et empruntent aux techniques des systèmes d’information et de communication.  

1.3. PILOTAGE DE FLUX DANS LES CHAÎNES LOGISTIQUES  

De manière traditionnelle, les décisions de gestion de chaînes logistiques (et les problématiques 

scientifiques correspondantes) sont classées par niveau, chaque niveau concerne son horizon de temps et 

il a son degré de précision des données. Une décomposition de ce type a les trois niveaux suivants : le 

niveau stratégique, le niveau tactique et le niveau opérationnel. Les décisions opérationnelles assurent la 

flexibilité pour faire face aux fluctuations de la demande et des disponibilités de ressources à court et à 

très court terme. Ainsi, le niveau opérationnel regroupe l’ensemble de décisions de pilotage de flux à 

court terme telles que les décisions de lancement des ordres d’approvisionnement, de fabrication ou 

d’assemblage et l’ensemble de décisions d’ordonnancement à très court terme consistant à organiser la 

production au sein des ateliers et à gérer l’affectation des opérations sur les postes de travail. Par la suite, 
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nous nous intéressons à ce troisième niveau décisionnel, plus particulièrement au pilotage de flux 

physiques dans les chaînes logistiques.  

La notion de pilotage de flux a suivi l’évolution de la notion de chaîne logistique à travers le temps. Le 

pilotage de flux se limitait au début, à l’ensemble des règles de gestion des stocks. Par la suite, il a évolué 

pour intégrer plusieurs caractéristiques endogènes des systèmes de production comme les besoins de 

coordination des différents flux physiques et les capacités de production limitées. Actuellement, cette 

notion s’étend de plus en plus pour englober toute la chaîne logistique depuis l’approvisionnement en 

matières premières jusqu’à la distribution aux clients finaux. Le pilotage de flux consiste aujourd’hui à 

coordonner tous les flux physiques traversant les différents niveaux de la chaîne logistique dans l’objectif 

de garantir un certain niveau de service vis-à-vis du client tout en minimisant les coûts.  

D’un point de vue pratique, piloter les flux dans la chaîne logistique consiste à prendre des décisions, à 

chaque étape de la chaîne (depuis les fournisseurs jusqu’au client final) et pour chaque entité (matière 

première, composant, produit intermédiaire ou produit fini), permettant de déterminer quand et en quelle 

quantité lancer une activité telle que l’activité d’approvisionnement, de transport, de fabrication ou 

d’assemblage. La Figure 1.1 visualise des flux physiques résultant de décisions de pilotage de flux dans 

une chaîne logistique. Généralement, les décisions de pilotage de flux sont concrétisées par des ordres 

d’approvisionnement, de fabrication, ou d’assemblage. Les entreprises organisées en chaîne logistique ou 

les ateliers de la même entreprise communiquent en permanence à travers des décisions de passation 

d’ordres. 

 
Figure 1.1. Pilotage de flux dans une chaîne logistique 

: Installation de stock                   : Système : Flux physique  
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1.3.1. Le système élémentaire de flux 

Le mécanisme de décision de passation d’ordres nécessite l’information sur le système 

d’approvisionnement, sur la demande et l’état du stock de chaque produit considéré. Nous définissons un 

système élémentaire de flux comme un système constitué du système d’approvisionnement, de 

l’installation de stock et du système de demande d’un produit (Figure 1.2). Par la suite, nous présentons 

les différentes caractéristiques des systèmes élémentaires de flux dont les analyses sont essentielles pour 

la prise de décision de pilotage de flux.  

 
Figure 1.2. Système élémentaire de flux 

1.3.1.1. Le système d’approvisionnement 

Pour un produit donné (matière première, composant, produit intermédiaire, produit fini, etc.), l’origine 

de l’approvisionnement peut être interne à l’entreprise (système d’assemblage ou de fabrication) ou 

externe (fournisseur externe). Un paramètre important de l’approvisionnement est le délai 

d’approvisionnement (délai d’obtention), c’est-à-dire le temps qui s’écoule entre le moment où une 

commande (une commande d’approvisionnement dans le cas d’approvisionnement externe et un ordre de 

fabrication ou d’assemblage dans le cas d’approvisionnement interne), et celui où les unités demandées 

sont effectivement disponibles. Ce délai d’approvisionnement comporte des temps de lancement de 

production et de production (à l’intérieur de l’entreprise ou non), de transport, de réception, etc. 

Le système d’approvisionnement peut être considéré comme un processus exogène ou endogène. Dans le 

cas d’un système d’approvisionnement exogène, le système d’approvisionnement est à capacité illimitée 

et la charge du système n’affecte pas le délai d’approvisionnement. Dans le cas d’un système 

d’approvisionnement endogène, le système d’approvisionnement est à capacité limitée et le délai 

d’approvisionnement comporte aussi les délais (les temps d’attente) liés à la charge et la capacité du 

système d’approvisionnement. Dans la littérature, un système avec un processus d’approvisionnement 

exogène est souvent appelé système de stockage. En générale, les systèmes de transport sont traités 

comme des systèmes d’approvisionnement exogène. Quand le système d’approvisionnement est supposé 

endogène, le système étudié est souvent appelé système de production et de stockage (référencé comme 

un système de production/stockage). 

Les systèmes d’approvisionnement sont souvent confrontés aux aléas qui peuvent être dûs par exemple, 

aux pannes des machines, indisponibilités des opérateurs, problèmes de transport, etc. Les différents aléas 

dans les systèmes d’approvisionnement sont souvent traduits sous forme d’incertitude sur le délai 
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d’approvisionnement et/ou la quantité approvisionnée. L’incertitude sur la quantité approvisionnée est 

souvent liée aux produits défectueux qui résultent par exemple des problèmes dans le processus de 

production. 

Les coûts associés à l’approvisionnement d’un produit sont constitués des prix d’achat (dans le cas 

d’approvisionnement externe) et des coûts de commande. Dans le cas d’un approvisionnement externe, le 

coût de commande comporte des frais d’administration, de transport, de réception, etc. Dans le cas d’un 

approvisionnement interne, il s’agit le coût de lancement de la production (les coûts de réglage, les rebuts 

de ces réglages, les coûts de gestion de l’ordre de fabrication, etc.). Le coût de commande est considéré 

indépendant de la quantité commandée. Les économies d’échelle jouent un rôle important dans la prise de 

décision de pilotage de flux. L’évaluation des coûts de commande peut conduire à la mise en production 

ou à l’achat de certains produits par lots de plusieurs unités plutôt que par unité. Dans le cas 

d’approvisionnement externe, l’achat par lots de grande quantité peut aussi être incité par les rabais sur 

quantité.   

1.3.1.2. Le système de demande 

Les demandes d’un produit peuvent provenir de l’extérieur de l’entreprise (client externe) ou de 

l’intérieur (système d’assemblage ou de fabrication an aval). Dans le cas de demande interne, la demande 

est souvent considérée dépendante, c’est-à-dire fonction de la demande pour d’autres produits 

(typiquement les produits finis vendus sur le marché). En pratique, la demande est souvent considérée 

comme un processus exogène, ce qui veut dire que l’état du système étudié n’influence pas les demandes. 

L’information sur les demandes futures peut être obtenue directement sous la forme de commandes 

fermes. Les commandes fermes représentent une information fiable sur la demande, tant sur les quantités 

que sur les dates. Les commandes fermes sont définitives et ne comportent pas d’incertitude, c’est-à-dire 

qu’elles représentent un engagement de la part des clients. En l’absence des commandes fermes, 

l’incertitude sur la demande peut porter sur les quantités de demande et/ou sur les dates de demande.  

L’information sur les demandes futures peut aussi être obtenue sous formes de prévisions. Les prévisions 

représentent une information incertaine sur la demande. Elles peuvent provenir des commandes 

prévisionnelles et/ou des prévisions de la demande. Les commandes prévisionnelles émanent des clients 

finaux mais, contrairement aux commandes fermes, elles contiennent une incertitude sur la quantité et/ou 

sur la date de la demande. Les prévisions de la demande sont des données provenant d’études 

prospectives de marketing ou obtenues à l’aide d’autres méthodes qualitatives ou quantitatives de 

prévision basées sur des historiques de ventes.  

L’information sur les demandes futures (sous forme de commandes fermes ou de prévisions) est moins 

fiable quand on s’éloigne dans le temps. S’il n’y a pas d’information disponible sur les demandes futures, 
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la demande est souvent modélisée en utilisant des lois statistiques construites soit à partir d’informations 

sur le passé soit à partir de probabilités à priori. 

Le mode de production du produit influence la nature de l’information sur la demande. Nous pouvons 

classer les modes de production en deux types : production à la commande (make-to-order) et production 

pour stock (make-to-stock). Dans le cas de production à la commande, on ne constitue pas de stock de 

sortie à l’avance. Tout ou partie de la fabrication (et/ou de l’assemblage) est déclenché afin de satisfaire 

une commande ferme ou une commande actuelle. Les systèmes de production à la commande sont 

souvent divisés en deux sous-types : assemblage à la commande (assemble-to-order) et fabrication à la 

commande (engineer-to-order). On parle d’assemblage à la commande lorsque les composants existants 

(fabriqués pour stock) sont assemblés pour exécuter un produit en réponse à une commande ferme. On 

parle de fabrication à la commande quand, en réponse à une commande ferme, il faut exécuter un travail 

de conception pouvant ou non nécessiter la création de nouveaux composants. Dans le cas de la 

production pour stock, on constitue un stock à partir duquel les clients vont être servis. Dans ce cas, on 

n’a pas d’information fiable sur les demandes futures. La production pour stock est déclenchée soit pour 

renouveler la consommation du stock soit pour satisfaire les demandes anticipées. La production pour 

stock est un mode de production souvent utilisé pour les produits standardisés. 

En fonction de l’information disponible, la demande est considérée comme déterministe ou aléatoire. Les 

demandes au fil de temps peuvent être stationnaires ou non-stationnaires. Dans le cas de la demande 

stationnaire, les caractéristiques de la demande sont les mêmes dans le temps. Si de plus la demande est 

déterministe, son niveau est constant. Si la demande est aléatoire, la loi suivie est la même et conserve les 

mêmes valeurs pour ses paramètres caractéristiques. Dans le cas d’une demande non-stationnaire, les 

caractéristiques de la demande évoluent au cours du temps pour une raison quelconque (saisonnalité de la 

demande, etc.).  

1.3.1.3. Le stock  

Dans un système élémentaire de flux, les stocks correspondent aux produits immobilisés, en attente de 

transfert ou de traitement. Les raisons pour constituer des stocks sont nombreuses : absorber le délai 

d’approvisionnement, lisser les charges d’un système d’approvisionnement à capacité limitée face aux 

saisonnalités de la demande (stocks saisonniers), faire face aux incertitudes liées au processus 

d’approvisionnement et/ou au processus de demande (stocks de sécurité), utiliser les économies d’échelle 

liées au système d’approvisionnement (stock de cycle), etc.  

Le but des politiques de pilotage de flux est de maîtriser le stock dans l’espace et dans le temps, de façon 

à obtenir le meilleur compromis entre les coûts liés à sa présence et ceux résultants de son insuffisance. 

La présence de stocks engendre des coûts de stockage liés à l’immobilisation d’un capital, à l’occupation 
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d’un espace de stockage, aux équipements et aux frais permettant d’assurer le stockage dans de bonnes 

conditions. L’insuffisance du stock provoque une rupture de stock qui qualifie le fait qu’un stock n’est 

pas en mesure de satisfaire immédiatement la totalité de la demande qui s’adresse à lui. Les conséquences 

de cette rupture sont différentes selon que la demande est interne ou externe. En cas de demande externe, la 

demande non satisfaite peut être perdue (on parle de ventes manquées) ou reportée (on parle de demandes 

retardées). Dans le cas de ventes manquées, le coût associé est le manque à gagner de non fourniture d’une 

unité, généralement la marge bénéficiaire. Dans le cas de demandes retardées, le coût de rupture n’inclut pas 

la marge car la vente sera réalisée plus tard. Ce coût de rupture est le coût administratif d’ouverture d’un 

dossier et le coût commercial correspondant à une ristourne accordée pour livraisons tardives. Dans le cas de 

demande interne, la rupture entraîne un chômage technique des postes en aval et le coût de rupture 

correspond au coût financier de ce chômage technique. Notons qu’il est souvent difficile d’estimer le coût de 

rupture de manière fiable. Dans ces cas, il est courant de modéliser l’objectif en termes de qualité de service 

sous forme d’une contrainte sur le niveau de service.  

Dans un système de stockage, la quantité en stock peut être contrôlée à tout instant par la technique de 

l’inventaire permanent (continous review) ou de façon périodique par la technique de l’inventaire 

périodique (periodic review). Le système d’information à inventaire permanent est, en général, plus 

coûteux que celui à inventaire périodique mais permet de réagir instantanément à des situations 

inattendues. L’inventaire périodique permet de détecter des détériorations, des erreurs, ou des vols en 

particulier dans le cas de produits à rotation très lente. Le système d’information approprié est installé selon 

les caractéristiques du système de stockage et de la politique de pilotage de flux appliquée. 

La mesure de l’état du stock utilisée varie aussi selon les caractéristiques du système de stockage et de la 

politique de pilotage de flux appliquée. Dans le cas de demandes retardées, l’état du stock est caractérisé 

par le niveau de stock qui représente la quantité nette en stock à un moment donné :  

Niveau de stock à l’instant t = niveau de stock possédé à l’instant t  

– niveau de rupture de stock à l’instant t 

Le niveau de stock possédé correspond à la quantité en stock, c’est-à-dire le nombre d’unités physiquement 

présentes en stock. Le niveau de rupture de stock correspond aux demandes retardées, c’est-à-dire les unités 

demandées mais qui ne sont pas encore livrées. Le niveau de stock représente donc le stock utilisable pour 

satisfaire les demandes ultérieures à l’instant t.  

Dans certaines situations, les décisions d’approvisionnement ne peuvent pas être basées uniquement sur le 

niveau de stock. Il peut être nécessaire de prendre en compte les approvisionnements attendus 

correspondant aux commandes d’approvisionnement ou aux ordres de fabrication déjà passés dont la 
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livraison est encore attendue à l’instant t. Dans ces cas, l’état du stock est caractérisé par la position de 

stock : 

Position de stock à l’instant t = niveau de stock à l’instant t + commandes attendues à l’instant t  

1.4. POLITIQUES DE PILOTAGE DE FLUX 

Dans cette section, nos présentons les politiques de pilotage de flux en les classifiant en deux familles : 

les politiques réactives et les politiques proactives. Les politiques réactives sont des politiques de pilotage 

de flux qui déclenchent un ordre d’approvisionnement, de fabrication ou d’assemblage à l’arrivée d’une 

demande. Dans le cas où le système comprend un stock de sortie, un ordre est déclenché pour renouveler 

la consommation de ce stock. Dans le cas où on ne dispose pas d’un stock de sortie, un ordre est 

déclenché afin de satisfaire la demande réalisée. Les politiques réactives réagissent donc aux réalisations 

des demandes. Les politiques réactives sont notamment les politiques d’approvisionnement et de 

stockage, les politiques de stock nominal et les politiques Kanban. Les politiques proactives, notamment 

les politiques du type MRP, déclenchent les ordres d’approvisionnement, de fabrication ou d’assemblage 

afin de satisfaire les demandes futures. Les politiques proactives doivent être utilisées, généralement, dans 

le cas où on dispose d’information sur les demandes futures. En revanche, si on ne dispose pas 

d’information sur les demandes futures, on optera pour une politique réactive. 

1.4.1. Politiques d’approvisionnement et de stockage 

Nous appelons politiques d’approvisionnement et de stockage les premières politiques de gestion des 

stocks développées depuis les années 30. Le type de régulation adopté pour déterminer quand et en quelle 

quantité il faut commander différencie fondamentalement les politiques utilisées. Trois principaux types 

de régulation peuvent être adoptés pour déterminer quand déclencher le réapprovisionnement du stock : 

1. Gestion calendaire : Le réapprovisionnement du stock se fait à intervalles réguliers de périodes T. En 

pratique, cette période est souvent un nombre fixé de jours, de semaines, voir de mois. Ce type de gestion 

se rencontre dans les systèmes à inventaire périodique. L’intervalle  de commande coïncide typiquement 

avec celui de l’inventaire périodique.  

2. Gestion à point de commande : Le réapprovisionnement du stock est déclenché lorsque la position de 

stock devient inférieure ou égale à un niveau s appelé le point de commande (le point de commande s 

peut aussi être représenté par la notation R). Ce type de gestion se rencontre dans les systèmes à 

inventaire permanent. 

3. Gestion calendaire conditionnelle : Ce dernier cas de figure mélange les deux techniques 

précédentes. Le réapprovisionnement du stock est déclenché si au terme d’un temps T la position de stock 
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devient inférieure ou égale au point de commande s. Ce type de gestion se rencontre dans les systèmes à 

inventaire périodique où le coût de commande est relativement important par rapport aux autres coûts.  

La gestion calendaire permet de regrouper les commandes par fournisseur, ce qui peut réduire les coûts de 

commande et de transport. Par contre, la gestion calendaire est aveugle à l’intérieur d’une période. Elle 

rend le système insensible à des situations inattendues se produisant entre deux instants de commande, et 

donc nécessite des stocks de sécurité élevés. La gestion à point de commande permet de mieux contrôler 

le niveau de stock, et donc de diminuer le niveau de rupture tout en maintenant des stocks de sécurité plus 

faibles.  

Les types de régulation utilisés pour déterminer en quelle quantité il faut commander sont : 

1. Quantité fixe de commande : La commande porte sur une quantité Q fixée à l’avance par calcul ou 

par règle empirique.  

2. Niveau de recomplètement : La quantité commandée est égale à la différence entre le niveau de stock 

S appelé le niveau de recomplètement et la position de stock. 

N’importe quel type de régulation répondant à la question « quand » peut être combinée avec n’importe 

quel type de régulation répondant à la question  « combien ». En pratique, certaines combinaisons 

présentent des avantages sur les autres et s’imposent donc plus fréquemment.  

La politique de gestion calendaire à niveau de recomplètement, notée (T, S), et la politique de gestion 

calendaire conditionnelle à niveau de recomplètement, notée (T, s, S), sont les politiques classiques 

utilisées dans les systèmes à inventaire périodique. La politique (T, S) (Figure 1.3) peut déclencher des 

commandes en petites quantités car elle déclenche une commande même si, au moment de déclenchement de 

commande, la différence entre le niveau de recomplètement et la position de stock est très petite. La 

politique (T, s, S) (Figure 1.4) permet d’éviter le déclenchement d’une commande de trop petite taille si la 

demande pendant la période a été très faible. 
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Figure 1.3. Évolution du stock avec la politique (T, S) 

 

 
Figure 1.4. Évolution du stock avec la politique (T, s, S) 

Pour les systèmes à inventaire permanent, les deux politiques les plus souvent utilisées sont : la politique 

à point de commande et quantité fixe de commande, notée (R, Q), et la politique à point de commande et 

niveau de recomplètement, notée (s, S). En appliquant la politique (R, Q), si les demandes sont d’une 

unité à chaque fois, la position de stock devient égale exactement au point de commande R à chaque 

déclenchement de commande (Figure 1.5). Sinon, la position de stock est souvent inférieure au point de 

commande R au moment du déclenchement de commande. Dans ce cas, le positon de stock n’atteint plus 

le niveau R + Q. Si la position de stock est suffisamment basse au moment du déclenchement d’une 

commande, il peut être nécessaire de commander plus qu’un lot afin de ramener la position de stock au 

dessus du point de commande R et de telle sorte que la position de stock résultant ne dépasse pas le 

niveau R + Q. Pour cette raison, cette politique est parfois notée comme (R, nQ) (avec n = 1, 2,…).  
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Si les demandes sont d’une unité à chaque fois, la politique (s, S) est équivalente à la politique (R, Q) avec 

s = R et S = R + Q. Si les demandes ne sont pas unitaires, la quantité commandée pour recompléter le 

niveau de stock à S est variable (Figure 1.6). En appliquant la politique (s,  S), la position de stock atteint le 

niveau S à chaque déclenchement de réapprovisionnement du stock. Pour la plupart des systèmes mono-étage 

ayant des demandes aléatoires et stationnaires, la politique optimale par rapport à un critère de 

minimisation des coûts moyens est en effet du type (s, S). L’inconvénient de la politique (s, S) est la 

complexité de la procédure de détermination des valeurs optimales de ces paramètres s et S. En pratique, il est 

souvent plus facile d’utiliser une politique (R, Q) avec une taille de lot fixe. 

 
Figure 1.5. Évolution du stock avec la politique (R, Q) 

 

 
Figure 1.6. Évolution du stock avec la politique (s, S) 

Ayant choisi une politique, le problème est de fixer les valeurs de ses paramètres de contrôle (c’est-à-dire 

les valeurs de s, S, R, Q, T) de façon à minimiser la fonction de coût considérée. La littérature sur cette 

problématique se focalise sur les performances des systèmes avec demande aléatoire stationnaire et délai 
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d’approvisionnement fixe. Quand le délai d’approvisionnement est considéré fixe, on sous-entend que le 

système d’approvisionnement est à capacité illimité car la charge du système n’affecte pas le délai 

d’approvisionnement. Quelques résultats de base sont fournis par Rao (2003) pour la politique (T, S), 

Federgruen et Zheng (1992) pour la politique (R, Q), et Zheng et Federgruen (1991) pour la politique     

(s, S).  

Dans la littérature, il existe des travaux analysant le cas de délai d’approvisionnement aléatoire quand le 

système d’approvisionnement est à capacité illimitée. Dans ces travaux, le processus 

d’approvisionnement est supposé soit exogène et séquentiel (exogenous sequential supply) soit exogène et 

parallèle (exogenous parallel supply). Comme décrit par Sovorons et Zipkin (1991) et Song (1994), dans 

le cas d’un processus séquentiel, les ordres sont exécutés dans la séquence même où ils ont été générés, ce 

qui crée une dépendance entre les délais d’approvisionnement successifs. Dans le cas d’un processus 

parallèle, le système d’approvisionnement est souvent modélisé comme un système de file d’attente avec 

un nombre infini de serveurs. Dans ce cas, les délais d’approvisionnement successifs sont indépendants. 

Un système d’approvisionnement endogène confronté aux aléas est souvent modélisé comme un système 

de file d’attente avec un nombre fini de serveurs. Une bonne discussion sur les modèles utilisés dans le 

cas de délai d’approvisionnement aléatoire est présentée par Zipkin (2000). 

1.4.1.1. Politiques d’approvisionnement et de stockage dans les systèmes multi-étages 

Les politiques d’approvisionnement et de stockage citées sont utilisées pour gérer des stocks mono-étages 

ainsi que multi-étages. Dans la littérature, les systèmes multi-étages sont souvent classifiés en trois 

groupes élémentaires : systèmes à structure linéaire, systèmes de distribution et systèmes d’assemblage 

(Figure 1.7). 

 
Figure 1.7. Systèmes multi-étages 

Dans les systèmes à structure linéaire, chaque étage correspond à l’installation de stock d’un produit 

ayant subi une transformation (fabrication et/ou transport). Les étages peuvent représenter les ateliers de 

la même entreprise ou les différentes entreprises au long de la chaîne logistique. Chaque étage fonctionne 

comme un système de demande pour l’étage en amont et un système d’approvisionnement pour l’étage en 

aval. Le délai d’approvisionnement d’un étage comporte souvent des délais liés au système de 

transformation en amont. Des délais supplémentaires peuvent être provoqués si l’installation de stock en 
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amont n’est pas en mesure de satisfaire immédiatement la totalité d’une demande qui s’adresse à lui. Le 

système de demande du dernier étage (système de demande finale) est souvent considéré exogène au 

réseau logistique analysé. Les systèmes de distribution généralisent cette structure linéaire à une structure 

divergente. En termes de production, le premier étage correspond par exemple à l’installation de stock 

d’une matière première qui est ensuite transformée en plusieurs produits. En termes de transport, le 

premier étage correspond à un entrepôt et les étages suivants aux détaillants. Les systèmes d’assemblage 

généralisent la structure linéaire à une structure convergente. Dans ces types de systèmes, plusieurs 

composants sont assemblés pour fabriquer un produit. Notons que les réseaux logistiques complexes 

peuvent être représentés en combinant les différentes caractéristiques des systèmes élémentaires 

présentés. 

Les politiques du type (R, Q) sont souvent utilisées pour gérer les systèmes multi-étages où les coûts de 

commande sont relativement importants. Sovorons et Zipkin (1988) font partie des premiers à avoir 

étudié un système de distribution à deux étages, constitué d’un entrepôt et de n détaillants identiques, 

dans lequel chaque installation de stock est gérée par une politique du type (R, Q). La demande arrive 

chez chaque détaillant selon un processus de Poisson. Les auteurs proposent des approximations pour les 

mesures de performances du système, plus précisément pour les espérances mathématiques du niveau de 

stock possédé et du niveau de rupture de stock de chaque installation, en supposant des délais de transport 

fixes. Axsater (1993) analyse le même système de distribution ainsi qu’un système à structure linéaire 

ayant un seul détaillant et présente des évaluations exactes des mesures de performances. Axsater (2000b) 

généralise ces résultats pour un système ayant n détaillants non-identiques et dans lequel la demande 

arrive chez chaque détaillant selon un processus de Poisson composé. Cachon (2001a) expose des 

évaluations exactes des mesures de performances d’un système de distribution où chaque installation est 

gérée par une politique du type (R, Q) à inventaire périodique, autrement dit, par une politique du type       

(T = 1, R, Q). 

Dans la littérature, il existe d’autres politiques utilisées pour gérer des stocks multi-étages. Axsater et 

Rosling (1993) montrent que les politiques utilisées pour gérer les stocks multi-étages peuvent être 

classées en deux types : les politiques du type « installation » et les politiques du type « échelon ». Cette 

différenciation dépend de la définition de la position de stock utilisée dans chaque installation de stock. 

Dans les politiques du type installation, la position de stock est définie pour chaque installation comme 

étant la position de stock définie classiquement pour l’installation en question. Dans les politiques du type 

échelon, la position de stock d’une installation est définie comme étant la somme des approvisionnements 

attendus de l’installation en question, du nombre de produits présents dans l’installation en question et 

dans tous les installations en aval (y compris les produits en transit dans les systèmes de transformation) 

moins le nombre de demandes finales retardées. Cette notion du stock échelon a été introduite par Clark 

et Scarf (1960). L’idée de base des politiques du type échelon est que si les installations en aval ont des 
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niveaux de stock faibles, alors elles vont passer des commandes d’approvisionnement dans le futur et 

donc l’installation en question peut avoir besoin davantage de produits en stock. D’autre part, si les 

installations en aval ont des niveaux de stock élevés, alors l’installation en question n’a pas besoin d’un 

réapprovisionnement immédiat. 

Considérons un système à structure linéaire ayant des demandes finales aléatoires et dans lequel chaque 

étage est géré par une politique (R, Q) du type installation. Dans un tel système, un étage déclenche le 

réapprovisionnement du stock seulement si l’étage en aval vient de passer une commande 

d’approvisionnement. Ce n’est pas toujours le cas dans un système de stock échelon, car la position de 

stock échelon d’un étage n’est pas diminuée par les commandes de réapprovisionnement de l’étage en 

aval mais par les demandes finales. Pour ces raisons, une politique (R, Q) du type installation donnée peut 

toujours être remplacée par une politique (R, Q) du type échelon qui déclenche les commandes de 

réapprovisionnement en même temps et conserve la même évolution du stock pour chaque étage. Par 

contre, une politique (R, Q) du type échelon, qui peut déclencher le réapprovisionnement du stock d’un 

étage sans qu’il y a une commande venant de l’étage en aval, ne peut pas être remplacée par une politique 

(R, Q) du type installation équivalente (Axsater, 2000a ; Axsater et Rosling, 1993).  

Ces résultats montrent que les politiques (R, Q) du type installation peuvent être considérés comme un 

sous-ensemble des politiques (R, Q) du type échelon. Pour un critère de performance donné, une 

optimisation au niveau des politiques du type échelon donne un résultat au moins autant performant que 

celui d’une optimisation au niveau des politiques du type installation (Axsater, 2003). Pour les cas où le 

critère est la minimisation des coûts de stockage et de rupture, la meilleure politique (R, Q) du type 

échelon est en général plus performante que la meilleure politique (R, Q) du type  installation. Chen 

(2000) fournit plus de résultats sur l’optimalité des politiques (R, Q) du type échelon. Dans le but de 

déterminer la meilleure politique (R, Q) du type échelon, Chen et Zheng (1994a) présentent des 

évaluations exactes des mesures de performances des systèmes à structure linéaire ayant des demandes 

finales aléatoires. 

Ces observations peuvent être généralisés pour les systèmes d’assemblage (Axsater et Rosling, 1993 ; 

Chen, 2000) mais pas pour les systèmes de distribution. Dans un système de distribution, la meilleure 

politique (R, Q) du type échelon peut être plus performante que la meilleure politique (R, Q) du type 

installation, ou contrairement la meilleure politique (R, Q) du type installation peut être plus performante 

que la meilleure politique (R, Q) du type échelon (Axsater et Juntti, 1996). Il existe des travaux cherchent 

à déterminer la meilleure politique (R, Q) du type échelon pour les systèmes de distribution ayant des 

demandes aléatoires. Chen et Zheng (1997) fournissent des évaluations exactes des espérances 

mathématiques des niveaux de stock possédé et des niveaux de rupture de stock d’un système de 

distribution ayant n détaillants identiques et dans lequel la demande arrive chez chaque détaillant selon un 

processus de Poisson. 
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Notons que la mise en application d’une politique du type installation à un étage nécessite seulement 

l’information locale sur l’état du stock et les demandes de l’étage en question. Par contre, la mise en 

application d’une politique du type échelon nécessite l’information sur l’état du stock de toutes les 

installations en aval. En principe, l’évolution de la position de stock échelon d’un étage peut être 

déterminée en utilisant, si disponible, l’information sur l’état initial du système et les demandes finales 

arrivées. Mais en pratique, cette approche peut surestimer l’état réel du système, car elle ne prend pas en 

compte des changements variés d’état dûs par exemple aux détériorations des produits en stock.   

Les politiques d’approvisionnement et de stockage citées ainsi que d’autres politiques sont décrites plus 

en détail par Axsater (2000a), Axsater (2003) et Zipkin (2000). 

1.4.2. Politiques de stock nominal 

La politique de stock nominal (base stock policy) est parmi les politiques d’approvisionnement et de 

stockage les plus souvent étudiées dans la littérature. En appliquant une politique de stock nominal, le 

réapprovisionnement du stock est déclenché pour ramener la position de stock à un niveau S en 

permanence. La politique de stock nominal est aussi appelée politique avec niveau de recomplètement S 

(order-up-to-S policy) ou politique S (S policy).  

La politique de stock nominal à inventaire permanent déclenche le réapprovisionnement du stock lorsque 

la position de stock devient inférieure au niveau S, c’est-à-dire chaque fois qu’une demande arrive. La 

quantité commandée dans chaque déclenchement est égale à la différence entre la position de stock et le 

niveau S. Par conséquent, la quantité commandée est exactement la quantité de demande. Dans le cas de 

demande unitaire, la politique de stock nominal devient un cas particulier de la politique (s, S) avec          

s = S – 1 et de la politique (R, Q) avec R = S – 1 et Q = 1. Notons qu’ici une demande unitaire peut aussi 

être définie comme une quantité entière et fixe de produits. Appliquée à ces types de systèmes, la 

politique de stock nominal est souvent notée (S – 1, S) et parfois appelée politique d’approvisionnement 

un-à-un (one-to-one replenishment policy).  

L’application de la politique de stock nominal se rencontre dans les systèmes où le coût de commande est 

négligeable par rapport aux autres coûts. Par exemple, quand chaque unité dans le stock est de valeur, les 

coûts de stockage et de rupture dominent forcement les coûts fixes de commande. Parallèlement, pour les 

produits ayant un taux de demande faible, les économies liées au système rendent l’utilisation de lots de 

grande taille peu intéressante. En outre, dans certains cas, les demandes et les livraisons provenant des 

fournisseurs sont d’une quantité fixe déterminée par exemple par les contraintes du système de transport. 

Pour ces types de systèmes, les demandes unitaires et les commandes unitaires avec Q = 1 ont un sens en 

termes de cette quantité fixe. Pour la plupart des systèmes mono-étage ayant des coûts de commande 
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négligeables et des demandes aléatoires et stationnaires, une politique de stock nominal est optimale par 

rapport aux coûts moyens de stockage et de rupture. 

Selon la politique de stock nominal, la position de stock reste constante au niveau S appelé le niveau de 

stock nominal (Figure 1.8) : à l’état initial, le stock contient un nombre de produits égal au niveau de 

stock nominal S (la position de stock est aussi égale au niveau de stock nominal S), ensuite, l’arrivée de 

chaque demande déclenche instantanément une commande dont la quantité est exactement la quantité de 

demande pour ramener la position de stock au niveau de stock nominal S. Le niveau de stock nominal S 

détermine ainsi le niveau maximal du stock.  

 
Figure 1.8. Évolution du stock avec la politique (S – 1, S) 

1.4.2.1. Systèmes de stock nominal multi-étages 

La politique de stock nominal est utilisée pour gérer des stocks mono-étage ainsi que multi-étages. En 

appliquant une politique de stock nominal du type installation pour chaque étage d’un système à structure 

linéaire, l’arrivée d’une demande finale déclenche simultanément une demande pour chaque étage en 

amont. La Figure 1.9 illustre le fonctionnement de la politique de stock nominal (S – 1, S) dans un 

système à deux étages de production/stockage1. Donc, la politique de stock nominal permet de réagir 

rapidement à la demande finale provenant des clients. Par contre, si un étage est perturbé pour une raison 

quelconque, la politique de stock nominal augmente inutilement le nombre d’en-cours dans le système. 

                                                 
 
1 Dans les systèmes de stockage multi-échelons, l’étage « 1 » représente souvent le dernier étage donc l’étage des 
produits finis. Similairement, dans les systèmes MRP et pour les nomenclatures, les produits finis sont au niveau 
« 0 ». Par la suite, nous utilisons la convention inverse : pour un système à n étage, l’étage « 0 » représente les 
matières premières et l’étage « n » représente les produits finis. Pour un étage i, les étages en amont sont les étages   
i – 1, i – 2,…,0 et les étages en aval sont les étage i + 1, i + 2,…,n. 

t 

S 

S -1 

0 
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Figure 1.9. Politique de stock nominal (S – 1, S) dans un système à deux étages 

Dans un système à structure linéaire, une politique de stock nominal du type installation donnée peut 

toujours être remplacée par une politique de stock nominal du type échelon équivalente en termes de 

dates de déclenchement des commandes de réapprovisionnement. En outre, une politique de stock 

nominal du type échelon déclenche aussi simultanément une demande pour chaque étage à l’arrivée d’une 

demande finale. Par conséquent, contrairement à une politique (R, Q) du type échelon, une politique de 

stock nominal du type échelon donnée peut toujours être remplacée par une politique de stock nominal du 

type installation équivalente (Axsater et Rosling, 1993). Pour un critère de performance donné, la 

meilleure politique du type échelon et la meilleure politique du type installation sont alors équivalentes. 

Considérons un système à n étages. Soit n
iS 12 )( =  une politique de stock nominal du type échelon avec iS  

non-décroissant pour i = n,…,1. La politique de stock nominal du type installation équivalente à n
iS 12 )( =  

est caractérisé par n
iS 12 )( =  où nn SS =  et 1+−= iii SSS  pour i = n – 1,…,1.  

Clark et Scarf (1960) analysent un système à structure linéaire ayant des délais de transport fixes. À 

chaque étage, la gestion des stocks est accomplie suivant une politique de stock nominal du type échelon 

à inventaire périodique. Dans un système à inventaire périodique, la politique de stock nominal 

fonctionne comme une politique (T, S) avec T = 1. La demande finale qui s’étale sur plusieurs périodes 

est aléatoire. La distribution de probabilité de la demande peut différer d’une période à l’autre. Les 

demandes finales qui ne sont pas satisfaites sont retardées. Chaque unité de demande finale retardée 

induit un coût unitaire de rupture par période. Le critère est de minimiser des coûts moyens de stockage et 

de rupture du système multi-étages sur un nombre fini de périodes. Clark et Scarf (1960) montrent que les 

valeurs optimales des niveaux de stock nominaux peuvent être obtenues par programmation dynamique. 

Étage 1 Étage 2 
 

Demandes

SF 1 SF 2 
IS 1 IS 2 IS 0 

SF i : Système de fabrication (SF) de l’étage i IS i : Installation de stock (IS) de l’étage i

: Accumulation des demandes non-satisfaites de l’étage i 

: Point de control  : Flux physique : Flux d’information  

ADN 0 ADN 1 ADN 2 

ADN i 
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Le niveau de stock nominal de l’étage n est calculé en supposant que l’étage n – 1 est toujours en mesure 

de satisfaire immédiatement la totalité d’une demande qui s’adresse à lui, c’est-à-dire en supposant que le 

niveau de stock nominal de l’étage n est indépendant du niveau de stock nominal de l’étage n – 1. Les 

occurrences des ruptures de stock à l’étage n – 1 ne sont pas exclues. Les coûts associés à ces ruptures 

sont pris en compte en déterminant le niveau de stock nominal de l’étage n – 1. En supposant que le 

niveau de stock nominal de l’étage n – 1 est indépendant du niveau de stock nominal de l’étage n – 2, le 

niveau de stock nominal de l’étage n – 1 est calculé en minimisant la somme des coûts moyens de 

stockage du système et des augmentations des coûts moyens de stockage et de rupture quand l’étage n – 1 

n’est pas en mesure de satisfaire immédiatement la totalité d’une demande. En continuant la même 

procédure, les niveaux de stock nominaux des étages i = n – 2, n – 3,…,1 peuvent être obtenus. Notons 

que l’étage 0 est considéré comme un stock infini. Clark et Scarf (1960) montrent que la politique de 

stock nominal du type échelon obtenue avec cette procédure qui se base sur la minimisation de n 

fonctions convexes est en effet la meilleure politique qui minimise les coûts moyens du système. La 

politique de stock nominal du type installation équivalant à cette politique du type échelon est alors la 

meilleure politique du type installation.  

Federgruen et Zipkin (1984) généralisent les résultats de Clark et Scarf (1960) pour un problème 

comportant un nombre infini de périodes et des demandes stationnaires. Ils montrent qu’une politique de 

stock nominal du type échelon stationnaire est optimale. Chen et Zheng (1994b) simplifient les 

démonstrations d’optimalité et généralisent les résultats pour les systèmes à inventaire permanent. Notons 

que l’algorithme de Clark et Scarf est applicable dans le cas des systèmes d’approvisionnement exogènes 

et séquentiels (Zipkin, 2000 ; Gallego et Zipkin, 1999). L’algorithme de Clark et Scarf est utile pour 

démontrer l’optimalité des politiques de stock nominal et des politiques similaires, mais limité sur le plan 

informatique pour le calcul des niveaux de stock nominaux. Federgruen et Zipkin (1984) montrent que 

dans un système à deux étages avec demande finale aléatoire suivant une loi normale, les valeurs 

optimales des niveaux de stock nominaux peuvent être calculées. Pour les systèmes à structure linéaire 

plus généraux, van Houtum et al. (1996) et Shang et Song (2003) proposent des techniques 

approximatives.  

Puisqu’un système d’assemblage peut être remplacé par un système à structure linéaire équivalent, les 

résultats des systèmes à structure linéaire peuvent être généralisés pour les systèmes d’assemblage (Chen 

et Zheng, 1994b). Les politiques de stock nominal ne sont pas nécessairement optimales pour les 

systèmes de distribution similaires. Il existe des travaux analysant les systèmes de distribution sur base de 

la technique proposée par Clark et Scarf (van Houtum, 2006). Une autre problématique liée est de 

déterminer les valeurs optimales des niveaux de stock nominaux pour un système de distribution dans 

lequel chaque installation de stock est gérée par une politique de stock nominal du type installation. Dans 
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ce but, Sherbrooke (1968) propose une méthode approximative (méthode METRIC). Pour plus de détails, 

voir Axsater (2000a), Axsater (2003) et Zipkin (2000). 

1.4.3. Politiques Kanban 

La philosophie Juste-à-Temps (JAT), dont l’intention principale est de réduire des stocks, a été 

développée dans les années 70. La politique Kanban a été développée comme un système d’information 

pour implémenter la philosophie JAT chez Toyota Motors. Le mot « Kanban » signifie « étiquette » (ou 

« carte ») en japonais. Dans les systèmes Kanban, les étiquettes sont utilisées pour transmettre les 

commandes d’approvisionnement entre les étages. La politique Kanban est une mode de pilotage efficace 

pour traiter les systèmes de fabrication à capacité limitée. 

Dans un système multi-étages piloté par un système Kanban, chaque étage a un nombre fini d’étiquettes 

donnant la description du produit fabriqué et stocké à cet étage. Chaque unité dans le stock doit avoir une 

étiquette attachée sur elle. Les étiquettes qui ne sont pas attachées à une pièce dans le système de 

fabrication ou dans le stock d’un étage se trouvent dans le panier de Kanban de l’étage en amont. 

Considérons un système constitué de n étages en série. Supposons que la demande arrive à l’étage n à 

chaque fois en quantité unitaire et le système de fabrication de l’étage n nécessite une unité de produit     

n – 1 pour fabriquer une unité de produit n. Soit Kn le nombre de Kanban (le nombre d’étiquettes) de 

l’étage n. Lorsqu’une demande se présente à l’étage n, si une unité de produit n avec une étiquette 

attachée est présente dans le stock, la demande est satisfaite et l’étiquète est détachée pour être transmise 

à l’étage n – 1. Une fois l’étiquette est transmise à l’étage n – 1, s’il n’y a pas une unité de produit n – 1 

disponible dans le stock de l’étage n – 1, l’étiquette reste en attente dans le panier de Kanban de l’étage   

n – 1. Si une unité de produit n – 1 avec une étiquette de l’étage n – 1 attachée est présente dans le stock, 

l’étiquette de l’étage n – 1 est détachée pour être transmise à l’étage n – 2 et remplacée par l’étiquette de 

l’étage n qui a transmis la demande. La pièce est ensuite poussée au système de fabrication de l’étage n. 

Quand le processus de fabrication est terminé, la pièce prend sa place dans le stock de l’étage n avec 

l’étiquette attachée sur elle.  

Les étages en amont fonctionnent de la même façon : une étiquette commence son cycle attachée à une 

pièce dans le stock. Une fois la pièce consommée, l’étiquette est transmise à l’étage en amont. L’étiquette 

autorise l’étage en amont pour une livraison unitaire. Quand une livraison se produit, l’étiquette est 

attachée à la pièce livrée et descend le flux de pièce. Cependant, s’il arrive qu’une pièce ne soit pas 

disponible dans le stock d’un étage à l’arrivé d’une demande, aucune étiquette n’est transmise à l’étage en 

amont et l’information sur la demande qui déclenche la production est bloquée à ce niveau de la chaîne. 

La Figure 1.10 illustre le fonctionnement de la politique Kanban dans un système à deux étages. Un cas 

particulier de la politique Kanban est la politique CONWIP (CONstant Work In Process). En appliquant 

la politique CONWIP dans un système multi-étages de production/stockage, une commande de matière 
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première est déclenchée lorsqu’une demande finale est satisfaite au dernier étage. Donc, la politique 

CONWIP est équivalente à une politique Kanban avec un seul étage qui représente toute la chaîne de 

production (Spearman et Zazanis, 1992). 

 
Figure 1.10. La politique Kanban dans un système à deux étages 

La politique Kanban est similaire à la politique de stock nominal en plusieurs façons. Toutes les deux 

politiques sont des politiques réactives : l’arrivée d’une demande finale déclenche directement ou 

indirectement tous les autres événements. Les deux politiques nécessitent seulement l’information locale. 

Le flux d’information est dans le sens opposé du flux physique : l’information sur la demande finale se 

propage en arrière dans le réseau étage par étage à travers les commandes d’approvisionnement. Les deux 

politiques ont un seul paramètre de contrôle pour chaque étage i, le niveau de stock nominal, Si, ou le 

nombre de Kanban, Ki, qui détermine le niveau maximal de stock de l’étage.  

Les différences entre les deux politiques sont aussi importantes. En appliquant une politique de stock 

nominal, l’arrivée d’une demande à un étage i déclenche toujours une demande pour l’étage i – 1. La 

politique Kanban, au contraire, déclenche une demande à l’étage i – 1 quand l’étage i satisfait une des ses 

demandes. Par conséquent, les mécanismes de propagation de demande ne sont identiques que si l’étage a 

un niveau de stock positif. En appliquant la politique Kanban, les demandes qui sont retardées ne sont pas 

propagées vers l’amont. Le nombre de Kanban a alors une autre fonction importante pour le système : le 

nombre de produits dans le système de fabrication (en attente de fabrication et en fabrication) d’un étage 

i, c’est-à-dire le nombre d’en-cours d’un étage est limité par le nombre de Kanban. En appliquant la 

politique de stock nominal, le nombre d’en-cours est, au contraire, illimité.  

Le fait qu’elle limite le nombre d’en-cours est un des points forts de la politique Kanban. Considérons par 

exemple un système à structure linéaire à deux étages. Le système de fabrication de l’étage 2 est plus lent 

que celui de l’étage 1. En appliquant la politique de stock nominal, l’étage 1 continue à fabriquer des 

produits et à les transmettre au system de fabrication de l’étage 2 tant qu’il y a des demandes finales. Par 

Étage 1 Étage 2 
 

Demandes

SF 1 SF 2 
IS 1 IS 2 IS 0 

PK 1 PK 2 

PK i : Panier de Kanban (PK) contenant les étiquettes de l’étage i 

: Flux des étiquettes détachées  

ADN 2 
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conséquent, le nombre d’en-cours de l’étage 2 augmente rapidement. L’idée de base de la politique 

Kanban est qu’il n’est pas nécessaire de continuer à charger un système de fabrication s’il est déjà 

congestionné. La politique Kanban bloque la transmission des demandes à l’étage 1 et donc le flux de 

matière vers l’étage 2 dès que le système de fabrication de l’étage 2 devient trop congestionné. Puisqu’il 

n’y a plus de demandes, l’étage 1 ne fabrique plus des produits. De cette façon, la politique Kanban limite 

le nombre total d’en-cours du système qui comprend les produits en attente de fabrication et en 

fabrication dans l’étage 2 et aussi les produits dans le stock de l’étage 1 par le nombre total de Kanban 

dans le système, K1 + K2. 

Cependant, la politique Kanban peut générer des délais de livraison plus élevés pour les demandes finales. 

Considérons encore un système à structure linéaire à deux étages, mais cette fois le système de fabrication 

de l’étage 1 est plus lent que celui de l’étage 2. L’étage 2 ne nécessite pas un stock élevé. Donc, il est 

logique de lui attribuer un nombre faible de Kanban. Par contre, un nombre faible de Kanban limite le 

nombre d’en-cours de l’étage 2 et l’étage 1 peut arrêter de fabriquer des produits même s’il y a des 

demandes finales retardées. Puisque le système de fabrication de l’étage 1 est lent, le système de 

fabrication de l’étage 2 peut être bloqué à cause d’une rupture à l’étage 1. Afin d’éviter une telle situation, 

le nombre de Kanban de l’étage 2 peut être augmenté mais ça augmente aussi le stock de l’étage 2. La 

politique de stock nominal, au contraire, permet d’ajuster le niveau maximal de stock de chaque étage en 

transmettant librement des demandes finales aux étages goulots. 

Dans la section précédente, nous avons indiqué que la politique de stock nominal est un cas particulier de 

la politique (R, Q) avec R = S – 1 et Q = 1. La politique Kanban est aussi similaire à la politique (R, Q). 

La politique Kanban est souvent appliquée en utilisant des conteneurs standards de taille de lots fixe, 

notée Q, pour la circulation entre les étages. Les étiquettes restent attachées aux conteneurs. Une étiquette 

est transmise à l’étage en amont chaque fois qu’un container est vidé. La politique Kanban avec une taille 

de lots fixe peut être interprété comme une politique du type (R, Q) avec R = (K – 1)Q et une contrainte 

additionnelle qui bloque les commandes pour l’étage en amont dans le cas d’une rupture de stock. Cette 

contrainte peut être mise en application en utilisant une définition différente de la position de stock dans 

laquelle la position de stock n’est pas diminuée par le niveau de rupture de stock (Axsater et Rosling, 

1993).  

Beaucoup de travaux traitant de la politique Kanban ont été développés depuis son apparition. Une revue 

détaillée de la littérature sur la politique Kanban est donné par Berkley (1992). La plupart des travaux de 

recherche se basent sur la théorie des files d’attente pour évaluer les performances des politiques Kanban 

dans des systèmes à capacité limitée. Di Mascolo et al. (1996) utilisent le formalisme des files d’attente 

pour modéliser un système multi-étages géré par la politique Kanban. Le système de fabrication de 

chaque étage est constitué de plusieurs machines exécutants des opérations différentes. Les auteurs 

proposent une méthode approximative pour la détermination des mesures de performances du système. 
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Pour un système similaire, Baynat et al. (2001) proposent une méthode approximative donnant les mêmes 

résultats mais qui résulte en un algorithme simplifié. Matta et al. (2005) analysent les systèmes 

d’assemblage gérés par la politique Kanban en utilisant la théorie des files d’attente. Baynat et al. (2002) 

analysent les systèmes Kanban multi-étages où chaque étage fabrique plusieurs produits (système multi-

produits).  

1.4.3.1. Extensions de la politique Kanban 

La politique Kanban a un seul paramètre de contrôle, le nombre de Kanban. Ceci implique une certaine 

simplicité d’application mais aussi des restrictions. Les extensions de la politique Kanban telles que la 

politique Kanban généralisée et la politique Kanban étendue ayant deux paramètres de contrôle ont été 

proposées dans la littérature. 

La politique Kanban généralisée (Frein et al., 1995) est une politique hybride de la politique de stock 

nominal et de la politique Kanban. Elle utilise deux paramètre pour chaque étage i : le niveau de stock 

nominal Si et le nombre de Kanban Ki. Chaque étage i a deux paniers de Kanban, un pour les étiquettes de 

l’étage i et un pour les étiquettes de l’étage i + 1 représentant les commandes de l’étage i + 1. À l’état 

initial, le stock de l’étage i contient un nombre de produits égal au niveau de stock nominal Si et toutes les 

étiquettes de l’étage i se trouvent dans le panier de Kanban de l’étage i. Lorsqu’une demande se présente, 

si une unité de produit i est présente dans le stock, la demande est satisfaite. Sinon, la demande est 

retardée. La demande est transmise à l’étage i – 1, si une étiquette de l’étage i est présente dans le panier 

de Kanban. S’il y a une unité de produit i – 1 disponible dans le stock, le produit est envoyé au système 

de fabrication de l’étage i avec l’étiquette de l’étage i qui a transmis la demande attachée sur lui. Quand le 

processus de fabrication est terminé, l’étiquette est détachée et remise dans le panier de Kanban et le 

produit prend sa place dans le stock de l’étage i. S’il arrive qu’une étiquette ne soit pas disponible dans le 

panier de Kanban d’un étage à l’arrivée d’une demande, aucune étiquette n’est transmise à l’étage en 

amont et la remontée de la demande est bloquée. La Figure 1.11 illustre le fonctionnement de la politique 

Kanban généralisée dans un système à deux étages. 
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Figure 1.11. La politique Kanban généralisée dans un système à deux étages 

La politique Kanban bloque la transmission des demandes vers l’amont quand les produits dans le stock 

d’un étage sont épuisés. La politique Kanban généralisée relâche cette contrainte et bloque la transmission 

des demandes vers l’amont quand les étiquettes dans le panier de Kanban sont épuisées. Dans le cas où   

Si = Ki pour chaque étage i, la politique Kanban généralisée fonctionne comme la politique Kanban. La 

politique de stock nominal est équivalente à une politique Kanban généralisée ayant Ki = ∞ pour chaque 

étage i. Pour Si = 0, un système Kanban généralisé fonctionne comme un réseau des systèmes de 

fabrication en tandem dans lequel le nombre de produit en attente de fabrication et en fabrication à chaque 

étage i est limité par le nombre de Kanban Ki.  

La politique de Kanban étendue est, comme la politique de Kanban généralisée, une politique hybride de 

la politique de stock nominal et de la politique Kanban. Elle a été développée par Dallery et Liberopoulos 

(2000). La politique de Kanban étendue utilise deux paramètre de contrôle pour chaque étage i : le niveau 

de stock nominal Si et le nombre de Kanban Ki où Ki ≥ Si. À l’état initial, le stock de l’étage i contient un 

nombre de produits égal au niveau de stock nominal Si. Chaque unité dans le stock doit être attachée à une 

étiquette. Les étiquettes restant (Ki – Si) se trouvent dans le panier de Kanban de l’étage i – 1. Lorsqu’une 

demande se présente à l’étage i, la demande est automatiquement transmise à tous les étages en amont. 

Pour qu’une pièce soit transmise au système de fabrication de l’étage i, outre la présence d’une demande, 

une étiquette de l’étage i doit être disponible dans le panier de Kanban de l’étage i – 1. Dans ce cas, 

l’étiquette de l’étage i – 1 est détachée pour être transmise à l’étage i – 2 est remplacée par une étiquette 

de l’étage i. Ensuite, la pièce entre dans le système de fabrication de l’étage i. La Figure 1.12 illustre le 

fonctionnement de la politique Kanban étendue dans un système à deux étages. 

Étage 1 Étage 2 
 

Demandes

SF 2 
IS 1 IS 2 

PK 2 PK 2 

AD 2 

ADN 2 PK 1 

AD 1 

PK 1 

: Accumulation des demandes de l’étage i non-transmises à l’étage i - 1 AD i 

SF 1 
IS 0 
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Figure 1.12. La politique Kanban étendue dans un système à deux étages 

Du fait de l’existence d’un nombre d’étiquettes de l’étage i en avance dans le panier de Kanban de l’étage 

i – 1, la politique Kanban étendue peut délivrer une pièce à l’étage i, dès qu’une demande arrive, même si 

aucune étiquette n’a été libérée à l’étage i. La politique Kanban étendue fonctionne comme la politique 

Kanban quand Si = Ki et comme la politique de stock nominal quand Ki = ∞ pour chaque étage i.  

Dans la littérature, il existe des extensions considérant les politiques hybrides de la politique Kanban et de 

la politique (R, Q). Axsater et Rosling (1999) proposent des politiques (R, Q) du type échelon avec les 

contraintes de blocage. Liberopoulos et Dallery (2003) proposent des politiques Kanban du type échelon 

et des politiques hybrides de pilotage de flux qui combinent les politiques du type Kanban et les 

politiques du type (R, Q).  

1.4.4. Les politiques du type MRP 

Les principes de base de la politique MRP (Material Requirements Planning, Planification des Besoins en 

Composants) ont été développés dans les années 60, avec pour objectif de mieux gérer 

l’approvisionnement des matières et composants nécessaires à la fabrication des produits finis. La 

politique MRP (détaillée par Vollman et al. (1997)) consiste à déterminer, pour chaque produit (matière 

première, composant, produit intermédiaire, produit fini, etc.), les dates et les quantités des lancements de 

production ou des commandes d’approvisionnement sur un horizon de planification donné dans le but de 

satisfaire les besoins exprimés dans le Plan Directeur de Production (PDP) pour chaque période. Les 

besoins exprimés dans le PDP couvrent généralement les commandes fermes et peuvent s’étendre aux 

demandes prévisionnelles selon le mode de production.  

Dans la logique MRP, les calculs des besoins en produits sont réalisés en cascade au départ des besoins en 

produits finis. Les calculs des besoins en cascade nécessitent l’information sur la nomenclature de chaque 

Étage 1 Étage 2 
 

SF 1 SF 2 
IS 1 IS 2 

PK 2 

ADN 2 ADN 1 ADN 0 

Demandes

PK 1 

IS 0 
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produit fini qui spécifie les différents produits intervenant dans sa composition aux différentes étapes de 

fabrication. Dans une nomenclature, les produits sont ordonnés par niveau sous forme d’arborescence. 

Cette structure permet d’indiquer les produits d’un niveau qui entrent dans la fabrication d’un produit de 

niveau directement inférieur. En planifiant d’abord les lancements de production des produits finis, la 

technique MRP enchaîne successivement les calculs pour chaque produit : 

1. Explosion de nomenclature : Les besoins bruts exprimant la demande totale au début de chaque 

période sont dérivés des demandes prévisionnelles du produit et des lancements de production de chacun 

des produits de niveau directement inférieur. Les besoins bruts traduisent alors des demandes indépendantes 

et des demandes dépendantes du produit.  

2. Calcul des besoins nets : Les besoins nets exprimant la quantité effectivement requise au début de 

chaque période sont déterminés sur la base des besoins bruts, du niveau de stock au début de l’horizon de 

planification, et des livraisons attendues correspondants aux ordres passés avant le début de l’horizon de 

planification.  

3. Calcul des livraisons planifiées : Les besoins nets d’une période peuvent être couverts soit par une 

livraison au début de la même période soit par une livraison antérieure planifiée pour couvrir les besoins 

nets de plusieurs périodes consécutives. La détermination de la quantité à livrer pour satisfaire les besoins 

d’une ou plusieurs périodes repose normalement sur un arbitrage entre les coûts de stockage et les coûts de 

commande. Le problème de regroupement des ordres de production ou d’approvisionnement est connu dans 

la littérature sous le nom de problème de calcul des tailles de lots (lot-sizing problem). Les règles de calcul 

des tailles de lots utilisés dans les systèmes MRP s’étendent des règles de décision simples et des procédures 

heuristiques aux procédures d’optimisation. Parmi les nombreuses règles de calcul des tailles de lots 

utilisées, nous citons (détaillé par Vollman et al. (1997)) : la politique lot-pour-lot ; la politique à quantité 

fixe de commande ; la politique à nombre de période fixe ; l’heuristique Part-Periode-Balancing ; 

l’heuristique de Silver-Meal ; l’algorithme de Wagner-Whitin. L’algorithme de Wagner-Whitin se base sur la 

programmation dynamique et donne une solution optimale pour le problème de calcul des tailles de lots. Il 

présente toutefois l’inconvénient d’une implémentation pratique complexe et difficile à mettre en œuvre. 

4. Absorption des délais : Les dates de lancement de production (ou de commande 

d’approvisionnement) sont obtenues en retranchant les délais d’approvisionnement des dates de livraisons 

planifiées. 

En d’autres termes, la technique de base de MRP considère un système multi-niveaux (multi-étages) à 

inventaire périodique avec des délais d’approvisionnement fixes et des demandes déterministes et non-

stationnaires. Puisqu’elle détermine les tailles de lots des produits appartenant à un niveau en ignorant les 

relations avec les niveaux supérieurs, elle peut être classée comme une approche heuristique pour 
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résoudre le problème de calcul des tailles de lots multi-niveaux (multi-level lot sizing problem) connu 

comme un problème difficile à résoudre (Zipkin, 2000). 

ARTICLE X SEMAINE 1 2 3 4 5 6 7 8 
Besoins bruts 10  25 10 20 5  10 
Approvisionnements attendus  25       
Niveaux de stock planifiés 22 12 37 12 2 7 2 2 17 
Besoins nets     18 5  10 
Approvisionnements planifiés     25   25 

Délai d’approvisionnement  
(L) = 1 
 
Quantité fixe de commande 
(Q) = 25 

Lancements planifiés    25   25  

Figure 1.13. Exemple d’un plan MRP 

La technique MRP ne tient pas en compte les contraintes de capacité du système d’approvisionnement 

lorsqu’elle calcule les ordres à planifier. Ceci est dû aux calculs par produit qui ne permette pas de prendre en 

compte les niveaux d’utilisation des ressources dans leur totalité. Ainsi, les délais d’approvisionnement ne 

reflètent pas les temps d’attente liés à la charge et la capacité du système d’approvisionnement. Dans le 

but de relier le plan MRP à la capacité disponible, la plupart des logiciels utilisent un module CRP (Capacity 

Requirements Planning, Planification de Besoins en Capacité) qui permet d’établir dans le temps des 

projections des besoins de capacité des ressources. Si la capacité requise pour certaines périodes dépasse la 

capacité disponible, il faut procéder à des ajustements en modifiant le plan MRP, en augmentant la capacité 

disponible ou en modifiant le PDP. Dans la littérature, une attention importante est portée sur les problèmes 

de calcul de tailles de lots multi-niveaux à capacités limitées (Billington et al., 1983 ; Ozdamar et 

Barbarosoglu, 2001 ; Belvaux et Wolsey, 2001).  

En pratique, les prévisions de demande sont mises à jour afin de tenir compte des changements affectant la 

demande et le PDP est actualisé avec une périodicité de révision. Lorsqu’il y a des changements dans le PDP, 

il devient nécessaire de recalculer les plans MRP. Des changements mineurs dans le PDP peuvent provoquer 

des changements relativement importants dans les plans MRP. Si ceci se produit trop fréquemment, les plans 

deviennent instables. Cette instabilité est souvent appelée la nervosité du système. Les changements dans les  

plans MRP peuvent aussi être provoqués par les arrivées des demandes non-anticipées, les arrivées tardives 

des approvisionnements planifiés, ou les arrivées d’approvisionnements avec des produits défectueux. La 

règle de calcul des tailles de lots utilisée a un impact sur la sensibilité des plans MRP aux changements des 

données. En comparaison avec les heuristiques utilisées dans les systèmes MRP, l’algorithme de Wagner-

Whitin fournit, en général, des plans MRP plus sensibles aux changements. 

En présence des incertitudes (liées aux quantités de demande prévisionnelle, dates de demande 

prévisionnelle, délais d’approvisionnement, quantités approvisionnés), la politique MRP nécessite la mise 

en place de paramètres de sécurité comme les stocks de sécurité et les délais de sécurité. En utilisant le 

délai de sécurité, le délai d’approvisionnement est déterminé en amplifiant le délai d’approvisionnement 

actuel avec le délai de sécurité. Pour des cas où les délais actuels sont aléatoires, Dolgui et Ould-Louly 
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(2002) et Ould-Louly et Dolgui (2004) cherchent à déterminer les délais d’approvisionnement planifiés 

qui minimisent les coûts de fonctionnement. La majorité de travaux de recherche sur les politiques MRP 

s’intéresse à l’analyse des performances des différents paramètres de sécurité. Koh et al. (2002) et Guide 

et al. (2000) donnent des revues de littérature sur cette problématique.  

Buzacott et Shantikumar (1994) sont parmi les premiers à utiliser des modèles stochastiques pour 

analyser les performances de la politique MRP. Ils étudient un système mono-étage piloté par une 

politique MRP à inventaire permanent. Le système de fabrication en amont est à capacité limitée avec des 

temps de fabrication incertains. Les demandes arrivent selon un processus stochastique stationnaire. Les 

demandes sont connues à l’avance sur un horizon de temps donné. Ils étudient l’impact du choix entre 

l’utilisation des stocks de sécurité et l’exploitation des délais de sécurité. Ils montrent que quand les 

prévisions de la demande ne sont pas fiables, l’utilisation des stocks de sécurité est préférable. En outre, 

dans ces types de situations, les politiques de pilotage de flux qui ne prennent pas en compte les 

prévisions sont préférables aux politiques du type MRP.  

Hennet (2003) analyse l’application d’une politique similaire dans un système multi-étages dont les 

demandes finales sont déterministes pour les premiers TS périodes et aléatoires et stationnaires pour les 

périodes suivantes, TS + 1 à TL. Les temps de fabrication sont supposés certains. Pour chaque période, les 

ressources de production ainsi que de stockage sont à capacité limitée et donc soumises aux contraintes de 

capacité agrégée. L’auteur montrent qu’un plan de production à long terme, pour les périodes                    

k = TS + 1,…, TL, qui minimise le coût moyen de production, de stockage et de rupture peut être obtenu. 

Un plan à court terme, pour les périodes k = 0,…, TS, qui aboutit à un état imposé par le plan à long terme 

et qui minimise le coût moyen à court terme peut ensuite être déterminé.  

En comparaison avec les politiques d’approvisionnement et de stockage, la technique MRP est plus 

adaptée pour les systèmes ayant des demandes fortement non-stationnaires, spécialement pour les 

systèmes de production multi-étages avec lotissement. Notons que dans les systèmes de production multi-

étages, le caractère non-stationnaire de la demande d’un produit est amplifié par les décisions de 

lotissement des produits de niveau inférieur. Comparons par exemple une politique MRP avec une politique 

du type (R, Q) à inventaire périodique. En utilisant une politique à quantité fixe de commande, la technique 

MRP planifie un ordre de fabrication ou une commande d’approvisionnement au début d’une période t si 

la position de stock (après la réalisation de la demande de la période t) est inférieure à la demande 

pendant l’intervalle (t, t + L]. Une politique du type (R, Q) peut générer les mêmes commandes seulement 

si le point de commande R est actualisé pour chaque période et fixé égal à la demande pendant l’intervalle 

(t, t + L] moins un (Axsater, 2000a). Les politiques d’approvisionnement et de stockage dont les 

paramètres évoluent dans le temps sont souvent appelées les politiques dynamiques ou non-stationnaires. 

Pour le cas analysé, une politique stationnaire du type (R, Q) peut amplifier les stocks par exemple quand 

la demande se produit rarement mais est de quantité élevée (Axsater, 2000a).  
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En appliquant la politique MRP conventionnelle dans un système multi-étages, toutes les donnés 

nécessaires sont transmises à l’unité de contrôle où toutes les décisions sont prises. Les décisions prises 

sont ensuite communiquées à chaque étage. Buzacott (1997) analyse une implémentation dans laquelle les 

étages communiquent à travers les commandes d’approvisionnement. Chaque étage a seulement accès à 

l’information locale. Il montre que les changements possibles de données et donc la nervosité des 

systèmes MRP rendent cette implémentation difficile. Nous pouvons aussi noter qu’une telle 

implémentation peut amplifier l’effet de coup de fouet dans le système (voir la section suivante). 

1.4.5. Classification des politiques de pilotage de flux 

Nous avons classifié les politiques de pilotage de flux en deux familles : les politiques réactives et les 

politiques proactives. Dans la littérature, les politiques de pilotage de flux sont classifiées à l’aide de 

plusieurs critères. Dans cette section, nous présentons les classifications les plus connues en montrant 

qu’elles comportent certains inconvénients. 

Dans la littérature, les politiques de pilotages de flux sont souvent classifiées en politiques à flux tiré et 

politiques à flux poussé. La distinction classique entre politiques à flux tiré et politiques à flux poussé est 

basée sur l’instant de déclenchement de la production en réponse à la demande. Suivant cette définition,  

les politiques à flux tiré sont celles où la demande réalisée tire la production. Quant aux politiques à flux 

poussé, le déclenchement de la production est fait avant que la demande n’arrive. Selon cette distinction, 

la classe des politiques réactives correspond à la classe des politiques à flux tiré et la classe des politiques 

proactives correspond à la classe des politiques à flux poussé. Par contre, cette distinction n’est pas la 

seule utilisée dans la littérature. 

Une deuxième distinction entre politiques à flux tiré et politiques à flux poussé classifie les systèmes de 

production en deux groupes : les systèmes qui tiennent compte de la demande et les systèmes qui ne 

tiennent pas compte de la demande. Selon cette définition, la notion de flux tiré et flux poussé est liée 

respectivement à la notion de boucle fermée et boucle ouverte reliant la demande au système de 

production. Dans le système en boucle fermée, la production est déclenchée en réponse à une demande 

présente ou future alors que dans le système à boucle ouverte, la production est déclenchée en ignorant la 

demande. Suivant cette classification, même la politique MRP devient alors une politique à flux tiré dans 

laquelle le PDP tire la production pour avoir les produits juste-à-temps (Liberopoulos et Dallery, 2003). 

Les politiques à flux tiré sont parfois définies comme les politiques qui limitent le nombre d’en-cours 

dans le système. Selon cette définition, seules les politiques Kanban entrent dans la classe des politiques 

en flux tiré par l’aval. La politique de stock nominal devient une politique à flux poussé car elle déclenche 

la production dans tous les étages du système en réponse à une réalisation de demande finale.  
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Dans la littérature, il existe des travaux analysant les politiques réactives dans le cas où l’information sur 

les demandes futures est disponible sous forme de prévisions ou de commandes fermes. Babai (2005) 

analyse les politiques non-stationnaires du type (Rt, Q) et (T, St) à inventaire périodique quand 

l’information sur les demandes futures est disponible sous forme de prévisions et d’incertitudes 

prévisionnelles obtenues à l’avance sur un horizon donné. Il montre l’équivalence entre les politiques 

analysées et les politiques du type MRP. Les politiques non-stationnaires d’approvisionnement et de 

stockage sur prévisions sont souvent utilisées pour analyser l’effet de coup de fouet (Bullwhip effect). 

L’effet de coup de fouet est un phénomène d’amplification de la variabilité de la demande lorsque l’on 

remonte vers l’amont de la chaîne logistique. Lee et al. (1997) et Chen et al. (2000) quantifient l’effet de 

coup de fouet quand les commandes sont générées par une politique de stock nominal non-stationnaire. 

Le paramètre de contrôle de la politique utilisée est actualisé à chaque période en fonction des prévisions 

disponibles. La quantité de commande à chaque période est constituée de deux termes. Le premier terme 

correspond à la dernière demande réalisée. Le deuxième terme sert à ajuster le niveau de stock nominal 

pour s’adapter au changement de la demande prévisionnelle durant le délai d’approvisionnement. Lee et 

al. (2000) montrent que l’effet de coup de fouet peut être réduit si l’information sur la demande finale est 

disponible à chaque étage. 

Karaesmen et al. (2002) étudient un modèle similaire à celui de Buzacott et Shantikumar (1994) en temps 

discret. Les auteurs analysent un système mono-étage de production/stockage dans lequel les demandes 

unitaires arrivent selon un processus stochastique stationnaire. L’arrivée de la nième demande est signalée 

ln unités de temps avant sa date de réalisation. La politique de pilotage de flux utilisée est une politique de 

stock nominal à deux paramètres de contrôle : le niveau de stock nominal, nommé S, et le délai 

d’approvisionnement planifié, nommé L. L’intervalle de temps entre la signalisation de la nième demande 

et le déclenchement du nième ordre de fabrication est max{0, ln – L}. Le paramètre L peut donc être 

interprété comme le délai d’approvisionnement planifié d’un système MRP. Si l’information avancée sur 

la demande n’est pas disponible (ln = 0), la politique étudiée devient une politique classique de stock 

nominal. Les analyses numériques montrent que les performances de la politique étudiée sont très proches 

de celles de la politique optimale. En outre, les diminutions des coûts de stockage et de rupture sont 

significatives quand l’information avancée sur la demande est disponible. Liberopoulos et Koukoumialos 

(2005) analysent numériquement un système similaire et un système de Kanban généralisé avec 

information avancée sur la demande.  

Les politiques de pilotage de flux citées sont des extensions des politiques réactives. Elles sont modifiées 

afin de tenir compte l’information sur les demandes futures. Nous appelons ces politiques les politiques 

réactives modifiées. Selon la distinction présentée entre les politiques réactives et les politiques 

proactives, les politiques réactives modifiées entrent dans la classe des politiques proactives.  
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1.5. MODÉLISATION DYNAMIQUE DES FLUX  

Selon Cassandras (1993), un système à événements discrets est un système dans lequel les variables qui 

représentent l’état évoluent de manière brusque d’une valeur à l’autre, suite à des événements, et gardent 

une valeur constante dans les autres cas. Le mot discret ne signifie ni « temps discret », ni « état discret » 

mais se réfère au fait que la dynamique est introduite par l’existence d’événements dont les dates 

d’occurrence n’ont pas une importance primordiale. Ce sont surtout les conditions et l’ordre d’occurrence 

de ces événements qui importent.  

Dans le cadre cette thèse, nous analysons les systèmes de production et de stockage qui peuvent être 

considérés comme des systèmes à événements discrets. Dans les systèmes de production et de stockage 

étudié, les pièces restent en attente dans un stock afin de satisfaire les demandes du produit stocké. Les 

demandes qui ne peuvent pas être immédiatement satisfaites dès leurs arrivées sont retardées. Les 

commandes d’approvisionnements et/ou les ordres de fabrication sont déclenchés pour renouveler la 

consommation du stock.  

Le système de fabrication de chaque produit est à capacité limitée. Le délai d’approvisionnement pour un 

ordre de fabrication donné dépend alors, outre de la disponibilité des produits nécessaires pour exécuter le 

processus de transformation, de la charge du système de fabrication à son arrivée et donc des ordres 

précédents. Quand le système de fabrication est congestionné, les pièces disponibles pour l’exécution du 

processus de transformation et les ordres de fabrication restent en attente d’exécution. Les ordres de 

fabrication peuvent aussi rester en attente dans le cas où les pièces qui seront transformées ne sont pas 

encore disponibles. 

L’évolution des systèmes étudiés peut être définie en utilisant des variables d’état discrètes comme le 

nombre de pièces en attente dans les différents stocks, le nombre de demandes retardées des différents 

stocks, le nombre de pièces en attente de fabrication dans les différentes systèmes de fabrication, le 

nombre d’ordres de fabrication en attente d’exécution dans les différents systèmes de fabrication, et l’état 

de différents systèmes de fabrication (libre ou occupée). Les dynamiques des systèmes étudiés 

déterminent comment ces variables d’état évoluent dans le temps. Les événements définissant la 

dynamique des systèmes étudiés correspondent alors à l’arrivée d’une demande, la satisfaction d’une 

demande, le début de traitement d’un ordre de fabrication dans un système de fabrication, la fin de 

traitement d’un ordre de fabrication dans un système de fabrication, etc.  

Nous analysons les systèmes de production et de stockage confronté aux aléas. Nous supposons que les 

demandes finales et les temps de fabrication des produits dans les différents systèmes de fabrication sont 

incertains. Les outils les plus souvent utilisés pour la modélisation des systèmes de production et de 

stockage dans un cadre stochastiques sont les variantes des réseaux de Petri (Petri Nets, PNs) et les files 
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d’attente. Le travail de Di Mascolo et al. (1991) est l’un des premiers qui utilisent les PNs pour la 

modélisation des systèmes Kanban. Chaouiya et Dallery (1997) utilisent les PNs stochastiques (Stochastic 

Petri Nets, SPNs) afin de modéliser l’application de la politique de stock nominal, la politique Kanban, la 

politique Kanban généralisée et la politique Kanban extensive dans des systèmes d’assemblage. Moore et 

Gupta (1999) utilisent les SPNs colorés pour la modélisation des systèmes Kanban. En utilisant les SPNs 

comme outil de modélisation, l’analyse exacte des performances est possible seulement sous des 

hypothèses restrictives. Les PNs sont en général bien adaptés pour la modélisation des systèmes 

complexes dont l’analyse des performances se base sur des méthodes de simulation. 

Dans le cadre cette thèse, nous utilisons les files d’attente afin de modéliser les systèmes de pilotage de 

flux étudiés et d’analyser leurs performances analytiquement. Les définitions des lois de probabilité et des 

processus stochastiques principaux ainsi que les fondements de la théorie des files d’attente sont donnés 

dans l’annexe A. Pour plus de détails sur les processus stochastique et la théorie des files d’attente, nous 

citons Ross (2000) et Kleinrock (1975). Par la suite, nous présentons les généralités sur la modélisation 

des systèmes de production et de stockage étudiés par les files d’attente. 

1.5.1. Modélisation des systèmes stock nominal  

Dans le cadre cette thèse, nous utilisons le formalisme des files d’attente pour modéliser les systèmes de 

stock nominal. Considérons un système mono-étage de production/stockage d’un produit (Figure 1.14) 

géré par une politique de stock nominal (S – 1, S) à inventaire permanent.  

 
Figure 1.14. Système mono-étage de production/stockage 

Selon la politique de stock nominal (S – 1, S), le stock contient le niveau de stock nominal S ≥ 0 à l’état 

initial. Nous supposons que les demandes externes arrivent chaque fois en quantité unitaire et selon un 

processus de Poisson ayant le taux λ. Quand la demande arrive, elle est satisfaite s’il y a des produits dans 

le stock, sinon elle est retardée. En appliquant la politique de stock nominal (S – 1, S), un ordre de 

fabrication unitaire est déclenché lorsque la position de stock devient S – 1, c’est-à-dire à chaque fois 

qu’une demande arrive.  

L’évolution du nombre de produits dans le stock est décrite en utilisant les variables aléatoires suivantes : 

I(t) : le niveau de stock possédé à l’instant t 

B(t) : le niveau de rupture de stock à l’instant t 

IN(t) : le niveau de stock à l’instant t, IN(t) = I(t) – B(t) 

         Système 
    de fabrication 

 Installation  
 de stock 
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IO(t) : le nombre de commandes attendues à l’instant t  

IP(t) : la position de stock à l’instant t, IP(t) = IO(t) + I(t) – B(t)  

 
Pour chaque variable aléatoire X = I, B, IN, IO, IP, {X(t), t ≥ 0} définit un processus stochastique à temps 

continu. Supposons maintenant que le système de fabrication traite un seul ordre de fabrication à la fois, 

selon la discipline de service FIFO. Les temps de fabrication successifs des produits sont indépendants et 

suivent tous une loi exponentielle de taux μ où ρ = λ / μ  satisfait la condition 1<ρ . En outre, nous 

supposons que les matières nécessaires pour exécuter la fabrication des produits sont toujours disponibles. 

Selon ces hypothèses et puisqu’un ordre de fabrication est déclenché chaque fois qu’une demande arrive, 

le système de fabrication est un modèle de file d’attente M/M/1 (µ, λ).  

Soit K(t) le nombre de commandes en attente de fabrication et en fabrication dans le système de 

fabrication à l’instant t. Le nombre de commandes attendues de l’installation de stock est exactement le 

nombre de commandes en attente de fabrication et en fabrication dans le système de fabrication :         

IO(t) = K(t) pour t ≥ 0. Le processus stochastique {K(t), t ≥ 0} est indépendant du niveau de stock 

nominal S. Si S = 0, nous avons alors un système de production à la commande. Si S > 0, le système 

analysé est un système de production pour stock.  

Le processus stochastique {K(t), t ≥ 0} atteint à long terme un régime permanent indépendant de sont état 

initial. En outre, selon la politique de stock nominal, la position de stock reste constante au niveau du 

stock nominal S : IP(t) = S pour t ≥ 0. Par conséquent, le processus stochastique {IN(t) = S – K(t), t ≥ 0} 

atteint aussi un régime permanent. Nous décrivons l’évolution du nombre de produits dans le stock en 

utilisant les variables d’état en régime permanent suivantes : 

P : le nombre de commandes en attente de fabrication 

K : le nombre de commandes en attente de fabrication et en fabrication  

I : le niveau de stock possédé  

B : le niveau de rupture de stock  

Le fonctionnement du système est représenté par un réseau des files d’attente avec stations de 

synchronisation (Figure 1.15). Les stations de synchronisation permettent de relier le flux d’information 

et le flux physique. Dans la Figure 1.15, les flux d’information correspondent aux arrivées de demandes 

finales et aux ordres de fabrication. L’arrivée d’une demande finale déclenche instantanément un ordre de 

fabrication. La modélisation des systèmes de stock nominal et des systèmes Kanban par des réseaux des 

files d’attente avec stations de synchronisation est décrite par plusieurs auteurs (voir Di Mascolo et al. 

(1996), Baynat et al. (2001), Matta et al. (2005), Frein et al. (1995), Liberopoulos et Dallery (2003), 

Baynat et al. (2002) pour la modélisation des systèmes Kanban multi-étages, Karaesmen et Dallery 
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(2000), Duri et al. (2000), Karaesmen et al. (2002) pour la modélisation des systèmes à stock nominal 

multi-étages). 

 
Figure 1.15. Représentation du système par les files d’attente 

Supposons que chaque unité dans le stock induit un coût de stockage « h » et chaque demande retardée 

induit un coût de rupture de stock « b » par unité de temps. La fonction de coût considéré est la somme 

des coûts moyens de stockage et de rupture : 

][][][)( BbEIhEbBhIESC +=+=            

En régime permanent, S = K + I – B. Par conséquent, +−= ][ KSI  et +−= ][ SKB où [x]+ dénote  

max{x,0}. Soit }Pr{ kKPk ==  la probabilité d’avoir k commandes dans la file d’attente M/M/1 (µ, λ) en 

régime permanent. Les mesures de performances qui sont le niveau moyen de stock possédé ][IE  et le 

niveau moyen de rupture de stock ][BE  sont calculées par les équations 
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La fonction de coût s’écrit alors 
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==
−+−= .                                (1.1) 

La fonction (1.1) a la même forme que celle de la fonction de coût d’un modèle de marchand de journaux. 

Le modèle de marchand de journaux est un modèle classique de gestion des stocks sur une seule période. 

Le stock est approvisionné une seule fois afin de satisfaire la demande de la période, qui est une variable 
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aléatoire de distribution connue (Khouja, 1999). La fonction (1.1) a la forme d’un modèle de marchand de 

journaux avec S étant la quantité de commande et K étant la demande par période (Shang et Song, 2003). 

La fonction (1.1) est développée dans l’annexe A. 

Dans la littérature, le modèle présenté est nommé la file d’attente M/M/1 de production pour stock. En 

appliquant la politique de stock nominal (S – 1, S), le système de fabrication est en marche quand le 

niveau de stock est inférieur au niveau de stock nominal S. Sinon, quand le niveau de stock est égal au 

niveau de stock nominal S, le système de fabrication reste en état d’arrêt. Veatch et Wein (1996) ont 

prouvé l’optimalité de la politique de stock nominal pour le système étudié si le coût de lancement de la 

production est négligeable.  

Il existe des travaux de recherche analysant les modèles de file d’attente de production pour stock avec 

produits multiples. Dans ce cas, le problème est de déterminer quand le système de fabrication est en 

marche et quel produit il doit fabriquer quand il est en marche (Zheng et Zipkin, 1990 ; Veatch et Wein, 

1996 ; Ha, 1997a ; de Vericourt et al., 2000). Pour le cas de deux produits ayant des taux moyens de 

fabrication équivalents, Ha (1997a) caractérise la politique optimale par un niveau de stock nominal pour 

chaque produit et une courbe de changement (en fonction des niveaux de stock des produits) qui 

détermine le produit à fabriquer. Pour le cas de deux produits ayant des taux moyens de fabrication 

différents, de Vericourt et al. (2000) déterminent, dans une région restreinte de l’espace d’état, la 

politique optimale.  

En présence de plusieurs classes de clients, le problème est souvent nommé le problème de rationnement 

de stock. Ha (1997b) est parmi les premiers qui analysent un problème de rationnement de stock en 

supposant que les commandes qui ne sont pas servies sont perdues. Les classes de clients diffèrent par 

leur taux moyen d’arrivée et la pénalité générée par une vente perdue. L’auteur montre que la politique 

optimale est du type stock nominal, couplée par un niveau de rationnement pour chaque classe de clients ; 

un client est servi seulement si le niveau de stock possédé est supérieur au niveau de rationnement de la 

classe correspondante. Ha (2000) généralise ces résultats pour le cas où les temps de fabrication suivent 

une distribution d’Erlang. De Vericourt et al. (2002) analysent un système où les demandes qui ne sont 

pas satisfaites immédiatement sont retardées. La politique optimale est encore une politique de stock 

nominal, couplée par un niveau de rationnement pour chaque classe de client. Selon cette politique, une 

demande est satisfaite immédiatement si le niveau de stock possédé est supérieur au niveau de 

rationnement de la classe correspondante. De la même façon, un produit qui vient d’être fabriqué est 

utilisé pour satisfaire une demande retardée d’une classe si le niveau de stock possédé est supérieur ou 

égal au niveau de rationnement de la classe correspondante. S’il existe plusieurs classes qui satisfont cette 

condition, le produit est attribué à la classe ayant le coût de rupture le plus élevé. Si aucune classe avec un 

niveau de rupture de stock positif ne satisfait cette condition, le produit prend sa place dans le stock de 

sortie. Notons que le niveau de rationnement pour la classe ayant le coût de rupture le plus élevé est nul. 
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1.6. CONCLUSIONS 

Dans ce chapitre, nous avons présenté les concepts généraux relatifs aux chaînes logistiques et au pilotage 

de flux dans les chaînes logistiques. Dans la littérature, nous trouvons différentes politiques de pilotage de 

flux, que nous avons classifiées en deux familles : les politiques réactives et les politiques proactives. 

Dans la première classe, nous trouvons les politiques classiques de gestion des stocks, les politiques de 

stock nominal et les politiques Kanban. Les politiques MRP et les politiques réactives modifiées rentrent 

dans la classe proactive.  

Les principaux concepts de chaque politique ont été présentés dans le but de mettre en évidence leurs 

similarités et leurs différences ainsi que les avantages et inconvénients de les utiliser dans le vaste 

contexte des chaînes logistiques.  

Parmi les politiques de pilotage étudiées, les travaux développés au cours de cette thèse s’intéressent en 

particulier à la politique de stock nominal appliquée aux systèmes de production et de stockage. Les 

hypothèses adoptées considèrent que les coûts de lancement de la production sont négligeables et que 

l’information sur les demandes finales futures n’est pas disponible.  

Nous examinons les systèmes de production et de stockage à capacité limitée. L’analyse du 

comportement des systèmes étudiés s’appuie sur la théorie des files d’attente. Dans le cadre cette thèse, 

nous allons généraliser le modèle de file d’attente M/M/1 de production pour stock présenté dans la 

section précédente. 



   

CHAPITRE II 

2. Optimisation des décisions dans les chaînes logistiques 

 

 

 

2.1. INTRODUCTION 

Les chaînes logistiques décentralisées sont constituées de différentes entreprises qui interviennent dans le 

processus de fabrication d’une famille de produits. Pour chaque entreprise particulière, il s’agit 

principalement d’optimiser sa politique de production et d’approvisionnement par rapport à ses propres 

critères économiques. Dans le contexte de la chaîne logistique, ceci se traduit par une optimisation 

individuelle souvent effectuée d’une façon concurrentielle. Puisque les objectifs des acteurs sont souvent 

antagonistes, le caractère distribué de la structure décisionnelle peut conduire à une perte d’efficacité pour 

l’ensemble de la chaîne et nécessite des mécanismes de coordination permettant d’améliorer les 

performances globales, tout en limitant les risques encourus par chacun des partenaires.  

Pour comprendre et maîtriser l’organisation des transactions entre partenaires d’une chaîne logistique, il 

est donc essentiel de représenter les antagonismes entre leurs objectifs économiques, ainsi que les 

éventuelles relations de dominance entre les entreprises concernées. L’outil mathématique privilégié pour 

cette analyse est la théorie des jeux. Cette théorie permet en effet de prévoir les comportements d’acteurs 

rationnels dans différents contextes d’interaction et d’information : situations de conflit, de dominance ou 

de coopération, information partielle ou complète. Par la suite, nous nous intéressons davantage à 

l’interaction entre la théorie des jeux et la gestion de chaînes logistiques qu’aux fondements de cette 

théorie. Cachon et Netessine (2004) et Leng et Parlar (2005) fournissent des revues de littérature sur les 

applications des concepts de la théorie des jeux dans le domaine de la gestion de chaînes logistiques. Pour 

plus de détails sur les concepts de la théorie des jeux, nous citons Osborne et Rubinstein (1994), Myerson 

(1991) et Fudenberg et Tirole (1991).  

La théorie des jeux possède deux grands axes : la théorie des jeux coopératifs et la théorie des jeux non-

coopératifs. La théorie des jeux coopératifs implique un changement majeur sur les paradigmes analysés 

en comparaison avec la théorie des jeux non-coopératifs. La théorie des jeux coopératifs se focalise sur la 

valeur de la coopération, c’est-à-dire la valeur qu’un ensemble de joueurs peuvent créer en coopérant, 

sans préciser les actions spécifiques que les joueurs doivent entreprendre afin de créer cette valeur. En 
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revanche, la théorie des jeux non-coopératifs se focalise sur les actions spécifiques des joueurs 

individuels. Par nature, les jeux coopératifs sont bien adaptés pour analyser les interactions entre les 

entreprises pendant la phase de conception de la chaîne logistique et donc l’apport de la coopération sur 

les performances de la chaîne au niveau stratégique. La théorie des jeux non-coopératifs permet, quant à 

elle, de prévoir les comportements des acteurs individuels au sein d’une chaîne logistique décentralisée, 

en particulier lorsqu’ils ont des intérêts conflictuels. Les jeux non-coopératifs sont donc beaucoup mieux 

adaptés pour analyser les effets des décisions décentralisées sur les performances de la chaîne aux 

niveaux tactique et opérationnel. Dans ce chapitre, nous nous concentrons principalement sur les jeux 

non-coopératifs. La deuxième section est consacrée aux concepts de base de la théorie des jeux. La 

troisième section décrit les jeux statiques et les études utilisant ce concept dans le but d’analyser les 

comportements des acteurs au sein des chaînes logistiques décentralisées. La quatrième section traite les 

études employant les jeux dynamiques. Dans la cinquième section, nous exposons les applications des 

jeux à information asymétrique. Dans la sixième section de ce chapitre, nous exposons brièvement les 

interactions entre la théorie des jeux coopératifs et la gestion de chaînes logistiques.  

2.2. CONCEPTS DE BASE DE LA THÉORIE DES JEUX 

La théorie des jeux est un domaine scientifique fondé sur un ensemble d’outils analytiques permettant de 

comprendre certains phénomènes observés quand plusieurs centres de décision interagissent, en 

particulier lorsqu’ils ont des intérêts conflictuels. Ces outils sont efficaces pour analyser les situations 

dans lesquelles la décision d’un acteur a une influence sur le gain des autres acteurs du jeu. La théorie des 

jeux a pour hypothèses : (a) que les acteurs (les joueurs) sont rationnels, c’est-à-dire qu’ils prennent leurs 

décisions dans le but de maximiser leur satisfaction, et (b) que chaque acteur prend en compte 

l’information dont il dispose sur les autres acteurs.  

Les acteurs participant à un jeu forment un ensemble N avec nNcard =)( . Chaque acteur Ni ∈  possède 

un ensemble de stratégies disponibles, noté Xi. Un acteur i peut choisir une stratégie particulière ii Xx ∈  

ou il peut choisir une stratégie au hasard parmi certaines des stratégies disponibles. Dans le premier cas, 

nous parlons de stratégie pure. Dans un jeu à stratégies pures, l’espace de stratégies (pures) s’écrit 

nNi i XXXX ×××=∏ ∈ ...21 . Un profil de stratégie possible du jeu est alors ),...,,( 21 nxxxx =  où 

∏∈∈∀ Ni iXx . Dans le deuxième cas, nous parlons de stratégie mixte. Une stratégie mixte θi pour un 

acteur i est une distribution de probabilité sur l’ensemble Xi, c’est-à-dire ]1,0[: →ii Xθ  tel que 

1)( =∑ ∈ iiXx x
ii
θ . On écrit )( ii XΔ∈θ  où )( iXΔ  est l’ensemble de toutes les distributions de 

probabilités définies sur Xi. L’ensemble de stratégies mixtes d’un acteur i est alors )( iXΔ . Pour ce cas, 

l’espace de stratégies (mixtes) s’écrit )(...)()()( 21 nNi i XXXX Δ××Δ×Δ=Δ∏∈  où 
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∏∈ Δ∈=∀ Ni in X )(),...,,( 21 θθθθ . Une stratégie pure xi peut être représentée en termes d’une stratégie 

mixte )( ii XΔ∈θ  avec 1)( =ii xθ . Les stratégies mixtes sont souvent utilisées quand le jeu ne possède 

pas d’équilibre en stratégies pures ou quand l’équilibre en stratégies pures n’est pas Pareto efficace. La 

littérature sur la gestion de chaînes logistiques décentralisées se focalise seulement sur les équilibres en 

stratégies pures.  

Un acteur i détermine sa stratégie afin de maximiser sa fonction de paiement (payoff function), appelée 

aussi fonction d’utilité, ),...,,( 21 ni xxxπ  où RXNi ii →∏∈:π . La fonction de paiement de chaque acteur 

est son gain à la fin du jeu qui est déterminé selon la stratégie qu’il a adoptée ainsi que les stratégies 

adoptées par les autres joueurs. Plusieurs grandeurs peuvent être représentées par la fonction de paiement 

telles que les profits ou les coûts dans un contexte de minimisation. Dans les jeux à somme nulle, le gain 

global des acteurs est constant (considéré comme nul par normalisation) ainsi, le gain de l’un des acteurs 

se traduit par une perte pour un ou plusieurs des acteurs. Dans les jeux à somme non-nulle, les stratégies 

des acteurs agissent sur le gain global du jeu. Les problèmes traités dans le cadre de la gestion de chaînes 

logistiques entrent dans la classe de jeux à somme non-nulle.  

Il existe plusieurs formes de jeu qui indiquent les règles fixées par les joueurs en termes de succession 

d’étapes du jeu. La forme normale ou stratégique, appelée aussi jeu statique, se déroule en une seule 

étape dans laquelle les joueurs choisissent leurs stratégies simultanément. Les formes extensives ou jeux 

dynamiques se déroulent en deux ou plusieurs étapes dans lesquelles les joueurs choisissent leurs 

stratégies simultanément ou successivement dans un ordre prédéterminé. 

Un jeu est dit à information complète (ou information symétrique) si les ensembles de stratégies 

disponibles des différents acteurs ainsi que leurs fonctions de paiement sont connues de tous les joueurs. 

Dans un jeu à information asymétrique, les connaissances des joueurs diffèrent de l’un à l’autre. 

2.3. JEUX STATIQUES 

En utilisant les notations de Cachon et Netessine (2004), un jeu statique est un tuple 

>< ∈∈ NiiNiiXN )(,)(, π  où N est l’ensemble de joueurs avec nNcard =)(  et pour chaque joueur Ni ∈ , 

Xi est l’ensemble de stratégies disponibles, ),...,,( 21 ni xxxπ  est la fonction de paiement. Les joueurs 

choisissent leur stratégie simultanément en connaissant l’ensemble de stratégies et la fonction de 

paiement de tous les joueurs dans le jeu.  

Dans un jeu de n joueurs, le joueur i cherche une stratégie ii Xx ∈*  qui maximise sa fonction de paiement 

),( iii xx −π  compte tenu des stratégies des autres joueurs, notées ix− . Donc, la fonction de meilleure 

réponse (appelée aussi la courbe de réaction) du joueur i est définie par : 
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),( maxarg)(*
iiiXxii xxxx

ii −∈− = π .              (2.1) 

Étant donné ix− , le joueur i peut être indifférent entre certains stratégies dans l’ensemble Xi. Par 

conséquent, la courbe de réaction )(*
ii xx −  peut être une correspondance (plutôt qu’une fonction) qui 

spécifie, pour chaque ix− , un ensemble iii Xxx ⊂− )(* .  Supposons que n
Ni i RX ⊂∏ ∈  soit un ensemble 

convexe. Si ),( iii xx −π  est continue en x, différentiable et quasi-concave en xi alors la courbe de réaction 

)(*
ii xx −  est déterminée par les conditions du premier ordre : 

,...,ni
x

xx

i

iii 1          0 ),(
==

∂
∂ −π  

L’équilibre de Nash caractérise l’état permanent du jeu statique. Un profil de stratégie ),...,,( **
2

*
1 nxxx  est 

un équilibre de Nash si  

,...,niXxxxxx iiiiiiii 1  ,           ),(),( *** =∈∀≥ −− ππ  

ou également si *
ix  est une meilleure réponse à   *

ix− pour tous les joueurs Ni ∈ : 

,...,nixxxxx iiiXxiii ii
1          ),(  maxarg)(      **** ==∈ −∈− π                      (2.2) 

Pour arriver à cet équilibre, chaque joueur i prédit les stratégies des autres joueurs, *
ix− , et choisit *

ix  en 

conséquence. S’il existe un équilibre qui satisfait les conditions (2.2), aucun joueur n’aura intérêt à dévier 

unilatéralement de cet équilibre. Selon cette définition, deux problèmes peuvent se poser : la non-

existence d’un équilibre et l’existence d’équilibres multiples.  

2.3.1. Existence de l’équilibre 

Les équilibres de Nash se trouvent à l’intersection des courbes de réactions des différents joueurs, ce qui 

correspond à la notion du point fixe. Ainsi, l’existence d’un équilibre de Nash découle des théorèmes de 

point fixe. Pour un jeu statique >< ∈∈ NiiNiiXN )(,)(, π , soit ∏∏ ∈∈ →→ Ni iNi i XXR :  la 

correspondance telle que ∏∈ −= Ni ii xxxR )()( *  pour ∏∈∈=∀ Ni in Xxxxx ),...,,( 21 . Le point fixe d’une 

correspondance SSF →→:  est défini comme un point Sx∈  qui satisfait )(xFx∈ . De la même 

façon, le point fixe d’une fonction SSf →:  est un point Sx∈  qui satisfait xxf =)( . Suivant cette 

définition, un équilibre de Nash est un point fixe de la correspondance )(xR . Si on peut démontrer que la 

correspondance )(xR  a un point fixe, alors le jeu >< ∈∈ NiiNiiXN )(,)(, π  a au moins un équilibre de 



Optimisation des décisions dans les chaînes logistiques 47

Nash. Si pour chaque joueur i, la meilleure réponse à ∏ −∈− ∈ }{ iNj ji Xx  est unique, l’équilibre de Nash 

est le point fixe de la fonction ∏∏ ∈∈ → Ni iNi i XXr :  telle que ))(),...,(),(()( *
2

*
21

*
1 nn xxxxxxxr −−−=  

pour ∏∈∈=∀ Ni in Xxxxx ),...,,( 21 .  

Les trois théorèmes majeurs de point fixe utilisés dans le but de montrer l’existence d’un équilibre de 

Nash sont ceux de Kakutani, Brouwer et Tarski (Cachon et Netessine, 2004). John F. Nash a montré en 

1950 que tout jeu fini (avec N et Xi fini pour tous Ni ∈ ) a un équilibre de Nash en stratégies mixtes en 

utilisant le théorème de point fixe de Kakutani (Myerson, 1991). Néanmoins, l’application directe de ces 

théorèmes se montre difficile dans plupart des cas. Des méthodes alternatives, dérivées des théorèmes de 

point fixe, ont été proposées.  

Le théorème de Debreu, Glicksberg et Fan (dérivé du théorème de point fixe de Kakutani) (Cachon et 

Netessine, 2004) indique qu’au moins un équilibre de Nash en stratégies pures existe si, pour chaque 

joueur Ni ∈ , l’ensemble de stratégies Xi est compact (borné et fermé) et convexe et la fonction de 

paiement ),( iii xx −π  est continue en x et quasi-concave en xi. Notons que le théorème de Debreu, 

Glicksberg et Fan n’implique pas l’unicité de l’équilibre de Nash. Des équilibres multiples existent si les 

courbes de réaction se croisent plus qu’une fois. Parmi les travaux utilisant le théorème de Debreu, 

Glicksberg et Fan, nous citons Cachon et Zipkin (1999), Lippman et McCardle (1997), Mahajan et van 

Ryzin (2001) et Netessine et al. (2006). 

Si la quasi-concavité des fonctions de paiement ne peut pas être vérifiée, la démonstration de l’existence 

d’un équilibre de Nash en stratégies pures peut se baser sur la notion de jeu super-modulaire. Un jeu est 

super-modulaire si la courbe de réaction de chaque joueur est non-décroissante par rapport aux stratégies 

des autres joueurs. Une fonction de paiement ),( iii xx −π  deux fois continûment dérivable est super-

modulaire si et seulement si 0/2 ≥∂∂∂ jii xxπ  pour tous ∏∈∈ Ni iXx  et tous ij ≠ . Un jeu est super-

modulaire si les fonctions de paiement de tous les joueurs sont super-modulaires. Selon le théorème de 

point fixe de Tarski, c’est une condition suffisante pour l’existence d’un équilibre de Nash en stratégies 

pures et donc chaque jeu super-modulaire possède au moins un équilibre de Nash. Notons que la notion 

de super-modularité ne nécessite pas la continuité des fonctions de paiement et il existe plusieurs façons 

de montrer qu’un jeu est super-modulaire (voir Fudenberg et Tirole (1991) pour plus de détails). Cachon 

(2001b), Cachon et Lariviere (1999), Lippman et McCardle (1997) ont utilisé cette propriété pour 

démonter l’existence d’un équilibre de Nash. 

2.3.2. Unicité de l’équilibre 

L’existence d’un équilibre de Nash unique qui signifie un choix fixe pour chaque joueur est toujours 

recherchée. L’existence d’équilibres multiples peut générer des problèmes de cohérence, car les différents 
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acteurs peuvent opter pour des équilibres différents, ce qui peut aboutir à une solution qui n’est pas un 

équilibre de Nash.  

Analysons un exemple où l’existence d’équilibres multiples génère une solution qui n’est pas un équilibre   

de Nash. La Figure 2.1 montre la représentation normale (ou matricielle) d’un jeu statistique à deux 

joueurs connu sous le nom de la bataille des sexes. Un garçon J1 et une fille J2 désirent sortir ensemble le 

samedi après-midi, néanmoins, le garçon préfère d’aller à un match de foot alors que la fille souhaite faire 

du shopping. Aucun d’entre eux ne prendra plaisir à sortir seul. Chaque joueur possède deux stratégies : 

aller à un match de foot ou faire du shopping.  

                  J2  
J1 

foot 
 

shopping 

foot 
 

( ),(1 ffπ = 3, ),(2 ffπ = 1) ( ),(1 sfπ = 0, ),(2 sfπ = 0) 

shopping 
 

( ),(1 fsπ = 0, ),(2 fsπ = 0) ( ),(1 ssπ = 1, ),(2 ssπ = 3) 

Figure 2.1. Bataille des sexes 

Dans le jeu de bataille des sexes, il existe deux équilibres en stratégies pures : ),( footfoot  et 

),( shoppingshopping . L’équilibre ),( footfoot  favorise le joueur J1 et l’équilibre ),( shoppingshopping  

favorise le joueur J2. Donc, les joueurs préfèrent des équilibres de Nash différents, ce qui peut ramène le 

système au point ),( shoppingfoot  qui n’est pas un équilibre de Nash et qui est moins désiré par les 

joueurs.  

Démontrer l’unicité de l’équilibre est généralement plus difficile que de démontrer l’existence. Cachon et 

Netessine (2004) présentent plusieurs méthodes utilisées dans cet objectif. Les méthodes présentées 

assument l’existence d’un équilibre. Les auteurs précisent qu’il n’existe pas des méthodes générales pour 

démontrer l’unicité de l’équilibre dans le cas de jeux super-modulaires. 

2.3.3. Pareto optimalité de l’équilibre 

Un point nRa ∈  est dit Pareto inférieur à ou Pareto dominé par un point nRb ∈ , si au moins une 

composante de a (par exemple la jième composante, noté aj) est inférieure à la composante correspondante 

de b (aj < bj) tandis que toutes les autres composantes de a ne sont pas supérieures aux composantes 

correspondantes de b (ai ≤ bi pour tous i ≠ j ). En d’autres termes, on dit que b est Pareto supérieur à a ou 

que b domine a (au sens de Pareto). Un point Sb ∈  où nRS ⊂ est un point Pareto optimal ou Pareto 

efficace de S s’il n’est pas Pareto dominé par un autre point dans S. La Pareto frontière de S se réfère à 

l’ensemble de tous les points Pareto optimaux de S.  
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En utilisant ces définitions, l’efficacité des différents profils de stratégie peuvent être comparée. Dans un 

jeu de n joueurs, les paiements obtenus par les joueurs avec un profil de stratégie ),...,,( 21 nxxxx =  

peuvent être représentés comme un point en nR  : ))(),...,(),(( 21 xxx nπππ . Selon cette représentation, un 

profil de stratégie ∏∈∈= Ni in Xxxxx ),...,,( 21  est un profil Pareto optimal (ou un profil qui aboutit à un 

résultat ))(),...,(),(( 21 xxx nπππ  Pareto optimal) s’il n’existe pas d’autre profil dans l’ensemble ∏∈Ni iX  

avec lequel le paiement d’au moins un joueur est plus élevé tandis que les paiements des autres joueurs ne 

sont pas moins élevés. Autrement dit, un profil de stratégie est Pareto optimal s’il n’est pas possible 

d’augmenter le paiement d’un joueur quelconque sans réduire celui d’un autre. 

L’équilibre de Nash d’un jeu ne correspond pas nécessairement à un profil de stratégie Pareto optimal. 

Considérons l’exemple de la Figure 2.2 connu sous le nom du dilemme du prisonnier. Le dilemme du 

prisonnier est un jeu à somme non-nulle dans lequel les deux prisonniers J1 et J2 sont accusés de conspirer 

pour un crime. Le juge promet que si l’un d’eux avoue le crime, celui-ci sera libéré et le deuxième 

prisonnier obtiendra la peine maximale de 6 ans. Si les deux avouent, tous les deux seront condamnés à 

une peine de 5 ans. Si aucun prisonnier n’avoue, ils seront condamnés à une peine de seulement 1 an. 

Chaque joueur possède alors deux stratégies : avouer ou ne pas avouer.  

                  J2  
J1 

avouer 
 

ne pas avouer 

avouer 
 

( ),(1 aaπ = -5, ),(2 aaπ = -5) ( ),(1 naaπ = 0, ),(1 naaπ = - 6) 

ne pas avouer 
 

( ),(1 anaπ = -6, ),(2 anaπ = 0) ( ),(1 nanaπ = - 1, ),(1 nanaπ = - 1) 

Figure 2.2. Dilemme du prisonnier 

Une stratégie iXy ∈  est dite strictement dominante si ),(),( iiii xzxy −− > ππ  pour tous }{yXz i −∈  et 

tous ∏ −∈− ∈ }{iNj ji Xx . S’il existe une stratégie strictement dominante pour un joueur, alors cette 

stratégie sera jouée par ce joueur à l’équilibre de Nash du jeu. Si tous les joueurs ont une stratégie 

strictement dominante, alors l’équilibre de Nash est unique et se trouve à la rencontre de ces stratégies.  

Dans le jeu de dilemme du prisonnier, la stratégie « avouer » est strictement dominante sur « ne pas 

avouer » pour tous les deux prisonniers. Donc, il existe un équilibre unique en stratégies pures : 

),( avoueravouer . Par contre, le profil de stratégie ),( avoueravouer  est Pareto dominé par le profil 

)  ,  ( avouerpasneavouerpasne . Ici, le profil )  ,  ( avouerpasneavouerpasne  est un profil Pareto 

optimal. À l’équilibre, chacun des prisonniers choisit d’avouer même s’ils gagneraient à coopérer, en 

choisissant de ne pas avouer. 
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Dans les chaînes logistiques décentralisées, on suppose généralement que chaque acteur maximise 

l’espérance mathématique de ses profits (ou minimise l’espérance mathématique de ses coûts). Un tel 

comportement caractérise un acteur neutre au risque. Les performances optimales sont obtenues si 

l’équilibre du système décentralisé correspond à la solution théorique du système centralisé, c’est-à-dire à 

la solution qui maximise la somme des fonctions de paiement des acteurs. Par la suite, nous nous 

concentrons sur la coordination des chaînes logistiques décentralisées où chaque acteur est neutre au 

risque. Nous citons Gan et al. (2004) pour plus d’information sur la coordination des chaînes logistiques 

lorsque les acteurs sont averses au risque. Considérons une chaîne logistique décentralisée avec n acteurs 

neutres au risque, où chaque acteur i maximise sa fonction de paiement )(xiπ . Soit ∑∈= Ni i xx )()(0 ππ  

la fonction de profit du système centralisé correspondant et )(maxarg 0
0 xx x π=  la solution optimale du 

système centralisé. Le profit maximal du système centralisé définit la borne supérieure du profit total du 

système décentralisé : )()( 0
0

* xxNi i ππ ≤∑∈ . Si l’équilibre du système décentralisé, ),...,,( **
2

*
1

*
nxxxx = , 

ne correspond pas à la solution optimale du système centralisé, ),...,,( 00
2

0
1

0
nxxxx = , alors la 

décentralisation des décisions conduit à une dégradation des performances pour l’ensemble de la chaîne : 

)()( 0
0

* xxNi i ππ <∑∈ .  

Dans la littérature sur la gestion de chaînes logistiques, la majorité des travaux s’intéresse au fait qu’un 

équilibre de Nash ne maximise pas le gain total de la chaîne logistique, et cherche à déterminer des 

contrats qui peuvent améliorer l’efficacité de la chaîne. L’efficacité d’une chaîne logistique est définie 

comme le ratio du profit total du système décentralisé au profit maximal du système centralisé. Les 

contrats renforcent les engagements des partenaires par partage des risques, des profits ou des coûts, à 

travers des paiements de transfert entre les acteurs et motivent les acteurs à opter pour les actions 

optimales du système centralisé. Un contrat coordonne la chaîne logistique si son application positionne 

l’équilibre du système décentralisé à la solution optimale du système centralisé (Cachon, 2003). 

Autrement dit, un contrat qui coordonne la chaîne logistique permet d’obtenir 100 % d’efficacité. Le prix 

d’achat, les remises sur quantité et les subventions/pénalités sont des exemples de paramètres de contrat 

utilisés dans le but de coordonner les chaînes logistiques décentralisées. Cachon (2003) et Tsay et al. 

(1999) fournissent des revues de littérature sur la coordination des chaînes logistiques par contrats. Nous 

classifions cette littérature en trois catégories. 

La première catégorie concerne les travaux qui analysent l’équilibre de la chaîne logistique décentralisée 

et cherchent à déterminer un contrat qui améliore son efficacité ou qui coordonnent la chaîne (Cachon et 

Zipkin, 1999 ; Caldentey et Wein, 2003). Le contrat proposé doit idéalement aboutir à un équilibre qui 

Pareto domine l’équilibre sans le contrat. S’il existe un contrat qui coordonne la chaîne logistique et qui 

aboutit à un équilibre qui Pareto domine l’équilibre sans le contrat, les acteurs accepteront l’application 

du contrat proposé.  
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Les travaux dans la deuxième catégorie ne définissent pas les règles du jeu entre les acteurs. L’équilibre 

du système et le contrat adopté par les acteurs sont des résultats d’un processus de négociation non 

précisé. Le but est de déterminer les contrats qui sont susceptibles d’être adoptés par les acteurs 

indépendamment des règles du processus de négociation et des pouvoirs de négociation des acteurs, c’est-

à-dire les contrats Pareto optimaux. Un contrat est dit Pareto optimal s’il n’est pas possible d’augmenter 

le paiement d’un joueur quelconque sans réduire celui d’un autre en appliquant un autre contrat dans 

l’ensemble de contrats considéré (Cachon, 2003 ; Cachon 2004). Si l’ensemble de contrats considéré 

contient des contrats qui coordonnent la chaîne logistique, alors les contrats qui coordonnent la chaîne 

constituent la Pareto frontière de cet ensemble. Si les contrats dans la Pareto frontière permettent de 

partager le gain total de la chaîne arbitrairement entre les acteurs, les acteurs opteront idéalement pour un 

contrat dans la Pareto frontière et le gain de chaque acteur dépendra des règles du processus de 

négociation. La flexibilité du type de contrat proposé est un aspect important pour de telles analyses. Un 

type de contrat est dit flexible s’il permet de partager le gain total de la chaîne arbitrairement entre les 

acteurs en ajustant les valeurs de ses paramètres (Cachon, 2003). Ici, nous parlons d’un ensemble de 

contrats où chaque contrat spécifique de cet ensemble permet une division différente du gain total. Dans 

ce cadre, Jemai et Karaesmen (2007), Cachon (2003), Lariviere (1999) et Cachon (1999b) se focalisent 

sur un seul type de contrat à la fois. Ils déterminent les valeurs des paramètres qui coordonnent la chaîne 

logistique et montrent que l’ensemble de contrats obtenu permette de partager le gain total de la chaîne 

arbitrairement entre les acteurs. Cachon (2004) analyse différents types de contrats en même temps et 

cherche à déterminer la Pareto frontière de l’ensemble de contrats considéré.  

La troisième catégorie concerne les travaux précisant la procédure de négociation entre les acteurs. La 

plupart des travaux que nous citons dans cette catégorie (Lariviere et Porteus, 2001 ; Dong et Rudi, 2004 ; 

Corbett et Tang, 1999 ; Corbett et de Groote, 2000 ; Corbett et al., 2004 ; Cachon et Zhang, 2006 ; 

Cachon et Lariviere, 2001 ; Plambeck et Zenios, 2003) adoptent une approche principal-agent (Fudenberg 

et Tirole, 1991) dans laquelle le principal propose un contrat à son agent et l’agent peut soit accepter soit 

refuser cette proposition. Dans la littérature économique, le modèle principal-agent est souvent étudié en 

présence de sélection adverse (adverse selection), de signalisation ou de risque moral (moral hazard) 

(Fudenberg et Tirole, 1991). Dans le cas de sélection adverse, le principal est imparfaitement informé sur 

la nature (le type) de son agent. Dans le cas de signalisation, c’est l’agent qui est imparfaitement informé 

sur le type de son principal. Dans les deux cas, il s’agit donc d’étudier les conséquences d’une asymétrie 

d’information. Dans le cas de risque moral, le principal ne peut pas observer l’action de son agent. Le cas 

de risque moral est rarement traité dans la littérature sur la gestion de chaînes logistiques (Plambeck et 

Zenios, 2003). La section 2.4.1 expose les études avec information complète citées dans cette catégorie 

(Lariviere et Porteus, 2001 ; Dong et Rudi, 2004). La section 2.5 expose les études avec information 

asymétrique (Corbett et Tang, 1999 ; Corbett et de Groote, 2000 ; Corbett et al., 2004 ; Cachon et Zhang, 

2006 ; Cachon et Lariviere, 2001). 
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2.3.4. Jeux statiques et compétition dans les chaînes logistiques 

Il existe plusieurs travaux qui analysent, dans le cadre de jeux statiques, la compétition entre les 

entreprises d’une même chaîne logistique. Cachon et Zipkin (1999) étudient une chaîne logistique à deux 

niveaux, constituée d’une part d’un détaillant ayant une demande finale exogène et d’autre part de son 

fournisseur. La demande finale qui s’étale sur plusieurs périodes est aléatoire et stationnaire. Les deux 

entreprises ont des délais d’approvisionnement fixes. Les acteurs possèdent des coûts de stockage locaux 

et ils partagent les coûts de rupture de stock du détaillant. Deux jeux statiques sont étudiés. Dans le 

premier jeu, nommé SE, la gestion des stocks dans les entreprises est accomplie suivant une politique de 

stock nominal du type échelon et la stratégie de chaque acteur i = 1, 2  détermine son niveau de stock 

nominal du type échelon ],0[ SXS ii =∈  où S est une très grande constante. Dans le deuxième jeu, 

nommé SI, le stock de chaque étage est géré suivant une politique de stock nominal du type installation et 

la stratégie de chaque acteur i = 1, 2 est son niveau de stock nominal du type installation iS  où 

211 SSS +=  et 22 SS = . Le critère de chaque acteur est de minimiser ses coûts moyens de stockage et de 

rupture sur un nombre infini de périodes. Les acteurs choisissent leur stratégie simultanément et, une fois 

que les stratégies sont choisies, chaque acteur s’engage à appliquer la stratégie adoptée pour chaque 

période. Les auteurs montrent que chaque jeu statique étudié possède un équilibre de Nash unique, qui ne 

correspond pas à la solution optimale du système centralisé. Les équilibres des jeux SE et SI sont 

différents. En termes de stock échelon, les acteurs installent les niveaux de stock nominaux plus élevés 

dans le jeu SI : *
1

*
2

*
1 SSS >+  et *

2
*
2 SS > . Dans les deux cas, la compétition entre les entreprises diminue 

le niveau de stock nominal total de la chaîne en comparaison avec la solution optimale du système 

centralisé, noté ),( 0
2

0
1 SS , qui peut être obtenue par l’algorithme de Clark er Scarf : 

0
2

0
1

0
1

*
2

*
1

*
1 SSSSSS +=<+< . Les auteurs proposent un contrat de coordination caractérisant des 

paiements de transfert linéaires entre les acteurs. L’application du contrat proposé ramène le système à 

ses performances optimales. Cachon (1999a) fournit une analyse détaillée des différents mécanismes de 

coordination proposés dans ce cadre. 

Cachon (2001b) analyse la gestion compétitive des stocks dans un système de distribution constitué d’un 

fournisseur et de n détaillants identiques. La demande arrive chez les détaillants suivant un processus de 

Poisson. Les délais d’approvisionnement des entreprises sont fixes. La gestion des stocks chez les 

détaillants est accomplie suivant la politique (Rr, Qr) et chez le fournisseur suivant la politique (Rw, Qw). 

Chaque acteur détermine son point de commande dans le but de minimiser ses coûts moyens par unité de 

temps. Dans ce jeu entre les détaillants et le fournisseur, il existe des équilibres multiples qui ne 

correspondent pas, en général, à la solution optimale du système centralisé. Les auteurs proposent 

plusieurs types de mécanismes de coordination. 
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Jemai et Karaesmen (2007) analysent une chaîne logistique à deux niveaux constituée d’un producteur et 

de son détaillant. La demande finale arrive chez le détaillant selon un processus de Poisson. Le 

producteur possède un système de fabrication à capacité limitée dans lequel les temps de fabrication 

successifs des produits sont indépendants et suivent tous une loi exponentielle. Les entreprises disposent 

de stocks locaux et contrôlent leurs niveaux de stocks nominaux. Le temps de transport entre les 

installations de stock des entreprises est supposé négligeable. Les auteurs montrent l’existence d’un 

équilibre de Nash. À l’équilibre, le niveau de stock nominal total du système décentralisé est toujours 

inférieur à la valeur optimale du niveau de stock nominal total du système centralisé. Un contrat de 

coordination qui définit un paiement de transfert linéaire entre les acteurs et qui coordonne la chaîne 

logistique décentralisée est proposé. Cachon (1999b) analyse un système similaire en supposant qu’une 

demande est perdue si elle n’est pas satisfaite.  

Caldentey et Wein (2003) étudient les interactions entre un producteur fabriquant les produits finis et son 

détaillant. Le producteur fonctionne en mode de production à la commande et le détaillant dispose d’un 

stock de produits finis. Le système de fabrication du producteur est modélisé comme une file d’attente 

M/M/1. Les auteurs montrent qu’un équilibre de Nash unique existe quand le producteur contrôle sa 

capacité de production (son taux moyen de production) et le détaillant son niveau de stock nominal. 

L’équilibre de Nash ne correspond pas à la solution optimale du système centralisé. Ils proposent un 

mécanisme de coordination basé sur un paiement de transfert linéaire et montrent que le mécanisme 

proposé ramène l’équilibre du système décentralisé vers la solution optimale du système centralisé.  

Dans la littérature, la compétition entre les entreprises d’un même niveau d’une chaîne logistique est 

souvent appelée la compétition horizontale tandis que la compétition entre les entreprises des différents 

niveaux est nommée la compétition verticale. Lippman et McCardle (1997) analysent la compétition 

horizontale entre les détaillants d’un système de distribution. Ils étudient un modèle duopole avec deux 

détaillants ainsi qu’un modèle oligopole avec n détaillants. Chaque détaillant affronte un problème de 

 « marchand de journaux » et décide de son niveau de stock initial, qui peut aussi être interprété comme sa 

capacité de production. Les produits en stock sont ensuite utilisés pour satisfaire la demande qui survient 

sur une seule période. Les prix unitaires de vente sont exogènes et identiques. Par conséquent, la 

compétition n’est pas sur le prix de vente mais sur la disponibilité de produit. La demande agrégée du 

marché, qui est une variable aléatoire continue, est initialement attribuée aux détaillants selon une règle 

connue par tous les acteurs. Cette première allocation est indépendante des niveaux de stock initiaux des 

entreprises. Après la première allocation, si la quantité en stock chez un détaillant est inférieure à sa 

demande, alors une proportion de la demande qui n’est pas satisfaite est distribuée aux autres détaillants. 

C’est cette deuxième allocation qui créer la compétition entre les entreprises. Dans les modèles analysés, 

le critère de chaque acteur est de maximiser son profit moyen. Les auteurs montrent que, sous certaines 

conditions, chaque jeu statique étudié a un équilibre de Nash. Pour le modèle duopole, la somme des 



CHAPITRE II 54 

niveaux de stock initiaux des entreprises en compétition est en général plus élevée que le niveau de stock 

initial d’une firme en situation de monopole. Mahajan et van Ryzin (2001) analysent un problème 

similaire avec n détaillants. Dans leur modèle, la demande du marché est le résultat des choix dynamiques 

de clients hétérogènes. Ils montrent que la compétition entre les entreprises augmente le niveau de stock 

initial dans le système.   

Dans la littérature économique, il existe deux modèles de compétition classiques appliqués aux canaux de 

distribution : la compétition de Bertrand et la compétition de Cournot. Dans le modèle duopole de 

Bertrand classique, chaque entreprise i = 1, 2 décide de son prix de vente pi et ensuite doit satisfaire sa 

demande réalisée qui dépend des prix de vente annoncé : ),( 21 ppdi . La compétition de Cournot porte sur 

la quantité de production. Chaque entreprise i = 1, 2 décide sa quantité de production qi, et le prix de 

vente )(qp  dépend de la demande totale du marché q = q1 + q2. Dans la littérature sur la gestion de 

chaînes logistiques, il existe plusieurs travaux généralisant les modèles de Bertrand et de Cournot (Leng 

et Parlar, 2005).  

Cachon et Harker (2002) présentent un modèle de compétition entre deux entreprises avec des économies 

d’échèle, c’est-à-dire que le coût par unité de demande est décroissant en quantité de demande pour 

chaque entreprise. Dans le canal de distribution considéré, chaque entreprise i = 1, 2 décide de son prix de 

vente pi et la demande de chaque entreprise est ensuite réalisée en fonction des prix de vente fixés :     

),( 21 ppdi . Deux jeux conformes à cette structure sont considérés. Dans le premier, les clients arrivent à 

l’entreprise i selon un processus de Poisson ayant le taux ),( 21 ppdi  et les deux entreprises fonctionnent 

comme des serveurs exponentiels. Ici, le gain obtenu par une vente réalisée est définie comme « pi – gi » 

où gi est l’espérance mathématique du temps de séjour des clients, qui est déterminée par le choix de 

capacité de production (ou de service) de l’entreprise. Dans le deuxième jeu, le taux de demande 

),( 21 ppdi  est déterministe et chaque entreprise a un coût de commande fixe. La quantité de commande 

de chaque entreprise est déterminée par la formule bien connue de la Quantité Économique de Commande 

(QEC). Les auteurs analysent les situations où un équilibre de Nash en stratégies pures n’existe pas. Pour 

un modèle similaire de QEC, Bernstein et Federgruen (2003) analysent les compétitions de Bertrand et de 

Cournot entre n détaillants. 

2.4. JEUX DYNAMIQUES 

Les jeux statiques que nous avons analysés dans la section précédente ne permettent pas de représenter 

des modèles évoluant au cours du temps. Les jeux dynamiques, nommé aussi jeux sous forme extensive, 

tiennent compte de l’ordre dans lequel les joueurs choisissent leur stratégie. Ainsi, un jeu sous forme 

extensive peut être représenté comme un arbre de décision dans lequel le sommet initial et les sommets 

intermédiaires représentent les sommets de décision et les sommets terminaux représentent les résultats 
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possibles du jeu. Pour chaque joueur Ni ∈ , un sommet avec le label [i, k] est un sommet de décision 

contrôlé par le joueur i. Ici, k représente l’état d’information du joueur i concernant les stratégies adoptées 

dans les étapes précédentes. Quand un sommet de décision avec le label [i, k] est le sommet racine, nous 

notons k = 0. Les arcs sortant d’un sommet avec le label [i, k] représentent les stratégies disponibles du 

joueur i à ce coup. La Figure 2.3 montre la représentation d’un jeu à deux joueurs dans lequel les joueurs 

choisissent leurs stratégies successivement. Dans la première étape du jeu, le joueur 1 agit en premier et 

choisit une de ces deux stratégies disponibles, x1 ou x2. Pour les sommets de décision contrôlés par le 

joueur 2, les états d’information k = 1 et k = 2 indiquent que le joueur 2 observe respectivement les choix 

x1 et x2. Dans la deuxième étape du jeu, le joueur 2 choisit alors une stratégie parmi y1 et y2 en connaissant 

la stratégie adoptée par le joueur 1 dans la première étape du jeu. À la suite de ces deux choix successifs, 

on détermine le gain de chaque joueur.  

 
Figure 2.3. Représentation d’un jeu dynamique par un arbre de décision  

Dans un jeu sous forme extensive, les sommets de décision contrôlés par le joueur i avec le même état 

d’information k constituent un ensemble d’information. Les sommets dans un même ensemble 

d’information ne sont pas distinguables par le joueur. Dans l’exemple de la Figure 2.3, chaque sommet est 

l’élément unique de son ensemble d’information. Donc, chaque joueur peut savoir à tout moment où il se 

situe dans l’arbre du jeu. Pour cet exemple, si l’on suppose que le joueur 2 choisit sa stratégie sans 

connaitre la stratégie adoptée par le joueur 1, le jeu étudié devient équivalent à un jeu statique dans lequel 

les joueurs choisissent leurs stratégies simultanément. La Figure 2.4 montre la représentation de ce jeu 

statique à deux joueurs où l’état d’information k = 3 pour le joueur 2 indique que le joueur 2 ne connaît 

pas la stratégie adoptée par le joueur 1. Dans ce cas, les sommets de décision contrôlés par le joueur 2 

constituent un ensemble d’information. Le joueur 2 ne peut pas savoir dans quel sommet il se trouve.  

(π1(x1,y1), π2(x1,y1))  

(π1(x1,y2), π2(x1,y2))  

(π1(x2,y1), π2(x2,y1))  

(π1(x2,y2), π2(x2,y2))  

x1  

x2  

y1  

y2  

y1  

y2  

[1, 0] 

[2, 1] 

[2, 2] 
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Figure 2.4. Représentation d’un jeu statique à deux joueurs avec un arbre de décision 

Un jeu à information parfaite est un jeu sous forme extensive dont tous les ensembles d’information sont 

des singletons. Autrement dit, un jeu à information parfaite est un jeu qui se déroule en deux ou plusieurs 

étapes dans lesquelles les joueurs choisissent leur stratégie successivement (jamais simultanément). À 

chaque étape d’un jeu à information parfaite, le joueur qui détermine sa stratégie connaît les stratégies 

adoptées par lui-même et par les autres joueurs dans les étapes passées. Par exemple, le jeu d’échec est un 

jeu à information parfaite. Dans le cas contraire, le jeu est à information imparfaite.  

Le concept de résolution, souvent utilisé dans la littérature sur la gestion de chaînes logistiques, est 

l’équilibre parfait en sous-jeu qui est un raffinement du concept d’équilibre de Nash pour les jeux sous 

forme extensive. Un sous-jeu d’un jeu sous forme extensive est un sous-arbre constitué d’un sommet 

racine qui est le seule élément de son ensemble d’information et de tous les sommets postérieurs de ce 

sommet racine. En outre, un sous-jeu doit contenir soit aucun, soit tous les éléments d’un ensemble 

d’information. L’équilibre parfait en sous-jeu d’un jeu sous forme extensive représente un équilibre de 

Nash pour chaque sous-jeu du jeu original. Pour les jeux à information parfaite ayant un nombre fini 

d’étapes, l’équilibre parfait en sous-jeu peut être déterminé par induction à rebours. 

Par la suite, nous analysons les jeux sous forme extensive les plus souvent étudiés dans la littérature sur la 

gestion de chaînes logistiques, notamment les jeux de Stackelberg, les jeux répétés et les jeux 

stochastiques. 

2.4.1. Jeux de Stackelberg 

Les jeux sous forme extensive sont beaucoup moins traités dans les travaux s’intéressant aux chaînes 

logistiques, à l’exception des jeux en deux étapes. La notion de jeu en deux étapes a été introduite par H. 

von Stackelberg en 1934 comme une extension du modèle de Cournot. Dans un modèle duopole de 

Stackelberg, le premier joueur, appelé aussi le meneur, agit en premier et choisit une stratégie parmi 

l’ensemble de ses stratégies. Le deuxième joueur, le suiveur, observe ce choix et répond en adoptant une 

stratégie dans l’ensemble de ses stratégies possibles (voir l’exemple de la Figure 2.3). Similairement, un 

(π1(x2,y2), π2(x2,y2))  y2  

[1, 0] 

(π1(x1,y1), π2(x1,y1))  
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modèle oligopole à n joueurs peut être défini comme un jeu à information parfaite dans lequel les joueurs 

choisissent leurs stratégies successivement dans un ordre prédéterminé. Par la suite, nous nous 

concentrons sur les jeux en deux étapes successives, appelé aussi jeu de Stackelberg. 

L’équilibre de Stackelberg est l’aboutissement rationnel d’un jeu de Stackelberg. L’équilibre de 

Stackelberg est obtenu par induction à rebours, en déterminant d’abord la courbe de réaction du suiveur : 

),( maxarg)( 2121
*
2 22

xxxx Xx π∈= . Dans le cas d’information complète, le meneur prédit correctement la 

courbe de réaction du suiveur et il tient compte du comportement du suiveur en intégrant la courbe de 

réaction de celui-ci à sa propre fonction de paiement : ))(,( 1
*
211 xxxπ . Dans la première étape du jeu, le 

meneur opte pour une stratégie *
1x  qui maximise sa fonction de paiement ))(,( 1

*
211 xxxπ . Dans la 

deuxième étape du jeu, en observant la stratégie adoptée par le meneur, le suiveur opte alors pour une 

stratégie *
2x  qui maximise ),( 2

*
12 xxπ . Selon ces réflexions, l’équilibre de Stackelberg  peut être exprimé 

par les relations (Cachon et Netessine, 2004) : 

)(et        ))(,( maxarg *
1

*
2

*
21

*
211

*
1 11

xxxxxxx Sx ∈∈ ∈ π                      (2.3) 

Le jeu de Stackelberg définit une relation de force non équitable en faveur du meneur car le meneur peut 

imposer l’équilibre qui lui convient en agissant en premier. Le gain du meneur à l’équilibre de 

Stackelberg est au moins aussi élevé que son gain à l’équilibre de Nash. Dans le pire des cas, le meneur 

opte pour un équilibre de Nash. Par conséquent, dans le cas d’information complète, un joueur préfère 

toujours de mener un jeu de Stackelberg que de participer à un jeu statique. La préférence du suiveur 

entre un jeu de Stackelberg et un jeu statique dépend de la structure spécifique du problème analysé. 

Considérons le jeu statique (a.1) de la Figure 2.5. Il existe deux équilibres de Nash dans ce jeu, qui sont    

(x1, y1) et (x2, y2). L’équilibre (x1, y1) favorise le joueur 2 et l’équilibre (x2, y2) favorise le joueur 1. 

Supposons maintenant que le joueur 1 est le meneur dans ce jeu (voir le jeu (a.2) dans la Figure 2.5). Le 

joueur 1 optera forcement pour x2 en sachant que le suiveur choisira y2 en observant son choix. 

L’équilibre de Stackelberg correspondant est alors (x2, y2). Étant le meneur, le joueur 1 impose l’équilibre 

qui lui convient. 
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Figure 2.5. Exemples des jeux à deux joueurs 

Dans certaines situations, un joueur peut préférer être le suiveur qu’être le meneur dans un jeu de 

Stackelberg. Par exemple, le jeu statique (b) de la Figure 2.5 ne possède pas un équilibre de Nash. Si le 

joueur 1 est le meneur dans ce jeu, il impose l’équilibre (x1, y2). Si le joueur 2 est le meneur, l’équilibre de 

Stackelberg résultant est (x2, y2). Par conséquent, le joueur 2 préfère être le meneur mais le joueur 1 

préfère être le suiveur.  

L’existence d’un équilibre de Stackelberg est facile à montrer si les fonctions de paiement des acteurs 

sont continues. Néanmoins, démontrer l’unicité de l’équilibre peut être beaucoup plus difficile. Si la 

fonction de paiement du suiveur, ),( 212 xxπ , est strictement quasi-concave en x2 et la fonction de 

paiement du meneur, ))(,( 1
*
211 xxxπ , est strictement quasi-concave en x1, alors l’équilibre de Stackelberg 

unique ) ,( *
2

*
1 xx  s’écrit de la manière suivante : 

)(et        ))(,( maxarg *
1

*
2

*
21

*
211

*
1 11

xxxxxxx Sx == ∈ π                      (2.4) 

Les jeux en deux étapes successives sont bien indiqués pour modéliser les interactions entre les 

entreprises dans le cas où une entreprise est dominante. La situation de dominance est très fréquente dans 

les chaînes logistiques, par exemple pour un donneur d’ordre face à ses fournisseurs. Nous utilisons le 

concept de l’équilibre de Stackelberg dans le chapitre 4.  

Parmi les travaux qui se sont intéressés aux jeux de Stackelberg, Lariviere et Porteus (2001) étudient une 

chaîne logistique à deux niveaux où le fournisseur (le meneur) décide de son prix de vente et le détaillant 
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(le suiveur), confronté à une demande aléatoire, détermine la quantité à commander qui maximise son 

espérance de profit. Le problème du détaillant a la même structure qu’un modèle de marchand de 

journaux. Le détaillant accepte un contrat (un prix de vente) proposé par le fournisseur si ce contrat lui 

permet d’obtenir au moins une espérance de profit nulle. Les fonctions de paiement du fournisseur, sπ , et 

du détaillant, rπ , s’écrivent comme suit : 

qcwqws )(),( −=π                 (2.5) 

wqqDpqwr −= )],[min(),(π                      (2.6) 

où p est le prix de vente du détaillant, w est le prix de vente du fournisseur, c est le coût unitaire de 

production et D est la variable aléatoire représentant la demande. L’espérance de profit total du système 

centralisé est cqqDpq −= )],[min()(0π . Puisque le fournisseur observe la meilleure réponse du 

détaillant, notée )(* wq , la fonction de paiement du fournisseur peut être réécrite comme 

)()())(,( ** wqcwwqws −=π  ou, de façon équivalente, comme qcqwqqws ))(()),(( ** −=π  où 

)()( 1 wqqw −= . Donc, le fournisseur détermine la quantité de commande qui maximise ses profits et 

propose un prix de vente qui induit la quantité qu’il a choisi. Dans ce problème, l’équilibre de Stackelberg 

ne correspond pas à la solution optimale du système centralisé. Le prix de vente fixé par le fournisseur est 

toujours supérieur à son coût unitaire de production et la quantité de commande du détaillant est toujours 

inférieure à la quantité de commande optimale du système centralisé. Ce phénomène est connu dans la 

littérature sous le nom de marginalisation double. Dans la présentation classique de ce phénomène, le 

fournisseur décide de son prix de vente w et le détaillant fixe un prix p pour les produits qu’il vend sur le 

marché. Le demande du marché, notée q(p), est déterministe et décroissante en p. Dans ce cas, le 

fournisseur fixe un prix supérieur à son coût unitaire de production et le détaillant fixe un prix qui est 

supérieur au prix de vente optimal du système centralisé. Quand le prix de marché est exogène et la 

demande est aléatoire, le phénomène de marginalisation double apparait sous la forme d’un niveau de 

stock insuffisant.  

Les contrats de prix de vente sont souvent utilisés en pratique. La facilité d’application de ces contrats est 

leur point fort. Un contrat qui est difficile à appliquer peut engendrer des coûts administratifs trop élevés. 

Dans ces types de cas, les entreprises préfèrent souvent un contrat simple même s’il ne coordonne pas la 

chaîne logistique. Lariviere et Porteus (2001) analysent les effets de la variabilité de la demande sur les 

performances du système décentralisé. Ils montrent que, quand la demande est moins variable, la quantité 

de commande est moins sensible au prix de vente et donc le fournisseur fixe un prix plus élevé. Le gain 

du fournisseur augmente tandis que le gain du détaillant diminue et le gain total du système décentralisé 

est plus élevé. Dong et Rudi (2004) analysent un système similaire avec n détaillants. Les détaillants 
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peuvent livrer les produits entre eux dans le but de compenser la demande non satisfaite d’un détaillant 

par le stock d’invendus d’un autre. Dans ce jeu de Stackelberg entre le fournisseur et les détaillants, le 

fournisseur obtient, en général, le bénéfice de la livraison inter-détaillants en imposant un prix de vente 

plus élève.  

Le phénomène de marginalisation peut être évité en utilisant des contrats plus complexes, par exemple, un 

contrat de partage des revenues qui impose que le détaillant partage ses revenues provenant des ventes 

réalisées avec le fournisseur en plus le prix qu’il paie pour chaque produit qu’il achète (Cachon, 2003). 

Lariviere (1999), Tsay et al. (1999), Cachon (1999a), Cachon (2003) et Cachon (2004) analysent 

différents types de contrat qui coordonnent ce système décentralisé, c’est-à-dire qui permettent de 

ramener la quantité de commande du détaillant vers la quantité optimale de commande du système 

centralisé. 

Corbett et Tang (1999) analysent le phénomène de marginalisation double avec une demande 

déterministe. Le fournisseur (le meneur) offre un contrat à son détaillant (le suiveur) et le détaillant décide 

de son prix de vente, noté p. La demande finale dépend du prix de vente annoncé : q(p) = a – bp où a ≥ 0 

et b ≥ 0 sont des paramètres connus. En d’autres termes, le détaillant détermine la quantité de commande 

q et le prix de marché est réalisé comme p(q). Les auteurs analysent deux types de contrat : un contrat de 

prix de vente (w) et un contrat (w, L) constitué d’un paiement de transfert fixe L et d’un prix de vente w. 

En utilisant un contrat (w, L), le problème d’optimisation du fournisseur s’écrit comme suit : 

LqswqLwsLw
−−= **

,
)(),,(maxπ              (2.7) 

sous les contraintes 

LqcwqpqLwq r
q

+−−== ))((),,(maxarg* π             (2.8) 

min*),,( rr qLw ππ ≥                            (2.9) 

où s est le coût unitaire de production chez le fournisseur et c est le coût unitaire de production chez le 

détaillant. La contrainte de compatibilité d’incitation (2.8) définit la courbe de réaction du détaillant 

comme la stratégie maximisant sa fonction de paiement. La contrainte de rationalité individuelle (2.9) 

définit une borne inférieure pour le profit maximal du détaillant, car le détaillant accepte un contrat 

seulement si ce contrat lui permet d’obtenir un profit supérieur ou égal à son profit de réservation 

0min >rπ . Le profit de réservation du détaillant exprime son opportunité dans le marché, c’est-à-dire le 

profit minimal qu’il peut obtenir en travaillant avec un autre fournisseur. Selon une hypothèse classique, 

le profit de réservation d’une entreprise est supposé nul si le marché est parfaitement compétitif (voir par 
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exemple Lariviere et Porteus (2001)). Dans le problème étudié, si le fournisseur propose un contrat de 

prix de vente (w), alors on rencontre le phénomène de marginalisation double. Le fournisseur obtient un 

tiers du profit total du système décentralisé. Les auteurs montrent que, en appliquant un contrat (w, L), le 

fournisseur utilise le paiement fixe afin de laisser le détaillant avec son profit de réservation : 
min** ),,( rr qLw ππ =  pour w ∀  en fixant **min* ))(( qcwqpL r −−−= π . Si 0* <L , alors c’est le détaillant 

qui paie des frais de franchise à son fournisseur. Le prix de vente qui maximise le profit du fournisseur est 

sw =* . Avec le contrat ),( ** Lw , le fournisseur obtient le profit optimal du système centralisé moins le 

profit de réservation du fournisseur. Le contrat ),( ** Lw  coordonne alors cette chaîne logistique à deux 

niveaux.  

Wang et Gerchak (2003) analysent un système d’assemblage confronté à une demande aléatoire. Dans le 

premier jeu analysé, l’assembleur (le meneur) décide un prix d’achat pour chaque composant et les 

fournisseurs (les suiveurs) décident leurs capacités de production. Dans le deuxième cas, les fournisseurs 

(les meneurs) décident leurs prix de vente et l’assembleur (le suiveur) décide sa capacité de production. 

Caldentey et Wein (2003) étudient un système de production/stockage avec un fournisseur qui décide de 

sa capacité de production et un détaillant qui décide de son niveau de stock nominal. Ils déterminent 

l’équilibre de Stackelberg en considérant d’abord le fournisseur comme le meneur et ensuite le détaillant 

comme le meneur. Cachon et Zipkin (1999) analysent un système dans lequel chaque acteur décide de son 

niveau de stock nominal. Ils étudient deux jeux de Stackelberg (1) avec le fournisseur comme meneur et 

(2) avec le détaillant comme meneur. 

2.4.2. Jeux répétés 

Un jeu répété se déroule en plusieurs périodes et, à chaque période, les joueurs jouent le même jeu. 

Autrement dit, l’ensemble de stratégies disponibles et la fonction de paiement de chaque joueur ainsi que 

les règles de jeu sont les mêmes pour chaque période. Dans un jeu répété, la fonction de paiement d’un 

joueur à une période donnée dépend des stratégies adoptées dans la période en question mais ne dépend 

pas des stratégies adoptées dans les périodes précédentes. Cette indépendance en temps est la raison pour 

laquelle les jeux répétés n’ont pas trouvé beaucoup d’applications dans le cadre de chaînes logistiques.  

Notons que l’indépendance en temps n’implique pas que les joueurs ne prennent pas en compte les 

stratégies adoptées dans les périodes précédentes. En effet, un jeu répété peut avoir plusieurs équilibres et 

opter pour le même équilibre de Nash à chaque période et seulement l’un d’eux. Puisque dans un jeu 

répété les joueurs peuvent observer les aboutissements des jeux précédents, ils peuvent employer des 

stratégies de menace : un joueur choisi la même stratégie tant que son rival ne change pas sa stratégie et il 

change sa stratégie au moment où son rival change sa stratégie. Cette menace de choisir une autre 

stratégie  relève d’un désir de coopération plutôt que d’une démarche conflictuelle et peut même induire 
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le meilleur aboutissement possible. Dans ce cadre, Debo et Sun (2005) analysent le modèle de Lariviere 

et Porteus (2001) dans un environnement répétitif et montrent que les performances optimales peuvent 

être obtenues avec un contrat de prix de vente si les facteurs d’actualisation des acteurs sont suffisamment 

élevés.  

2.4.3. Jeux stochastiques 

La dépendance en temps est une propriété qu’on retrouve souvent dans les chaînes logistiques par 

exemple avec les cumuls des stocks et des ruptures d’une période à l’autre. Un jeu stochastique est un 

type de jeu multi-périodes avec la dépendance en temps : la fonction de paiement d’un joueur à une 

période donnée dépend des stratégies adoptées dans la période en question ainsi que des stratégies 

adoptées dans les périodes précédentes. 

La structure d’un jeu stochastique est essentiellement une combinaison d’un jeu statique avec un 

processus de décision Markovien : à chaque période, en plus des ensembles de stratégies et des fonctions 

de paiement, s’ajoute un mécanisme de transition },/'Pr{ xss , la probabilité de passer de l’état s à l’état s’ 

en appliquant l’action x. La détermination des probabilités de transition repose typiquement sur le 

processus de la demande moyennant des hypothèses telles que des demandes indépendantes et 

identiquement distribuées. Sous ces hypothèses et s’il y un seul décideur, on aboutit à une solution 

stationnaire telle qu’une politique d’approvisionnement et de stockage (S – 1, S),  (R, Q), etc. Néanmoins, 

dans le contexte d’un jeu stochastique, des équilibres non-stationnaires peuvent exister. Une approche 

standard est de supposer que la solution finale interdit de tels équilibres. Sous l’hypothèse que l’équilibre 

est stationnaire, on passe à un système équivalent de jeu statique et l’équilibre du jeu stochastique est 

obtenu comme une séquence d’équilibre de Nash. En adoptant cette approche, Cachon et Zipkin (1999) 

analysent une chaîne logistique à deux niveaux dans laquelle le fournisseur et le détaillant déterminent 

leurs niveaux de stock nominaux simultanément à chaque période sur un nombre infini de périodes. 

Netessine et al. (2006) analysent la compétition sur la disponibilité de produit entre deux détaillants. Les 

détaillants déterminent leurs niveaux de stock nominaux à chaque période. Bernstein et Federgruen 

(2004) étudient la compétition entre n détaillants quand la demande aléatoire d’un détaillant dépend de 

son prix de vente et de son niveau de service. Chaque détaillant décide de son prix de vente, de son 

niveau de service et de son niveau de stock nominal.  

Van Mieghem (1999) analyse un jeu stochastique à deux périodes. Un producteur et un sous-traitant ayant 

accès à différents marchés déterminent leurs capacités de production dans la première période. Les 

demandes aléatoires des marchés sont ensuite réalisées. Dans la deuxième période, les acteurs 

déterminent leurs quantités de production et de vente avec l’option de sous-traitance. Les auteurs 

déterminent d’abord l’équilibre du sous-jeu de production et de sous-traitance et montrent ensuite qu’un 

équilibre parfait en sous-jeu existe. En utilisant une approche similaire, Van Mieghem et Dada (1999) 
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analysent la compétition entre n détaillants. Les détaillants déterminent leurs capacités de production 

simultanément dans la première période et leurs quantités de production sous les contraintes de capacités 

dans la deuxième période. Le prix de vente, noté Qp −= ε  où ε  est une variable aléatoire, est ensuite 

réalisé comme une fonction de la quantité totale de production Q. Les auteurs montrent que le jeu étudié 

possède un équilibre parfait en sous-jeu. 

2.5. JEUX AVEC INFORMATION ASYMÉTRIQUE 

Dans les travaux précédents, les stratégies des différents acteurs ainsi que leurs fonctions d’utilité sont 

supposées connues de tous les joueurs. Cependant dans les chaînes logistiques, il est fréquent de trouver 

des entreprises bénéficiant d’une meilleure prévision que d’autres ou d’une connaissance supérieure des 

fonctions de paiement de leurs partenaires. La théorie des jeux traite ce type de situations dans le cadre 

des jeux à information asymétrique. Nous pouvons classifier les jeux à information asymétrique étudiés 

dans la littérature en trois catégories : les jeux en deux étapes où le suiveur manque d’information, les 

jeux en deux étapes où le meneur manque d’information et les jeux statiques à information asymétrique.  

Dans la première catégorie, Cachon et Lariviere (2001) s’intéressent à un modèle dans lequel le détaillant 

(le meneur), qui fait face à une demande aléatoire, propose un contrat à son fournisseur. Le contrat 

proposé par le détaillant est constitué du nombre d’engagements (la quantité minimale de commande), 

noté m, du nombre d’options, notée o (où m + o détermine la quantité maximale de commande), et des 

paiements correspondants : le détaillant paie le prix wm pour chaque unité d’engagement, le prix wo pour 

chaque unité d’option et le prix d’achat we pour chaque unité réellement livrée par le fournisseur. Les 

paramètres du contrat, notamment m, o, wm, wo et we, traduisent les stratégies du détaillant. Ici, le 

paiement correspondant aux engagements et aux options, wm m + wo o, peut être interprété comme un 

paiement fixe de la part du détaillant. Si le fournisseur accepte ce contrat, il décide de la capacité de 

production qu’il va mettre en œuvre. Après la réalisation de la demande, le détaillant passe sa commande 

dont la quantité doit être entre les quantités minimale et maximale déclarées. Les auteurs montrent qu’il 

n’est jamais profitable de déclarer une quantité minimale de commande. Dans le cas d’information 

complète, si le fournisseur est obligé de choisir une capacité de production égale à la quantité maximale 

de commande, alors le détaillant propose un contrat ayant les paramètres o, wo et we. Le détaillant gagne 

le profit total du système centralisé en laissant le fournisseur avec un profit nul. Si le fournisseur est libre 

de choisir une capacité de production inférieure à la quantité maximale de commande, alors le détaillant 

offre un contrat ayant le prix d’achat we comme seul paramètre. Dans ce cas, l’équilibre du système 

décentralisé ne correspond pas à la solution optimale du système centralisé.  

Dans le cas d’information asymétrique, Cachon et Lariviere (2001) définissent la demande du détaillant 

comme XD  θθ =  où X est une variable aléatoire avec la distribution de probabilité f(x) et θ est un 

paramètre ayant deux valeurs possibles : H (demande élevée) et L (demande faible). Le détaillant connait 
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la valeur du paramètre θ et la distribution de probabilité f(x) mais le fournisseur connait seulement la 

distribution de probabilité f(x). Le paramètre θ représente le type du détaillant. Avant d’observer le 

contrat proposé par le détaillant, le fournisseur attribue la probabilité ρ que la valeur exacte du paramètre 

θ soit H et la probabilité 1 – ρ que la valeur exacte du paramètre θ soit L. Le fournisseur sait qu’un 

détaillant du type L a tendance à transmettre des prévisions fausses pour obtenir une capacité de 

production plus élevée. Les auteurs se focalisent sur les équilibres distinguant un détaillant du type H 

d’un détaillant du type L. Autrement dit, dans les équilibres considérés, un détaillant du type H offre 

seulement un contrat du type H tandis qu’un détaillant du type L offre seulement un contrat du type L. Par 

conséquent, en observant le type du contrat offert, le fournisseur apprend la valeur réelle du paramètre θ 

et actualise la probabilité ρ soit à 1 soit à 0. Les auteurs montrent que, dans le cas où le fournisseur est 

obligé de choisir une capacité de production égale à la quantité maximale de commande, un détaillant du 

type H peut signaler son type au détaillant sans frais à travers le contrat qu’il propose. Par contre, quand 

le fournisseur est libre de choisir une capacité de production inférieure à la quantité maximale de 

commande, le fournisseur est obligé de payer des frais supplémentaire, par exemple en offrant un prix 

d’achat unitaire plus élève ou un paiement de transfert fixe additionnel en comparaison avec le cas 

d’information complète, afin de pouvoir signaler son type à son fournisseur. Une autre solution est de 

déclarer une quantité minimale de commande qui induit des frais supplémentaire seulement si la demande 

réalisée est inférieure à la quantité déclarée.  

Dans la deuxième catégorie, Corbett et Tang (1999) généralisent le problème (2.7) – (2.9) en supposant 

que le coût unitaire de production chez le détaillant est une variable aléatoire pour le fournisseur. Le 

fournisseur (le meneur) ne connait pas le coût unitaire de production actuel chez le détaillant (le suiveur), 

mais possède une distribution de probabilité à priori )(xf  définie sur l’intervalle ],[ maxmin cc . Les auteurs 

étudient l’application des contrats (w), (w, L) et (w(q), L(q)). En appliquant le contrat (w(q), L(q)), le prix 

de vente et le paiement de transfert fixe dépendent de la quantité de commande optée par le détaillant. La 

quantité de commande optimale du détaillant, notée q(c), dépend de son coût de production. Donc, le 

fournisseur peut reformuler ce contrat comme (w(c), L(c)). En effet, puisque le fournisseur ne connait pas 

le coût de production réel, il offre un menu de contrats )}(),(),({ xqxLxw , appelé aussi contrat de 

mécanisme. En choisissant un contrat ))(),(( xLxw , le détaillant annonce un coût de production x et fixe 

sa quantité de commande à )(xq . Par contre, le détaillant peut avoir intérêt à annoncer un coût de 

production faux : cx ≠ . Selon le principe de révélation, il existe un contrat de mécanisme avec lequel le 

détaillant révèle son vrai coût : cx = . En d’autres termes, le fournisseur, étant le meneur, peut concevoir 

un contrat de mécanisme avec lequel la révélation de son vrai type est l’option la plus profitable pour le 

détaillant. Pour ce cas, le problème d’optimisation du fournisseur s’écrit comme suit :  

dxxfxLxqsxw
c

cLw
)())()())(((max

max

min
(.)(.),

−−∫           (2.10) 
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sous les contraintes 

)())()(()),(),((maxarg)( xLqcxwqpqxLxwxq r
q

+−−== π         (2.11) 

],[           )()())())((())(),(),((maxarg maxmin cccxLxqcxwxqpxqxLxwc r
x

∈∀+−−== π                 (2.12) 

],[            ))(),(),(( maxmin
min ccccqcLcw rr ∈∀≥ ππ          (2.13) 

La contrainte (2.12) indique que le contrat de mécanisme )}(),(),({ xqxLxw  force le détaillant à déclarer 

son vrai type. Les auteurs déterminent les valeurs optimales du contrat de mécanisme )}(),(),({ xqxLxw . 

Contrairement à la première catégorie, la révélation d’information ne peut jamais être obtenue sans frais 

quand le meneur manque d’information (Cachon et Netessine, 2004). Le fournisseur est toujours obligé 

de verser un paiement supplémentaire, appelé rente d’information, à son détaillant afin de pouvoir 

apprendre son vrai type.  

Il existe plusieurs travaux utilisant le principe de révélation. Corbett et al. (2004) généralisent le modèle 

étudié par Corbett et Tang (1999) en considérant que le fournisseur aussi a un profit de réservation positif. 

Corbett et de Groote (2000) analysent une chaîne logistique à deux niveaux avec une demande finale 

déterministe et un coût de commande fixe à chaque niveau. Le fournisseur (le meneur) ne connaît pas le 

coût unitaire de stockage réel de son détaillant, noté h, et propose un menu de contrats )}(),({ xqxP  où 

)(xP  est le paiement de transfert, )(xq  est la quantité de commande du détaillant et x est la variable 

aléatoire représentant le coût unitaire de stockage du détaillant. Cachon et Zhang (2006) étudient un 

système de production/stockage avec un fournisseur (le suiveur) qui décide de son taux moyen de 

production, supposé exponentiel, noté μ, et un détaillant (le meneur) qui décide de son niveau de stock 

nominal. Le coût encouru par le fournisseur est « bμ ». Le détaillant ne connaît pas le coût de capacité b et 

propose un menu de contrat )}(),({ xxR μ  à son fournisseur, où )(xR est le prix d’achat unitaire. 

Dans la troisième catégorie, Cachon et Lariviere (1999) analysent une chaîne logistique à deux niveaux 

constituée d’un fournisseur et de n détaillants. Dans la première période du jeu, le fournisseur décide de 

sa capacité de production et annonce ainsi un mécanisme d’allocation de capacité. Dans la deuxième 

période, en connaissant les stratégies adoptées par le fournisseur, chaque détaillant observe sa demande et 

détermine sa quantité de commande. Si la somme des quantités de commande dépasse la capacité 

installée chez le fournisseur, le fournisseur utilise le mécanisme d’allocation annoncé afin d’allouer la 

capacité disponible entre les détaillants. Le jeu de la deuxième période est un jeu statique à information 

asymétrique : les détaillants prennent leurs décisions simultanément et chaque détaillant observe 

seulement sa propre demande. Soit ii Θ∈θ  le type (la demande) du détaillant i où iΘ  est l’ensemble de 
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types disponibles du détaillant i et )( 1−ii θμ  la distribution de probabilité cumulative de la variable 

aléatoire 1−iθ  étant donné le type du détaillant i. La distribution de probabilité )( 1−ii θμ  est connue de tous 

les joueurs. Dans ce jeu statique à information asymétrique, chaque détaillant i maximise 

)())(),(())(),(( 11 1 −−−ΘΠ−− ∫
≠

=Ζ iiiiiiiiiiii dxxxx
jij

θμθθπθθ . Un profil de stratégie 

))(),...,(),(( *
2

*
21

*
1 nnxxx θθθ  est un équilibre de Nash Bayesian si ))(,())(),(( ***

iiiiiiiii xxZxxZ −−−− ≥ θθθ  pour 

,...,niXx iii 1et   )( =∈∀ θ . Les auteurs montrent qu’il existe un équilibre de Nash Bayesian dans ce jeu. 

Le fournisseur peut concevoir un mécanisme d’allocation de capacité avec lequel chaque détaillant 

commande exactement ce dont il a besoin. Par contre, la chaîne logistique est, en général, plus 

performante avec un mécanisme qui laisse les détaillants gonfler leurs quantités de commande.  

2.6. JEUX COOPÉRATIFS 

La théorie des jeux coopératifs se focalise sur la valeur créée par les joueurs et la façon que les joueurs 

décident pour partager cette valeur. Dans un jeu coopératif, aucun joueur ne possède de pouvoir à priori et 

tous les joueurs sont considérés comme des négociateurs actifs. Cette théorie nous permet de modéliser 

les résultats des processus de négociation complexes et de répondre les questions plus générales comme 

« Quelle est la pouvoir d’un acteur face à la compétition ? » (Brandenburge et Stuart, 2007). Dans la 

littérature sur la gestion de chaînes logistiques, les travaux traitant les jeux coopératifs sont très rares mais 

notons que c’est un domaine de recherche qui devient plus en plus populaire.  

La littérature sur la gestion de chaînes logistiques utilise seulement les concepts liées aux jeux coopératifs 

à utilité transférable, appelés aussi jeux de coalition à utilité transférable ou jeux sous forme 

caractéristique. Selon l’hypothèse d’utilité transférable, les joueurs peuvent librement partager une 

commodité (un montant d’argent) entre eux à travers des paiements de transfert. Un jeu sous forme 

caractéristique est un tuple >< vN ,  où N est l’ensemble de joueurs avec nNcard =)(  et RNPv →)(:  

est la fonction caractéristique. Les joueurs sont libres de former des coalitions qui sont bénéfiques pour 

eux. Ici, )(NP  représente l’ensemble de coalitions où chaque coalition )(NPS ∈  est un sous-ensemble 

non-vide de joueurs : }0et  | {)( /≠⊆= SNSSNP . La coalition S = N formée par tous les joueurs dans le 

jeu est appelée grande coalition. Pour chaque coalition )(NPS ∈ , la fonction caractéristique )(Sv  

spécifie la valeur maximale que les membres de la coalition S peuvent créer en utilisant les ressources de 

tous les joueurs dans cette coalition. Les joueurs peuvent partager la valeur maximale de la coalition 

qu’ils forment sans restriction. La théorie des jeux coopératifs se focalise sur les actions jointes des 

joueurs formant une coalition. L’ensemble d’actions jointes d’une coalition S est constitué de toutes les 

divisions possibles de la valeur )(Sv  entre les membres de cette coalition. Le résultat d’un jeu sous forme 

caractéristique est alors la spécification da la coalition formée et l’action jointe de cette coalition.  
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Pour un jeu sous forme caractéristique >< vN , , une allocation d’utilité est un vecteur 

),...,,()( 21 nNii ππππ =∈  qui spécifie comment la valeur maximale d’une coalition est partagée entre les 

joueurs. Ici, la composante iπ  représente l’utilité du joueur i = 1,…,n. Une allocation d’utilité Nii ∈)(π  est 

amissible pour une coalition S si )(SvSi i ≤∑∈ π , c’est-à-dire si les joueurs formant la coalition S peuvent 

obtenir les allocations précisées par Nii ∈)(π  en partageant )(Sv  entre eux. Une allocation d’utilité 

Nii ∈)(π  est dite efficace si )(NvNi i =∑∈ π . Une coalition S est améliorante par rapport à une allocation 

d’utilité Nii ∈)(π  si ∑∈> Si iSv π)( . Si une coalition S est améliorante par rapport à Nii ∈)(π , alors il existe 

une allocation d’utilité Ni∈)(ϕ  admissible pour la coalition S telle que ii πϕ >  pour Si ∈∀ .  

Le concept de résolution le plus souvent utilisé dans la théorie des jeux coopératifs est le cœur du jeu. 

Une allocation d’utilité Nii ∈)(π  est dans le cœur d’un jeu sous forme caractéristique >< vN ,  si Nii ∈)(π  

est une allocation d’utilité efficace et s’il n’y a aucune coalition améliorante par rapport à Nii ∈)(π . 

Autrement dit, une allocation d’utilité Nii ∈)(π  est dans le cœur si  

)(NvNi i =∑∈ π ,              (2.14) 

)(SvSi i ≥∑∈ π     NS ⊆∀ .                         (2.15) 

La condition (2.14) (condition d’efficacité) assure que la valeur maximale de la coalition est distribuée 

entre les joueurs. La condition (2.15) (condition de participation) indique qu’il n’y a pas de coalition S et 

d’allocation d’utilité Nii ∈)(ϕ  admissible pour la coalition S telle que ii πϕ >  Si ∈∀ . Une allocation 

d’utilité dans le cœur est individuellement rationnelle pour chaque joueur Ni∈ :  })  ({})  ({ ivixi ≥=π . 

En outre, une allocation d’utilité dans le cœur satisfait le principe de contribution marginal pour chaque 

joueur Ni∈ : })  {\()( iNvNvi −≤π .  

Le cœur d’un jeu sous forme caractéristique contient toutes les allocations d’utilité satisfaisant les 

conditions (2.14) et (2.15). Si le cœur est un singleton, aucun joueur n’aura intérêt à dévier 

unilatéralement de la grande coalition et les joueurs opteront pour l’allocation d’utilité qui constitue le 

cœur. Par contre, le cœur peut être vide ou trop large. Dans le cas où le cœur est vide, il devient difficile 

de prédire les coalitions qui seront formées et les allocations d’utilités qui seront adoptées par les joueurs. 

Quand le cœur n’est pas vide mais trop large, le gain de chaque joueur reste indéterminé et dépend encore 

des règles du processus de négociation résiduel et des pouvoirs de négociation des joueurs.  

En termes d’applications spécifiques dans la littérature sur la gestion de chaînes logistiques, Hartman et 

al. (2000) analysent une chaîne logistique constituée de n détaillants où chaque détaillant est face à une 

demande aléatoire. Le problème d’optimisation de chaque détaillant a la même forme qu’un modèle de 
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marchand de journaux. Les auteurs étudient un jeu de centralisation de stocks dans lequel les détaillants 

ont l’option de centraliser leurs stocks et peuvent partager les bénéfices résultant de cette mise en 

commun de stocks (inventory pooling). Les auteurs montrent que le cœur de ce jeu sous forme 

caractéristique n’est pas vide sous certaines conditions sur les distributions de probabilité des demandes. 

Muller et al. (2002) relâchent ces restrictions et montrent que le cœur n’est jamais vide indépendamment 

des distributions de probabilité des demandes. Hartman et Dror (2003) analysent un problème similaire 

dans le but de déterminer les corrélations entre les demandes des détaillants qui maximisent les bénéfices 

obtenus en centralisent les stocks. Hartmant et Dror (2005) généralisent le modèle de centralisation de 

stocks en considérant n détaillants non identiques en termes de coût de stockage et de rupture et étudient 

ainsi le cas où l’allocation des bénéfices résultant de la mise en commun de stocks est faite après que les 

demandes soient réalisées chez les détaillants.  

Dans les cas où le cœur d’un jeu sous forme caractéristique est vide ou trop large, l’utilisation de ce 

concept de résolution comme théorie prédictive devient énigmatique. Il existe plusieurs concepts de 

résolution autres que le cœur utilisés dans la théorie des jeux coopératifs : l’ensemble stable, l’ensemble 

de négociation, le nucleus, le kernel et la valeur de Shapley (détaillés dans Osborne et Rubinstein (1994) 

et Myerson (1991)). La valeur de Shapley est un concept de résolution qui attribue une allocation unique 

à chaque joueur et par conséquent qui aboutit à un résultat unique. Par contre, la valeur de Shapley ainsi 

que les autres concepts de résolution n’ont pas trouvé d’application dans la littérature sur la gestion de 

chaînes logistiques.  

Dans la théorie des jeux coopératifs, les actions spécifiques des acteurs individuels ne sont pas spécifiées. 

Réciproquement, la théorie des jeux non-coopératifs se focalise sur les actions spécifiques des acteurs 

individuels. Plus récemment, une forme hybride de jeu qui mélange les aspects des jeux non-coopératifs 

et des jeux coopératifs a été proposée sous le nom de jeu biforme (Brandenburge et Stuart, 2007). Un jeu 

biforme peut être interprété comme un jeu non-coopératif ayant comme résultats des jeux coopératifs. 

Dans un jeu biforme, chaque joueur Ni ∈  possède un ensemble de stratégies disponibles, noté Xi. Le jeu 

se déroule en deux étapes. Dans la première étape, les joueurs choisissent leur stratégie d’une manière 

non-coopérative. Un profil de stratégie ),...,,( 21 nxxxx =  opté par les joueurs dans la première étape 

détermine la fonction caractéristique RNPxv →)(:)(  du jeu coopératif de la deuxième étape. Puisque le 

cœur de ce jeu coopératif est rarement un singleton, on attribue, en général, un index de confiance iα  

pour chaque joueur Ni∈ . Soit min
iπ  l’utilité minimale et max

iπ  l’utilité maximale du joueur i dans le 

cœur. Si le cœur n’est pas vide, le joueur i espère gagner minmax )1( iiii παπα −+  dans le jeu coopératif de 

la deuxième étape. En attribuant une allocation spécifique à chaque joueur, le jeu de la première étape 

peut être analysé comme un jeu non-coopératif classique, par exemple comme un jeu statique. Nous 

citons Brandenburge et Stuart (2007) pour plus de détails sur les jeux biformes.  
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En comparaison avec les jeux coopératifs, les jeux biformes sont beaucoup plus traités dans la littérature 

sur la gestion de chaînes logistiques. Anupindi et al. (2001) analysent un système constitué de n 

détaillants. Les détaillants possèdent des installations de stock locales ainsi que des entrepôts centralisés. 

Dans la première étape du jeu (étape non-coopérative), chaque détaillant détermine son niveau de stock 

local et réserve un niveau de stock dans chaque entrepôt centralisé. Dans la deuxième étape du jeu (étape 

coopérative), après les réalisations des demandes, les détaillants peuvent former des coalitions et livrer les 

produits entre les différentes installations de stock appartenant à cette coalition dans le but de compenser 

la demande non satisfaite d’un détaillant par le stock invendu d’un autre. Les auteurs montrent qu’en 

général, le cœur de ce jeu biforme n’est pas vide et déterminent une allocation d’utilité qui est dans le 

cœur. Plambeck et Taylor (2005) analysent un modèle constitué de deux détaillants. Dans la première 

étape, chaque détaillant détermine sa capacité de production et son investissement sur l’innovation qui 

influence sa demande potentielle. Dans la deuxième étape, après les réalisations des demandes, les 

détaillants négocient sur l’allocation de la capacité totale du système. Chatain et Zemsky (2007) analysent 

les relations entre les entreprises qui veulent externaliser la gestion de certaines de leurs fonctions et les 

fournisseurs qui sont les prestataires potentiels. Dans la première étape du jeu biforme, les fournisseurs 

décident de rentrer ou non dans le marché. La deuxième étape est constituée des négociations entre les 

fournisseurs et les entreprises dans le marché. Wong et al. (2007) utilisent un jeu biforme dans le contexte 

de la mise en commun de pièces de rechange. Les entreprises possèdent des stocks des pièces de rechange 

utilisées dans le cas d’une panne dans le système de production. Dans la première étape du jeu, chaque 

entreprise décide de son niveau de stock nominal pour le stock local des pièces de rechange. Dans la 

deuxième étape, les entreprises ont l’option de livrer les pièces de rechange entre elles et négocient donc 

sur l’allocation des coûts résultants.  

2.7. CONCLUSIONS 

La gestion de chaînes logistiques est encore un vaste domaine de recherche, et les concepts de la théorie 

des jeux peuvent apporter des éléments importants pour répondre à ses diverses interrogations. Au long 

de ce chapitre, nous avons présenté quelques concepts de cette théorie et ses interactions avec la gestion 

de chaînes logistiques. Nous avons cité divers travaux réalisés en les classifiant par type de jeu étudié : 

jeux statiques, jeux de Stackelberg, jeux répétés, jeux stochastiques, jeux de signalisation, jeux de 

mécanisme, jeux statiques à information asymétrique, jeux coopératifs. 

Un des problèmes qu’on peut rencontre dans les chaînes logistiques décentralisées est que la gestion 

compétitive des stocks dans les systèmes de stockage multi-étages conduit, en général, à une diminution 

de la quantité totale de stock en comparaison avec celle d’une chaîne logistique centralisée. Dans le 

chapitre 4, nous quantifions ce phénomène pour une chaîne logistique décentralisée à deux étages de 

production/stockage. Nous analysons ce modèle décentralisé à l’aide des outils de la théorie des jeux 

introduits dans ce chapitre. Nous nous intéressons en particulier à des jeux de Stackelberg. Nous 
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proposons l’utilisation d’un contrat de coordination et nous montrons à travers l’équilibre de Stackelberg 

que l’utilisation de ce contrat ramène le système à ses performances optimales. 



   

CHAPITRE III 

3. Politique d’approvisionnement dans un système à plusieurs 
fournisseurs 

 

 

 

3.1. INTRODUCTION 

Les aléas liés aux délais d’approvisionnement des composants majeurs constituent un problème commun 

de la plupart des industries. Pour un composant majeur donné, établir des relations de longue durée avec 

le fournisseur le plus performant du marché en termes de délai de livraison peut être une stratégie pour 

assurer un approvisionnement satisfaisant en quantité et en délai. Néanmoins, les responsables des achats 

essayent souvent d’éviter la dépendance à un seul fournisseur à cause des multiples risques associés et ils 

favorisent les stratégies d’approvisionnements basés sur des relations commerciales avec plusieurs 

fournisseurs. Plus particulièrement dans un environnement aléatoire, le délai de livraison effectif des 

commandes et les coûts de stockage et de rupture peuvent être réduits en adoptant une stratégie qui 

favorise l’éclatement des commandes entre plusieurs fournisseurs.  

Parmi les critères les plus importants pour choisir ses fournisseurs, on peut citer le prix d’achat (le prix 

net, les rabais, les conditions de paiement), la qualité, et le niveau de service du fournisseur (le délai de 

livraison, la variabilité du délai de livraison, la fiabilité, la flexibilité). Il est clair qu’en présence 

d’économies d’échelle à travers les coûts de commandes, les rabais sur quantité et les coûts de transport, 

effectuer les commandes d’approvisionnement chez plusieurs fournisseurs peut être plus coûteux. Par 

contre, dans la plupart des cas pratiques, les gains virtuels associés aux économies d’échelle peuvent être 

compensés par les gains sur les coûts de stockage et de rupture. En outre, les problèmes liés aux 

comportements opportunistes et aux asymétries d’information par rapport aux coûts vrais de fabrication 

peuvent être surmontés en adoptant une stratégie multi-fournisseurs qui intensifie la compétition entre les 

fournisseurs.  

Il existe des exemples d’applications réelles qui favorisent les stratégies multi-fournisseurs dans le but de 

réduire le temps de service des clients finaux. Sun Micro Systems attribue les commandes en puces de 

mémoire à plusieurs fournisseurs en utilisant un système de scorecard. Un autre exemple significatif est le 

cas des producteurs Japonais de véhicules qui travaillent souvent avec deux fournisseurs pour les 
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composants majeurs (Cachon et Zhang, 2004). Malgré les applications réelles et les avantages potentiels, 

les études théoriques sur l’implémentation des stratégies multi-fournisseurs sont peu fréquentes dans la 

littérature. Nous analysons dans ce chapitre les stratégies multi-fournisseurs comme un des éléments de 

base en gestion de chaînes logistiques.  

Nous étudions plus particulièrement la problématique d’approvisionnement d’un producteur ayant une 

demande externe et aléatoire d’un produit. Le producteur transforme un produit intermédiaire acheté en 

un produit vendu aux clients en un temps négligeable et dispose d’un stock à partir duquel ses clients vont 

être servis. Pour le produit intermédiaire utilisé, nous supposons qu’un nombre total de n fournisseurs 

homogènes en termes de prix et de qualité sont disponibles dans le marché. Les fournisseurs ont des 

capacités de fabrication limitées et des temps de fabrication aléatoires. Ils diffèrent en termes de 

variabilité du temps de fabrication, c’est-à-dire en termes de variabilité du délai de livraison. À chaque 

déclenchement de réapprovisionnement du stock, le producteur est libre de passer la commande à un 

fournisseur différent (Figure 3.1). La question que se pose est alors : doit-il effectuer toutes les 

commandes chez le fournisseur le plus performant du marché ou acheminer les commandes chez  

différents fournisseurs? Et s’il opte pour une stratégie multi-fournisseurs, quels sont les fournisseurs à qui 

il doit adresser les commandes ?  

 
Figure 3.1. La chaîne logistique à deux étages 

Les travaux analysant les stratégies multi-fournisseurs en présence des délais de livraison aléatoires se 

focalisent souvent sur le fractionnement de la quantité de commande entre plusieurs fournisseurs. Minner 

(2003) et Thomas et Tyworth (2006) fournissent des revues de littérature sur cette problématique. Dans ce 

cadre, les études analysent les effets des stratégies multi-fournisseurs sur les mesures statistiques de 

performances comme les délais moyens effectifs ou bien elles adoptent une démarche basée sur un critère 

économique. 

Guo et Ganeshan (1995) analysent les effets de fractionner la quantité de commande Q entre n 

fournisseurs ayant les délais de livraison aléatoires L1,…,Ln. Pour chaque commande de quantité Q, une 

commande de quantité Q/n est passée à chacun des n fournisseurs en même temps. Les auteurs supposent 
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que les délais de livraison des fournisseurs suivent la même loi de distribution (uniforme ou 

exponentielle) avec des caractéristiques identiques. En utilisant l’ensemble ordonné des délais de 

livraison, )()2()1( ... nLLL ≤≤≤ , les délais de livraison effectifs sont définis comme le temps d’inter-

arrivées des commandes successives : T1 = L(1) = min (L1,…,Ln) et Tr = L(r) – L(r – 1) pour r = 2,…,n. Ils 

montrent que l’espérance et la variance du premier délai d’approvisionnement effectif, E[T1] et Var[T1], 

sont décroissantes de façon monotone en n. En outre, E[Tr] ≤ E[L] et Var[Tr] ≤ Var[L] où L est la variable 

aléatoire représentant le délai de livraison d’un seul fournisseur. Étant données des limites supérieures de 

E[T1] et de Var[T1], les auteurs déterminent le nombre satisfaisant de fournisseurs. Kelle et Miller (2001) 

analysent le cas de deux fournisseurs ayant des délais de livraison aléatoires, avec E[L1] ≥ E[L2]. La 

demande étant aléatoire, ils approximent la demande pendant le délai d’approvisionnement comme une 

variable aléatoire suivant une loi de distribution exponentielle. Ils montrent que la probabilité de rupture 

de stock est réduite en fractionnant la quantité de commande entre les fournisseurs si E[L1] / E[L2] est 

inferieur à un seuil déterminé. Pour un problème similaire, Fong et al. (2000) fournit les expressions 

analytiques de diverses mesures statistiques.  

En prenant comme critère la minimisation de la somme des coûts de commande, de stockage et de 

rupture, Ramasesh et al. (2001) analysent les effets de fractionner la quantité de commande entre deux 

fournisseurs ayant des délais de livraison aléatoires indépendants et identiquement distribués (uniformes 

ou exponentiels). En appliquant la politique (R, Q), la quantité de commande Q est fractionnée également 

entre les fournisseurs à chaque déclenchement de réapprovisionnement du stock. Le taux de la demande 

est supposé constant. Les valeurs optimales du point de commande R et de la quantité de commande Q 

sont obtenues par une recherche numérique pour les cas mono-fournisseur et bi-fournisseurs. Les auteurs 

montrent que la stratégie bi-fournisseurs diminue les coûts de stockage et de rupture. Mohebbi et Posner 

(1998) analysent un problème similaire avec des délais de livraison suivant des lois exponentielles non-

identiques et des demandes arrivant selon un processus de Poisson composé. Ils supposent que les 

demandes non satisfaites sont entièrement perdues. La quantité de commande est partagée entre les 

fournisseurs selon une fraction x ∈ (0,1) qui est une variable décision additionnelle. Les analyses 

numériques effectuées montrent que, en comparaison avec la stratégie mono-fournisseur, la stratégie bi-

fournisseurs diminue les coûts opérationnels sauf si l’un des fournisseurs est beaucoup moins performant. 

Sedarage et al. (1999) étudient le cas de n fournisseurs ayant les délais non-identiques. Ils montrent par 

des analyses numériques qu’il existe un nombre optimal de fournisseurs qui minimise les coûts 

opérationnels.  

Dans cette étude, nous supposons que les demandes arrivent chez le producteur selon un processus de 

Poisson et que les délais de livraison des fournisseurs suivent des lois exponentielles non-identiques. Les 

coûts de commande étant négligeables, le producteur applique une politique de stock nominal qui génère 

une commande d’une unité chaque fois qu’une demande unitaire arrive. Donc, la quantité de commande 
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ne peut pas être fractionnée entre les fournisseurs mais chaque commande peut être affectée à un 

fournisseur différent.  

Dans le cas où le producteur ne dispose pas d’un stock de produit fini, c’est-à-dire dans le cas de 

production à la commande, le problème étudié devient proche du problème de répartition de charges entre 

plusieurs serveurs (processeurs, machines, etc.), dont le but est de déterminer la politique de répartition de 

trafic qui optimise des mesures de performances du système (le temps moyen d’attente des clients, etc.) 

(voir par exemple Liu et Righter (1998)). Les politiques de répartition de trafic utilisées sont classées par 

le niveau d’information nécessaire à leur fonctionnement. À part les caractéristiques de base du système 

comme le taux d’arrivée et les taux de service, la mise en place des politiques statiques en temps réel 

nécessite l’information sur les arrivées du système. Les politiques dynamiques peuvent être appliquées 

quand l’information sur l’état réel du système, comme les charges réelles des serveurs, est disponible. Le 

principe de la plus courte file d’attente est un exemple des politiques dynamiques utilisées. Pour le cas 

des serveurs homogènes dont les temps de service suivent des lois exponentielles, affecter le client au 

serveur ayant la plus courte file d’attente est prouvé optimal pour la plupart des modèles étudiés. En 

général, les politiques dynamiques mènent à un niveau de performances plus élevé que les politiques 

statiques. Par contre, le fait de disposer d’une information totale sur l’état réel du système n’est pas 

toujours réaliste. L’obtention de cette information peut être coûteuse ou peut consommer beaucoup de 

temps. En outre, dans le cas de serveurs hétérogènes, les performances des politiques dynamiques sont 

difficilement quantifiables. De l’autre coté, les performances des politiques statiques sont plus faciles à 

analyser. En outre, les politiques statiques sont bien adaptées pour la phase de conception d’un système 

de service car elles fournissent des limites de performances pour les systèmes contrôlés dynamiquement. 

Dans cette étude, nous nous concentrons sur les politiques statiques. Nous supposons que le producteur a 

accès à l’information sur les taux moyens d’arrivées et des services. Le producteur applique une politique 

d’acheminement de commande probabiliste (voir par exemple Combé et Boxma (1994)). Autrement dit, 

chaque commande est affectée à un des fournisseurs selon des probabilités fixées à l’avance. La politique 

d’acheminement de commande proposée est une politique statique car chaque fois qu’une commande doit 

être affectée à un des fournisseurs le producteur n’utilise aucune information sur l’état réel du système 

d’approvisionnement. Le producteur décide des probabilités d’affectation des commandes une fois pour 

toutes au début de la période de fonctionnement du système. En prenant comme critère la minimisation 

des coûts de stockage et de rupture, les décisions du producteur sont alors le niveau de stock nominal et 

les probabilités d’affectation des commandes aux fournisseurs.  

Benjaafar et al. (2004) analysent un problème similaire d’allocation de demande entre plusieurs 

fournisseurs en supposant l’existence des produits multiples. Chaque fournisseur est capable de fabriquer 

chaque produit avec un coût associé. Les auteurs utilisent une recherche numérique pour trouver les 

valeurs optimales du niveau de stock nominal et des probabilités d’affectation de commande. Pour le cas 
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de deux fournisseurs homogènes, ils montrent qu’une stratégie bi-fournisseurs diminue les coûts de 

stockage et de rupture. Dans cette étude, nous montrons qu’une solution approximative du problème 

étudié peut être obtenue en utilisant la solution optimale du problème dans le cas de production à la 

commande. 

Dans la deuxième section, nous modélisons le système d’approvisionnement dans le cas de production 

pour stock et nous fournissons l’expression analytique de l’espérance de la somme des coûts de stockage 

et de rupture en fonction des variables de décision. La troisième section est consacrée au cas de la 

production à la commande dans laquelle nous déterminons les valeurs optimales des probabilités 

d’affectation des commandes aux fournisseurs en supposant que le niveau de stock nominal est nul. Dans 

la quatrième section, nous proposons une heuristique pour résoudre le problème d’optimisation du cas de 

production pour stock. Nous terminons ce chapitre par les analyses numériques et les conclusions.  

3.2. MODÉLISATION DU PROBLÈME DANS LE CAS DE PRODUCTION POUR 

STOCK 

Nous supposons que la demande arrive chaque fois chez le producteur en quantité unitaire et selon un 

processus de Poisson ayant le taux λ > 0. Notons que cette hypothèse est moins restrictive qu’il n’y paraît, 

dans la mesure où elle couvre aussi le cas assez fréquent de lots de fabrication de taille fixe et non 

fractionnable. Quand la demande arrive, elle est satisfaite s’il y a des produits dans le stock, sinon elle est 

retardée. La gestion de stock est accomplie suivant la politique de stock nominal (S – 1, S). À l’état initial, 

le stock contient le niveau de stock nominal « S », avec S ≥ 0. Le réapprovisionnement du stock est 

déclenché lorsque la position de stock devient « S – 1 », c’est-à-dire chaque fois qu’une demande arrive. 

À chaque déclenchement, le producteur effectue une commande unitaire chez un fournisseur extérieur. 

Chaque fournisseur fabrique un produit dans une durée suivant une loi probabiliste exponentielle en 

traitant les commandes selon l’ordre FIFO. Soit μi le taux de distribution exponentielle du temps de 

fabrication pour le fournisseur i = 1,…,n avec μi ≠ μj pour j ∈ {1,…,i-1,i+1,…,n}. Nous supposons que le 

temps de transport d’un produit entre les étages est négligeable. Quand le processus de fabrication d’une 

unité est terminé, l’unité prend sa place dans le stock de sortie du producteur s’il n’y a pas de ruptures de 

stock, sinon elle est utilisée pour satisfaire les demandes en attente en suivant l’ordre FIFO. 

En appliquant la politique (S – 1, S), nous supposons que lorsqu’une demande arrive, le producteur 

effectue une commande chez le fournisseur i avec la probabilité αi où 10 ≤≤ iα  et 11 =∑ =
n
i iα . Le 

processus d’acheminement de commande proposé est un processus d’acheminement de Bernoulli 

(Bernoulli routing process). Soit {N(t), t ≥ 0} le processus d’arrivée des demandes ayant le taux λ où N(t) 

représente le nombre de demandes arrivées chez le producteur dans l’intervalle de temps (0, t]. Le 

processus d’acheminement de Bernoulli ne change pas les caractéristiques du processus d’arrivée (Ross, 
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2000) (voir l’annexe A, propriété A.1) : le processus {Ni(t), t ≥ 0} où Ni(t) représente le nombre de 

commandes arrivées chez le fournisseur i = 1,…,n dans l’intervalle de temps (0, t] est un processus de 

Poisson ayant le taux αi λ. En outre, les processus de Poisson {Ni(t), t ≥ 0}, i = 1,…,n, sont mutuellement 

indépendants avec ∑ == n
i i tNtN 1 )()( . 

Donc, nous pouvons modéliser le système de fabrication de chaque fournisseur « i » comme une file 

d’attente M/M/1 avec le taux d’arrivée αiλ et le taux de service μi. Chaque file peut être étudiée de 

manière indépendante. Nous avons par conséquent un réseau ouvert de files d’attente avec n files M/M/1 

en parallèle (Figure 3.2). 

 
Figure 3.2. Le réseau ouvert de files d’attente avec n files en parallèle 

Pour chaque fournisseur i = 1,…,n, l’évolution du système est décrite en utilisant des variables d’état en 

régime permanent :  

Pi : le nombre de commandes en attente de fabrication 

Ki  : le nombre de commandes en attente de fabrication et en fabrication (Pi plus l’unité éventuellement  

 en cours de fabrication) 

Soit }Pr{ iik kKP
i

==  la probabilité stationnaire d’avoir ki commandes dans le système de fabrication du 

fournisseur i. La probabilité d’avoir ki commandes dans le système de fabrication du fournisseur i ayant le 

taux d’arrivée αiλ et le taux de service μi est : 
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La condition nécessaire et suffisante pour l’existence de la probabilité 
ikP  en régime permanent est         

αi ρi < 1 où ρi = λ / μi  et αi ρi est le taux d’utilisation de la file M/M/1 (αi λ, μi). Ensuite, l’état du réseau 

ouvert de files d’attente s’exprime par le vecteur ),...,( 1 nKK=K . Sachant que le nombre de commandes 
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dans chaque file est indépendant de celui des autres, la probabilité d’être dans l’état ),...,( 1 nkk  en régime 

permanent est déterminée par le produit (Baskett et al., 1975) : 

{ } ∏
=

−=×××====
n

i
ii

k
iikkknn

i

n
PPPkKkKkK

1
2211 )1()(  ... ,...,, Pr

21
ραρα          (3.2) 

Chez le producteur, chaque unité dans le stock induit un coût de stockage « h » et chaque demande 

retardée induit un coût de rupture de stock « b » par unité de temps. Le producteur décide de son niveau 

de stock nominal « S » et des paramètres de Bernoulli « α1, α2,…, αn » dans le but de minimiser 

l’espérance de la somme des coûts de stockage et de rupture par unité de temps. Ici, les valeurs optimales 

des paramètres de Bernoulli expriment les probabilités optimales d’affectation des commandes aux 

fournisseurs en régime permanent.  

L’évolution du nombre de produits dans le stock de sortie du producteur est décrite en utilisant les 

variables d’état en régime permanent suivantes : 

V : le nombre de commandes qui ne sont pas encore livrées  

I : le niveau de stock possédé  

B : le niveau de rupture de stock  

Selon la politique de stock nominal, la position de stock (= commandes attendues + quantité en stock – 

demandes retardées) reste constante au niveau de stock nominal S. Donc, S = V + I – B en régime 

permanent. Par conséquent, +−= ][ VSI  et +−= ][ SVB , où [x]+ dénote max{x, 0}.  

Dans le cas de n fournisseurs, le nombre de commandes qui ne sont pas encore livrées est le nombre total 

de commandes dans le réseau ouvert qui comprend les files d’attente des commandes chez les 

fournisseurs (Figure 3.3). En régime permanent, nous pouvons écrire : 

nKKKV +++= ...21  

La probabilité d’avoir v commandes dans le réseau ouvert de files d’attente s’écrit 

{ } ... Pr 21 vKKKP nv =+++= .             (3.3) 



CHAPITRE III 78 

 
Figure 3.3. Représentation du système par les files d’attente 

Ensuite, les mesures de performances du producteur, qui sont le niveau moyen de stock possédé ][IE  et 

le niveau moyen de rupture de stock ][BE , sont calculées par les équations : 
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La fonction de coût du producteur s’écrit alors 
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Notons que vP  est une fonction des paramètres de Bernoulli « α1, α2,…, αn ». En supposant jjii ραρα ≠  

pour ji ≠∀ , nous pouvons obtenir l’expression mathématique de la fonction de distribution de 

probabilité vP  en utilisant les propriétés des fonctions de génération de probabilité (Annexe B) : 
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Le cas jjii ραρα =  pour ji ≠∃  ne peut pas être exclu à priori. Toutefois, dans les analyses numériques, 

la valeur iiρα  peut être représentée approximativement en remplacent jjii ραρα =  par εραρα += jjii  

où ini ρε ,...,1max =<< . 
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Soit ][VE  le nombre moyen de commandes dans le réseau ouvert de files d’attente : 
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En utilisant la relation ][][][ BEIEVES −+=  et l’expression (3.7), nous pouvons écrire la fonction de 

coût du producteur comme suit : 
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La fonction de coût (3.6) s’écrit également 
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La fonction de coût (3.9) n’est pas nécessairement convexe par rapport aux variables de décisions         

« S, α1, α2,…, αn ». Par conséquent, la minimisation de la fonction de coût (3.9) sous les contraintes de 

l’admissibilité des paramètres de Bernoulli est un problème d’optimisation difficile. 

3.3. POLITIQUE D’APPROVISIONNEMENT OPTIMAL DANS LE CAS DE 

PRODUCTION À LA COMMANDE 

Dans le cas de production à la commande, le producteur est supposé installer un niveau de stock nominal 

nul, S = 0. La fonction de coût du producteur pour le cas de production à la commande exprime le coût 

moyen de rupture qui s’écrit 

∑
= −

==
n

i ii

i
n bVbEC

1
21  ][),...,,(

λαμ
λαααα .           (3.10) 

Les variables de décision du producteur sont les paramètres de Bernoulli « α1, α2,…, αn ». Selon la 

formule de LITTLE (Kleinrock, 1975), les valeurs optimales des paramètres de Bernoulli peuvent être 

obtenues en minimisant le temps moyen de séjour des commandes dans le réseau ouvert de files d’attente, 

λ/][][ VEWE = . Notons que le temps moyen de séjour des commandes dans le réseau ouvert de files 

d’attente exprime ainsi le délai moyen d’approvisionnement du producteur. 
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Sans perte de généralité, les n fournisseurs peuvent être numérotés dans l’ordre décroissant de leurs taux 

de service : 0...21 >>>> nμμμ . Ensuite, le problème d’optimisation du producteur se formule de la 

manière suivante : 

Π1: ∑
= −

n

i ii

i

n 1,...,,
 min

21 λαμ
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                   (3.11) 

sous les contraintes  

nii 1,...,               10 =≤≤ α                     (3.12) 
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Les contraintes (3.12) et (3.13) expriment les relations nécessaires pour que les paramètres de Bernoulli 

soient admissibles. La stabilité du réseau ouvert de files d’attente nécessite les restrictions (3.14). En 

outre, la condition nécessaire et suffisante pour l’existence d’un ensemble des paramètres de Bernoulli 

),...,1,( nii =α  qui satisfait les contraintes (3.12), (3.13) et (3.14) est 
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Nous supposons que la condition (3.15) est satisfaite par les données du problème.  

Toutes les contraintes sont linéaires et sous ces contraintes, la fonction objectif ][WE  est convexe car la 

satisfaction de la contrainte (3.14) implique 0/][ 22 >∂∂ iWE α  où 
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Par conséquent, le problème Π1 est un problème d’optimisation convexe avec une solution unique. 

3.3.1. Résolution du problème relaxé 

Considérons tout d’abord un problème relaxé qui comprend le critère (3.11) et la contrainte (3.13). Soit 

Π2 le problème relaxé correspondant. Le Lagrangien du problème Π2 s’écrit 
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où u est le paramètre de Lagrange associé à la contrainte (3.13). Soit *
iα  la valeur optimale du paramètre 

de Bernoulli iα  pour i = 1,…,n. Alors, la solution optimale du problème Π2 satisfait les conditions 

suivantes : 
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Pour quel que soit i ∈ {1,…,n} et quel que soit j ∈ {1,…,n}, les conditions (3.18) impliquent 
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Nous pouvons réécrire l’équation (3.20) de la manière suivante : 
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En sommant sur j les deux termes de l’équation (3.21), nous obtenons 
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Sous la condition (3.19), l’équation (3.22) devient 
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Donc, nous pouvons écrire la propriété suivante. 

Propriété 3.1 : Les valeurs optimales des paramètres de Bernoulli pour le problème relaxé sont définies 

par les équations : 

niinii 1,...,               )(1* =−= μτμ
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α            (3.24) 
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où 
∑
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Notons que les valeurs optimales des paramètres de Bernoulli, n
ii 1

*)( =α , définies par les relations (3.24) 

satisfont la contrainte (3.13) par construction : 

1)(1
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i μτμ

λ
α  

Si les valeurs optimales des paramètres de Bernoulli n
ii 1

*)( =α  satisfont les contraints (3.12) et (3.14), alors 

le minimum du problème Π2 est admissible et par conséquent optimal pour le problème Π1. En utilisant 

(3.24), nous pouvons récrire les contraintes (3.14) comme suit :  

niiini 1,...,                                   =<− μμτμ             (3.25) 

D’après la condition (3.15), τn > 0. Donc, les contraintes (3.25) sont satisfaites naturellement. Les 

contraintes (3.12) peuvent être remplacées par 

niini 1,...,                              0 =≤−≤ λμτμ .         (3.26) 

L’inégalité λμτμ ≤− ini  est satisfaite car 11
* =∑ =

n
i iα . L’inégalité 0≥− ini μτμ  devient 

nini 1,...,                                                 2 =≥ τμ .          (3.27) 

3.3.2. Problème de choix restrictif 

Selon la règle de numération de fournisseur retenue, 0...21 >>>> nμμμ . Par conséquent, si l’inégalité 

(3.27) est violée par i0 où ni ≤≤ 01 , alors elle est aussi violée par i = i0 + 1,…,n. Pour ce cas, nous 

pouvons formuler un problème de choix restrictif  où 0* =iα  est imposé pour i = i0,…,n. Afin de montrer 

la pertinence du problème de choix restrictif, nous définissons le paramètre mτ  pour m = 1,…,n +1 en 

supposant 01 =+nμ  : 

∑
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L’évolution de ce paramètre est basée sur les lemmes suivants. 

Lemme 3.1 : Pour les valeurs positives des paramètres τm et τm+1 ( 1−≤ nm ), l’évolution de τm suit les 

règles ci-dessous : 

(1)
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Lemme 3.2 : Le paramètre τm croît avec m pour *1 mm ≤≤  et décroit de manière monotone avec m 

pour nmm <<* . La valeur maximale du paramètre τm est obtenue alors pour m* ( nm ≤≤ *1 ) qui est 

l’indice unique satisfaisant les relations suivantes :  

λμ  
*

1
∑
=

>
m

i
i               (3.29) 

***
2

1 mmm
μτμ <≤

+
             (3.30) 

Les démonstrations des lemmes 3.1 et 3.2  se trouvent dans l’annexe B.  

La propriété suivante décrit la solution optimale du problème Π1. 

Propriété 3.2 : Considérons l’indice m* ( nm ≤≤ *1 ) qui satisfait les relations (3.29) et (3.30). Sous la 

condition que la relation (3.15) soit satisfaite, les valeurs optimales des paramètres de Bernoulli pour le 

problème Π1 sont : 
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La démonstration de la propriété 3.2  se trouve dans l’annexe B.  

Dans le cas où 2
nn τμ > , l’indice unique qui satisfait les relations (3.29) et (3.30) est m* = n. Donc, la 

solution optimale du problème Π1 définie par la propriété 3.2 correspond à la solution optimale du 

problème Π2 définie par la propriété 3.1. Pour ce cas, le producteur continue à exercer des relations 

commerciales avec chacun des n fournisseurs. Autrement dit, à chaque déclenchement de 

réapprovisionnement du stock, le producteur effectue la commande chez le fournisseur i = 1,…,n avec 

une probabilité non-nulle. 

Dans le cas contraire, le producteur détermine un seuil d’acceptation selon les taux de service des 

fournisseurs. Le seuil d’acceptation du producteur est exprimé à travers l’indice m* défini par le lemme 

3.2. Le producteur cesse d’exercer des relations commerciales avec les fournisseurs ayant un taux de 

service plus faible que *m
μ . À chaque déclenchement de réapprovisionnement du stock, le producteur 

effectue la commande chez le fournisseur i = 1,…,n avec une probabilité non nulle si *mi μμ ≥ . Notons 

que cette règle de sélection est valide si les fournisseurs sont hétérogènes. Dans le cas où les taux de 

fabrication des fournisseurs sont égales, nμμμ ==== ...21μ , la solution optimale du problème est 

nn /1... **
2

*
1

* ===== αααα  selon la propriété 3.1.  

3.4. MÉTHODE APPROXIMATIVE DANS LE CAS DE PRODUCTION POUR STOCK  

Dans le cas de production pour stock, le producteur installe un niveau de stock nominal non-négatif,        

S ≥ 0. Le niveau de stock nominal « S » devient alors une variable de décision additionnelle du producteur 

en comparaison avec le cas de production à la commande. Notons que le producteur peut aussi décider 

d’installer un niveau de stock nominal nul. Donc, le cas de production pour stock correspond à un cas 

général qui inclut aussi le cas de production à la commande. 

Le problème d’optimisation du producteur, noté П3, et de trouver les valeurs optimales du niveau de stock 

nominal « S » et des paramètres de Bernoulli « α1, α2,…, αn » qui minimisent la fonction de coût (3.9) 

sous les contraintes (3.12), (3.13) et (3.14). Étant donné la complexité de la fonction (3.9), nous 

proposons une méthode approximative pour résoudre le problème П3. La méthode de résolution 

approximative proposée calcule les valeurs des variables de décisions en deux étapes, chaque étape 

correspondant à un problème d’optimisation : 

 Dans la première étape, le niveau de stock nominal est supposé d’être égal à zéro, S = 0. Les 

seules variables de décision sont les paramètres de Bernoulli « α1, α2,…, αn ». Les hypothèses de 

cette étape sont identiques aux hypothèses du cas de production à la commande. Le problème 

d’optimisation correspondant est alors le problème П1 étudié dans la section 3.3. 
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 Dans la deuxième étape, les valeurs des paramètres de Bernoulli sont supposées données. La 

seule variable de décision est le niveau de stock nominal « S ». Nous appelons ce problème le 

problème d’optimisation П4. Les valeurs optimales des paramètres de Bernoulli pour le problème 

П1 obtenues dans la première étape sont les données du problème П4. 

3.4.1. Calcul des paramètres de Bernoulli 

En supposant S = 0,  les valeurs des paramètres de Bernoulli peuvent être calculées d’après les résultats 

exposés dans la section 3.3. L’indice m* est obtenu selon le lemme 3.2. En suite, les valeurs des 

paramètres de Bernoulli peuvent être calculées en utilisant l’expression (3.31).  

3.4.2. Calcul du niveau de stock nominal 

Le problème d’optimisation П4 consiste à trouver la valeur optimale du niveau de stock nominal « S » qui 

minimise la fonction )(SC  définie par l’équation (3.9), dont les paramètres de Bernoulli sont les résultats 

du problème П1. La valeur optimale de S pour le problème П4 peut être calculée en utilisant la formule de 

la fraction critique de la version discrète du problème de vendeur de journaux (voir par exemple Veatch et 

Wein (1996)).  

Soit )()1()( SCSCSG −+=  l’accroissement de la fonction de coût (3.9). La fonction )(SG  s’écrit 

bSVbhSG −≤+= }Pr{)()( .            (3.32) 

La fonction de probabilité cumulative }Pr{)( SVSF ≤=  du nombre de commandes dans le réseau 

ouvert de files d’attente est croissante et positive par définition. Par conséquent, la fonction )(SG  est 

croissante en S pour S ≥ 0. Soit S* la valeur optimale de S qui minimise la fonction )(SC . Les conditions 

nécessaires et suffisantes pour que S* soit la valeur optimale sont donc les suivantes : 

0)1()1()( *** ≤−⇒−≤ SGSCSC                                                                                (3.33) 

0)()1()( *** >⇒+< SGSCSC                                                                                   (3.34) 

En utilisant (3.32), les conditions d’optimalités (3.33) et (3.34) peuvent être réécrites comme suit : 

)()1( SF
bh

bSF <
+

≤−             (3.35) 

La politique d’approvisionnement optimale n
ii mm 1

**** ))(()( == αα  implique 0* =iα  pour i = m*+1,…,n. 

Donc, le nombre total des commandes dans le réseau ouvert des files d’attente est égal au nombre total 
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des commandes dans les files d’attente de premiers m* fournisseurs. En utilisant (3.7) et (3.35), la valeur 

optimale du niveau de stock nominal pour le problème П4 est la valeur minimale de S qui satisfait 

l’inégalité )/()( bhbSF +>  : 
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La valeur optimale du stock nominal se définit ainsi comme 

⎣ ⎦SS ˆ* =   

où ⎣ ⎦Ŝ  est le plus grand nombre entier inférieur ou égal à la valeur Ŝ  qui satisfait l’égalité 
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v
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3.5. ANALYSES NUMÉRIQUES 

La méthode approximative proposée se base sur deux simplifications. La première consiste à remplacer le 

problème d’optimisation П3 ayant comme variables de décision « S, α1, α2,…, αn » en deux problèmes 

d’optimisation indépendants : le problème d’optimisation avec les variables de décision « α1, α2,…, αn » 

et le problème d’optimisation avec la variable de décision « S ». La deuxième simplification est de 

résoudre le problème d’optimisation ayant les variables de décision « α1, α2,…, αn » pour une valeur 

imposée de S, S = 0. Notons que la méthode approximative proposée ne peut pas être appliquée 

itérativement en actualisant la valeur de S dans le problème П1. Par conséquent, la qualité de la solution 

obtenue ne peut pas être assurée.  

Nous évaluons la méthode approximative proposée dans le cas de deux fournisseurs. Pour ce cas, la 

solution optimale du problème П3 peut être obtenue par une recherche numérique dans la région 

admissible. Nous considérons un problème avec λ = 1, h = 1 et b = 1000 et nous comparons les solutions 

obtenues pour les valeurs différents des taux moyen de fabrication (Tableau 3.1). 
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Tableau 3.1. Analyses numériques dans le cas de deux fournisseurs 

 Taux de service Nombre de fournisseurs α1 α2 S Coût total 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,738 0,262 15,000 14,492 1 μ1 = 1.25  

μ2 = 0.5 
Solution approximative avec 2 fournisseurs 0,791 0,209 16,000 15,501 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,698 0,302 14,000 13,275 2 μ1 = 1.25  

μ2 = 0.6 
Solution approximative avec 2 fournisseurs 0,748 0,252 14,000 13,969 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,661 0,339 13,000 12,290 3 μ1 = 1.25  

μ2 = 0.7 
Solution approximative avec 2 fournisseurs 0,707 0,293 13,000 12,727 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,627 0,373 12,000 11,449 4 μ1 = 1.25  

μ2 = 0.8 
Solution approximative avec 2 fournisseurs 0,667 0,333 12,000 11,726 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,596 0,404 11,000 10,738 5 μ1 = 1.25  

μ2 = 0.9 
Solution approximative avec 2 fournisseurs 0,628 0,372 11,000 10,908 

Solution optimale avec 1 fournisseur 1,000 0,000 30,000 30,957 
Solution optimale avec 2 fournisseurs 0,566 0,434 10,000 10,198 6 μ1 = 1.25  

μ2 = 1 
Solution approximative avec 2 fournisseurs 0,590 0,410 10,000 10,292 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,851 0,149 9,000 8,618 7 μ1 = 2   

μ2 = 0.5 
Solution approximative avec 2 fournisseurs 1,000 0,000 9,000 9,955 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,820 0,180 8,000 8,281 8 μ1 = 2   

μ2 = 0.6 
Solution approximative avec 2 fournisseurs 0,966 0,034 9,000 9,438 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,790 0,210 8,000 7,992 9 μ1 = 2   

μ2 = 0.7 
Solution approximative avec 2 fournisseurs 0,932 0,068 9,000 9,051 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,762 0,238 8,000 7,781 10 μ1 = 2   

μ2 = 0.8 
Solution approximative avec 2 fournisseurs 0,897 0,103 8,000 8,673 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,735 0,265 8,000 7,628 11 μ1 = 2   

μ2 = 0.9 
Solution approximative avec 2 fournisseurs 0,863 0,137 8,000 8,256 

Solution optimale avec 1 fournisseur 1,000 0,000 9,000 9,955 
Solution optimale avec 2 fournisseurs 0,709 0,291 7,000 7,357 12 μ1 = 2   

μ2 = 1 
Solution approximative avec 2 fournisseurs 0,828 0,172 8,000 7,953 
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Les analyses numériques montrent les avantages économiques de la stratégie bi-fournisseurs même dans 

le cas où un des fournisseurs est beaucoup moins performant. Acheminer les commandes chez les deux 

fournisseurs à la place d’acheminer toutes les commandes chez le fournisseur le plus performant du 

marché diminue le niveau de stock nominal et les coûts de stockage et de rupture. La méthode 

approximative donne des résultats satisfaisants pour les valeurs de la fonction objectif. La déviation 

moyenne entre les résultats de la méthode approximative et les solutions optimales est moins de 8 %. Par 

contre, la méthode approximative surestime la valeur du paramètre de Bernoulli associé au fournisseur le 

plus performant avec une déviation moyenne plus de 12 %. 

3.6. CONCLUSIONS 

Dans le but d’évaluer les diminutions possibles des coûts de stockage et de rupture, nous avons analysé 

l’application d’une stratégie multi-fournisseurs dans une chaîne logistique à deux niveaux ayant les 

demandes et les délais de livraison aléatoires. Nous avons étudie le problème d’approvisionnement d’un 

producteur ayant une demande externe et aléatoire d’un produit. Le producteur applique une politique de 

stock nominal afin de gérer son stock à partir duquel ses clients vont être servis. Nous avons supposé que 

le producteur peut envoyer chaque commande d’approvisionnement de stock à un fournisseur différent 

disponible dans le marché. Les fournisseurs sont homogènes en termes de prix et de qualité mais 

hétérogènes en termes de variabilité du délai de livraison. Nous avons modélisé chaque fournisseur 

comme un serveur exponentiel ayant un taux moyen de service différent. Les fournisseurs ont des 

capacités de fabrication limitées dans le sens où ils ne peuvent fabriquer qu’un produit à la fois.  

Nous avons supposé que les commandes de réapprovisionnement sont allouées parmi les fournisseurs 

disponibles dans le marché selon un processus d’acheminement de Bernoulli qui définit une probabilité 

fixe d’affectation de commande pour chaque fournisseur. À chaque déclenchement de 

réapprovisionnement du stock, le producteur peut ensuite utiliser les probabilités d’affectation de 

commande afin de choisir le fournisseur auquel la commande doit être affectée.  

Considérons un problème dans lequel le stock de sortie du système est distribué entre les fournisseurs, 

c’est-à-dire qu’il existe un stock de sortie localisé chez chaque fournisseur et le producteur qui produit à 

la commande achemine les demandes des clients finaux aux fournisseurs. Pour un tel problème, les 

positions de stock des fournisseurs peuvent être contrôlées indépendamment par le système 

d’information. C’est aussi le cas d’un problème d’assemblage dans lequel chaque fournisseur fabrique un 

produit différent. Il y a une interdépendance entre les stocks des produits intermédiaires et de produit fini, 

mais le producteur peut contrôler les positions de stock des produits intermédiaires et de produit fini 

indépendamment. Dans cette étude, nous avons supposé que le stock de sortie du système est mis en 

commun (inventory pooling) chez le producteur. Nous avons étudié un système de stockage dans un seul 
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endroit et d’un seul type de produit. Cette structure centralisée du système ne permet pas de décomposer 

le problème de gestion de stock étudié. 

Dans la deuxième section, nous avons fourni les expressions analytiques des mesures de performances du 

producteur qui sont le niveau moyen de stock possédé et le niveau moyen de rupture de stock. Nous avons 

exprimé la somme des coûts moyens de stockage et de rupture en fonction des variables de décisions : le 

niveau de stock nominal et les probabilités d’affectation. 

Les valeurs optimales des probabilités d’affectation de commande sont obtenues pour le cas de 

production à la commande, c’est-à-dire pour le cas où le coût unitaire de stockage est suffisamment élevé 

pour que le producteur installe un niveau de stock nominal nul. L’étude menée montre qu’acheminer les 

commandes chez plusieurs fournisseurs est plus profitable qu’acheminer toutes les commandes chez un 

seul fournisseur. La stratégie multi-fournisseurs diminue le délai moyen d’approvisionnement du 

producteur. 

Dans le cas de production pour stock, le problème d’optimisation  consiste à trouver les valeurs du niveau 

de stock nominal et des probabilités d’affectation qui minimisent les coûts moyens de stockage et de 

rupture. Puisque la fonction objectif n’est pas nécessairement convexe par rapport aux variables de 

décisions, nous avons proposé une méthode approximative pour résoudre ce problème. Nous avons validé 

cette technique par des analyses numériques. Ces analyses montrent que, en comparaison avec une 

stratégie mono-fournisseur, une stratégie multi-fournisseurs diminue le niveau de stock nominal 

nécessaire. En gardant moins de produit dans le stock, le producteur diminue la somme des coûts de 

stockage et de rupture de stock. 





   

CHAPITRE IV 

4. Optimisation des décisions dans une chaîne logistique 
décentralisée à deux étages de production/stockage 

 

 

 

4.1. INTRODUCTION 

La date de disponibilité des produits est un attribut de la concurrence qui joue à la fois sur la rapidité de 

mise sur le marché de produits nouveaux et sur celle de livraison de commandes de produits existants. 

Dans le cadre des réseaux d’entreprises, la date de disponibilité d’un produit vendu aux clients dépend de 

l’efficacité des différentes entreprises qui contribuent à sa création : les entreprises fabriquant des 

composants, des produits semi-finis ou des produits finis. Les délais de livraison de commandes en 

produits finis peuvent aussi être provoqués par des délais de livraison imprévus des composants ou des 

produits semi-finis. Afin d’assurer un approvisionnement satisfaisant en quantité et en délai, les 

entreprises entrent dans des relations contractuelles de longue durée avec leurs fournisseurs. Les 

caractéristiques d’une telle relation sont déterminantes pour la satisfaction des clients finaux. Dans ce 

chapitre, nous étudions les interactions entre les entreprises adjacentes des chaînes logistiques et les 

caractéristiques spécifiques des relations contractuelles permettant aux entreprises d’améliorer les 

performances du fonctionnement global, tout en limitant les risques encourus par chacun des partenaires.  

Nous analysons un maillon élémentaire à deux niveaux d’une chaîne logistique, composé de deux 

entreprises adjacentes. Par commodité de terminologie, l’entreprise aval sera appelée « le producteur » et 

l’entreprise amont « le fournisseur ». Par leurs activités de transformation et/ou d’assemblage, ces deux 

entreprises contribuent à l’augmentation de la valeur des produits de la filière. Le fournisseur transforme 

une matière première en un produit intermédiaire qui est ensuite utilisé dans le processus de fabrication 

d’un produit fini chez le producteur. En outre, les deux entreprises disposent de stocks qui leur permettent 

de contrôler leurs productions et leurs livraisons. Pour le réapprovisionnement de son stock, chaque 

entreprise lance des ordres de fabrication internes et des commandes externes de produit intermédiaire ou 

de matière première à l’entreprise en amont.  
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Figure 4.1. La chaîne logistique à deux étages de production/stockage 

Dans cette chaîne logistique à deux étages de production/stockage, le producteur vend un produit fini au 

marché de consommateurs. La demande du marché final, les temps de fabrication des produits finis chez 

le producteur et des produits intermédiaires chez le fournisseur sont aléatoires. À cause des aléas en 

interne et externe, toutes les demandes du marché ne peuvent pas être satisfaites immédiatement. En 

outre, le délai de livraison des produits finis dépend non seulement du niveau d’utilisation des stocks et 

des performances de fabrication du producteur mais aussi du délai de livraison des produits 

intermédiaires. Autrement dit, le niveau de service du système résulte des performances de fabrication et 

des décisions d’approvisionnement des stocks de deux entreprises.  

Nous supposons que chaque entreprise est une entité individuelle qui vise à optimiser sa politique 

d’approvisionnement par rapport à ses propres critères économiques. Dans cette chaîne logistique 

décentralisée, les décisions distribuées des partenaires peuvent être moins efficaces qu’un mécanisme 

maximisant les performances globales de la chaîne. Un tel mécanisme déterminerait les niveaux 

d’utilisation des ressources de stockage des entreprises dans le but d’obtenir un niveau de service 

satisfaisant. Dans le système décentralisé, l’existence et l’utilisation de ressources de stockage génèrent 

des coûts pour le fournisseur mais peuvent assurer au producteur un approvisionnement satisfaisant en 

quantité et en délai. Par contre, le fournisseur n’a pas un intérêt direct concernant le niveau de service de 

la chaîne. Le système décentralisé nécessite alors des mécanismes de coordination motivant le fournisseur 

à opter pour un niveau d’utilisation de ressources de stockage qui permet d’obtenir des niveaux 

satisfaisants pour le délai de livraison des produits intermédiaires et par conséquent pour le délai de 

livraison des produits finis. Dans ce chapitre, nous proposons un contrat de coordination qui permet 

d’amener les performances du système décentralisé vers les performances théoriques du modèle 

centralisé.  

Cachon (1999a), Cachon et Zipkin (1999), Lee et Whang (1999) et Porteus (2000) étudient la 

problématique de gestion des stocks dans les chaînes logistiques décentralisées. Cachon et Zipkin (1999) 

analysent une chaîne logistique à deux niveaux, constituée d’une part d’un détaillant ayant une demande 

aléatoire stationnaire et d’autre part de son fournisseur. Les deux entreprises ont des délais 

d’approvisionnement certains. Clark et Scarf (2004) montrent qu’une politique de stock nominal est 

optimale pour ce système. Dans les jeux étudiés, la stratégie de chaque acteur détermine son niveau de 
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stock nominal. Cachon et Zipkin (1999) montrent que, même quand le fournisseur partage les coûts de 

rupture de stock du détaillant, l’équilibre de Nash ne correspond pas à la solution optimale du système 

centralisé. Ils proposent un contrat de coordination définissant un paiement de transfert linaire. Pour un 

système similaire, Lee et Whang (1999) proposent un paiement de transfert non-linéaire qui correspond 

aux paiements utilisés par Clark et Scarf (2004). Porteus (2000) propose l’utilisation des jetons de 

responsabilité. Le fournisseur envoi chez le détaillant un jeton de responsabilité chaque fois qu’une 

commande de détaillant ne peut pas être satisfaite à cause d’une rupture de stock. Du point de vue du 

détaillant, le jeton envoyé correspond à un produit réel. Les mécanismes de coordination proposés par Lee 

et Whang (1999) et Porteus (2000) sont similaires car ils compensent les pertes du détaillant résultant des 

ruptures de stock du fournisseur. Le détaillant choisit alors son niveau de stock nominal sans prendre en 

compte les délais de livraisons du fournisseur. Les trois mécanismes cités coordonnent la chaîne 

logistique, c’est-à-dire que leur utilisation ramène l’équilibre du système décentralisé vers la solution 

optimale du système centralisé, qui peut être obtenue en utilisant algorithme de Clark et Scarf (2004).  

Dans ce chapitre, nous généralisons les études citées en considérant que le système de fabrication de 

chaque étage est à capacité limitée et que les temps de fabrication des produits chez les entreprises sont 

des variables aléatoires. Nous proposons un contrat de coordination qui définit le prix d’achat des 

produits intermédiaires en fonction du délai de livraison observé du fournisseur. L’application de ce 

contrat impose une pénalité chez le fournisseur pour les livraisons retardées de produits intermédiaires. 

Nous montrons qu’en utilisant ce contrat, les pertes du producteur résultant des ruptures de stock du 

fournisseur ne sont pas totalement compensées et que le producteur détermine son niveau de stock 

nominal en prenant en compte les délais de livraison du fournisseur. Nous montrons ainsi que le contrat 

proposé coordonne la chaîne logistique analysée.  

Par la suite, nous supposons que les commandes des clients finaux arrivent chez le producteur selon un 

processus de Poisson et que les temps de fabrication des produits dans les entreprises sont des variables 

aléatoires suivant des lois exponentielles. Nous pouvons mentionner plusieurs travaux qui analysent les 

systèmes avec demande et temps de fabrication aléatoires en s’appuyant sur la théorie des files d’attente. 

Caldentey et Wein (2003) étudient les interactions entre un producteur fabriquant les produits finis et son 

détaillant. Le système de fabrication du producteur fonctionne comme une file d’attente M/M/1. Le 

détaillant dispose d’un stock de produits finis. Les auteurs montrent qu’un équilibre de Nash existe quand 

le producteur contrôle son taux de production et le détaillant son niveau de stock nominal. Jemai (2003)  

et Jemai et Karaesmen (2007) analysent un système dans lequel les deux entreprises, le producteur et le 

détaillant, disposent de stocks locaux et contrôlent leurs niveaux de stocks nominaux. Le producteur 

possède un système de fabrication à capacité limitée. Le temps de transport entre les installations de stock 

des entreprises est supposé négligeable. Les auteurs montrent qu’un équilibre de Nash existe sous 
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différentes hypothèses. Cachon (1999b) propose différents mécanismes de coordination pour un système 

similaire en supposant qu’une demande est perdue si elle n’est pas satisfaite.  

Gupta et Weerawat (2006) s’intéressent aux interactions entre un producteur de produit fini et son 

fournisseur de produit intermédiaire en supposant que le producteur ne dispose pas de stocks de sortie. Le 

système de fabrication de chaque entreprise est à capacité limitée. Les auteurs proposent des contrats de 

partage des revenus qui peuvent coordonner cette chaîne logistique. Gupta et al. (2004) généralisent cette 

étude à un système dans lequel le producteur dispose d’un stock de produits finis. Ils proposent des 

contrats de partage des revenus qui imposent une pénalité chez le fournisseur pour les demandes retardées 

du producteur. Ils démontrent ainsi que la valeur optimale du niveau de stock nominal du producteur peut 

être obtenue avec une recherche numérique dans un intervalle fermé.  

Dans ce chapitre, nous proposons un contrat qui impose une pénalité chez le fournisseur seulement pour 

les ruptures de stock de produits intermédiaires. Le fournisseur n’est pas concerné par les ruptures de 

stock de produits finis qui peuvent aussi être provoquées par des temps de fabrication longs ou par un 

niveau de stock nominal insuffisant du producteur. Contrairement à Gupta et al. (2004), nous montrons 

que les niveaux de stocks nominaux des entreprises et les paramètres du contrat proposé peuvent êtres 

optimisés simultanément. 

Après cette introduction, nous exposons le modèle de pilotage de flux étudié. La troisième section est 

consacrée aux calculs des mesures des performances du système analysé. Dans la quatrième section, nous 

définissons un jeu de Stackelberg dans lequel le producteur est le meneur et le fournisseur est le suiveur. 

Nous déterminons ensuite l’équilibre de Stackelberg du système décentralisé. Nous utilisons la solution 

optimale du système centralisé pour montrer l’efficacité du contrat proposé. Nous déterminons la solution 

optimale du système centralisé dans la quatrième section. Nous terminons ce chapitre par des conclusions.  

4.2. MODÈLE DE PILOTAGE DE FLUX 

Dans le système analysé, chaque entreprise dispose d’un stock de sortie à partir duquel ses demandes vont 

être servies. Quand la demande arrive, elle est satisfaite s’il y a des produits en stock, sinon elle est 

retardée. La gestion de stock dans les entreprises est accomplie suivant la politique de stock nominal. À 

l’état initial, le stock de l’entreprise de niveau i = 1, 2 contient le niveau de stock nominal « Si » qui 

détermine le niveau maximal du stock. Le réapprovisionnement du stock est déclenché lorsque la position 

de stock devient inférieure au niveau Si, c’est-à-dire chaque fois qu’une demande arrive. Nous supposons 

que la demande arrive chez le producteur à chaque fois en quantité unitaire et selon un processus de 

Poisson ayant le taux λ. Pour simplifier les notations, nous supposons que le producteur utilise un produit 

intermédiaire délivré par le fournisseur pour fabriquer un produit fini. De la même façon, le fournisseur 

utilise une unité de matière première pour fabriquer un produit intermédiaire. Les entreprises ne disposent 
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pas de stocks d’entrée. Selon cette dépendance, à chaque niveau i = 1, 2, l’arrivée d’une demande unitaire 

déclenche, en interne, un ordre de fabrication unitaire et en même temps une commande unitaire pour 

l’entreprise de niveau i – 1. Ainsi, l’arrivée d’une demande chez le producteur génère simultanément une 

demande unitaire pour chaque entreprise de niveau antérieur. Par hypothèse, l’entreprise de niveau « 0 » 

est un stock infini de matière première et les temps de transport des produits entre les étages sont 

négligeables. Sous ces hypothèses, les matières premières sont toujours disponibles. Par conséquent, le 

fournisseur reçoit une matière première chaque fois qu’une demande arrive.  

En appliquant la politique de stock nominal (Si – 1, Si), le système de fabrication fonctionne si le niveau 

de stock est inférieur au niveau Si dans le but de le ramener à son niveau maximal. Les temps de 

fabrication du produit intermédiaire chez le fournisseur et du produit fini chez le producteur sont des 

variables aléatoires à distribution de probabilité exponentielle ayant respectivement les taux μ1 et μ2       

(μ1 ≠ μ2). Le taux d’utilisation ρi = λ / μi de chaque entreprise i = 1, 2 satisfait la condition de stabilité      

ρi < 1. Quand le processus de fabrication d’une unité est terminé, l’unité prend sa place dans le stock de 

sortie correspondant s’il n’y a pas de ruptures de stock, ou bien elle est utilisée pour satisfaire les 

commandes retardées en suivant l’ordre FIFO. Lorsqu’une unité est envoyée d’un étage à l’autre en 

réponse à une demande, l’unité rejoint une file d’attente à capacité illimitée devant le serveur suivant. 

Selon ces hypothèses, les produits intermédiaires dans le système sont partagés entre le stock de sortie du 

fournisseur et la file d’attente du producteur. Dans la Figure 4.2, la répartition physique des produits 

intermédiaires entre les entreprises est représentée par deux stations de synchronisation consécutives. 

 
Figure 4.2. Représentation du système par les files d’attente 

Pour chaque niveau i = 1, 2, l’évolution du système est décrite en utilisant des variables d’état en régime 

permanent :  

Pi : le nombre de commandes en attente de fabrication au niveau i 

Ki : le nombre de commandes en attente de fabrication et en fabrication au niveau i (Pi plus l’unité  

  éventuellement en cours de fabrication) 

Ci : le nombre d’unités délivrées par l’entreprise de niveau i – 1 et en attente de fabrication  

  au niveau i  
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Ni : le nombre d’unités délivrés par l’entreprise de niveau i – 1 en attente de fabrication et en  

  fabrication au niveau i (Ci plus l’unité éventuellement en cours de fabrication) 

Ii : le niveau de stock possédé du niveau i 

Bi : le niveau de rupture de stock du niveau i 

Notons que chaque vecteur d’état 2,1)( == iiXX , X = P, K, C, N, I, B, est non-négatif, X ≥ 0, par 

définition.  

Selon la politique de stock nominal, la position de stock (= commandes attendues + quantité en stock – 

demandes retardées) reste constante au niveau Si. Donc, Si = Ki + Ii – Bi en régime permanent. Par 

conséquent, Ii = [Si – Ki]+ et Bi = [Ki – Si]+ où [x]+ dénote max{x, 0}. Sous l’hypothèse que les matières 

premières sont toujours disponibles, K1 = N1 chez le fournisseur. Par contre, le nombre de commandes 

dans le système de fabrication du producteur, K2, dépend du niveau de rupture de stock du fournisseur : 

K2 = B1 + N2 (Lee et Zipkin, 1992 ; Gupta et Selvaraju, 2006).  

Notons que ce système de stock nominal peut aussi être représenté sans prendre en compte la répartition 

physique (ou conceptuelle) des produits intermédiaires entre les entreprises (Figure 4.3). Pour une telle 

représentation, qui est plus adaptée pour un système centralisé, la relation K2 = B1 + N2 peut être réécrit 

comme K2 = I1 + N2 + K1 – S1 (Duri et al., 2000). 

 
Figure 4.3. Représentation du système sans la répartition physique des produits intermédiaires  

L’évolution du système peut être décrite par une chaîne de Markov en temps continu en utilisant le 

vecteur d’état 2,1)( == iiKK  qui satisfait les conditions K ≥ 0 et K2 ≥ K1 – S1 (Lee et Zipkin, 1992). La 

condition K2 ≥ K1 – S1 assure que la relation K2 = I1 + N2 + K1 – S1 soit toujours satisfaite. Selon la relation 

K2 = I1 + N2 + K1 – S1, quand le niveau de stock possédé chez le fournisseur « I1 » et le nombre de produits 

intermédiaires dans le système de fabrication du producteur « N2 » deviennent nuls, le producteur ne peut 

pas diminuer K2 avant que le fournisseur finisse le processus de fabrication d’un produit intermédiaire. 

Autrement dit, quand le nombre total de produits intermédiaires dans le système « I1 + N2 » devient nul, 

une pénurie de produit intermédiaire est provoquée chez le producteur. Cette pénurie bloque le système 

de fabrication de produits finis en présence des demandes.  
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Selon la loi de LITTLE (Kleinrock, 1975), des relations de dépendance similaires peuvent être établies 

pour les temps de séjour des commandes et les délais de livraison des entreprises. Soit Li le temps de 

séjour des commandes et Wi le temps de séjour des produits dans le système de fabrication de niveau        

i = 1, 2. Soit Di le délai de livraison de l’entreprise de niveau i = 1, 2. Le temps de séjour des commandes 

dans le système de fabrication du producteur « L2 » est défini comme la somme du délai provoqué par le 

fournisseur « D1 » et du temps de séjour des produits intermédiaires dans le système de fabrication du 

producteur « W2 »: L2=D1+W2. Sous l’hypothèse que l’entreprise de niveau « 0 » est un stock infini de 

matière première, L1 = W1 chez le fournisseur.  

Notons qu’une politique de stock nominal n’est pas nécessairement optimale pour le système analysé en 

tenant compte du nombre d’en-cours, c’est-à-dire du nombre total de produits intermédiaires dans le 

système (Zipkin, 2000). Veatch et Wein (1994) analysent un système où chaque unité de produit fini dans 

le stock induit un coût de stockage h > 1, chaque demande retardée de produit fini induit un coût de 

rupture de stock b et chaque unité de produit intermédiaire dans le système induit un coût de stockage 

égal à 1 par unité de temps. Le critère à minimiser est le coût moyen actualisé sur un intervalle de temps 

infini. Les auteurs montrent qu’une politique de stock nominal n’est jamais optimale pour le système 

analysé. Ils utilisent la programmation dynamique afin de déterminer la meilleure politique de pilotage de 

flux et montrent que la politique optimale peut être une politique compliquée et difficile à appliquer. Un 

des avantages des politiques de stock nominal est leur facilité d’implémentation. Pour cette raison, les 

politiques de stock nominal sont souvent préférées pour le pilotage des systèmes à structure linéaire. 

En utilisant la même approche que celle utilisée par Veatch et Wein (1994), Karesmen et Dallery (2000) 

comparent les performances des politiques de stock nominal, des politiques Kanban et des politiques 

Kanban généralisé. Les analyses numériques effectuées montrent que la meilleure politique de stock 

nominal est moins performante que la meilleure politique Kanban ou que la meilleure politique Kanban 

généralisé dans le cas où le producteur a un taux de fabrication plus faible. La meilleure politique Kanban 

généralisé est en générale plus performante que la meilleure politique de stock nominal ou que la 

meilleure politique Kanban. Zipkin (2000) compare aussi les performances de ces trois politiques de 

pilotage de flux par des analyses numériques et montre que les différences entre les coûts optimaux sont 

légères. En outre, les analyses numériques effectuées par Karesmen et Dallery (2000) et Zipkin (2000) 

montrent que les différences entre les niveaux de stocks nominaux de la meilleure politique de stock 

nominal et de la meilleure politique Kanban généralisé sont au plus 1. Pour des systèmes mono-étage de 

production/stockage, Liberopoulos et Dallery (2002) conjecturent que le niveau de stock nominal de la 

meilleure politique Kanban généralisé est égal au niveau de stock nominal de la meilleure politique de 

stock nominal. Selon ces résultats, même si la meilleure politique de stock nominal n’est pas 

nécessairement optimale pour le système analysé, elle est plutôt performante. La meilleure politique de 
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stock nominal peut aussi être utilisée afin de paramétrer une politique Kanban généralisé de façon 

approchée.  

4.3. CALCULS DES MESURES DE PERFORMANCES 

Dans cette étude, nous utilisons les niveaux moyens de stock possédé et les niveaux moyens de rupture de 

stock des entreprises comme des mesures de performances du système analysé. Soit }Pr{ iik kKP
i

==  la 

probabilité d’avoir ki commandes dans le système de fabrication de niveau i = 1, 2. En utilisant cette 

définition, le niveau moyen de stock possédé ][ iIE  et le niveau moyen de rupture de stock ][ iBE  sont 

calculés par les équations : 
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Dans la suite, nous analysons le système de fabrication de chaque niveau i = 1, 2 afin de déterminer la 

probabilité 
ikP et les mesures de performances ][ iIE  et ][ iBE . 

4.3.1. Le système de fabrication de produits intermédiaires  

Sous l’hypothèse que les matières premières sont toujours disponibles, l’arrivée des matières premières 

chez le fournisseur suit exactement la demande finale. C’est donc un processus de Poisson ayant le taux 

λ. Ainsi, nous pouvons modéliser le système de fabrication chez le fournisseur comme une file d’attente 

M/M/1 avec taux d’utilisation ρ1 = λ / μ1.  Sous ces conditions, le nombre de commandes dans le système 

de fabrication « K1 » est égal au nombre de clients dans la file M/M/1 (λ, μ1). 

La probabilité d’avoir k1 commandes dans le système de fabrication est définie par : 

)1( 11
1

1
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kP                  (4.3) 

En utilisant les équations (4.1), (4.2) et (4.3), le niveau moyen de stock possédé E[I1] et le niveau moyen 

de rupture de stock E[B1] sont obtenus comme suit : 
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La probabilité d’avoir une rupture de stock chez le fournisseur est 1
1111 }Pr{}0Pr{ SSKI ρ=≥== . 

Notons que le temps de séjour des produits dans le système de fabrication du fournisseur « W1 » est égal 

au temps de séjour dans la file M/M/1 (λ, μ1). Nous savons que le temps de séjour dans une file           

M/M/1 (λ, μi) est une variable aléatoire qui suit une loi exponentielle ayant le taux μi – λ. Le délai de 

livraison du fournisseur « D1 » est nul si I1 > 0 et égal à W1 si I1 = 0. Dans la Figure 4.4, le délai de 

livraison du fournisseur est représenté par une phase (voir l’annexe C) ayant le taux exponentiel μ1 – λ. Le 

niveau moyen du délai de livraison du fournisseur s’écrit alors : 
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L’expression (4.6) satisfait la relation λ/][][ 11 BEDE = .  

 
Figure 4.4. Représentation de D1 par une phase 

4.3.2. Le système de fabrication de produits finis 

L’analyse exacte de ce système de fabrication est possible seulement si le fournisseur produit à la 

commande ou s’il possède un stock infini de produits intermédiaires. Dans le cas où le fournisseur produit 

à la commande avec S1 = 0, le système à deux étages fonctionne comme un réseau de files d’attente en 

tandem où l’arrivée des produits intermédiaires dans la file d’attente de fabrication du producteur est un 

processus de Poisson ayant le taux λ. Par conséquent, le nombre d’unités dans le système de fabrication 

du producteur « N2 » est égal au nombre de clients dans une file M/M/1 avec taux d’utilisation ρ2 = λ / μ2. 

De la même façon, dans le cas limite où S1 → ∞, le système de fabrication de chaque niveau fonctionne 

comme une file d’attente M/M/1. 

Dans le cas général où 0 < S1 < ∞, l’arrivée des produits intermédiaires chez le producteur n’est plus un 

processus de Poisson. Étant donnée l’arrivée d’un produit intermédiaire à l’instant t, le temps pour la 

prochaine arrivée est égal au temps d’inter-arrivées des demandes si I1(t) > 0, au temps de fabrication 

d’un produit intermédiaire si B1(t) > 0, et au maximum des deux si  I1(t) – B1(t) = 0 (Buzacott et al., 

1991). Selon ces dépendances, les temps d’inter-arrivées des produits intermédiaires sont successivement 

corrélés. Autrement dit, il existe des dépendances probabilistes entre W2 et W1 ainsi que N2 et N1 (Lee et 

μ1 – λ
Pr{I1 = 0}
 

Phase 1
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Zipkin, 1992). Par conséquent, le système de fabrication du producteur ne peut pas être modélisé comme 

une file d’attente élémentaire. L’évaluation exacte de ce système de fabrication nécessite l’analyse de la 

chaîne de Markov en temps continu correspondante, en s’appuyant par exemple sur des outils de 

simulation. 

Lee et Zipkin (1992) et Buzacott et al. (1991) proposent des méthodes approximatives (appelées 

respectivement LZ et BPS1) pour l’évaluation analytique des performances des systèmes de stock nominal 

à n étages avec Si ≥ 0 pour i = 1,…,n. Les méthodes LZ et BPS1 se basent sur l’hypothèse que l’arrivée 

des produits à chaque niveau i > 1, est un processus de Poisson ayant le taux λ. Sous cette hypothèse, le 

système de fabrication de chaque niveau i fonctionne comme une file d’attente M/M/1 (λ, μi) en isolation. 

En utilisant cette hypothèse, Buzacott et al. déterminent l’espérance du délai de livraison ][ iDE  de 

chaque niveau i. Lee et Zipkin déterminent les niveaux moyens des variables d’état en régime permanent 

][ iXE , Xi = Ki, Ii, Bi, i = 1,…,n. Basées sur la même hypothèse, les deux méthodes donnent les mêmes 

résultats analytiques. Duri et al. (2000) montrent l’équivalence de ces deux méthodes et proposent des 

extensions de la méthode LZ pour des systèmes de stock nominal avec des temps de fabrication suivant 

des lois de type phase. Lee et Zipkin (1995) et Wang et Su (2007) généralisent la méthode LZ pour des 

systèmes de stock nominal plus complexes.  

Buzacott et al. proposent aussi une méthode alternative (appelée BPS2) pour un système à deux étages. Ils 

déterminent la distribution de probabilité du temps d’inter-arrivées des produits à deuxième niveau et 

traitent le système de fabrication de deuxième niveau comme une file d’attente G/M/1. Notons que la 

méthode BPS2 est encore une méthode approximative car elle méconnaît le fait que les temps d’inter-

arrivées des produits à deuxième étage sont successivement corrélés. Gupta et Selvaraju (2006) proposent 

une méthode approximative (appelée GS) qui se base sur des améliorations de la méthode BPS2 ainsi que 

des extensions pour un système à n étages.  

Les analyses numériques de Gupta et Selvaraju montrent que, dans un système à deux étages, les erreurs 

moyennes absolues obtenues par les méthodes LZ (ou BPS1), BPS2 et GS sont respectivement 1.97 %,  

1.4 % et 0.71 % pour les valeurs de ][ 2KE  et 4.93 %, 4.65 % et 2.79 % pour les valeurs de ][ 2BE . Les 

méthodes BPS2 et GS peuvent sous-estimer les valeurs réelles de ][ 2KE  et ][ 2BE . Néanmoins, la 

méthode LZ (ou BPS1) fourni toujours des bornes supérieure pour ][ 2KE  et ][ 2BE .  

Liu et al. (2004) analysent un système dans lequel les temps d’inter-arrivées des demandes ainsi que les 

temps de fabrication des produits suivent des lois générales. Ils proposent une méthode approximative 

pour caractériser le processus d’arrivée des produits à chaque niveau i. Afin de déterminer ][ iKE , ils 

supposent que Ni est indépendant de Bi-1. Autrement dit, ils traitent le système de fabrication de niveau i 

comme une file d’attente G/G/1. Pour un système où les temps d’inter-arrivées des demandes et les temps 
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de fabrication des produits suivent des lois exponentielles, leur méthode détermine que l’arrivée des 

produits à chaque niveau est un processus de Poisson et donne donc les mêmes résultats analytiques que 

la méthode LZ.  

Dans cette étude, nous adoptons la méthode approximative LZ afin de développer des résultats 

analytiques. Lee et Zipkin utilisent la méthode analytique proposée par Sovorons et Zipkin (1991) pour 

les systèmes de stock nominal avec temps de séjour des produits dans les étages indépendants et 

exogènes. La méthode de Sovorons et Zipkin (1991) se base sur les propriétés des lois de type phase 

(Neuts, 1994) et utilise des représentations du type matrice-exponentielle. Dans la suite, la méthode LZ 

est utilisée pour calculer approximativement 
2kP  en utilisant des fonctions analytiques des distributions 

de densité de probabilité à la place des représentations matrice-exponentielle. L’application de la méthode 

LZ pour un système à n étages est détaillée dans l’annexe C.  

4.3.2.1. La méthode approximative LZ 

Sous l’hypothèse que l’arrivée des produits intermédiaires chez le producteur est un processus de Poisson 

ayant le taux λ, le temps de séjour des produits dans le système de fabrication du producteur « W2 » est 

indépendant du temps de séjour des produits dans le système de fabrication du fournisseur « W1 » et est 

égal au temps de séjour dans une file M/M/1 (λ, μ2). Rappelons que le temps de séjour des commandes 

dans le système de fabrication du producteur est défini par L2 = D1 + W2. L’hypothèse d’indépendance des 

temps de séjour des produits dans les systèmes de fabrication consécutifs nous permet d’écrire la fonction 

de densité de probabilité )(
2

tfL  comme un produit de convolution, 

( ) dsstftftfftftf
t

WDWDWDL ∫ −=== +
0

 )()()( *)()(
2121212

 

où « * » est l’operateur de convolution. Par la suite, le temps de séjour des commandes dans le système de 

fabrication suit une loi de type phase dont la représentation graphique est donnée dans la Figure 4.5. 

Selon cette représentation, l’attente provoquée par une rupture de stock du produit intermédiaire est une 

opération supplémentaire chez le producteur. Cette opération est exécutée qu’avec une probabilité égale à 

la probabilité de rupture de stock chez le fournisseur. 

 
Figure 4.5. Représentation de L2 par une loi de type phase 

Pr{I1 > 0} 

μ1 – λ μ2 – λ
Pr{I1 = 0}
 

Phase 1 Phase 2
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Nous pouvons réécrire la fonction de densité de probabilité )(
2

tfL  comme 

)()1()()(
2

1

21

1

2 11 tftftf W
S

WW
S

L ρρ −+= +  

où ( ) dsstftftfftf
t

WWWWWW ∫ −==+
0

 )()()( *)(
212121

. 

En supposant ρ1 ≠ ρ2, la fonction de densité de probabilité hypo-exponentielle )(
21

tf WW +  est  

tt
WW eetf )(

2
21

12)(
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21

21 21

21
)()1()()1()( λμλμ λμ
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En développant, la fonction )(
2

tfL est obtenue comme suit : 

t
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Le nombre de commandes dans le système de fabrication « K2 » étant égal au nombre de demandes 

arrivant pendant le temps de séjour « L2 », nous pouvons obtenir la probabilité d’avoir k2 demandes dans 

le système de fabrication : 
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A partir de cette expression, nous calculons le niveau moyen de stock et le niveau moyen de rupture de 

stock : 
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La probabilité d’avoir une rupture de stock chez le producteur est 

2
1

2
1

2
21

2
1

1
1

21

2
1

1
222

)1(1)1(}Pr{}0Pr{ S
S

S
S

SKI ρ
ρρ
ρρρ

ρρ
ρρ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=≥==
++

. 



Optimisation des décisions dans une chaîne logistique décentralisée à deux étages de production/stockage 103

Lee et Zipkin déterminent la fonction de densité de probabilité du délai de livraison du producteur en 

utilisant la propriété donnée par Sovorons et Zipkin (1991) : le nombre de commandes retardées « B2 » est 

égal au nombre de demandes arrivant pendant le délai de livraison « D2 ». En combinant cette propriété 

avec les propriétés des lois de type phase, le délai de livraison du producteur suit une loi de type phase 

(Figure 4.6) avec la fonction de densité de probabilité 

( ) )(}Pr{}Pr{)(}Pr{)(
2212 21122211 tfSSKSKtfSSKtf WWWD +≥−≥++≥= +  

où 21
1211 }Pr{ SSSSK +=+≥ ρ . 

 
Figure 4.6. Représentation de D2  par une loi de type phase 

Le niveau moyen du délai de livraison du fournisseur est obtenu comme suit : 
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L’expression (4.9) satisfait la relation λ/][][ 22 BEDE = . Notons que la méthode approximative LZ est 

exacte dans le cas où S1 = 0.  

4.4. SYSTÈME DÉCENTRALISÉ ET ÉQUILIBRE DE STACKELBERG 

Dans le système décentralisé étudié, chaque entreprise décide de son niveau de stock nominal Si ≥ 0 dans 

le but de maximiser son profit moyen. À chaque niveau i = 1, 2, chaque unité produite induit un coût de 

production ci. Le prix de vente d’un produit fini est p2 ( p2 ≥ c1 + c2 ). Nous supposons que le prix d’achat 

d’une matière première est inclus dans le coût unitaire de production c1. Puisque chaque entreprise 

dispose de stocks pour servir ses demandes, les coûts de stockage sont encourus à chaque niveau i = 1, 2 : 

chaque unité dans le stock de niveau i induit un coût de stockage hi par unité de temps. Cependant, les 

coûts de rupture n’apparaissent que chez le producteur, pour les livraisons retardées de produits finis : 

chaque demande de produit fini retardée induit un coût de rupture de stock b2 par unité de temps.  

D’après une hypothèse générale en théorie de gestion des stocks, le coût de stockage d’un produit 

augmente avec la valeur ajoutée. Nous supposons donc h2 > h1. Nous pourrions aussi supposer que le 

fournisseur est chargé d’un coût unitaire de stockage h1 pour chaque produit intermédiaire présent dans le 

Pr{K2 ≥ S2} – Pr{K1 ≥ S1+S2} 

μ1 – λ μ2 – λPr{K1 ≥ S1+S2} 
 Phase 1 Phase 2
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système de fabrication du producteur. Par contre, la considération de ces coûts additionnels ne changerait 

pas les calculs car, en utilisant la méthode LZ, l’espérance « ][ 21 NEh  » est une constante. Nous excluons 

ce type des coûts pour simplifier la présentation. 

Dans le cas d’un système centralisé, le problème consiste à trouver les niveaux de stocks nominaux qui 

maximisent l’espérance de profit de la chaîne logistique globale. L’espérance de profit du système 

centralisé s’écrit 

][][][)( ),( 222211212210 BEbIEhIEhccpλSS −−−−−=π .                    (4.10) 

Donc, le niveau de stock nominal du premier étage, S1, du système centralisé est déterminé en prenant en 

compte les coûts de rupture de produits finis. Par contre, dans le système décentralisé, le fournisseur n’a 

pas intérêt à installer un niveau de stock nominal positif. Une approche possible pour motiver le 

fournisseur à installer un niveau de stock nominal positif est de partager les coûts de rupture de stock de 

produits finis entre le fournisseur et le producteur, avec une fraction x ∈ [0,1] qui est supposée exogène. 

En utilisant cette approche, chaque demande de produit fini retardée induit un coût « x b2 » chez le 

fournisseur et « (1–x) b2 » chez le producteur (Caldentey et Wein, 2003; Cachon et Zipkin, 1999). Ces 

coûts de rupture peuvent être interprétés comme les pénalités de bonne volonté qui n’ont pas une 

influence égale sur les entreprises. Dans cette étude, l’objectif est de définir un mécanisme de 

coordination qui se base plutôt sur les coûts locaux de rupture de stock représentant les pénalités de 

livraison retardée.  

Nous définissons un jeu de Stackelberg où le producteur (le meneur) propose un contrat fixant son prix 

d’achat. Nous appelons ce contrat (p1,b1). Le contrat (p1,b1) définit le prix d’achat d’un produit 

intermédiaire comme « 11111 )( DbpDP −=  » où D1 est le délai de livraison observé du fournisseur. Le 

producteur propose donc un prix ajusté en fonction du délai de livraison observé du fournisseur en 

imposant une pénalité pour les livraisons retardées de produits intermédiaires. Les paramètres de ce 

contrat, notamment p1 ≥ 0 et b1 ≥ 0, sont des variables de décision additionnelles du producteur. Le 

fournisseur reçoit le contrat proposé et décide de son niveau de stock nominal S1. Notons enfin, selon une 

hypothèse classique de cas limite pour un marché parfaitement compétitif, que le fournisseur n’accepte ce 

contrat que s’il lui permet d’obtenir un profit supérieur ou égal à zéro. Cette hypothèse n’est pas 

limitative dans la mesure où les résultats peuvent être facilement transposés au cas où le seuil 

d’acceptation du contrat n’est plus nul et correspond à une valeur de profit minimale. 

Le contrat (p1,b1) définit un paiement de transfert entre les acteurs. Le producteur paie le prix 111 Dbp −  

pour chaque produit intermédiaire qu’il achète à son fournisseur. L’espérance mathématique du paiement 

de transfert correspondant s’écrit 
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]−[= )(  )]([ 111111 DbpE,b,pSTE λ .                       (4.11) 

En utilisant la relation λ/][][ 11 BEDE = , nous pouvons réécrire l’espérance de paiement de transfert 

comme suit :  

]−[= 111111   )]([ BbpE,b,pSTE λ             (4.12) 

Par conséquent, il existe deux techniques possibles pour appliquer le contrat (p1,b1) : soit le producteur 

propose un prix ajusté en fonction du délai de livraison observé du fournisseur, soit il propose un prix 

d’achat constant et il impose une pénalité pour les ruptures de stock du fournisseur. Dans le deuxième cas, 

p1 représente le prix d’achat d’un produit intermédiaire et b1 représente la pénalité de rupture de stock par 

unité de temps pour une commande de produit intermédiaire retardée. Le producteur paie alors le prix p1 

pour chaque produit intermédiaire qu’il achète à son fournisseur et le fournisseur paie une pénalité de 

rupture de stock au producteur. Par la suite, afin de simplifier la présentation, nous supposons que le 

producteur applique le contrat (p1,b1) en proposant un prix d’achat constant p1 et une pénalité de rupture 

de stock b1. 

En utilisant le contrat (p1,b1), les espérances de profit du fournisseur et du producteur s’écrivent : 

][ )]([),,( 1111111111 IEhcλ,b,pSTEbpS −−=π                                    (4.13)  

)]([][][)( ),,,( 11122222211212 ,b,pSTEBEbIEhcpλbpSS −−−−=π        (4.14) 

En utilisant (4.12), nous obtenons 

][][)(),,( 1111111111 BEbIEhcpλbpS −−−=π ,                                   (4.15)  

][][][)( ),,,( 22221121211212 BEbIEhBEbcppλbpSS −−+−−=π .       (4.16) 

Dans la suite, nous supposons que Si est une variable de décision continue non-négative pour chaque 

entreprise de niveau i = 1, 2. Cette hypothèse méconnaît la restriction de Si à l’ensemble de nombres 

entiers non-négatifs, qui est plus adaptée aux applications industrielles. En contrepartie, cette hypothèse 

nous permet de développer des résultats analytiques qui peuvent être utilisés pour approximer les valeurs 

optimales entières. 

4.4.1. Problème d’optimisation du fournisseur 

Le problème d’optimisation du fournisseur consiste à trouver la valeur optimale de S1 qui maximise sa 

fonction d’utilité. En utilisant les expressions (4.4), (4.5) et (4.15), la fonction d’utilité du fournisseur 

),,()( 111111 bpSS ππ =  s’écrit de la manière suivante : 
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La dérivée première de la fonction )( 11 Sπ  s’écrit  
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La dérivée deuxième est obtenue comme 
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Soit min
1b la valeur de b1 qui satisfait 0)0(1 =′π : 
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ρρ
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Il est clair que 0)( 11 <′′ Sπ . Par conséquent, la fonction )( 11 Sπ  est concave pour S1 ≥ 0. En outre, 

0)( 11 <′ Sπ  si min
11 bb < . Donc, la fonction )( 11 Sπ  est décroissante pour S1 ≥ 0 dans le cas où min

11 bb < . En 

utilisant ces observations, nous définissons la meilleure stratégie du fournisseur en réponse à un contrat 

proposé par le producteur avec la propriété suivante.   

Propriété 4.1 : Étant donné le contrat (p1,b1), la valeur optimale du niveau de stock nominal qui 

maximise la fonction d’utilité du fournisseur )( 11 Sπ  est 
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où             

1111

11
1 ln)(

)1()(
ρρ

ρα
bh

hb
+

−−
= .                                      (4.20) 

Le seul paramètre du contrat qui a une influence sur la meilleure stratégie du fournisseur est la pénalité de 

rupture de stock b1. La valeur min
1b  est la valeur minimale de la pénalité b1 pour laquelle le fournisseur a 

intérêt à installer un niveau de stock nominal positif. 
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Pour montrer cette propriété, soit xxxx ln/)1()(1 −=ϕ . La fonction )(1 xϕ  est croissante pour )1,0(∈x , 

car 1ln −≤ xx  0>∀x  : 

0
)ln(

1ln)( 21 >
−−

=′
xx
xxxϕ  

Notons aussi que 1)(lim 1
1  

−=
−→

x
x

ϕ . Par conséquent, 0min
1 >b  et la relation min

11 bb >  est opérante. 

Nous observons que la meilleure stratégie du fournisseur )( 1
*
1 bS  est croissante en b1 pour min

11 bb > . 

Donc, le producteur peut augmenter le niveau de stock nominal du fournisseur en imposant une 

pénalité min
11 bb > . En outre, la condition de non-négativité 0)( 1

*
1 ≥bS  est naturellement satisfaite car 

1)( min
1 =bα .  

4.4.2. Problème d’optimisation du producteur 

En utilisant les expressions (4.7), (4.8) et (4.16), nous calculons la fonction d’utilité du producteur comme 

suit :  
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     (4.21) 

Le problème d’optimisation du producteur se formule de la manière suivante :  

Π1: ),,,(  max 112
*
12

,, 211

bpSS
Sbp

π                    (4.22) 

sous les contraintes  

),,(  maxarg 1111
*
1

1

bpSS
S

π=                     (4.23) 

0),,( 11
*
11 ≥bpSπ .                      (4.24) 

Le problème du producteur consiste à trouver les valeurs optimales des paramètres du contrat (p1,b1) et du 

niveau de stock nominal S2 qui maximisent son profit moyen et qui satisfont les contraintes (4.23) et 

(4.24). La contrainte de compatibilité d’incitation (4.23) définit la meilleure stratégie du fournisseur 

comme la stratégie maximisant sa fonction d’utilité. Rappelons que le fournisseur accepte un contrat si ce 
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contrat lui permet d’obtenir un profit non-négatif. La contrainte de rationalité individuelle (4.24) assure 

l’acceptation du contrat par le fournisseur en définissant une borne inférieure pour le profit maximal du 

fournisseur.  

Le producteur est le premier joueur dans ce jeu de Stackelberg. Donc, le producteur peut prédire la 

meilleure stratégie du fournisseur et il peut utiliser cette connaissance dans son problème d’optimisation. 

En connaissant la meilleure stratégie du fournisseur (4.19), le problème d’optimisation Π1 devient : 

Π2: ),,),((max 1121
*
12

,, 211

bpSbS
Sbp
π                     (4.25) 

sous la contrainte                            

0),),(( 111
*
11 ≥bpbSπ .                                                                    (4.26) 

4.4.2.1. Les valeurs optimales des paramètres du contrat 

Le Lagrangien du problème Π2  s’écrit  

),),((),,),((),,,( 111
*
111121

*
12112 bpbSubpSbSubpSL ππ +=       

où u est le paramètre de Lagrange correspondant à la contrainte (4.26). Nous calculons la dérivée partielle 

du Lagrangien par rapport à p1 : )1(/ 1 upL −−=∂∂ λ , et nous obtenons la valeur optimale du paramètre de 

Lagrange u*= 1 qui satisfait la condition d’optimalité 0/ 1 =∂∂ pL . Donc, d’après la condition nécessaire 

d’optimalité de Karush-Kuhn-Tucker, le profit du fournisseur est égal à zéro à l’optimum, ce qui indique 

que, la valeur de p1 qui maximise ),,),((),,( 1121
*
121122 bpSbSbpS ππ =  est )( 1

*
1 bp , qui satisfait 

0)),(),(( 11
*
11

*
11 =bbpbSπ . La propriété suivante définit la valeur optimale du prix d’achat proposé par le 

producteur. 

Propriété 4.2 : Étant donnés b1 et S2, la valeur optimale du prix d’achat p1 qui maximise 

),,( 1122 bpSπ s’écrit comme suit : 
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Analysons la valeur optimale de p1 en utilisant les équations (4.13) et (4.14). D’après l’expression (4.13), 

la condition 0),,( 1111 =bpSπ  implique 

][   )]([ 111111111 IEhcBEbp,b,pSTE +=][−= λλ .                      (4.28) 
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Autrement dit, le producteur propose un prix p1 qui compense la totalité des coûts opérationnels et des 

coûts de rupture du fournisseur quelle que soit la pénalité de rupture b1. Cette proposition laisse une 

marge de profit nulle pour le fournisseur. Le paiement de transfert correspondant à cette proposition est la 

somme des coûts opérationnels du fournisseur. Le producteur encourt alors les coûts opérationnels du 

fournisseur. En utilisant (4.28), nous pouvons réécrire l’expression (4.16) comme suit : 

][][][)( ),,,( 22221121211212 BEbIEhIEhccpλbpSS −−−−−=π                        (4.29) 

Par comparaison avec l’expression (4.10), l’expression (4.29) montre que, en appliquant le contrat (p1,b1), 

le producteur obtient le profit total de la chaîne logistique à deux-étages de production/stockage. 

Par la suite, nous cherchons la valeur optimale de la pénalité de rupture de stock b1 qui sert à contrôler le 

niveau de stock nominal du fournisseur S1. Afin de faciliter les formulations, nous utilisons ),( 122 bSπ  

pour indiquer )),(,),(( 11
*
121

*
12 bbpSbSπ : 
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La dérivée partielle de la fonction ),( 122 bSπ  par rapport à b1 pour min
11 bb > s’écrit  

1
2

11

2022211

1

122

ln)(
))()((),(

ρ
τπ

bh
Sbhhbh

b
bS

+
+−+

=
∂

∂                       (4.30) 

où  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−
−−

=
++

2

1
2

1

1
1
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21
20 11

)1)(1()(
22

ρ
ρ

ρ
ρ

ρρ
ρρτ

SS

S .          (4.31) 

Lemme 4.1 : )( 20 Sτ  est positive et décroissante pour S2 ≥ 0 avec (0,1])[0,:)( 20 →∞Sτ . 

Démonstration : Soit )1/(ln)( 1
2

2 xxxx S −= +ϕ . La fonction )(2 xϕ  est décroissante pour )1,0(∈x          

si S2 ≥ 0 : 

0
)1(

)1ln)1)1(((
1)1(

ln)1)1(()( 2
2

2
2

2

222

<
−

+−+−
=

−
+

−
+−

=′
x

xxxSx
x

x
x

xxSxx
SSS

ϕ  
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Par conséquent,  

0  
1

ln
1

ln)1)(1()(
2

2
1

2

1

1
1

1

21

21
20

22

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−
−−

=′
++

ρ
ρρ

ρ
ρρ

ρ
ρρτ

SS

ρ
S  

En outre, 1)0(0 =τ  et 0)(lim 20
2

=
∞→

S
S

τ .□ 

La propriété suivante caractérise la valeur optimale de la pénalité b1. 

Propriété 4.3 : Étant donné S2, la fonction d’utilité ),( 122 bSπ  est strictement quasi-concave pour 

min
11 bb >  et constante pour min

11 bb ≤ . La valeur optimale de la pénalité de rupture b1 qui maximise  

),( 122 bSπ  est  

⎪⎩

⎪
⎨
⎧

++≤
++>

=
)/()()( si          
 )/()()( si    )()(

22
min
1220

min
1

22
min
12202

opt
1

2
*
1 bhbhSb

bhbhSSbSb
τ
τ          (4.32) 

où 220222
opt
1 )()()( hSbhSb −+= τ . 

Démonstration : Si )/()()( 22
min
1220 bhbhS ++>τ , min

1
opt
1 bb > . Alors, (4.30) indique que ),( 122 bSπ  est 

strictement croissante pour opt
11

min
1 bbb <<  est strictement décroissante pour opt

11 bb > . Si 

)/()()( 22
min
1220 bhbhS ++≤τ , (4.30) indique que ),( 122 bSπ  est strictement décroissante pour 

min
11 bb > .□ 

Le lemme 4.1 montre que, si min
12 bb ≥ , il existe une valeur max

2S  qui satisfait 

22

min
12max

20
   )(

bh
bhS

+
+

=τ .             (4.33) 

Dans le cas où min
12 bb < , )/()()( 22

min
1220 bhbhS ++<τ  et min

12
*
1 )( bSb = . En effet, le coût de rupture du 

producteur est suffisamment bas pour que le producteur n’ait pas besoin de forcer le fournisseur à 

installer un niveau de stock nominal positif. Donc, le producteur propose la valeur minimale de la pénalité 

de rupture min
1b . En recevant le contrat )),(( min

1
min
1

*
1 bbp , le fournisseur installe  0)( min

1
*
1 =bS . 

Dans le cas où min
12 bb ≥ , la proposition du producteur dépend de son niveau de stock nominal S2. Si 

max
22 SS ≥ , )/()()( 22

min
1220 bhbhS ++≤τ  et min

12
*
1 )( bSb = . Autrement dit, en prenant en compte les taux 

de fabrication et les coûts opérationnels du système, le niveau de stock nominal du producteur est 
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suffisant pour satisfaire les demandes sans que le fournisseur installe un niveau de stock nominal positif. 

Dans ce cas, le producteur offre le contrat )),(( min
1

min
1

*
1 bbp  et le fournisseur installe 0)( min

1
*
1 =bS . Si 

max
22 SS < , )/()()( 22

min
1220 bhbhS ++>τ . Par conséquent, le producteur offre le contrat )),(( opt

1
opt
1

*
1 bbp  

et impose un niveau de stock nominal positif pour le fournisseur. En recevant ce contrat, le producteur 

installe un niveau de stock nominal positif, 0)( opt
1

*
1 >bS . Nous observons ainsi que la fonction )( 2

opt
1 Sb  

est décroissante pour 02 ≥S . Puisque le producteur couvre les coûts opérationnels du fournisseur (voir 

(4.29)), le producteur prend en compte les coûts de stockage du fournisseur quand il détermine la pénalité 

de rupture à proposer. Dans le cas où min
12 bb ≥ , le producteur ne propose jamais une pénalité de rupture 

plus élevée que b2 ,  22
*
1

min
1 )( bSbb ≤≤ . 

Dans tous les cas, en offrant le contrat )),(( *
1

*
1

*
1 bbp , le producteur obtient le profit total du système 

centralisé, en laissant le fournisseur avec un profit nul. Rappelons que la valeur de la pénalité de rupture 

b1 sert à  contrôler le niveau de stock nominal du fournisseur et a une influence indirect sur les grandeurs 

du paiement de transfert et du profit maximal du producteur seulement si min
11 bb > . Pour min

11 bb ≤ , la 

fonction d’utilité du producteur est constante en b1. Par conséquent, le contrat )),(( *
1

*
1

*
1 bbp  peut aussi être 

appliqué en définissant )( 2
*
1 Sb  comme suit : 

⎪⎩

⎪
⎨
⎧

++≤
++>

=
)/()()( si               0
 )/()()( si    )()(

22
min
1220

22
min
12202

opt
1

2
*
1 bhbhS

bhbhSSbSb
τ
τ  

Pour cette application, le producteur offre la pénalité 0)( 2
*
1 =Sb  si min

12 bb < ou si min
12 bb ≥  et  

max
22 SS ≥ . En utilisant (4.27), le contrat correspondant peut être écrit comme )0,( 1c . En recevant le 

contrat )0,( 1c , le fournisseur installe 0)0(*
1 =S .  

4.4.2.2. La valeur optimale du niveau de stock nominal 

Le problème d’optimisation restant consiste à trouver la valeur optimale du niveau de stock nominal S2 

qui maximise ))(,( 2
*
122 SbSπ . Soit ))(()( 2

opt
12 SbS αα =  et ))(,()( 2

*
12222 SbSS ππ =  avec la dérivée 

première : 

⎪⎩

⎪
⎨
⎧

++≤+−−
++>+−−

=′
)/()()(   si    )()(

  )/()()(   si    )()()(
22

min
122022222

22
min
122021222

22 bhbhSSbhh
 bhbhSSbhhS

ττ
ττπ  

où 
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2

2
1

2

21

212

1

1
1

1

21

212
21 1

ln)1()(1 
1

ln)1()()(
22

ρ
ρρ

ρρ
ρρα

ρ
ρρ

ρρ
ρρατ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

++ SS SSS ,           (4.34) 

2

2
1

2

21

21

1

1
1

1

21

21
22 1

ln)1(1 
1

ln)1()(
22

ρ
ρρ

ρρ
ρρ

ρ
ρρ

ρρ
ρρτ

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−+
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
−

=
++ SS

S .                   (4.35) 

Notons que la fonction )( 21 Sτ  est définie pour ),0[ max
22 SS ∈ . 

Lemme 4.2: )( 22 Sτ  est croissante pour  S2 ≥ 0. 

Démonstration: La fonction )(/1)( 13 xx ϕϕ =  est décroissante pour x∈ (0,1). Par conséquent, dans le cas 

où ji ρρ > , 
j

jj

i

ii

ρ
ρρ

ρ
ρρ

−
<

− 1
ln

1
ln  qui nous donne 1

ln)1(
ln)1(

<
−
−

iji

jij

ρρρ
ρρρ

 et 1
ln)1(
ln)1(

 
2
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iji
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. Donc, 

pour S2 ≥ 0, 
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En utilisant le lemme 4.2, la propriété suivante définit la valeur optimale de S2 pour le cas min
12 bb < . 

Propriété 4.3 : Dans le cas où min
12 bb < , la fonction d’utilité du producteur )( 22 Sπ  est concave pour        

S2 ≥ 0. La valeur optimale du niveau de stock nominal qui maximise )( 22 Sπ  est alors 2opt
2

*
2 SS =  qui 

satisfait  

22

2opt
22 )( 2

bh
hS
+

−
=τ .  

La fonction )( 21 Sτ  n’est pas nécessairement croissante pour ),0[ max
22 SS ∈ . Par contre, les analyses 

numériques effectuées montrent que la fonction d’utilité )( 22 Sπ  est strictement quasi-concave dans le cas 

où min
12 bb ≥ . Notons que, pour max

22 SS < , 1)( 2 <Sα  et par conséquent )()( 2221 SS ττ >  avec 

)()(lim max
2221max

22

SS
SS

ττ =
→

. En utilisant ces observations, la propriété suivante définit la valeur optimale 

du niveau de stock nominal S2 et les conditions d’optimalité nécessaires correspondantes.  

Propriété 4.4 : Dans le cas où min
12 bb ≥ , la fonction d’utilité du producteur )( 22 Sπ  est strictement 

quasi-concave pour S2 ≥ 0 si )/()( 22221 bhhS +−=τ  a une solution unique quand 
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)/()( 222
max
22 bhhS +−>τ  et )( 21 Sτ  est croissante en S2 quand )/()( 222

max
22 bhhS +−≤τ . Sous ces 

conditions, la valeur optimale du niveau de stock nominal qui maximise )( 22 Sπ  est   

⎪⎩

⎪
⎨
⎧

+−≤
+−>

=
 )/()(  si    

)/()(  si    

222
max
22

opt
2

222
max
22

opt
2*

2 2

1

bhhSS
bhhSSS

τ
τ  

où   
22

2opt
21

 )( 1

bh
hS
+

−
=τ  et 

22

2opt
22

 )( 2

bh
hS
+

−
=τ . 

La Figure 4.7 montre l’évolution des niveaux de stocks nominaux *
1S et *

2S  avec les différentes valeurs de 

ρ1 et h1. Pour chaque problème, min
11 bb >  et les conditions de quasi-concavité de la propriété 4.4 sont 

satisfaites. Pour h1 = 0.6,  le fournisseur installe un niveau de stock nominal positif, 0*
1 >S , si le taux de 

fabrication du fournisseur est faible en comparaison avec le taux de fabrication du producteur, μ1 < μ2. 

Néanmoins, pour h1 = 0.2, le producteur incite le fournisseur à installer un niveau de stock nominal positif 

même quand le taux de fabrication du fournisseur est plus élevé que le taux de fabrication du producteur, 

μ1 > μ2. Puisque le producteur compense les coûts de stockage du fournisseur en proposant le contrat 

)),(( *
1

*
1

*
1 bbp , le producteur force le fournisseur à installer un niveau de stock nominal élevé si le taux de 

fabrication et le coût unitaire de stockage du fournisseur sont faibles. Dans le cas où le coût unitaire de 

stockage du fournisseur est élevé, le producteur compense un faible taux de fabrication chez le 

fournisseur en augmentant le niveau de stock nominal *
2S . 

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  

0

2

4

6

8

10

12

14

16

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8  

Figure 4.7. Les niveaux de stocks nominaux *
2S  et ))(( *

2
*
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*
1 SbS  pour h2 = 0.8, b2 = 10, ρ2 = 0.5 
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4.5. PROBLÈME CENTRALISE ET PERFORMANCE DU CONTRAT 

Les performances optimales d’une chaîne logistique nécessitent l’exécution d’un ensemble précis 

d’actions. Les actions conduisant à l’obtention des performances optimales sont définies comme les 

décisions optimisant les objectifs de la chaîne logistique globale. Dans cette section, nous déterminons les 

actions optimales de la chaîne logistique analysée afin d’étudier l’efficacité du contrat proposé. 

Le profit moyen de la chaîne logistique centralisé (4.10) est la somme des fonctions d’utilité du 

fournisseur (4.17) et du producteur (4.21), ),,,(),,(),( 112121111210 bpSSbpSSS πππ += . Les actions 

déterminant les performances du système sont les niveaux de stocks nominaux S1 et S2.  

Gallego et Zipkin (1999) et Zipkin (2000) montrent que si la méthode LZ est utilisée pour déterminer 

approximativement les mesures de performance d’un système centralisé à n étages, alors l’algorithme de 

Clark et Scarf (2004) peut être utilisé pour calculer la meilleure politique de stock nominal du type 

échelon. Nous savons aussi que chaque politique de stock nominal du type échelon est équivalente à une 

politique de stock nominal du type installation. Par conséquent, les valeurs optimales des niveaux de 

stocks nominaux S1 et S2 peuvent être calculées en utilisant l’algorithme de Clark et Scarf. Par contre, les 

résultats de l’algorithme de Clark et Scarf ne sont pas analytiquement comparables avec l’équilibre de 

Stackelberg obtenu dans la section précédente. Afin de pouvoir comparer l’équilibre de Stackelberg avec 

la solution optimale de la chaîne logistique, nous calculons d’abord la valeur du niveau de stock nominal 

S1 qui maximise ),( 210 SSπ .   

La dérivée partielle de la fonction ),( 210 SSπ  par rapport à S1 s’écrit 

1

1
1

1
2022211

1

210

1
ln ))()((),( 1

ρ
ρρτ

−
++−−−=

∂
∂ +S

Sbhhhh
S

SSπ .  

 
En suite, 

1

2
1

1
1

202221
1

210

1
)(ln ))()((),( 1

ρ
ρρτ

−
++−−=

∂
∂ +S

Sbhhh
S

SSπ . 

Propriété 4.5 : Étant donné S2, la fonction d’utilité ),( 210 SSπ  est concave pour S1 ≥ 0 si 

)/()()( 22
min
1220 bhbhS ++>τ  et décroissante pour S1 > 0  si )/()()( 22

min
1220 bhbhS ++≤τ  La valeur 

optimale du niveau de stock nominal S1 qui maximise ),( 210 SSπ  est alors 

⎪⎩

⎪
⎨
⎧

++≤
++>

=
)/()()( if                           0
 )/()()( if    ln/))(ln()(

22
min
1220

22
min
122012

2
0
1 bhbhS

bhbhSSSS
τ
τρα . 
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Nous observons que ))(()( 2
*
1

*
12

0
1 SbSSS = . Par conséquent, 

)),()),(()),((()),(( 22
*
12

*
1

*
12

*
1

*
1222

0
10 SSbSbpSbSSSS ππ = . 

Notons que, dans la section précédente, nous avons utilise )( 22 Sπ  pour indiquer 

)),()),(()),((( 22
*
12

*
1

*
12

*
1

*
12 SSbSbpSbSπ . Ensuite, la valeur optimale du niveau de stock nominal S2 qui 

maximise )),(( 22
0
10 SSSπ  peut être obtenue par les propriétés 4.3 et 4.4, *

2
0
2 SS = . L’équilibre du système 

décentralisé correspond alors à la solution optimale du système centralisé : 

))(()( *
2

*
1

*
1

0
2

0
1 SbSSS =  

*
2

0
2 SS =  

Autrement dit, l’utilisation du contrat (p1,b1) ramène les performances du système décentralisé au niveau 

de celles du système centralisé. En utilisant le contrat (p1,b1), la fonction d’utilité du producteur devient 

identique à l’espérance de profit du système centralisé (voir (4.29) et (4.10)). Donc, le producteur opte 

pour les valeurs optimales des niveaux de stocks nominaux du système centralisé. Il utilise la valeur de la 

pénalité de rupture )( 0
2

*
1 Sb  pour inciter le fournisseur à installer )( 2

0
1 SS . En outre, l’espérance de profit 

total du système décentralisé dans l’équilibre de Stackelberg est égale à l’espérance de profit maximal du 

système centralisé : 

),,,(),,(),( *
1

*
1

*
2

*
1

*
2

*
1

*
1

*
1

*
1

0
2

0
1

*
0 bpSSbpSSS πππ +=  

Puisque le profit du fournisseur est nul dans l’équilibre de Stackelberg, 0),,( *
1

*
1

*
1

*
1 =bpSπ , le producteur 

obtient le profit total du système centralisé, ),(),,,( 0
2

0
1

*
0

*
1

*
1

*
2

*
1

*
2 SSbpSS ππ = . 

Propriété 4.6 : Dans le jeu de Stackelberg entre le producteur et le fournisseur, le producteur offre le 

contrat )),(( *
1

*
1

*
1 bbp  maximisant son espérance de profit. En recevant ce contrat, le fournisseur installe le 

niveau de stock nominal )( *
1

*
1 bS . Ce contrat permet au producteur d’obtenir l’espérance de profit total du 

système centralisé, en laissant le fournisseur avec une espérance de profit nulle. 

Un contrat est considéré efficace s’il coordonne la chaîne logistique, c’est-à-dire si son application 

positionne l’équilibre du système décentralisé à la solution optimale du système centralisé. Nous pouvons 

conclure que le contrat )),(( *
1

*
1

*
1 bbp  est efficace car il coordonne la chaîne logistique étudiée. Un autre 

aspect important est la facilité d’application d’un contrat. Un contrat qui est difficile à appliquer peut 

engendre des coûts administratifs trop élevés. Les contrats simples sont souvent préférés même s’ils 
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n’optimisent pas les performances de la chaîne logistique. Nous arguons que le contrat proposé dans cette 

étude est un contrat simple car le producteur peut appliquer ce contrat en proposant un prix d’achat 

unitaire qui dépende du délai de livraison observé du fournisseur, 1
*
1

*
1

*
111 )()( DbbpDP −=  (voir (4.11)). 

4.5.1. Prise en compte le pouvoir de négociation du fournisseur 

Dans le jeu de Stackelberg étudié, nous avons supposé que le producteur a une situation dominante 

comme celle d’un donner d’ordre. Étant le meneur, le producteur impose l’équilibre qui lui convient en 

agissant en premier. Le contrat proposé lui permet d’obtenir le profit total du système centralisé. Les 

résultats obtenus peuvent être généralisés pour un système dans lequel le fournisseur a un certain pouvoir 

de négociation. L’approche standard pour modéliser le pouvoir de négociation d’une entreprise est de 

supposer que l’entreprise a un profit de réservation positif et exogène (Cachon, 2003 ; Corbett et Tang, 

1999 ; Corbett et al. 2004). Le profit de réservation exprime l’opportunité de l’entreprise dans le marché 

et détermine le seuil d’acceptation d’un contrat. Autrement dit, l’entreprise accepte un contrat si ce 

contrat lui permet d’obtenir un profit supérieur ou égal à son profit de réservation. Le pouvoir de 

négociation d’une entreprise est supposé croissant avec le niveau de son profit de réservation. 

Supposons que le profit de réservation du fournisseur est 0min
1 >π . Pour ce cas, le problème 

d’optimisation du producteur Π1  peut être réécrit en remplaçant la contrainte (4.24) par 

min
111

*
11 ),,( ππ ≥bpS . 

Les valeurs élevées de min
1π  diminuent le pouvoir de négociation du producteur et peuvent même générer 

des profits négatifs pour le producteur. Pour aligner les pouvoirs de négociation des entreprise nous 

supposons ainsi que le profit minimal acceptable du producteur est 0min
2 >π . Si 

),( 0
2

0
1

*
0

min
2

min
1 SSπππ ≤+  alors nous pouvons montrer qu’il existe un équilibre de Stackelberg dans lequel 

le producteur offre le contrat )),(( *
1

*
1

**
1 bbp  où )( *

1
**

1 bp  est la valeur qui satisfait 

min
1

*
1

*
1

**
1

*
1

*
11 )),(),(( ππ =bbpbS : 

λ
π min

1*
1

*
1

*
1

**
1 )()( += bpbp  

En utilisant les équations (4.13) et (4.14), le paiement de transfert correspondant s’écrit comme la somme 

des coûts opérationnels du fournisseur et de son profit de réservation : 

min
1111111 ][  )]([ πλ ++= IEhc,b,pSTE . 
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En recevant le contrat )),(( *
1

*
1

**
1 bbp , le fournisseur installe )( *

1
*
1 bS . Le producteur installe *

2S . Donc , le 

contrat )),(( *
1

*
1

**
1 bbp  coordonne la chaîne logistique. Dans l’équilibre de Stackelberg, les espérances de 

profit des entreprises s’écrivent : 

min
1

*
1

*
1

*
1

*
1 ),,( ππ =bpS  

min
1

0
2

0
1

*
0

*
1

*
1

*
2

*
1

*
2 ),(),,,( πππ −= SSbpSS  

L’exigence du fournisseur pour obtenir au moins son profit de réservation en contractant avec le 

producteur oblige le producteur à partager le profit total du système centralisé avec le fournisseur. Le 

producteur n’accepte pas une relation contractuelle si min
2

min
1

0
2

0
1

*
0 ),( πππ <−SS .  

4.6. CONCLUSIONS 

Dans ce chapitre, nous avons étudié un modèle dynamique de flux reflétant les aspects aléatoires des 

demandes et des délais de livraisons dans les chaînes logistiques. L’évaluation exacte des mesures de 

performances du système analysé est possible seulement dans des situations particulières. Nous avons 

étudié le cas général avec Si ≥ 0 pour i = 1, 2 et nous avons déterminé les expressions analytiques des 

mesures de performances du système en nous basant sur la méthode approximative proposée par Lee et 

Zipkin (1992).  

Nous avons considéré que chaque entreprise de la chaîne est une entité individuelle qui est principalement 

concernée par l’optimisation de ses propres objectifs. Cette focalisation locale conduit souvent à une 

dégradation des performances pour l’ensemble de la chaîne. Nous avons défini un jeu de Stackelberg 

entre les acteurs en supposant que le producteur a une situation dominante. Ensuite, nous avons montré 

que les performances optimales peuvent être obtenues en contractant sur un ensemble de paiements de 

transfert tel que l’objectif de chaque entreprise devient aligné avec l’objectif de la chaîne logistique.  

Le contrat proposé est constitué de deux paramètres : le prix d’achat d’un produit intermédiaire et la 

pénalité de rupture de stock pour une commande de produit intermédiaire retardée. Le producteur peut 

aussi appliquer ce contrat en proposant à son fournisseur un prix unitaire d’achat qui diminue en fonction 

du délai de livraison observé. Contrairement aux études menées, le contrat proposé impose une pénalité 

pour le fournisseur seulement pour les livraisons retardées de produits intermédiaires et non pour les 

livraisons retardées de produits finis aux clients. Nous avons montré que le producteur peut 

simultanément optimiser les paramètres du contrat et son niveau de stock nominal. Nous avons déterminé 

analytiquement les niveaux de stocks nominaux des entreprises dans l’équilibre de Stackelberg.  
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Le paiement de transfert entres les acteurs est constitué d’une part d’un paiement qui dépende de la 

quantité de produit intermédiaires achetés et d’autre part d’un paiement de pénalité qui dépende du niveau 

moyen de rupture de stock du fournisseur. Puisque le taux moyen d’arrivée des demandes chez le 

producteur est fixe, le paiement correspondant aux achats est un paiement fixe : le producteur paie         

« λ p1 » à son fournisseur. L’existence d’un paiement fixe entre les acteurs permet au producteur de 

laisser le fournisseur avec son profit minimal acceptable : min
1111111 ][  πλλ +][++= BEbIEhcp , alors 

min
11111 ),,( ππ =bpS . Ainsi, la fonction objectif du producteur devient alignée avec la fonction objectif de 

la chaîne logistique centralisée : min
121011212 ),( ),,,( πππ −= SSbpSS . Par conséquent, l’application du 

contrat proposé pour les valeurs optimales de ses paramètres élève les performances globales du système 

décentralisé au niveau de celles du système centralisé.  

Le contrat proposé peut aussi être interprété comme un contrat de partage des revenus (Cachon et 

Lariviere, 2005). Pour chaque produit fini vendu sur le marché, le producteur paie une portion des 

revenus obtenus par cette vente à son fournisseur. Pour chaque produit fini vendu, la  portion du 

fournisseur est alors ][− 111 DEbp . 

.



   

CONCLUSIONS GÉNÉRALES ET PERSPECTIVES 

 

 

 

Dans le cadre de cette thèse, nous nous sommes intéressés aux implémentations de la politique de stock 

nominal dans les systèmes de production/stockage mono-étages et multi-étages. Nous avons commencé 

nos travaux par analyser l’application d’une stratégie multi-fournisseurs dans une chaîne logistique à deux 

niveaux. Nous avons étudié le problème de gestion des stock d’un producteur ayant une demande externe 

aléatoire d’un produit en supposant que la demande arrive en quantité unitaire et selon un processus de 

Poisson ayant le taux λ. Le producteur applique une politique de stock nominal (S – 1, S) afin de gérer 

son stock à partir duquel ses clients vont être servis. Selon la politique de stock nominal, le producteur 

effectue une commande d’approvisionnement d’une unité chaque fois qu’une demande arrive. Nous 

avons analysé le cas où le producteur a l’option d’envoyer chaque commande d’approvisionnement à un 

fournisseur différent disponible dans le marché. Chaque fournisseur disponible fonctionne dans un mode 

de production à la commande avec un système de fabrication à capacité limitée, dans le sens où une unité 

de produit peut être fabriquée à la fois. Pour chaque fournisseur i = 1,…,n, le temps de fabrication est une 

variable aléatoire qui suit une loi exponentielle ayant le taux μi où les taux moyen de fabrication des 

fournisseurs se diffèrent : μi ≠ μj si i ≠ j.  

Pour ce système de production/stockage, nous avons étudié l’application d’une politique d’acheminement 

de commande probabiliste, nommé processus d’acheminement de Bernoulli, qui définit une probabilité 

d’affectation de commande iα  pour chaque fournisseur i = 1,…,n. À chaque déclenchement de 

réapprovisionnement du stock, le producteur détermine alors le fournisseur à qui il va affecter la 

commande selon les probabilités d’affectation de commande n
ii 1)( =α  fixées à l’avance. La probabilité 

d’affectation de commande iα  peut aussi être interprétée comme la fraction des demandes qui sont 

satisfaites par le fournisseur i. En appliquant un processus d’acheminement de Bernoulli, le système 

d’approvisionnement du producteur est un réseau ouvert de files d’attente constitué de n files d’attente 

M/M/1 en parallèle : M/M/1 ),( ii μλα , i = 1,…,n. Nous avons fourni l’expression analytique de 

l’espérance de la somme des coûts moyens de stockage et de rupture en fonction des variables de décision 

du producteur, notamment le niveau de stock nominal S et les probabilités d’affectation n
ii 1)( =α . 

Nous avons d’abord analysé le cas où le système fonctionne dans une mode de production à la commande 

avec S = 0. La fonction objectif du producteur dans ce cas est son délai moyen d’approvisionnement. 
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Nous avons déterminé les valeurs optimales des probabilités d’affectation de commande, notées n
ii 1

*)( =α , 

qui minimisent le délai moyen d’approvisionnement du producteur. L’étude menée montre qu’acheminer 

les commandes chez plusieurs fournisseurs à la place d’acheminer toutes les commandes chez le 

fournisseur le plus performant du marché diminue le délai moyen d’approvisionnement du producteur. La 

politique optimale d’acheminement de commande n
ii 1

*)( =α  définit un critère de sélection de fournisseur 

basé sur les performances des fournisseurs disponibles, ce critère est le taux moyen de fabrication 

minimal acceptable. Les fournisseurs ayant un taux de fabrication supérieur ou égal au taux moyen de 

fabrication minimal prédéfini sont jugés performants et des probabilités d’affectation de commande non-

nulles leur sont attribuées. En revanche, la politique optimale attribue des probabilités d’affectation de 

commande nulles aux fournisseurs ayant un taux de fabrication inférieur au taux moyen de fabrication 

minimal prédéfini. Dans le cas où chaque fournisseur a le même taux moyen de fabrication, la politique 

optimale d’acheminement de commande est n
ii n 1

* )/1( ==α . 

Pour le cas de production pour stock avec S ≥ 0, nous avons proposé de déterminer le niveau de stock 

nominal du producteur en supposant que les valeurs des probabilités d’affectation de commande sont 

données par n
ii 1

*)( =α . Les analyses numériques effectuées pour le cas de deux fournisseurs montrent que 

les différences entre les coûts optimaux et les coûts obtenus par la méthode approximative proposée sont 

légères. Le niveau de stock nominal obtenu par la méthode approximative ne diffère de sa valeur optimale 

que dans quatre problèmes parmi douze analysés où la différence est au plus 1. Par contre, la méthode 

approximative surestime la probabilité d’affectation de commande associée au fournisseur le plus 

performant. Le résultat le plus significatif obtenu des analyses numériques effectuées est que, en 

comparaison avec le cas où toutes les commandes d’approvisionnement doivent être affectées au 

fournisseur le plus performant du marché, opter pour une stratégie multi-fournisseurs diminue le niveau 

de stock nominal et les coûts moyens de stockage et de rupture du producteur. 

L’application d’une politique d’acheminement de commande probabiliste en respectant les valeurs réelles 

de ces paramètres peut être difficile. Par contre, une telle politique permet d’approximer le comportement 

d’une entreprise qui voudrait contrôler les charges de travail de ses installations de production. Le modèle 

présenté peut être un outil pendant la phase de conception d’un réseau logistique, par exemple en 

déterminant les fournisseurs partenaires et le nombre de fournisseurs qui améliore les performances de la 

chaîne logistique. Le fait que les coûts moyens de stockage et de rupture sont diminués en optant pour une 

stratégie multi-fournisseurs peut être interprété comme une forme de mise en commun de risques. Dans la 

suite de ces travaux, notre défi à court terme sera de déterminer analytiquement les effets d’une stratégie 

multi-fournisseurs sur les niveaux moyens de stock possédé et de rupture de stock et les variances du 

délai d’approvisionnement et du nombre de commandes attendues. Nous voulons ainsi généraliser les 

résultats obtenus en considérant des distributions de probabilité plus générales. À long terme, il semble 



Conclusion générales et perspectives 121

intéressant d’analyser les effets d’une stratégie multi-fournisseurs dans un système multi-produits où 

chaque fournisseur est capable de fabriquer plusieurs produits. L’analyse de la politique optimale de 

gestion de flux en présence des produits multiples est complexe est mérite d’être étudiée en profondeur 

dans des travaux futurs. Une autre perspective est d’introduire les concepts liés à la gestion de flux de 

retours concernant des produits ou des emballages qui peuvent avoir pour objet la gestion du service après 

vente, la réutilisation des composants ou des emballages ou le recyclage. 

Suite aux études effectuées sur les stratégies multi-fournisseurs, nous nous sommes focalisés sur la 

coordination des chaînes logistiques décentralisées. Nous avons analysé une chaîne logistique à deux 

niveaux gérés par deux acteurs différents : un producteur de produit fini et son fournisseur de produit 

intermédiaire. Chaque entreprise de niveau i = 1 (fournisseur), 2 (producteur) dispose d’un stock de sortie 

et d’un système de fabrication à capacité limitée qui approvisionne ce stock. Nous parlons alors d’une 

chaîne logistique à deux étages de production/stockage. Nous avons supposé que la demande du 

producteur suit un processus de Poisson ayant le taux λ. La demande du fournisseur est constituée des 

commandes d’approvisionnement effectuées par le producteur. Les temps de fabrication du produit 

intermédiaire chez le fournisseur et du produit fini chez le producteur sont des variables aléatoires à 

distribution de probabilité exponentielle ayant respectivement les taux μ1 et μ2 où μ1 ≠ μ2. Afin de 

simplifier les notations, nous avons considéré que le producteur nécessite d’une unité de produit 

intermédiaire afin de fabriquer une unité de produit fini.  

La gestion de stock dans chaque entreprise est accomplie suivant une politique de stock nominal du type 

installation: (Si – 1, Si), i = 1, 2. En appliquant une politique de stock nominal à chaque étage, l’arrivée 

d’une demande finale déclenche une demande unitaire et en même temps un ordre de fabrication unitaire 

pour chaque entreprise de niveau i = 1, 2. Ainsi, en présence des matières nécessaires, le système de 

fabrication de l’étage i est en marche quand le niveau de stock de l’étage est inférieur au niveau de stock 

nominal Si. Les mesures de performances du système analysé sont les niveaux moyens de stock possédé 

et les niveaux moyens de rupture de stock des entreprises. L’analyse exacte des mesures de performances 

est possible seulement dans des cas particuliers, notamment quand S1 = 0 ou quand S1 → ∞. Afin 

d’obtenir des expressions analytiques des mesures de performances pour le cas général où 0 < S1 < ∞, 

nous avons adopté une méthode approximative issue de la littéraire (Lee et Zipkin, 1992) qui se base sur 

les propriétés des lois de type phase. 

Dans cette chaîne logistique décentralisée, chaque entreprise i est une entité individuelle qui décide de 

son niveau de stock nominal Si ≥ 0 dans le but de maximiser son profit moyen. Les performances du 

producteur vis-à-vis des clients dépendent non seulement de son niveau de stock nominal et de son taux 

de fabrication mais aussi des performances de son fournisseur : quand tous les produits intermédiaires 

dans le système sont consommés, une pénurie de produit intermédiaire est provoquée chez le producteur 

et cette pénurie bloque le système de fabrication de produits finis en présence des demandes. Le niveau de 
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stock nominal du fournisseur influence donc les performances globales du système. Par contre, le 

fournisseur n’a pas un intérêt direct concernant le niveau de service de la chaîne. Le système décentralisé 

nécessite alors des mécanismes de coordination motivant le fournisseur à opter pour un niveau de stock 

nominal qui permet d’obtenir des niveaux satisfaisants pour le délai de livraison de produits 

intermédiaires et par conséquent pour le délai de livraison de produits finis. 

Afin d’analyser les interactions entre les deux entreprises, nous avons défini un jeu de Stackelberg en 

supposant que le producteur a une situation dominante. Nous avons proposé l’utilisation d’un contrat de 

coordination ayant deux paramètres : le prix d’achat d’un produit intermédiaire, p1 ≥ 0, et la pénalité que 

le fournisseur paie à son producteur pour chaque livraison retardée de produit intermédiaire par unité de 

temps, b1 ≥ 0. Le producteur étant le meneur dans ce jeu de Stackelberg, son problème d’optimisation 

consiste à trouver les valeurs optimales des paramètres du contrat d’une part, et de son niveau de stock 

nominal d’autre part qui maximisent son profit moyen et qui satisfont la contrainte de compatibilité 

d’incitation et la contrainte de rationalité individuelle. Dans cette forme, le modèle analysé peut être 

interprété comme un modèle « principal-agent » sans la présence de sélection adverse, de signalisation ou 

de risque moral. 

Nous avons montré que la meilleure stratégie du fournisseur qui détermine son niveau de stock optimal 

dépend seulement de la pénalité de rupture de stock imposée par le producteur. Elle est donc croissante en 

b1. Le producteur peut concevoir un contrat ),( *
1

*
1 bp  qui minimise son profit moyen et qui est acceptable 

par le fournisseur. En outre, nous avons montré que le producteur peut simultanément optimiser les 

paramètres du contrat et son niveau de stock nominal et nous avons déterminé analytiquement les niveaux 

de stocks nominaux des entreprises dans l’équilibre de Stackelberg. 

L’application du contrat proposé pour les valeurs optimales de ses paramètres coordonne la chaîne 

logistique, c’est-à-dire élève les performances globales du système décentralisé au niveau de celles du 

système centralisé. La valeur optimale de la pénalité *
1b  est utilisée dans le but de contrôler le niveau de 

stock nominal du fournisseur. Le producteur détermine la valeur optimale de la pénalité *
1b  pour inciter le 

fournisseur à installer la valeur optimale du niveau de stock nominal *
1S  qui maximise l’espérance de 

profit total du système centralisé. Le paiement fixe *
1 pλ  correspondant à la valeur optimale du prix 

d’achat *
1p  compense les coûts opérationnels du fournisseur (coûts de production, de stockage et de 

ruptures) et permet au producteur de laisser son fournisseur avec son profit de réservation. Ainsi, le 

producteur obtient la différence entre l’espérance de profit total du système centralisé et le profit de 

réservation du fournisseur. Le producteur opte lui-même pour la valeur optimale du niveau de stock 

nominal *
2S  qui maximise l’espérance de profit total du système centralisé. L’espérance de profit total du 
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système décentralisé dans l’équilibre de Stackelberg est donc égale à l’espérance de profit maximal du 

système centralisé.  

L’application du contrat proposé n’est pas limitée aux cas où les temps d’inter-arrivées des demandes et 

les temps de service ont une distribution exponentielle. Dans un système de stock nominal, le niveau de 

stock nominal est toujours croissant avec la pénalité de rupture de stock. Donc, le producteur peut 

toujours concevoir un contrat avec la valeur appropriée de la pénalité de rupture qui impose la valeur 

optimale du niveau de stock nominal du système centralisé pour le premier étage. En outre, les coûts 

opérationnels du fournisseur peuvent toujours être compensés à travers un paiement fixe. Le producteur 

peut donc toujours obtenir la différence entre l’espérance de profit total du système centralisé et le profit 

de réservation du fournisseur et laisser le fournisseur avec son profit de réservation. Une extension 

naturelle de cette étude est alors d’analyser les valeurs optimales des niveaux de stocks nominaux des 

entreprises et des paramètres du contrat pour les cas de temps d’inter-arrivées des demandes et de temps 

de service suivant des distributions de probabilité plus générales. Nous privilégierons, à court terme, les 

analyses des cas où les temps de fabrication ou les temps d’inter-arrivées des demandes suivent des lois 

de type phase qui permettent d’approximer de près des distributions de probabilité générales.  

Le type de contrat proposé peut être utilisé dans une chaîne logistique à n étages. Considérons un système 

à n étages de production/stockage. Le coût de rupture de stock, bn, et le prix de vente, pn, de l’entreprise n 

sont exogènes. Examinons un jeu dynamique à information parfaite dans lequel les joueurs choisissent 

leurs stratégies successivement. L’entreprise n propose un contrat ),( 11 −− nn bp  à l’entreprise n – 1 et 

décide aussi de son niveau de stock nominal Sn. L’entreprise n – 1 observe le contrat proposé et propose 

lui-même un contrat ),( 22 −− nn bp  à l’entreprise n – 2 et détermine son niveau de stock nominal Sn-1. De la 

même façon, chaque joueur i = n – 2,…,2 détermine ses stratégies ),( 11 −− ii bp  et Si en observant les 

stratégies adoptées par le joueur i – 1. L’entreprise de niveau « 0 » étant un stock infini, l’entreprise de 

niveau 1 détermine seulement son niveau de stock nominal S1 en recevant le contrat ),( 11 bp  proposé par 

l’entreprise de niveau 2. L’équilibre de ce jeu dynamique peut être déterminé par induction à rebours. 

Puisque chaque entreprise i = 2,…,n fait un transferts d’argent fixe, 1 −ipλ , à son fournisseur, chaque 

entreprise i < n obtient son profit de réservation, min
iπ , et l’entreprise n obtient le profit total du système 

décentralisé moins ∑ =
n
i i1

minπ . Notons que, en utilisant la méthode approximative LZ, les niveaux moyens 

de stock possédé et de rupture de stock d’une entreprise i ne dépend pas seulement des niveaux de stock 

nominaux Si et Si-1 mais dépend aussi des niveaux de stock nominaux Sj pour j = i – 2,…,1. Selon cette 

dépendance, l’application d’un contrat ),( ii bp  dans le but de contrôler l’étage i ne permet pas de 

coordonner tous les n étages, car chaque entreprise i = 2,…,n détermine la pénalité de rupture bi-1 et donc 

le niveau de stock Si-1 dans le but de maximiser le profit total des i premiers étages. Autrement dit, un 
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étage i = 2,…,n peut contrôler le niveau de stock nominal de l’étage i – 1 en appliquant un contrat ),( ii bp  

mais ne peut pas contrôler les niveaux de stock nominaux des entreprises en amont de l’étage i – 1. Dans 

la continuité de nos travaux, il serait intéressant d’étudier la dégradation des performances liée à la 

décentralisation dans les systèmes à n étages et d’analyser des différents types de contrat qui peuvent 

coordonner la chaîne logistique dans son ensemble.  

À plus long terme, notre défi sera d’analyser les systèmes similaires de distribution constitués d’un 

fournisseur et de plusieurs producteurs où le fournisseur traitera les commandes de chaque producteur 

comme une classe de demandes différente. Dans ce contexte, il semble intéressant d’étudier la 

compétition entre les producteurs. Encore à long terme, nous voulons aussi étudier des modèles similaires 

qui considèrent les concepts d’information avancée sur les demandes futures et évaluer ses effets quand 

les informations entre acteurs sont asymétriques. 
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A.1. LOIS DE PROBABILITÉ ET PROCESSUS STOCHASTIQUES 

Dans cette section, nous présentons les définitions des lois de probabilité et des processus stochastiques 

utilisés lors de cette thèse. 

A.1.1. La loi géométrique 

Une variable aléatoire X prenant des valeurs discrètes et non-négatives suit une loi géométrique ayant le 

paramètre 0 < p < 1 si sa fonction de distribution de probabilité est donnée par : 

nppnX )1(}Pr{ −== ,   n = 0,1,… 

La variable aléatoire X a la moyenne 
p

pXE
−

=
1

][  et la variance 2)1(
][

p
pXVar
−

= . 

A.1.2. La loi de Poisson 

Une variable aléatoire X prenant des valeurs discrètes et non-négatives suit une loi de Poisson ayant le 

paramètre λ > 0 si sa fonction de distribution de probabilité est donnée par : 

! 
)(}Pr{

n
tenX

n
t λλ−== ,   n = 0,1,… 

La variable aléatoire X a la moyenne λ=][XE  et la variance λ=][XVar . 

A.1.3. La loi exponentielle 

Une variable aléatoire X prenant des valeurs continues et non-négatives suit une loi exponentielle ayant le 

paramètre λ > 0 si sa fonction de distribution de probabilité est donnée par : 

t
X etf λλ −=)( ,   t ≥ 0. 
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La variable aléatoire X a la moyenne λ/1][ =XE  et la variance ²/1][ λ=XVar . 

Une variable aléatoire continue X a la propriété sans mémoire si }Pr{}  Pr{ sXtXtsX >=>+>  pour 

tous s, t ≥ 0. La loi exponentielle est la seule loi continue qui possède la propriété sans mémoire. 

A.1.4. Processus stochastique 

Un processus stochastique à temps continu {X(t), t ≥ 0} est une collection des variables aléatoires X(t) 

pour t ≥ 0. L’index t représente le temps continu et X(t) représente l’état du processus à l’instant t.  

Un processus stochastique à temps discret {Xn, n ≥ 0} est défini de la même façon où l’index                    

n = 0, 1, 2,…. représente le temps discret. 

Un processus stochastique est à état discret si la variable d’état prend des valeurs discrètes et est à état 

continue si la variable d’état prend des valeurs continues.  

A.1.5. Chaîne de Markov à temps discret 

Une chaîne de Markov à temps discret {Xn, n ≥ 0} est un processus stochastique à temps discret et à état 

discret où 

ijnnnn piXiXiXiXjX ====== −−+ },,...,,Pr{ 0011111  

pour tous les états jiiii n ,,,...,, 110 − et tous n ≥ 0. 

La matrice des probabilités de transition )( ijp=P  satisfait 0≥P  et 11 =P  où 1 est le vecteur colonne 

dont tous ces éléments sont égaux à 1. 

Le vecteur ))(()( nn iπ=π  où }Pr{)( iXn ni ==π  décrit l’évolution du processus comme suit : 

nnnn PπPπPππ )0(...)2()1()( 2 ==−=−= .  

Si une chaîne de Markov {Xn, n ≥ 0} est irréductible et positive récurrente (voir Ross (2000)), une 

distribution de probabilité stationnaireπ  existe telle qu’elle est la solution unique qui satisfait l’équation 

de balance Pππ  =  et l’équation de normalisation 1=1π . Si une distribution de probabilité stationnaire 

π  existe et les probabilités initiales satisfont ππ =)0( , alors ππ =)(n  pour tous n ≥ 0. Si une chaîne de 

Markov {Xn, n ≥ 0} est aussi apériodique (voir Ross (2000)), la limite )(lim n
n

π
∞→

 existe et est égale à π .  
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A.1.6. Chaîne de Markov à temps continu 

Une chaîne de Markov à temps continu {X(t), t ≥ 0} est un processus stochastique à temps continu et à 

état discret où 

})()(Pr{}0),()(,)()(Pr{ isXjstXsuuxuXisXjstX ==+=<≤===+  

pour tous les états jisuux  , ,0 ),( <≤ et tous s, t ≥ 0. En outre, })()(Pr{ isXjstX ==+ est indépendant 

de s.  

Une chaîne de Markov à temps continu est aussi définie comme un processus stochastique qui a comme 

propriété :  

(i) Chaque fois que le processus entre dans un état i, l’intervalle de temps que le processus reste 

dans cet état avant de faire une transition à un autre état suit une distribution de probabilité 

exponentielle ayant le taux vi ; 

(ii) Quand le processus quitte l’état i, il entre dans un état j avec la probabilité pij où )( ijp=P  

satisfait 0≥P , 11 =P  et pii = 0  pour tous i. 

Le générateur (la matrice des taux de transitions) )( ijq=Q  où ijiij pvq =  pour ij ≠  et iij vq −=  pour 

ij =  satisfait 01 =Q .  

Définissons le vecteur ))(()( tt iπ=π  où })(Pr{)( itXti ==π . Si une chaîne de Markov {X(t), t ≥ 0} est 

irréductible et positive récurrente (voir Ross (2000)), la limite )(lim n
n

π
∞→

 existe telle qu’elle est la solution 

unique )(lim n
n

ππ
∞→

=  qui satisfait l’équation de balance 0=πQ  et l’équation de normalisation 1=1π . 

A.1.7. Processus de comptage 

Un processus stochastique à temps continu et à état discret {N(t), t ≥ 0} est un processus comptage si N(t) 

représente le nombre d’arrivées dans un intervalle de temps (0, t]. Un processus comptage satisfait les 

conditions suivantes : 

(i) N(t) ≥ 0 ; 

(ii) N(t) prend des valeurs entières ; 

(iii) Si s < t, alors N(s) < N(t) ; 
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(iv) Si s < t, alors N(t) – N(s) est le nombre d’arrivées dans l’intervalle de temps (s, t]. 

Pour s > 0, soit Ns(t) = N(t + s) – N(t) l’incrément du processus de comptage dans l’intervalle (t, t + s]. 

Un processus de comptage a des incréments indépendants, si les variables aléatoires Ns(t) sont 

indépendantes pour tous s, t ≥ 0. Un processus de comptage a des incréments stationnaires, si les 

incréments Ns(t) suivent la même loi de probabilité pour tous s, t ≥ 0. Un processus de comptage ayant 

des incréments stationnaires est appelé un processus de comptage stationnaire. 

A.1.8. Processus de Poisson 

Un processus de comptage {N(t), t ≥ 0} est un processus de Poisson ayant le taux λ si  

(i) N(0) = 0 ; 

(ii) Le processus a des incréments indépendants ; 

(iii) Le nombre d’arrivées dans tout intervalle de longueur t suit une loi de Poisson de moyen λt. 

C’est-à-dire, pour tous s, t ≥ 0 : 

! 
)(})()(Pr{

n
tensNtsN

n
t λλ−==−+ . 

La condition (iii) indique qu’un processus de Poisson a des incréments stationnaires. En outre, 

ttNEtNVar λ== )]([)]([ . 

Considérons un processus de Poisson. Soit T1 le temps d’occurrence de la première arrivée et, pour k > 1, 

Tk le temps écoulé entre (k – 1)ième et kième arrivées. En utilisant les conditions (ii) et (iii), on peut montrer 

que les variables aléatoires Tk, k = 1, 2,…, sont indépendantes et suivent toutes une loi exponentielle de 

moyen 1/λ : pour k = 1, 2,…., t
k etT λ−=> }Pr{ .  

Par conséquent, un processus de Poisson est aussi caractérisé par la loi de probabilité des temps d’inter-

arrivées :  

Un processus de comptage {N(t), t ≥ 0} est un processus de Poisson de taux λ si et seulement si les temps 

d’inter-arrivées Tk, k = 1, 2,…, sont indépendants et suivent tous une loi exponentielle de moyen 1/λ.  

Un processus de renouvèlement est un processus de comptage ayant des temps d’inter-arrivées 

indépendants et identiquement distribués. La loi de probabilité des temps d’inter-arrivées peut être une loi 

quelconque. Un processus de Poissons est alors un processus de renouvèlement ayant des temps d’inter-

arrivées exponentiels. 
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Propriété A.1 : Considérons un processus de Poisson {N(t), t ≥ 0} ayant le taux λ. Supposons que chaque 

fois qu’un événement se produit, il est classifié comme un type d’événement i, i = 1,…,k, avec la 

probabilité pi où ∑ =
k
i ip1 . Soit Ni(t) le nombre d’événements du type i qui se sont produits dans 

l’intervalle (0, t]. Notons que ∑ == k
i i tNtN 1 )()( . Chaque processus stochastiques {Ni(t), t ≥ 0}, i = 1,…,k, 

est alors un processus de Poisson ayant le taux piλ. En outre, les processus de Poisson {Ni(t), t ≥ 0},           

i = 1,…,k, sont mutuellement indépendants (Ross, 2000).  

Propriété A.2 : Considérons un ensemble {Ni(t), t ≥ 0, i = 1,…,k} où {Ni(t), t ≥ 0} est  un processus de 

Poisson ayant le taux λi pour i = 1,…,k. Si les processus de Poisson {Ni(t), t ≥ 0}, i = 1,…,k, sont 

indépendants, alors le processus stochastique {N(t), t ≥ 0} où ∑ == n
i i tNtN 1 )()(  est un processus de 

Poisson ayant le taux ∑ == k
i i1λλ (Ross, 2000).  

A.1.9. Processus de Poisson composé 

Un processus stochastique {X(t), t ≥ 0} est un processus de Poisson composé s’il peut être représenté 

comme 

∑
=

=
)(

1
)(

tN

i
iYtX  

où {N(t), t ≥ 0} est un processus de Poisson et {Yi, i ≥ t} est une famille des variables aléatoires 

indépendantes et identiquement distribuées qui sont aussi indépendantes du processus {N(t), t ≥ 0}. 

A.2. MODÈLES DE FILES D’ATTENTE 

Un modèle de file d’attente est une description abstraite d’un système réel de file d’attente. Les 

principaux domaines d’application des modèles de file d’attente sont les systèmes manufacturiers, les 

systèmes de production et de stockage, les systèmes de communication et les systèmes d’information. Les 

modèles de file d’attente sont particulièrement utiles pour l’analyse des effets de congestion dans les 

systèmes à capacité limitée. Dans les systèmes de file d’attente, les aléas et les limites de capacité 

provoquent ensemble la congestion. 

La configuration basique d’un système de file d’attente peut être décrite de la manière suivante (Figure 

A.1) : les clients arrivent à intervalle aléatoire pour un service exécuté par un serveur dans un temps 

aléatoire. Un client arrivant se place dans la file pour attendre son tour. Une fois le serveur libéré, le client 

entre en service et occupe le serveur pendant tout son  temps de service. Puis le client libère le serveur et 

quitte le système. 
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Figure A.1. Représentation graphique d’un système de file d’attente simple 

A.2.1. Caractérisation des modèles de file d’attente  

La définition d’un modèle de file d’attente nécessite principalement la caractérisation du processus 

d’arrivée, de la distribution du temps de service, du nombre de serveurs, de la capacité du système et de la 

discipline de service.  

A.2.1.1. Processus d’arrivée  

Le processus de Poisson est le processus stochastique le plus utilisé dans la théorie des files d’attente pour 

la modélisation du processus d’arrivée des clients. Pour t ≥ 0, soit N(t) la variable aléatoire indiquant le 

nombre d’arrivées dans un intervalle de temps (0, t]. Le processus stochastique d’arrivée {N(t), t ≥ 0} est 

alors un processus de comptage. Soit N(s + t) – N(s) l’incrément d’un processus de comptage dans 

l’intervalle (s, s + t]. Un processus de Poisson est un processus de comptage {N(t), t ≥ 0} ayant des 

incréments indépendants et stationnaires.  

Un processus de Poisson a un seul paramètre, λ > 0, appelé le taux d’arrivée. Pour tous s, t ≥ 0,  la 

variable aléatoire N(s + t) – N(s) suit une loi de Poisson de moyenne λt. Pour t = 1, )]1([NE=λ  exprime 

alors le nombre moyen d’arrivées par unité de temps, ce qui explique l’appellation « taux moyen 

d’arrivée » donnée à λ. 

Dans les systèmes de production et de stockage, le processus de Poisson est largement utilisé pour 

modéliser la demande. Quand la demande est modélisée comme un processus de Poisson {D(t), t ≥ 0}, les 

demandes sont supposées unitaires. D(t) représente la demande cumulée dans un intervalle de temps       

(0, t]. Dans la plupart des situations pratiques, la demande se comporte vraiment comme un processus de 

Poisson. Une raison pour ceci est que les sources de la demande sont souvent de petites tailles et presque 

indépendants, par exemple quand les clients sont dispersés dans une région étendue. Un tel processus 

agrégé peut être modélisé convenablement par un processus de Poisson. La justification théorique de ce 

fait est le théorème de Palm-Khintchine. Soit {N(t) = N1(t) + N2(t) + Nm(t), t ≥ 0} la superposition de m 

processus de comptage indépendants et stationnaires. Selon le théorème de Palm-Khintchine, sous 

certaines conditions de régularité, la superposition {N(t) = N1(t) + N2(t) + Nm(t), t ≥ 0} se comporte 

approximativement comme un processus de Poisson lorsque m est assez grand. Ce théorème est souvent 

nommé le théorème central limite des processus de comptage. 

Arrivées 
des clients 

 

Départs 
des clients 

ServeurFile d’attente



Processus stochastiques 131

Les temps d’inter-arrivées (les temps écoulés entre les arrivées successives) d’un processus de Poisson 

sont indépendants et identiquement distribués. Les temps d’inter-arrivées suivent tous une loi 

exponentielle de moyen 1/λ.  

Dans la théorie des files d’attente, le processus d’arrivée des clients est souvent modélisé par un processus 

de comptage ayant des temps d’inter-arrivées indépendants et identiquement distribués et le processus 

d’arrivée est caractérisé par la loi de probabilité des temps d’inter-arrivées. Dans le cas plus général, les 

temps d’inter-arrivées suivent une loi générale non-précisée de moyen 1/λ. 

Un autre élément important que l’on peut prendre en considération est les arrivées groupées (batch 

arrivals). Les arrivées groupées nécessitent la détermination de la loi de probabilité caractérisant les 

tailles de lots d’arrivées. Le processus de Poisson composé est un processus stochastique utilisé pour 

représenter les demandes ayant des quantités variables (lumpy demand). Quand la demande est 

représentée comme un processus de Poisson composé { ∑ == )(
1)( tN

i iYtD , t ≥ 0}, les demandes non-

unitaires arrivent suivant un processus de Poisson {N(t), t ≥ 0}. La quantité de chaque demande est une 

variable aléatoire Y où Yi représente la quantité de la iième demande. Les quantités des demandes 

successives sont indépendantes et identiquement distribuées. 

A.2.1.2. Distribution du temps de service 

La caractérisation du temps de service est similaire à celle des arrivées. Soit Xi le temps de service de iième 

client. Dans la théorie des files d’attente, on suppose souvent que les temps de service des clients, c’est-à-

dire les variables aléatoires Xi, i = 1,2,…, sont indépendantes et identiquement distribuées.  

La distribution la plus souvent utilisée pour la caractérisation du temps de service X est la distribution de 

probabilité exponentielle. Le seul paramètre d’une distribution de probabilité exponentielle est μ > 0 qui 

détermine sa moyenne E[X] = 1/μ et sa variance Var[X] = 1/μ². Le paramètre μ exprime alors le « taux 

moyen de service ».  

Toutes les durées réelles ne peuvent pas être représentées par une loi exponentielle. Les temps de service 

qui ne peuvent pas être décrits par une loi exponentielle sont souvent caractérisés en utilisant les 

généralisations de la loi exponentielle, comme la distribution d’Erlang, la distribution Gamma, la 

distribution hyper-exponentielle, la distribution hypo-exponentielle, et la distribution de Cox. Soit X la 

somme de n variables aléatoires suivant chacune une loi exponentielle de taux μ. La distribution de la 

variable aléatoire X est alors une distribution d’Erlang (ou Erlang-n) Notons que n est un nombre entier 

positif. La distribution Gamma est une généralisation de la distribution d’Erlang pour n > 0. La 

distribution hypo-exponentielle peut aussi être interprétée comme une généralisation de la distribution 

d’Erlang dans laquelle chaque variable aléatoire Xi suit une loi exponentielle de taux μi.  
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Les lois de type phase (Annexe C) permettent de caractériser des généralisations plus étendues. La famille 

de lois de type phase est constituée des distributions exponentielles et des distributions de toutes les 

sommes et les combinaisons finies des variables aléatoires exponentielles. Les distributions d’Erlang, 

hyper-exponentielle, hypo-exponentielle, et Cox sont des cas particuliers de cette famille de distributions. 

Chacune de ces distributions peut être caractérisée par une matrice analogue à celle d’une loi de type 

phase (Annexe C). L’utilisation des lois de type phase a un grand intérêt, car elles permettent de décrire 

des durées réelles plus complexes. Par exemple, le processus de fabrication d’un produit peut passer par 

plusieurs étapes de construction et de vérification ayant des temps opératoires suivant des lois 

exponentielles. En outre, des distributions de probabilité générales peuvent être approximées de près par 

des lois de type phase afin de tirer avantage des propriétés markoviens et des flexibilités analytiques des 

lois de type phase.   

A.2.1.3. Nombre de serveurs 

Le nombre de serveurs indique le nombre maximal d'exécutions en parallèle du même service. Dans un 

système de file d’attente multi-serveurs, les clients qui arrivent se placent dans une seule file d’attente. 

Chaque fois qu’un serveur est libéré, un client en attente dans la file entre en service. Les temps de 

service des serveurs sont généralement indépendants et identiquement distribués. 

A.2.1.4. Capacité du système 

Dans certains systèmes de file d’attente, des contraintes physiques ou organisationnelles peuvent exister 

et limitent la longueur maximale de la file. Dans ces types de cas, la capacité du système indique le 

nombre maximal de clients qui peuvent se retrouver dans le système (en attente de service et en service). 

Dans un système de production, cette capacité peut être liée à une limite de l’espace de stockage. 

A.2.1.5. Discipline de service 

La discipline de service détermine l’ordre dans lequel les clients sont sélectionnés pour le service. Les 

disciplines les plus utilisées sont : premier arrivé premier servi (First In First Out  (FIFO), First Come 

First Served (FCFS), dernier arrivé premier servi (Last In First Out (LIFO), Last Come First Served  

(LCFS)), sélection aléatoire, temps de service le plus court d’abord, règles de priorité préemptives (le 

service en cours d’exécution peut être interrompu) ou non-préemptives. 

A.2.2. Notation des modèles de file d’attente 

Dans la théorie des files d’attente, la notation de Kendall (premièrement proposée par D.G. Kendall en 

1953) est un système standard pour décrire les caractéristiques essentielles d’un modèle de file d’attente. 

La notation de Kendall a la forme A/B/C/K/N/D où : 
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A : distribution des temps d’inter-arrivées 

B : distribution du temps de service 

C : nombre de serveurs 

K : capacité du système 

N : nombre de clients existant dans l’univers considéré 

D : discipline de service 

Les différents symboles utilisés pour la caractérisation de la distribution des temps d’inter-arrivées et du 

temps de service sont : M (Markovien) pour une distribution exponentielle, G (Général) pour une 

distribution quelconque, PH pour une loi de type phase, Ek pour une distribution d’Erlang-k, D pour un 

temps déterministe, etc. Le symbole Mx est utilisé pour décrire un processus de poisson composé. Quand 

un système de file d’attente est caractérisé en utilisant seulement trois champs A/B/C, on sous-entend que 

le système est à capacité infinie, que la population est infinie et que la discipline de service est FIFO. 

Quelques exemples sont M/M/1, G/M/1, M/G/1, G/G/1, M/M/c, …. 

A.2.3. Évaluation de performances 

Soit X(t) le nombre de clients dans un système de file d’attente (le nombre de clients en attente de service 

plus le nombre de clients en service) à l’instant t ≥ 0. Sous certaines conditions, la distribution de X(t) a 

une limite pour t → ∞ : 

})(Pr{lim ntXP
tn ==

∞→
 

L’existence de cette limite montre que, à long terme, le système atteint un régime permanent indépendant 

de sont état initial. La limite Pn  est interprétée comme la probabilité d’avoir exactement n clients dans le 

système en régime permanent. Quand les probabilités Pn, n ≥ 0 existent, on dit que le processus 

stochastique {X(t), t ≥ 0} est ergodique. Pour la plupart des systèmes de files d’attente, la condition 

générale pour l’existence des probabilités Pn, n ≥ 0,  est la stabilité du système. Un système de file 

d’attente est dit stable si le nombre de clients dans le système ne peut pas augmenter jusqu’à l’infini. Si le 

processus stochastique {X(t), t ≥ 0} est régénératif Pn peut aussi être interprété comme la proportion du 

temps (à long terme) pendant laquelle le système a n clients. Notons qu’un système de file d’attente ayant 

un processus de renouvellement comme processus d’arrivée est régénératif. 

Si les probabilités Pn, n ≥ 0, existent, nous pouvons décrire l’état du système en régime permanent en 

utilisant la variable d’état : 

X  : le nombre de clients dans le système en régime permanent 

 
Pour n ≥ 0, la variable aléatoire X satisfait  



ANNEXE A 134 

})(Pr{lim}Pr{ ntXnXP
tn ====

∞→
. 

Les autres quantités fondamentales utilisées afin d’analyser les performances d’un système sont : 

Xf  : le nombre de clients en attente dans la file en régime permanent 

W  : le temps de séjour des clients dans le système en régime permanent  

   (le temps d’attente plus le temps de service) 

Wf  : le temps de séjour des clients dans la file d’attente en régime permanent 

Dans la théorie des files d’attente, on s’intéresse plutôt aux mesures de performances espérées :  

E[X]  : le nombre moyen de clients dans le système 

E[Xf]  : le nombre moyen de clients en attente 

E[W]  : le temps moyen de séjour des clients dans le système  

E[Wf]  : le temps moyen de séjour des clients dans la file d’attente 

Des relations entre ces mesures des performances sont désignées sous le nom de la loi de LITTLE 

(Kleinrock, 1975). Soit N(t) le nombre de clients arrivés dans un intervalle de temps (0, t]. Le taux moyen 

d’arrivée TTN
Ta /)(lim

∞→
=λ  exprime le nombre moyen de clients arrivés dans le système par unité de 

temps. La loi de LITTLE indique que 

][][ WEXE aλ= .              (A.1) 

Si on applique la loi de LITTLE seulement à la file d’attente, on obtient 

][][ faf WEXE λ= .                          (A.2) 

La loi de LITTLE est valide pour presque tous les systèmes de file d’attente indépendamment du 

processus d’arrivée, du nombre de serveurs, ou de la discipline de service.  

La propriété PASTA (Poisson Arrivals See Time Averages) (Ross, 2000) est une propriété souvent 

utilisée pour l’analyse des systèmes de file d’attente du type M/˙/˙. Soit an la proportion des clients (à long 

terme) qui trouvent n clients dans le système quand ils arrivent. Selon la propriété PASTA, an = Pn si et 

seulement si le processus d’arrivée est un processus de Poisson. En d’autres termes, la probabilité qu’un 

client quelconque trouve n clients dans le système en régime permanent est exactement la probabilité que 

le nombre de clients dans le système soit n en régime permanent. Pour la plupart des systèmes de file 

d’attente du type M/˙/˙. , la propriété PASTA permet d’obtenir les mesures de performances du système 

sans déterminer la distribution de la variable d’état X. 
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A.2.4. La file M/M/1 

Dans un système de file d’attente M/M/1 (λ, μ), les clients arrivent selon un processus de Poisson ayant le 

taux λ. Le temps de service suit une distribution de probabilité ayant le taux μ. La discipline de service est 

FIFO. 

Soit X(t) le nombre de clients dans le système à l’instant t ≥ 0. Le processus stochastique {X(t), t ≥ 0} est 

une chaîne de Markov à temps continu ayant le diagramme de transition de la Figure A.2.  

 
Figure A.2. Diagramme de transition d’un système de file d’attente M/M/1 (λ, μ) 

Les probabilités Pn, n ≥ 0, sont les solutions uniques des équations d’équilibre (balance equations) et de 

l’équation de normalisation du système. La probabilité que le processus soit dans l’état n ≥ 0 en régime 

permanentent est donnée par : 

μ
λ

−=== 1}0Pr{0 XP                                      (A.3) 
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λ                           (A.4) 

La variable aléatoire X suit alors une distribution de probabilité géométrique. Notons qu’une condition 

nécessaire pour l’existence de la probabilité Pn pour n = 0,…,∞ est λ < μ. Autrement dit, le taux 

d’utilisation ρ = λ / μ  qui exprime la proportion du temps pendant lequel le serveur est occupé doit 

satisfaire la condition 1<ρ . C’est la condition de stabilité du système. Quand λ > μ, le nombre de clients 

dans le système augmente sans limite et donc les probabilités Pn, n ≥ 0, n’existent pas (la chaîne de 

Markov n’est positive récurrente). Pour la plupart des systèmes de file d’attente ayant un seul serveur 

avec un temps moyen d’inter-arrivées 1/λ et un temps moyen de service 1/μ,  la condition 1/ <μλ  est 

aussi la condition de stabilité pour que les probabilités Pn, n ≥ 0, existent. Pour un système ayant c 

serveurs, cette condition est décrite par 1/ <μλ c . 

Les mesures de performances du système sont obtenu en utilisant les expressions (A.3) et (A.4) et les 

relations (A.1) et (A.2) où λλ =a  : 

λμ
λ
−

== ∑
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En utilisant la propriété sans mémoire de la distribution du temps de service et la propriété PASTA du 

processus d’arrivé, il est possible d’obtenir la distribution du temps de séjour : le temps de séjour d’un 

client quelconque dans un système de file d’attente M/M/1 (λ, μ) suit une distribution de probabilité 

exponentielle ayant le taux μ – λ (Ross, 2000).  

La réversibilité du processus stochastique {X(t), t ≥ 0} indique que le processus de départ d’un système de 

file d’attente M/M/1 (λ, μ) est un processus de Poisson ayant le taux λ (Ross, 2000). Cette propriété est 

connue sous le nom du théorème de Burke : Pour un système de file d’attente M/M/1 (λ, μ), M/M/c (λ, μ) 

ou M/M/∞ (λ, μ) en régime permanent (1) le processus de départ est un processus de Poisson ayant le taux 

λ (2) le nombre de clients dans le système est indépendant des instants de départs antérieurs. 

A.2.5. Réseaux des files d’attente 

Un réseau des files d’attente est constitué de systèmes de file d’attente interconnectés. Les clients 

circulent entre les différents systèmes de files. Les réseaux des files d’attente sont bien adaptés pour la 

modélisation des interactions entre les différentes ressources d’un système de production, de stockage, de 

communication ou d’information.  

Les réseaux des files d’attente sont principalement classés en trois types : réseaux ouverts, réseaux fermés 

et réseaux mixtes. Dans les réseaux de files d’attente ouverts, les clients qui entrent dans le réseau 

peuvent en sortir. Si un réseau ouvert est acyclique, les clients peuvent visiter un système de file d’attente 

seulement une fois avant de sortir du réseau. La représentation graphique d’un réseau ouvert (acyclique) 

de files d’attente constitué de deux systèmes de file d’attente en tandem est donnée dans la Figure A.3.  

 
Figure A.3. Réseau ouvert (acyclique) des files d’attente en tandem 

Dans les réseaux de files d’attente réentrants, les clients peuvent visiter un système de file d’attente 

plusieurs fois avant de sortir du réseau. Ce retour en arrière dans le réseau est appelé un feed-back. La 

Figure A.4 donne la représentation graphique d’un réseau ouvert des files d’attente avec feed-back où les 
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clients revisitent le premier système de file d’attente avec une probabilité p et passent au système de file 

d’attente suivant avec une probabilité 1 – p. 

 
Figure A.4. Réseau ouvert des files d’attente en tandem avec feed-back 

Dans les réseaux de files d’attente fermés, il n’y a jamais de nouveaux clients qui entrent le réseau et les 

clients existants n'en sortent jamais (Figure A.5). 

 
Figure A.5. Réseau fermé des files d’attente en tandem 

S’il existe plusieurs classes de client, un réseau ouvert doit être ouvert pour chaque classe et un réseau 

fermé doit être fermé pour chaque classe. Un réseau des files d’attente qui est ouvert pour certaines 

classes et fermé pour d’autres est appelé un réseau mixte (Figure A.6).  

 
Figure A.6. Réseau mixte des files d’attente en tandem 

Dans certaines situations, les clients peuvent être acheminés vers différents systèmes de files d’attente 

selon des probabilités prédéterminées (Figure A.7). Ces types de situations se rencontrent par exemple 

quand il existe des systèmes de files d’attente exécutant chacun un service différent et où les clients 

nécessitent les services disponibles selon des probabilités prédéterminées, ou quand il existe des systèmes 

de files d’attente exécutant tous le même service, où chaque client est acheminé vers un des systèmes de 

file d’attente selon des probabilités prédéterminées.  

 
Figure A.7. Acheminement probabiliste dans un réseau ouvert des files d’attente 
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A.2.5.1. Réseaux à forme produit 

Considérons un réseau ouvert acyclique de files d’attente en tandem constitué de k files d’attente à 

capacité illimité. Il existe une seule classe de client. Chaque système de file d’attente i, i = 1,…,k, a un 

seul serveur dont la distribution du temps de service est exponentielle de taux μi. La discipline de service 

est FIFO. Les clients arrivent de l’extérieur dans le premier système de file d’attente selon un processus 

de Poisson ayant le taux λ. Une fois le client servi dans le système de file d’attente i, il entre dans le 

système de file d’attente j = i + 1, avec une probabilité égale à 1. Les clients partent du réseau des files 

d’attente après le service dans le système j = k.  

Soit Xi le nombre de clients dans le système de file d’attente i en régime permanent. Le premier système 

de file d’attente est exactement un modèle M/M/1 (λ, μ1). Selon le théorème de Burke, le processus de 

départ du premier système de file d’attente est un processus de Poisson ayant le taux λ. Par conséquent, le 

deuxième système de file d’attente est aussi un modèle M/M/1 (λ, μ2). En continuant ce raisonnement 

pour i = 3,…,k, la probabilité d’avoir ni clients dans le système de file d’attente i, i = 1,…,k, en régime 

permanent est 
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Supposons que la condition λ < μi soit satisfaite pur chaque i = 1,…,k. Selon le théorème de Burke, le 

nombre de clients dans un système de file d’attente i en régime permanant est indépendant des instants de 

départ antérieurs du système i. Puisque les instants des départ antérieurs constituent le processus d’arrivée 

du système de file d’attente i + 1, les variables d’état Xi et Xi+1 sont mutuellement indépendantes pour       

i = 1,…,k. La probabilité que le réseau des files d’attente soit dans l’état (n1,…,nk) en régime permanent 

est alors déterminé par le produit : 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== ∏

= i

n

i

k

i
kk

i

nXnX
μ
λ

μ
λ 1},...,Pr{

1
11  

Ce résultat peut être généralisé pour les réseaux à acheminements probabilistes. Considérons un réseau 

ouvert des files d’attente constitué de k files d’attente à capacité illimitée ayant chacun un seul serveur 

avec une distribution du temps de service exponentielle. La discipline de service est FIFO. Les clients 

arrivent de l’extérieur dans le système de file d’attente i, i = 1,…,k, selon un processus de Poisson ayant 

le taux ri (les processus de Poisson i = 1,…,k sont indépendants). Une fois le client servi par le système de 

file d’attente i, le client rejoint le système de file d’attente j = 1,…,k, avec une probabilité Pij où 

11 <∑ =
k
j ijP  et ∑ =− k

j ijP11 représente la probabilité que le client parte du réseau des files d’attente après 

le service dans le système i. Notons que selon les propriétés A.1 et A.2, le processus d’arrivée de chaque 
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système de file d’attente est un processus de Poisson s’il n’y a pas de feed-back dans le réseau. Dans le 

cas contraire, les arrivées d’un système de files d’attente peuvent être dépendantes et le processus 

d’arrivée du système n’est pas un processus de Poisson. Par conséquent, les systèmes de file d’attente ne 

sont pas nécessairement des modèles M/M/1. En tous cas, la probabilité que le réseau des files d’attente 

soit dans l’état (n1,…,nk) en régime permanent est exprimée par le produit 
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où ∑
=

+=
k

j
jijii Pr

1
λλ  doit satisfaire la condition λi < μi pour chaque i = 1,…,k. Cette résultat peut être 

vérifié en montrant que les probabilités (1.5) satisfont les équations de balance du réseau des files 

d’attente. Il est connu sous le nom du théorème de Jackson. Notons que le théorème de Jackson considère 

originalement des systèmes de files d’attente multi-serveurs.  

La plupart des résultats connus sur les réseaux des files d’attente à forme produit sont fournis par Baskett 

et al. (1975). Selon la définition de Baskett et al., un réseau des files d’attente est un réseau à forme 

produit si la probabilité que le réseau soit dans un état (x1,…,xk) (la définition d’état peut être différente 

d’un système de file d’attente à l’autre) en régime permanent peut être exprimée sous la forme : 

)()()},...,(Pr{
1

1 kk

k

i
k xfdCxx ∏

=
××== SS  

où C est un constant de normalisation et d(S) est une fonction de nombre totale de clients dans le réseau et 

)( kk xf  est une fonction qui dépend du type du système de file d’attente k. Baskett et al., analysent des 

réseaux ouverts, fermés et mixtes avec des disciplines de service et des distributions du temps service 

variées. Ils ont caractérisé la catégorie des réseaux à forme produit. 

A.2.5.2. Réseaux des files d’attente avec blocage 

Si les systèmes de file d’attente dans un réseau sont à capacité limitée, une situation appelée blocage peut 

survenir. Le blocage désigne l’inactivité d’un système de file d’attente, en présence de clients en attente 

de service, à cause des limites de capacité des systèmes de file d’attente en aval. Dans la littérature, il 

existe plusieurs types de blocage. Nous citons à titre d’exemples le « blocage après service » et le 

« blocage avant service ». Dans le cas de blocage après service, un client qui vient d’être servi par un 

système de file d’attente i peut joindre la file d’attente du système i + 1 s’il y a une place disponible dans 

la file. Sinon, le client reste en attente de transfert et le serveur i reste bloqué jusqu’à ce qu’une place se 

libère dans le système i + 1. Dans le cas de blocage avant service, un client entre en service dans le 

système de file d’attente i seulement s’il y a une place disponible dans la file d’attente i + 1. 
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Les réseaux des files d’attente avec blocage ont des solutions à forme produit seulement dans des cas 

particuliers. Des techniques d’approximation analytiques ont été proposées afin de déterminer les 

probabilités d’état en régime permanent des réseaux des files d’attente avec blocage (voir par exemple 

Dallery et Frein (1993)). 

Les lignes de production sont souvent modélisées par des réseaux des files d’attente en tandem avec 

blocage où chaque système de file d’attente correspond à un poste de travail. Papadopoulos et Heavey 

(1996) fournissent une revue de la littérature sur les modèles files d’attente des lignes de production. Pour 

une revue extensive de la littérature sur les applications de la théorie des files dans les systèmes 

manufacturiers, voir Rao et al. (1998). 

A.2.5.3. Réseaux des files d’attente avec stations de synchronisation 

Les réseaux des files d’attente permettent de représenter l’intégration synchronisée des flux. Considérons 

un système de files d’attente ayant des flux d’arrivée multiples, où chaque flux correspond à une entité 

différente. Les arrivées multiples du système peuvent être synchronisées en utilisant une station de 

synchronisation (Figure A.8). Un départ de la station de synchronisation vers le serveur ne se produit 

qu’en présence d’une entité dans chaque file et si le serveur est libre. Dans le cadre d’un système de 

production, chaque flux peut correspondre à un type de produit et le serveur peut être une machine 

exécutant une opération d’assemblage. 

 
Figure A.8. Système de file d’attente avec synchronisation d’arrivées 

Dans la littérature, les réseaux des files d’attente avec séparation de flux et intégration synchronisée de 

flux sont souvent appelés les réseaux Fork/Join avec synchronisation (Figure A.9). Dans le cadre d’un 

système de production, la séparation de flux peut correspondre par exemple à une opération de 

désassemblage.  

 
Figure A.9. Réseau Fork/Join avec synchronisation 
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A.3. FORMULATION DE LA FONCTION C(S) 

Dans cette section, nous développons la fonction (1.1) présentée dans le chapitre 1. Soit }Pr{ kKPk ==  

la probabilité d’avoir k commandes dans le la file d’attente M/M/1 (µ, λ) en régime permanent : 

)1( ρρ −= k
kP  

Les mesures de performances qui sont le niveau moyen de stock possédé ][IE  et le niveau moyen de 

rupture de stock ][BE  sont calculés par les équations 
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En utilisant ces relations, le niveau moyen de stock possédé ][IE  et le niveau moyen de rupture de stock 

][BE  s’écrivent   

ρ
ρρ
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SIE ,              (A.6) 

ρ
ρ
−

=
+

1
][

1S

BE .               (A.7) 

La fonction de coût )(SC  est alors 
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L’espérance mathématique du nombre de commandes dans la file d’attente M/M/1 (µ, λ) s’écrit 

ρ
ρ
−

== ∑
∞

= 1
][

0k
kkPKE                (A.9) 

En utilisant la relation ][][][ BEIEKES −+= , le niveau moyen de rupture de stock ][BE  peut aussi être 

obtenu par les équations (A.6) et (A.9).  

La fonction de coût (A.8) peut aussi être exprimée comme suit : 
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La fonction de coût (A.8) s’écrit également 
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ANNEXE B 

B. Démonstrations pour le modèle à plusieurs fournisseurs 

 

 

 

B.1. FORMULATION DE LA FONCTION Pv 

Dans cette section, nous approfondissons l’obtention de l’expression analytique de la fonction de 

distribution de probabilité Pv définie par l’équation (3.3). Nous présentons tout d’abord le concept de 

fonction de génération en théorie des probabilités. Ensuite, nous montrons l’obtention de la fonction (3.7) 

en utilisant les propriétés des fonctions de génération. 

B.1.1. Fonctions de génération de probabilité 

Soit X une variable aléatoire discrète et non-négative ayant la fonction de distribution de probabilité       

}Pr{ xXPx == . La fonction de génération de probabilité de la variable aléatoire X est définie comme  

][  )( X

x

x
xX zEzPzG == ∑                                                                                         (B.1) 

pour 1  ≤z . Puisque 1=∑x xP , la somme ∑x
x

x zP  est convergente pour 1  ≤z .  

La fonction de génération de probabilité )(zGX  détermine la distribution de probabilité unique Px, c’est-

à-dire )()( zGzG YX =  si et seulement si Px = Py. En outre, )(zGX  détermine les moments de la variable 

X à travers l’équation )]1()1([ )1()( +−−−= rXXXEG r
X  où )()()( zG

dz
dzG Xr

r
r

X = . L’utilisation des 

fonctions de génération de probabilité facilite l’obtention de la fonction de distribution de probabilité et 

les moments quand on travaille avec les séquences, les sommes, ou les collections des variables aléatoires 

discrètes.  

La fonction de génération de probabilité de la somme des variables aléatoires indépendantes est le produit 

des fonctions de génération de probabilités individuelles. Soit X et Y les variables aléatoires 
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indépendantes ayant les fonctions de génération de probabilité )(zGX  et )(zGY  respectivement. La 

fonction de génération de probabilité )(zG YX +  de la variable X + Y s’écrit 

)()(] [  ] [ ]    [ ] [ )( zGzGzEzEzzEzEzG YX
YXYXYX

YX ×=×=×== +
+ .        (B.2) 

B.1.2. Obtention de la fonction Pv 

Puisque la fonction de génération de probabilité détermine la distribution de probabilité de façon unique, 

nous pouvons obtenir la fonction de distribution de probabilité Pv en utilisant la fonction de génération de 

probabilité de la variable aléatoire V : 
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Pour i = 1,…,n, la fonction de génération de probabilité de la variable aléatoire Ki s’écrit 
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Alors, la fonction de génération de probabilité )(zGV est en forme de produit : 
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En supposant jjii ραρα ≠  pour ji ≠∀ , nous pouvons réécrire la fonction )(zGV  en forme de somme 

(Kleinrock, 1975) : 
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Calculons les coefficients A1, A2,…, An qui satisfont l’égalité des équations (B.5) et (B.6). Le coefficient 

Ai pour i = 1,…,n est la valeur qui satisfait l’égalité 
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ou également l’égalité 
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pour  /1 iiz ρα= :  
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En utilisant l’équation (B.7), la fonction )(zGV  s’écrit 
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Sachant que  
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nous pouvons écrire la fonction )(zGV  comme suit : 
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Selon la définition (B.1), la fonction de distribution de probabilité Pv est alors 
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B.2. DÉMONSTRATION DU LEMME 3.1 

En utilisant la définition (3.28) du paramètre mτ , nous pouvons écrire 
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Les relations (B.11) et (B.12) nous donnent 
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Les règles du lemme 3.1 sont les résultats directs des relations (B.13) et (B.14). 

B.3. DÉMONSTRATION DU LEMME 3.2 

Nous exposons la démonstration en deux étapes. Dans la première étape, nous montrons l’existence de 

l’indice m* qui satisfait les relations (3.29) et (3.30). Dans la deuxième étape, nous montrons l’unicité de 

l’indice m* et que l’évolution du paramètre mτ  suit le lemme 3.2. 

B.3.1. Existence de l’indice m* 

Quel que soit ensemble des paramètres (λ, μ1,…, μn), la condition (3.15) implique 0>nτ . Soit k le plus 

petit indice qui satisfait λμ >∑
=

k
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1
. En écrivant m + 1 = k dans l’équation (B.14), nous obtenons  
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i
ikkkkk μττμτμ .                                                                                           (B.15) 

Sachant que 0>kτ  et que 01 ≤−kτ , l’équation (B.15) implique 2
kk τμ > . Si 2

1 kk τμ ≤+ , alors m* = k. 

Sinon, la relation 2
1 kk τμ >+  implique 2

11 ++ > kk τμ  et kk ττ >+1  selon la troisième règle du lemme 3.1. 

Ensuite, si 2
12 ++ ≤ kk τμ , alors m* = k + 1. Sinon, le processus itératif continue pour les indices                   

m = k + 2,…,n. En continuant ce processus itératif, supposons que 2
11 −− > nn τμ  et 2

1−> nn τμ  pour              

m = n – 1. La relation 2
1−> nn τμ  implique 2

nn τμ >  et 1−> nn ττ . Nous savons que 2
1 nn τμ ≤+  car 

01 =+nμ . Alors m* = n. Donc, il existe un indice m* tel que 1 ≤ m* ≤ n qui satisfait les relations (3.29) et 

(3.30).  

Notons que dans le cas où k = n, l’équation (B.15) implique 2
nn τμ >  et par conséquent m* = n.  
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B.3.2. Unicité de l’indice m* et évolution du paramètre τm 

Pour les indices m = m*+1,…,n, nous avons la relation λμμ >> ∑∑ ==

*

11
m
i i

m
i i  qui implique 0>mτ . 

Sachant que 2
1 ** mm

τμ ≤
+

, nous pouvons écrire ** 1 mm
ττ ≤

+
 et 2

11 ** ++
≤

mm
τμ  en utilisant le lemme 3.1. 

Donc, la relation 2
112 *** +++

≤<
mmm

τμμ  implique 
12 ** ++

<
mm

ττ . En appliquant le même raisonnement 

pour m = m*+3,…,n – 1, nous pouvons montrer que la valeur du paramètre mτ  décroît de manière 

monotone avec m pour m* < m < n.  Autrement dit, 1+> mm ττ  pour m = m*+1,…,n–1.  

Selon les équations (B.13) et (B.14), l’évolution du paramètre mτ  doit être croissante avec m pour            

1 ≤ m ≤ k – 1, car 0>iμ  pour i = 1,…,n. Sachant que 0>mτ  pour m = k,…,m* et que 2
** mm

τμ > , nous 

pouvons écrire 
1** −

>
mm

ττ  et 2
1** −

>
mm

τμ  selon le lemme 3.1. Par conséquent, la relation 

2
11 *** −−

>>
mmm

τμμ  implique 
21 ** −−

>
mm

ττ . Nous pouvons appliquer le même raisonnement pour         

m = k,…,m*–3. Donc, la valeur du paramètre mτ  est croissante avec m pour 1 ≤ m ≤ m* et finalement la 

valeur maximale du paramètre mτ  est obtenue pour m*. En outre, puisque nous avons 2
1 mmm τμμ ≤<+  

pour m = m*+1,…,n et 2
1 mmm τμμ >> +  pour m = k,…,m*–1, l’indice m* est l’indice unique qui satisfait 

les relations (3.29) et (3.30). 

B.4. DÉMONSTRATION DE LA PROPRIÉTÉ 3.2 

Nous allons exposer la démonstration en deux étapes. Dans la première étape, nous montrons que la 

politique n
ii mm 1

**** ))(()( == αα  définie par la propriété 3.2 est admissible. Dans la deuxième étape, nous 

montrons que la politique )( ** mα  est optimale.  

B.4.1. Admissibilité de la politique α*(m*) 

L’ensemble des paramètres de Bernoulli n
ii mm 1

**** ))(()( == αα  défini par (3.31) satisfait la contrainte 

(3.13) : 

11)(1
* *

*

*

*

1 111

* =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=−= ∑ ∑∑∑

= ===

m

i

m

i
imi

m

i
imi

n

i
i μτμ

λ
μτμ

λ
α        (B.16) 

Si m* = 1, l’ensemble ),...,1pour  0,1( **
1 nii === αα  est admissible. Si m* > 1, puisque *mi μμ >  pour     

i = 1,…m*–1 et 2
** mm

τμ > , nous pouvons écrire 2
** mmi τμμ >>  qui implique imi μτμ *>  pour               
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i = 1,…,m*. Selon la définition (3.31), nous pouvons conclure que 0* >iα  pour i = 1,…,m*. De plus, les 

contrainte (3.14) sont satisfaites car 0* >m
τ . Donc, la propriété 3.2 définit une solution admissible. 

B.4.2. Optimalité de la politique α*(m*) 

D’après la propriété 3.1, la politique )( ** mα  est optimale pour m* = n. Si m* < n, sachant que le problème 

Π1 est un problème d’optimisation convexe, il suffit de montrer que l’ensemble des paramètres de 

Bernoulli )0,...0,,...,,( **
2

*
1 *m

ααα  constitue un optimum local. 

Considérons une variation iα∂ , pour i = 1,…,n, telle que n
iii 1)( =∂+ αα  soit admissible. L’admissibilité de 

la solution n
iii 1)( =∂+ αα  nécessite en particulier 0≥∂+ ii αα  pour i = 1,…,m*, 0≥∂ jα  pour                    

j = m*+1,…,n et  

0
1

*

1 *

=∂+∂ ∑∑
+==

n

mj
j

m

i
i αα .                                                                                                           (B.17) 

La variation de la fonction objectif ][WE  s’écrit 
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ou également 
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Supposons que 0>∂ jα  pour au moins un j ≥ m*+1. Nous pouvons écrire alors l’inégalité suivante : 
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Sachant que 2
*mj τμ ≤  pour j = m*+1,…,n et en utilisant l’équation (B.17), nous pouvons écrire 

01][
1

*

1
2
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.                                                                                 
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Donc, la politique )( ** mα  est optimale parmi les politiques ayant 0* >jα  pour j = m*+1,…,n. Notons que 

la politique )( ** mα  est optimale parmi les politiques ayant 0* =jα  pour j = m*+1,…,n par construction. 

La propriété 3.2 définit alors la solution optimale du problème П1. 





   

ANNEXE C 

C. Lois de type phase et la méthode LZ 

 

 

 

C.1. LOIS DE TYPE PHASE  

La loi de probabilité du temps d’absorption dans une chaîne de Markov absorbante est dite de type phase. 

Dans la suite, nous exposons les définitions des lois de type phase à temps continu et à temps discret. 

C.1.1. Lois de type phase à temps continu 

Soit {X(t), t ≥ 0} une chaîne de Markov à temps continu ayant l’ensemble fini d’états {1,…, m + 1}. Les 

états 1,…, m sont transitoires et l’état m + 1 est absorbant. Le générateur S (la matrice des taux de 

transitions) d’une telle chaîne de Markov absorbante peut être décomposé comme suit : 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
ωG

S  

où G est une matrice m x m et ω  est un vecteur colonne de dimension m. 0 est le vecteur dont tous les 

éléments sont égaux à 0. La matrice G satisfait 0<iiG  pour mi ≤≤1  et 0≥ijG  pour ji ≠ . En outre, 

01 =+ ωG  où 1 est le vecteur colonne dont tous ces éléments sont égaux à 1. Le vecteur ] ... [ 11 += mγγγ  

définit la distribution de probabilité initiale et satisfait 11 =+ +mγ1γ . Soit { } 1)(:0 inf +=≥= mtXtZ  

le temps d’absorption du processus de Markov dans l’état m + 1. La variable aléatoire Z suit une loi de 

type phase à temps continu (continuous phase type ou CPH) d’ordre m avec les paramètres γ  et G. On 

écrit Z ~ ),(CPH Gγ . La fonction de distribution de probabilité de la variable aléatoire Z s’écrit 

ωGγ ) exp()( ttfZ =  

où  t- et GG =)(exp  est une fonction matrice exponentielle. La fonction de distribution cumulative et les 

moments de la variable aléatoire Z sont 

1) exp(1)( ttFZ Gγ−= , 
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1nnn nZE −−= G γ !)1(][ . 

Les états transitoires 1,…,m de la chaîne de Markov correspondent aux phases du temps d’absorption. 

L’évolution du temps d’absorption est représentée par un graphe de services exponentiels qui est 

constitué de m phases où le temps de séjour dans la phase i suit une loi exponentielle de taux iiG− .  

La famille de lois de type phase est constituée des distributions exponentielles et des distributions de 

toutes les sommes et les combinaisons finies de variables aléatoires exponentielles. Comme cas 

particuliers de cette famille de distributions, nous citons la distribution hypo-exponentielle, hyper-

exponentielle, et Cox. La distribution hypo-exponentielle (ou Erlang généralisée) (Figure C.1) est la 

distribution de la somme de n variables aléatoires suivant des lois exponentielles. La distribution hypo-

exponentielle peut être représentée par une loi de type phase ayant les paramètres 
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Figure C.1. Représentation de la distribution hypo-exponentielle 

La distribution hyper-exponentielle (Figure C.2) est la distribution d’une combinaison finie de n variables 

aléatoires suivant des lois exponentielles. La distribution hyper-exponentielle peut être représentée par 

une loi de type phase ayant les paramètres 
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Figure C.2. Représentation de la distribution hyper-exponentielle 
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Un exemple plus général est la distribution de Cox (Figure C.3) qui est une distribution d’Erlang 

généralisée dans laquelle, à chaque phase, il existe une possibilité de rentrer à l’état absorbant sans passer 

par les phases suivantes. Les paramètres définissant la distribution de type phase correspondante sont 
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Figure C.3. Représentation de la distribution de Cox 

C.1.2. Lois de type phase à temps discret 

La définition de la loi de type phase à temps discret est similaire à la définition de CPH. Soit {Xn, n ≥ 0} 

une chaîne de Markov à temps discret ayant l’ensemble fini d’états {1,…, m + 1}. Les états 1,…, m sont 

transitoires et l’état m + 1 est absorbant. La matrice des probabilités de transition T de la chaîne de 

Markov {Xn, n ≥ 0} peut être décomposé comme suit : 

⎥
⎦

⎤
⎢
⎣

⎡
=

10
ηQ

T  

où Q est une matrice m x m et η est un vecteur colonne de dimension m avec 11 =+ ηQ . Le vecteur 

] ... [ 11 += mααα  définit la distribution de probabilité initiale et satisfait 11 =+ +mα1α . Soit 

{ } 1:0 min +=≥= mXn nθ  le temps d’absorption du processus de Markov dans l’état m + 1. La 

variable aléatoire θ  suit une loi de type phase à temps discret (discrete phase type ou DPH) d’ordre m 

avec les paramètres α  et Q . On écrit θ  ~ )(DPH Qα, . La fonction de distribution de probabilité, la 

fonction de distribution cumulative, et les moments de la variable aléatoires θ  sont 

ηαQ 1)( −= kkfθ , 

1kkF αQ−= 1)(θ , 

1I 1)(!)]1)...(1([ n-nnnE QQα −−=+−− θθθ , 

λ1 λ2 λn…
p1 p2

1-p1 1-p2
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où I est la matrice d’identité. 

La famille des lois de type phase à temps discret est constituée des distributions géométriques et des 

généralisations des distributions géométriques. Comme les lois de type phase à temps continu, elles ont 

des applications réelles et elles sont aussi utilisées pour approximer les processus non-markoviens. 

C.2. MÉTHODE APPROXIMATIVE DE LEE ET ZIPKIN 

Lee et Zipkin (1992) proposent une méthode approximative (appelée LZ) pour l’évaluation analytique des 

performances des systèmes de stock nominal à n étages avec Si ≥ 0 pour i = 1,…,n. La méthode 

approximative LZ se base sur l’hypothèse que l’arrivée des produits à chaque niveau i > 1 est un 

processus de Poisson ayant le taux λ. Selon cette hypothèse, le temps de séjour des produits dans le 

système de fabrication de niveau i, « Wi », suit une loi exponentielle de taux λμ −= iiv . Supposons que 

iL ~ ),(CPH ii Gγ . Selon la propriété donnée par Sovorons et Zipkin (1991), le nombre de commandes 

dans le système de fabrication du niveau i, « Ki », est égal au nombre de demandes arrivant pendant le 

temps de séjour « Li ». D’après les propriétés des lois de type phase (Neuts, 1994), Ki  et Bi = [Ki – Si]+ 

suivent alors des lois de type phase à temps discret : iK ~ ),(DPH ii Qα et iB ~ ),(DPH i
S
ii

i QQα  avec les 

paramètres 

 1)( −−= ii GQ Iλλ ,              (C.1) 

iii Qγα = .                           (C.2) 

Selon Sovorons et Zipkin (1991), le nombre de commandes retardées du niveau i, Bi, est égal au nombre 

de demandes arrivant pendant le délai de livraison Di. En combinant cette propriété avec les propriétés 

des lois de type phase (Neuts, 1994), iD ~ ),(CPH i
S
ii

i GQα . Selon la définition Li+1 = Di + Wi+1, la fonction 

de densité de probabilité de Li+1 est un produit de convolution de deux lois de type phase. Nous pouvons 

écrire ( ) )( *)(
11

tfftf
iii WDL ++

= . Selon les propriétés des lois de type phase (Neuts, 1994), Li+1 suit alors 

une loi de type phase à temps continu : 1+iL ~ ),(CPH 11 ++ ii Gγ où 

)]1(,[1 1ii S
ii

S
iii QγQγγ −=+ ,             (C.3) 
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⎡
−
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i v

1GG
G .              (C.4) 

En développant, Lee et Zipkin réécrivent la matrice (C.4) comme suit : 
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Puisqu’il n y’a pas de délai avant le premier serveur, L1 suit la même loi de distribution que W1. En 

commençant par ] 1 [1 =γ , Lee et Zipkin calculent (C.3) récursivement pour i = 1,…,n.  

En utilisant les propriétés des lois de type phase à temps discret, ils calculent les mesures de performances 

du système comme suit : 

1iS
iiii SK Qα=> }{Pr  

1I 1)(][ -
iiiKE Qα −=  

1I 1)(][ -
i

S
iii

iBE QQα −=  

1I1I 11 )()(][][][ -
i

S
ii

-
iiiiiii

iSBEKESIE QQαQα −+−−=+−=  

La méthode approximative LZ est exacte quand Si = 0 pour i = 1,…,n. Dans ce cas, ]0 ... 0  0  1[=nγ  et le 

délai de livraison de niveau n est la somme de n variables aléatoires indépendantes suivant des lois 

exponentielles. Le délai de livraison de niveau n est alors le temps de séjour dans le réseau de files 

d’attente en tandem correspondant.  
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TITRE EN ANGLAIS : Replenishment policies in multi-supplier systems and Decisions Optimization 

in decentralized supply chains 

RÉSUMÉ EN ANGLAIS : Coordinating product flows between the partners of a supply chain is a 

difficult task because of random variations in demand and supply processes and the antagonistic nature of 

the individual economic objectives of the partners. This study concentrates on the management of inter-

organizational product flows in supply chains. Two approaches are analyzed with the aim of improving 

performances of production/inventory systems controlled by base stock type product flow control 

policies. In the first approach, the effects of multi-supplier strategies on the performances of supply 

chains are studied. It is shown that a multi-supplier strategy decreases the expected replenishment delay 

and the expected inventory holding and shortage costs. The second approach deals with the deviations 

from the set of supply chain optimal actions due to the decentralisation of decision rights in a two-stage 

supply chain. In the game theory framework, the partners play a two-stage game of the Stackelberg type. 

A coordination contract is proposed and it is shown that the optimal supply chain performance is 

achievable using the proposed contract. 
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cause du caractère aléatoire des variations dues au marché et aux partenaires commerciaux et des 

antagonismes existants entre les objectifs économiques des partenaires. Les travaux développés dans cette 

thèse s’intègrent dans le cadre de pilotage de flux inter-organisationnelle dans les chaînes logistiques. 

Nous analysons deux approches ayant le but d’améliorer les performances des systèmes de 

production/stockage pilotés par des politiques de pilotage flux du type stock nominal. Dans la première 

approche, nous étudions les effets des stratégies multi-fournisseurs sur les performances des chaînes 

logistiques. Nous montrons que le délai moyen d’approvisionnement et les coûts moyens de stockage et 

de rupture de stock peuvent être réduits en optant pour une stratégie multi-fournisseurs. Dans la deuxième 

approche, nous analysons la dégradation de performances due à la décentralisation des décisions dans une 
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