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ABSTRACT

In ship structural design, scantling optimizatiosing mathematical algorithms is not yet largely
implemented in industry. Optimization with mathdoztalgorithms can be very helpful to find the bes
solution (minimum weight, minimum cost, maximumntime..). Typically, finite element analysis (FEA)
tools are used in ship structural assessment. ®®ubuild a FEM model from a CAD one is not easy. It
needs a big amount of manual work. In the presemkwan innovative optimization workflow was
developed. The following steps are carried autocadlfi without any manual intervention. First, from
the 3D CAD model, an idealized CAD model is credigdhe idealization module to take into account
the FEM needs. Then, the idealized CAD model issteared to the FEM tool. After that, the FEM
model is meshed and loaded. After FEM solving, rdseilts (stress, displacement, volume etc.) are
transferred to the optimizer. The optimizer evadsathe values of the objective function and the
constraints previously defined and modify the desigriables (plate thickness and the stiffener
scantling) to create a new structural model. Afteveral iterations, the optimum solution is evadaiat
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INTRODUCTION

The optimization process developed on the preserk 8 presented on the following steps (FigureThe 3D
CAD model is transferred from the CAD software ke tidealization module. The idealization modulel wil
generate a simplified geometry which belongs to HtEM needs and then the idealized CAD model is
transferred to the FEM tool to create a meshedleaded structural model. After solving, the resi#isess,
displacement, volume etc.) are transferred to phemzer.

The optimizer evaluates the values of the objediimetion and the constraints previously defined arodify
the design variables (plate thickness and theesgff scantling) to create a new structural modéerA-EM
solving, the results (stress, displacement, volatogare transferred again to the optimizer.

AVEVA Marine is used as CAD software. The idealizer was developed by AVEVA (Bohm 2010), (Doig 2009,
2010). ANSYS is used as FEM software and ModeFrontier software is the optimization platform.
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Figure 1: Optimization workflow (Bohm 2010)

FIRST APPLICATION: double bottom structure

The scantling optimization of a typical ship doultlettom structure is achieved (Figure 2). Strudtanad
geometrical requirements are imposed. The doubt®inostructure is considered clamped on one edge an
moment of 100000 kNm is applied on the oppositeeedy constant pressure of 0.01 N/facts on the
underside of the bottom shell (i.e. the pressuteiache +z direction). A constant pressure 006.8l/mnf acts

on the side shell (Figure 3). The dimensions ofsthecture are presented on Table 1.
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Variable (mm) symbol value
BREADTH BREADTH 10180
HEIGHT HEIGHT 20210000
LENGTH LENGTH 17800
'Young's modulus (MPa) Young's modulus 210 000
Poisson ratio Poisson ratio 0.33
Frame spacing FR_SPACING 3560
Web height of bottom stiffeners HW B 430
Web height of double bottom stiffeners HW_DB 430
Web height of side stiffeners HW_S 160
Web height of bottom frames HW FR B 600
Web height of double bottom frames HW_FR DB 600
Web height of side frames HW_FR_ S 400
Number of frame N_SEC 5
number of bottom stiffeners N_Stif B 6
number of double bottom stiffeners N_Stif DB 6
number of side stiffeners N_Stif S 3
Web thickness of bottom stiffeners TW_ B 17
Web thickness of double bottom stiffeners TW_DB 17
Web thickness of side stiffeners TW_S 9
bottom plate thickness Th B 15
Double bottom plate thickness Th_DB 16
side plate thickness Th_S 13
Web thickness of bottom frames Th FR_B 20
Web thickness of double bottom frames Th FR_DB 20
Web thickness of side frames Th FR_S 20

Table 1: Dimensions of the double bottom structure

The design variables and their limits are presentedable 2. The minimum weight (volume) optimipatiis
done. Maximum Von Mises stress is constrained &ivViRBa.

Some geometrical constraints are imposed:

* Web thickness of frames less than the double opléie thickness

* Web thickness of stiffeners less than the doublh@plate thickness

» the plate thickness less than the double of wetkiigiss of stiffeners

* Web height of the frames greater than the web hefétiffeners
Additionally, equality constraint applied to impotdee same number of stiffeners on the bottom andbldo
bottom areas.

The optimization workflow developed built with Mdéle@ntier software is presented in Figure 4. Thdgihes
variables are defined on the top. The optimizat®rlone by using the SIMPLEX algorithm, Murty (1983
ModeFrontier offers the possibility to use discredgiables and also to use values from cataloghe.sfiffeners
are bulb profiles. They are defined by an indexkitorrespond to the dimensions from the catalogue.



Designsvariables

Variable (mm) symbol Min Max
Web height of bottom stiffeners HW_B 160.0 430.0
Web height of double bottom stiffeners HW_DB 200.0 430.0
Web height of side stiffeners HW_S 140.0 400.0
Web height of bottom frames HW_FR B 320.0 960.0
Web height of double bottom frames HW_FR DB 320.0 00alo
Web height of side frames HW FR $ 180.0 940.0
Number of frame N_SEC 4.0 6.0
number of bottom stiffeners N_Stif B 5.0 7.0
number of double bottom stiffeners N_Stif DB 5.0 07.
number of sisde stiffeners N_Stif S 1.0 3.0
Web thickness of bottom stiffeners TW_ B 9.0 17.0
Web thickness of double bottom stiffeners TW_DB 8.5 20.0
Web thickness of side stiffeners TW_S 7.0 16.0
bottom plate thickness Th_ B 8.0 29.0
Double bottom plate thickness Th_DB 9.0 23.0
side plate thickness Th_S 7.0 27.0
Web thickness of bottom frames Th_FR_B 10.0 27.0
Web thickness of double bottom frames Th_FR_DB 6.0 28.0
Web thickness of side frames Th FR S 7.0 30.0

Table 2: Design variables
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Figure 4: Optimization workflow
The optimization results are presented in Figureb and Figu® We can see the

variation of the objective function, maximum Vondds stress, the number of frames, number of stiffeand

plate’s thickness at all the areas.

The optimum is reached on the"2Beration. The minimum value of the volume is £999 mm3. The Von
Mises stress at this iteration is 221.68 MPa (teas the limit 235MPa). All the results after optation are
presented on the Table 3.In Figure 7 and Figuree&ktted some comparisons between the initialgdeasnd

the optimized one.
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Optimization results

initial optimum %
volume 6.43E+09 3.99E+09 38%
Maximum Von Mises stress 253.24 221.68 12%
Designs variables (mm)
Web height of bottom stiffeners 370 260 -30%
Web height of double bottom stiffeners 430 260 -40%
Web height of side stiffeners 160 370 131%
Web height of bottom frames 600 480 -20%
Web height of double bottom frames 600 820 37%
Web height of side frames 400 800 100%
Number of frame 5 6 20%
number of bottom stiffeners 6 7 17%
number of double bottom stiffeners 6 7 17%
number of sisde stiffeners 3 3 0%
Web thickness of bottom stiffeners 15 10 -33%
Web thickness of double bottom stiffeners 17 11 %35
Web thickness of side stiffeners 9 14 56%
bottom plate thickness 15 16 7%
Double bottom plate thickness 16 14 -13%
side plate thickness 13 23 7%
Web thickness of bottom frames 20 15 -25%
Web thickness of double bottom frames 20 11 -45%
Web thickness of side frames 20 19 -5%

Table 3: Optimization results
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Figure 7: Initial and optimized cross section
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Figure 8: Initial and optimized ANSYS models




SECOND APPLICATION: DECK STRUCTURE

The model studied is a deck structure shown inréi@u The structure is constituted by deck Plategitudinal
girders, transversal frames, longitudinal stiffenand two longitudinal walls connected to the dstlicture.
The boundary conditions are presented on Figure 9.

The initial scantling is defined on Table 4.

The Young's modulus E =2.060xX1MPa and the Poisson ratio is 0.33.

Element symbol Value (mm)
Longitudinal girders: flange width GR_BF 300
Longitudinal girders: web height GR_HW 600
Longitudinal girders: flange thickness GR_TF 10
Longitudinal girders: web thickness GR_TW 5
Transversal frames: flange width db_BF 180
Transversal frames: web height db_ HW 300
Transversal frames: flange thickness db TF 10
Transversal frames: web thickness db TW 5
Deck thickness Deck_thickness 10
Longitudinal wall thickness Thick_lw060002 10
Deck stiffener deck_profile Hp160x9
Longitudinal wall stiffener STI_lw060002 Hp180x8

Table 4: Initial geometry

Uz=0 ] clamped ]
y

Figure 9: Deck structure (boundary conditions)



The meshed structure is showed on Figure 10 . Rijatiers and frames are modelled with shell elemerhe
longitudinal stiffeners are modelled with beam etais.

Figure 10: mesh

The following, the design variables are considered:

» Plate thickness

» Longitudinal girders : web height and thicknesanfle breath and thickness
» Transversal frames : web height and thicknessgédmreath and thickness
>

Longitudinal stiffeners profile

The maximum and minimum dimensions allowed areeresi on Table 5. The values of plate thicknessds a
stiffeners profiles are taken from catalogues.

Min (mm) | Max (mm)
Longitudinal girders: flange width 50 700
Longitudinal girders: web height 200 1000
Longitudinal girders: flange thickness 5 40
Longitudinal girders: web thickness 5 40
Transversal frames: flange width 60 180
Transversal frames: web height 200 100d
Transversal frames: flange thickness 5 40
Transversal frames: web thickness 5 40
Deck thickness 5 40
Longitudinal wall thickness 5 40
Deck stiffener Hp60x4| Hp430x1ff
Longitudinal wall stiffener Hp60x4| Hp430x1jy

Table5: design variableslimits

The volume of the structure is defined as the dbjedunction to minimize. As a constraint, the rimaxm
stress is imposed to be less than 235 MPa.



The optimization workflow is shown in Figure 11.
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Figure 11: Optimization process



The optimization results are presented in Figuread@ Figure 13 . We can see the variation of thHeabilwe function and
maximum Von Mises stress. The optimum is reachether278' iteration. The minimum value of the weight is 98,63 kg.
The Von Mises stress at this iteration is 225.4 MPa

For a comparison, additional to the initial desith® results of two other iterations are plotted.tfe iteration 266, we have
the minimum value of the weight 946 kN. This valadower than optimum solution but the stress hereigger than the
limit (244.3MPa). The principal difference betweese two designs is the longitudinal girders weiglit. So, this solution
is not feasible.

Another iteration is plotted (iteration 10). It repents the case of maximum weight. On Table Gamesee the values of the
design variables on the iterations 10, 266 an 278.

lteration Initial 10 266 278
geometry
Longitudinal girders: flange width 300 450 600 600
Longitudinal girders: web height 600 1000 550 650
Longitudinal girders: flange thickness 10 6 7 6
Longitudinal girders: web thickness 5 22 8 8
Transversal frames: flange width 180 120 100 100
Transversal frames: web height 300 750 250 25(
Transversal frames: flange thickness 10 40 15 11
Transversal frames: web thickness 5 27 5 5
Deck thickness 10 30 6 6
Longitudinal wall thickness 10 26 6 7
Deck stiffener Hpl160x9| hp370x1#4  hp220x9 hp220x9
Longitudinal wall stiffener Hp180x8 hp220x4 hp40@x] hp400x14
Total weight (kN) 1106 2851 946 955
Maximum stress (M Pa) 3411 59.7 2443 2254

Table 6: Optimization results

2.9500E2
2.8500E2 | w4

9.7000E1

~[Maximurr] T =

2.6500E2 | i
9650081 “\ ‘\‘ .........
A2.5500E2 | ' [ | ‘
=2 4500E2 S A R |
] T‘ 9.6000E1 | H \ / Ve Jd i
< 2.3500E2 o N
—
=2 1500E2 -

O 5 0500E2 Minimumy... W | e
= 1.9500E2 1) but L i Optimum
£'1.8500E2 unfeasible —N '

T 1 7500E2

HT

!

Objective_WEI

9.5500E1 ¥

F

9.4500E]
260 262 264 266 268 270 272 274 276 278 280

Design ID

Object

1.5500E2 1
1.4500E2

1 |
1

.&+ﬁf_€

.3500E2 i

2500E2 iy 1

\
\
\
- ‘l
s

8.5000E1

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
Design ID

Figure 12: Total weight variation
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CONCLUSIONS

The present work has been done in the frameworthefEuropean BESST Project. The challenge was welagie an

innovative structural optimization workflow. Sopfn a 3D CAD model, FEM model can be created auticalt and the
FEM results can be used by an optimization algorite evaluate an optimum solution. So, a solut®mroposed and
applied for two examples.

A remaining work is to improve the optimization pess by adding more structural constraints (fatigueckling,

vibration...) and considering other or additionbjeztive functions (minimum cost, maximum inertig,to get real feasible
optimum solution.
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