De la dynamique des structures aux systèmes non-linéaires : enjeux et perspectives pour la réduction de modèle

Olivier BRÜLS

Département Aérospatiale et Mécanique (LTAS) Université de Liège (Belgique)

Atelier de la SIA : La réduction de modèles Le 21 avril 2010

600

Acknowledgements From the University of Liège > Pierre Duysinx > Jean-Claude Golinval > Daryl Hickey > Sébastien Hoffait > Gaetan Kerschen From Open-Engineering S.A. > Philippe Nachtergaele

Outline	
	Linear model reduction techniques
	Nonlinear model reduction techniques

Summary

The aim of Model Order Reduction (MOR) is not only to reduce the number of states but also to ensure:

- > Portability / compatibility with software interface
- > Small computational time at exploitation stage
- > Reasonable computational time at construction stage
- Limited memory storage
- Limited loss in accuracy
- Appropriate validity domain
- Preservation of important properties of the system

Linear reduction methods

>In general, linear dynamic equations can be formulated as:

 $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \\ \mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$

> In structural dynamics (n dimensional)

 $M\ddot{y} + Ky = g$

Symmetric definite positive matrices + energy conservation

Most linear reduction methods are based on a projection of the dynamics onto a linear subspace

ROM (\overline{n} dimensional, with $\overline{n} \ll n$): $\overline{\mathbf{M}}\ddot{\eta} + \overline{\mathbf{K}}\eta = \overline{\mathbf{g}}$

Merci de votre attention !

De la dynamique des structures aux systèmes non-linéaires : enjeux et perspectives pour la réduction de modèle

> Olivier BRÜLS Université de Liège Département Aérospatiale & Mécanique (LTAS)

