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Introduction

Some SAMCEF/MECANO models
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Introduction

Nodal coordinates

� translations & rotations

Kinematic joints & rigidity conditions

� algebraic constraints

index-3 DAE with rotation coordinates

Finite element approach for MBS  [Géradin & Cardona 2001]

Other elements:

rigid bodies, 

flexible beams, 

superelements…

� Introduction

� Modelling of tape-spring hinges for space systems

� Single-tape spring study

� Full hinge study

� Advanced solvers for DAEs on Lie group

� Topology optimization of structural components

Outline
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MAEVA Hinge

� Developed by METRAVIB

& CNES

� Guiding, driving and locking 

functions

� No contact between sliding surfaces

Tape-spring hinge

[Watt & Pellegrino 2002]

� Deployable space systems

� One or several tape-springs 

(Carpenter tapes)

Comparison with experiments:

� 3D behaviour?

� Self-locking?

Prediction of dynamic behaviour?

A tape-spring hinge cannot be modelled as an ideal hinge 

with equivalent springs and dampers…

Design of ESEO educational 

spacecraft sponsored by ESA

A first modelling attempt 
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Sign convention:  

(a) opposite-sense bending

(b) equal-sense bending

Preamble: Single tape-spring analysis

Static behaviour: bending moment vs. opening angle

� Variational method and large deformation shell theory

[Mansfield 1973]

� FE study & experimental tests [Seffen et al 1997]

State of the art
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� Second order Mindlin shell elements

� Higher mesh densities in the center

� Symmetry is exploited

Single tape-spring study

Strongly nonlinear behaviour with a limit point

� Static analysis 

• Continuation method

• Pseudo-dynamic method

� Dynamic analysis

• Generalized-α, HHT

disp

load

Methods
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� Continuation vs. pseudo-dynamics

� Agreement with Mansfield’s results

Static behaviour of a single tape-spring

O
p

p
o

s
it
e

 s
e

n
s
e

E
q
u

a
l 
s
e

n
s
e

� Introduction

� Modelling of tape-spring hinges for space systems

� Single-tape spring study

� Full hinge study

� Advanced solvers for DAEs on Lie group

� Topology optimization of structural components

Outline
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Experimental tests (Metravib) :

Driving torque > 0.15 Nm

Holding torque > 4.5 Nm

Driving torque : 0.194 Nm

Holding torque : 6.67 Nm

Driving torque : 0.152 Nm    

Holding torque : 6.67 Nm

Static behaviour of a full hinge

Method :

� Detailed hinge model

� The mass of the appendix (solar panel) is considered

� No structural damping but numerical damping

� Analysis procedure

1. Quasi-static folding

2. Dynamic deployment

Dynamic behaviour of a full hinge

folding deployment
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Full hinge - Torsional mode blocked

Full hinge - Torsional mode blocked

∆Etot = -0.0457 J
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Full hinge - Torsional mode blocked

∆Ehyst = -0.0414 J

∆Etot = -0.0457 J

Full hinge - Torsional mode free
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Application to the ESEO satellite

� FE model of a tape-spring hinge using SAMCEF/MECANO

� Validation for a single tape-spring

� Detailed model of a full hinge

� Self-locking is caused by the hysteresis phenomenon

� Numerical vs. physical dissipation

Summary

Motivation for simplified and robust FE-MBS solvers:

� sensitivity analysis

� structural optimization

� optimal control

� nonlinear model reduction (POD)

� RT simulation
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Liège - Belgium

ECCOMAS 

2011

Liège-Guillemins

train station

� Introduction

� Modelling of tape-spring hinges for space systems

� Advanced solvers for DAEs on Lie group

� Topology optimization of structural components

Outline
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Generalized-α method

� Solution of stiff 2nd order ODEs [Chung & Hulbert 1993]

� Includes Newmark & HHT as special cases

� 2nd order accuracy

� Unconditional stability (A-stability) for linear problems 

� Controllable numerical damping at high frequencies

� Direct integration of index-3 DAEs [Cardona & Géradin 1989; 

Bottasso, Bauchau & Cardona 2007; Arnold & B. 2007]

� Reduced index formulations for DAEs [Lunk & Simeon 2006; 

Jay & Negrut 2007; Arnold 2009]

How to avoid parameterization singularities?

� 3-dimensional parameterization + updated Lagrangian 

point of view [Cardona & Géradin 1989]

� Higher dimensional parameterization + kinematic 

constraints [Betsch & Steinmann 2001] 

� Rotationless formulation, e.g. ANCF [Shabana]

� Lie group time integrator: no parameterization of the     

manifold is required a priori  [Crouch & Grossmann 1993; 

Munthe-Kaas 1995; B. & Cardona 2010; B., Cardona & Arnold 2010] 

About rotations…
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The configuration evolves on the k-dimensional Lie group

with the composition such that

Nodal configuration variables

Constrained equations of motion (DAEs on a Lie group)

and

Lie group formalism for flexible MBS

x

y

z
CM

O

Example: an unconstrained system

No rotation parameterization is required!

Lie group formalism for flexible MBS
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Lie group generalized-α method

1. Non-parameterized equations of motion at time n+1

2. Nonlinear integration formulae (composition & exponential)

3. For a vector space ⇒ classical generalized-α algorithm

4. Newton iterations involve (only) k+m unknowns

5. Second-order convergence is proven [B., Cardona & Arnold 2010]

x

y

z
CM

O

spherical ellipsoid of inertia and 

constant follower torque

⇒ analytical solution [Romano 2008]

Example 1: Spinning top

Parameterization-based

Lie group method 1

Lie group method 2
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Example 2: Rightangle flexible beam

10 elements 

HHT method 

α = 0.05

h = 0.125 s

Summary

The generalized-α method combines

� Second-order accuracy (demonstrated for ODEs)

� Adjustable numerical damping

� Computational efficiency for large and stiff problems

Formulation for coupled DAEs on Lie groups:

� Kinematic constraints

� Rotational variables (no parameterization is required)

� Control state variables

� Proven convergence properties!
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10 km

Liège city center

Department of Aerospace & Mechanical Eng.

Campus of

Sart-Tilman

� Introduction

� Modelling of tape-spring hinges for space systems

� Advanced solvers for DAEs on Lie group

� Topology optimization of structural components

�Motivation

�Method

�Two-dofs robot arm

Outline
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Structural topology optimization : [Bendsøe & Kikuchi 1988]

[Sigmund 2001]

Motivation

� Design volume

� Material properties

� Boundary conditions

� Applied loads

� Objective function

� Design constraints

FE discretization

& optimization

Large scale problem !

A powerful design tool:

[Poncelet et al. 2005]

Motivation

Achievements in structural topology optimization

� Gradient-based algorithms (CONLIN, MMA, GCMMA…)

� Relevant problem formulations (SIMP penalization…)
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Motivation

Equivalent static problem

� boundary conditions ?

� load case(s) ?

� objective function ?

Our objective: Topology optimization for the design of 

components of multibody systems

⇒ experience and intuition are required

⇒ optimal solution for a wrong problem!

Equivalent static load approach, see e.g. [Kang & Park 2005]

Topology optimization based on the actual dynamic response

[B., Lemaire, Duysinx & Eberhard 2010]

Advantages:

⇒ Systematic approach

⇒ More realistic objective function 

� Flexible multibody model (FE)

� Time integrator (g-α)

� Sensitivity analysis

� Coupling with an optimizer

Motivation
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Topology optimization

Parameterization of the topology: for each element,

� one density variable is defined 

� the Young modulus is computed according to the

SIMP law

p = 3

Topology

parameters

Multibody

simulation
objective function,

design constraints

+ sensitivitiesOptimization 

algorithm

Coupled industrial software

� OOFELIE  (simulation and sensitivity analysis)

� CONLIN (gradient-based optimization)  [Fleury 1989]

Global optimization framework

Efficient and reliable sensitivity analysis ?

Direct differentiation technique
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Integration of the sensitivities

� iteration matrix already

computed and factorized 

� one linear pseudo-load case 

for each design variable

For one design variable x, direct differentiation leads to

pseudo-loads

⇒ Analytical expressions for
Inertia forces ∝ ρ

Elastic forces ∝ E

Sensitivity analysis

Importance of an efficient sensitivity analysis :

� Test problem with (only) 60 design variables

� Finite difference (61 simulations)

⇒⇒⇒⇒ CPU time = 141 s

Moreover, the direct differentiation method 

leads to higher levels of accuracy

� Direct differentiation (1 extended simulation)

⇒⇒⇒⇒ CPU time = 16 s

[B. & Eberhard 2008]

Sensitivity analysis
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Initial structural universe of beams:

Point-to-point

joint trajectory

Two dofs robot arm

Minimization of the compliance

Final design:

subject to a volume constraint

Equivalent static case
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Minimization of the tip deflection

subject to a volume constraint

Final design:

Optimization based on multibody simulations

Summary

� Topology optimization of mechanisms components

� Equivalent static load ⇒ multibody dynamics approach

� flexible multibody simulation

� semi-analytical sensitivity analysis

� coupling with an optimization code 

� Application to a two dofs robot arm with truss linkages

� importance of problem formulation

� Perspectives

� 3D mechanisms

� Mechatronic systems
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� Timoshenko-type geometrically exact model

� Two nodes A and B

� Nodal translations and rotations

� Strain energy : bending, torsion, traction and shear

� Kinetic energy : translation and rotation

A

A

B

B

Modelling of flexible multibody systems

Flexible beam element
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� Two nodes A (on body 1) and B (on body 2)

� Nodal translations (                and rotations

� 5 kinematic constraints

Hinge element

Modelling of flexible multibody systems

Minimize the mean compliance:

Final design:

subject to a volume constraint

Multibody dynamics approach
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Choice of the objective function

Objective functions :

A one-element test-case :

beam 

element
tip 

mass

f

Mean compliance Mean square tip deflection


