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Introduction

Some SAMCEF/MECANO models




Introduction

Finite element approach for MBS [Géradin & Cardona 2001]

Other elements:

(/Kf rigid bodies,

\ RN s ey .

LA | flexible beams,
s L T superelements...

Nodal coordinates Kinematic joints & rigidity conditions
> translations & rotations > algebraic constraints

M(q)d +g(a,q,t)+B'A = 0
®(q,t) = 0

index-3 DAE with rotation coordinates

Q Introduction

U Modelling of tape-spring hinges for space systems
> Single-tape spring study

» Full hinge study

O Advanced solvers for DAEs on Lie group

U Topology optimization of structural components




Tape-spring hinge

» Deployable space systems
» One or several tape-springs
(Carpenter tapes)

[Watt & Pellegrino 2002]

MAEVA Hinge

» Developed by METRAVIB
& CNES

» Guiding, driving and locking
functions

» No contact between sliding surfaces

Design of ESEQO educational
spacecraft sponsored by ESA

A first modelling attempt

Comparison with experiments:
» 3D behaviour?
> Self-locking?

A tape-spring hinge cannot be modelled as an ideal hinge
with equivalent springs and dampers...




Preamble: Single tape-spring analysis

Sign convention:
(a) opposite-sense bending
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(b) equal-sense bending
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MES ~) M <0 ///ﬁ\\\

State of the art

Static behaviour: bending moment vs. opening angle
» Variational method and large deformation shell theory
[Mansfield 1973]
» FE study & experimental tests [Seffen et al 1997]
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Single tape-spring study

» Second order Mindlin shell elements
» Higher mesh densities in the center
» Symmetry is exploited

Methods

Strongly nonlinear behaviour with a limit point

load
» Static analysis
+ Continuation method
* Pseudo-dynamic method ta
» Dynamic analysis

* Generalized-o, HHT




Static behaviour of a single tape-spring

» Continuation vs. pseudo-dynamics
» Agreement with Mansfield’s results
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Static behaviour of a full hinge

Driving torque : 0.152 Nm
Holding torque : 6.67 Nm

Driving torque : 0.194 Nm
Holding torque : 6.67 Nm

Experimental tests (Metravib) :
Driving torque > 0.15 Nm
Holding torque > 4.5 Nm

Dynamic behaviour of a full hinge

Method :
» Detailed hinge model
» The mass of the appendix (solar panel) is considered
» No structural damping but numerical damping
» Analysis procedure
1. Quasi-static folding
2. Dynamic deployment

folding : deployment




Full hinge - Torsional mode blocked
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Full hinge - Torsional mode blocked
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Application to the ESEQ satellite

» FE model of a tape-spring hinge using SAMCEF/MECANO
» Validation for a single tape-spring

» Detailed model of a full hinge

» Self-locking is caused by the hysteresis phenomenon

» Numerical vs. physical dissipation

Motivation for simplified and robust FE-MBS solvers:
» sensitivity analysis

» structural optimization

» optimal control

» nonlinear model reduction (POD)

» RT simulation
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Generalized-o method

> Solution of stiff 2" order ODESs [Chung & Hulbert 1993]

» Includes Newmark & HHT as special cases

» 2d order accuracy

» Unconditional stability (A-stability) for linear problems

» Controllable numerical damping at high frequencies

» Direct integration of index-3 DAESs [Cardona & Géradin 1989;
Bottasso, Bauchau & Cardona 2007; Arnold & B. 2007]

» Reduced index formulations for DAES [Lunk & Simeon 20086;
Jay & Negrut 2007; Arnold 2009]

How to avoid parameterization singularities?

» 3-dimensional parameterization + updated Lagrangian
point of view [Cardona & Géradin 1989]

» Higher dimensional parameterization + kinematic
constraints [Betsch & Steinmann 2001]

» Rotationless formulation, e.g. ANCF [Shabana]

» Lie group time integrator: no parameterization of the
manifold is required a priori [Crouch & Grossmann 1993;
Munthe-Kaas 1995; B. & Cardona 2010; B., Cardona & Arnold 2010]
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Lie group formalism for flexible MBS

Nodal configuration variables

q:(xl,...,XN,Rl,...,RN) a—"'/
The configuration evolves on the k-dimensional Lie group
G=R3>x...xR3x SO(3) x...x SO(3)

with the composition Gtot = ¢1 © g2 such that
Xitot = X,1 + X2 and Ri,tot = R¢71R¢72

Constrained equations of motion (DAEs on a Lie group)

i = DL~
M(q)v +g(q, v, t) + B" ()X = 0
®(q) = 0

Lie group formalism for flexible MBS

i = DLe) ¥
M(q)v +g(q, v, t) + B ()X = 0
®(q) = 0

Example: an unconstrained system

R = RQ
JO+QxJQ=C

No rotation parameterization is required!
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Lie group generalized-o method

M(Qn—i—l )‘.fn,—i-l

- _g(qu+la V41, tn—i—l) - BT(Q'71,+1))\'71,+1

¢(Q71,+1) = 0
Aqg, = v,+ (05— ﬁ)hQan + 5h2an+1
gn+1 = (Qn OCXp (hz\zln)
Vo4l = Vp+ (1 - V)han + ’Yhan+l

(1 - a'rrz,)a'r1+1 + A Ay

ok wn -

- (1 - O‘f)‘./n,Jrl + Oéf‘./n

Non-parameterized equations of motion at time n+1
Nonlinear integration formulae (composition & exponential)
For a vector space = classical generalized-a algorithm
Newton iterations involve (only) k+m unknowns
Second-order convergence is proven [B., Cardona & Amold 2010]

Example 1: Spinning top

'z

spherical ellipsoid of inertia and
constant follower torque
= analytical solution [Romano 2008]

p=1
Parameterization-based.
Lie group method 1
F Lie group method 2/

10

0.6 s, nstep

0.42s, t=

error x (m), t‘
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Example 2: Rightangle flexible beam
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The generalized-o. method combines

» Second-order accuracy (demonstrated for ODESs)
» Adjustable numerical damping

» Computational efficiency for large and stiff problems

Formulation for coupled DAEs on Lie groups:
» Kinematic constraints
> Rotational variables (no parameterization is required)
» Control state variables

» Proven convergence properties!
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Department of Aerospace & Mechanical Eng.

Campus of
Sart-Tilman

10 km |

Liége city center

Q Introduction

U Modelling of tape-spring hinges for space systems

O Advanced solvers for DAEs on Lie group

U Topology optimization of structural components
» Motivation
» Method

» Two-dofs robot arm
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Structural topology optimization : [Bendsge & Kikuchi 1988]
[Sigmund 2001]

? =

FE discretization
& optimization

> Design volume

> Material properties
» Boundary conditions
> Applied loads

> Objective function

> Design constraints

Large scale problem !

Achievements in structural topology optimization
> Gradient-based algorithms (CONLIN, MMA, GCMMA...)
» Relevant problem formulations (SIMP penalization...)

A powerful design tool:

[Poncelet et al. 2005]
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Our objective: Topology optimization for the design of
components of multibody systems

Equivalent static load approach, see e.g. [Kang & Park 2005]

Equivalent static problem
» boundary conditions ?
> load case(s) ?

» objective function ?

= experience and intuition are required
= optimal solution for a wrong problem!

Topology optimization based on the actual dynamic response
[B., Lemaire, Duysinx & Eberhard 2010]

» Flexible multibody model (FE)
» Time integrator (g-a)

» Sensitivity analysis

» Coupling with an optimizer

Advantages:
= Systematic approach
= More realistic objective function
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Topology optimization

A

Parameterization of the topology: for each element,
> one density variable is defined x* = p/pg, x € [0,1]

» the Young modulus is computed according to the

SIMP law B/,
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Global optimization framework

Multibody
Topology simulation objective function,
parameters — design constraints
Optimization + sensitivities
algorithm

Coupled industrial software
» OOFELIE (simulation and sensitivity analysis)
» CONLIN (gradient-based optimization) [Fleury 1989]

Efficient and reliable sensitivity analysis ?
m Direct differentiation technique

19



Sensitivity analysis

For one design variable x, direct differentiation leads to

Mg + Ciq + Kiq' + @5 N =0
®,q'+ =0
pseudo-loads

Inertia forces o« p . ,
_ = Analytical expressions for r
Elastic forces « E ’

!
Integration of the sensitivities Wt st s Ao
» iteration matrix already T
computed and factorized Qs Qs Gty A
» one linear pseudo-load case !
for each design variable ni=mn+1

Sensitivity analysis

Importance of an efficient sensitivity analysis :
» Test problem with (only) 60 design variables

» Finite difference (61 simulations)
= CPUtime=141s

» Direct differentiation (1 extended simulation)
= CPUtime=16s

Moreover, the direct differentiation method
leads to higher levels of accuracy

[B. & Eberhard 2008]
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Two dofs robot arm

5 Point-to-point
12 joint trajectory

0.5
time (s)

Initial structural universe of beams:

Equivalent static case

F

1
Minimization of the compliance ¢ = 5 / e He dV
1%

subject to a volume constraint V' < 0.4V,

x10™*

Final design:

<X
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w
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o

) 10
iteration
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Optimization based on multibody simulations

1 [
Minimization of the tip deflection ” / I — Tpigial|® dt
fJo

subject to a volume constraint  Vi;y < 0.4 Vi i)

Final design:
0.01 ‘ ‘ -~

c ®
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[]
2 0.002 ]
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Summary

U Topology optimization of mechanisms components

U4 Equivalent static load = multibody dynamics approach
> flexible multibody simulation
» semi-analytical sensitivity analysis
» coupling with an optimization code

U Application to a two dofs robot arm with truss linkages
» importance of problem formulation

U Perspectives
» 3D mechanisms
» Mechatronic systems
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» Timoshenko-type geometrically exact model

» Two nodes A and B

> Nodal translations (x4,Xp) and rotations (R4, Rp)
» Strain energy : bending, torsion, traction and shear

» Kinetic energy : translation and rotation
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Modelling of flexible multibody systems

Hinge element

» Two nodes A (on body 1) and B (on body 2)
» Nodal translations (x4, xp) and rotations (R4, Rp)
» 5 kinematic constraints

XA —XBp = 0

pi(Ra) - €5(Rp)
py(Ra) - €5(Rp)

I

Multibody dynamics approach

1 [ &
Minimize the mean compliance: t_/ Zc(i) dt
R

subject to a volume constraint Viiy < 0.4 Vi)

Final design:

2 ®
1-5\/\

Mean compliance

o
K=} o -
X L]

2 3 4 5 6 7
iteration
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Choice of the objective function

A one-element test-case : §| P Q
beam / tip
element mass
Objective functions :
Mean compliance Mean square tip deflection
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