

# Finite element modelling and optimization of flexible multibody systems

Olivier Brüls

Department of Aerospace and Mechanical Engineering

University of Liège

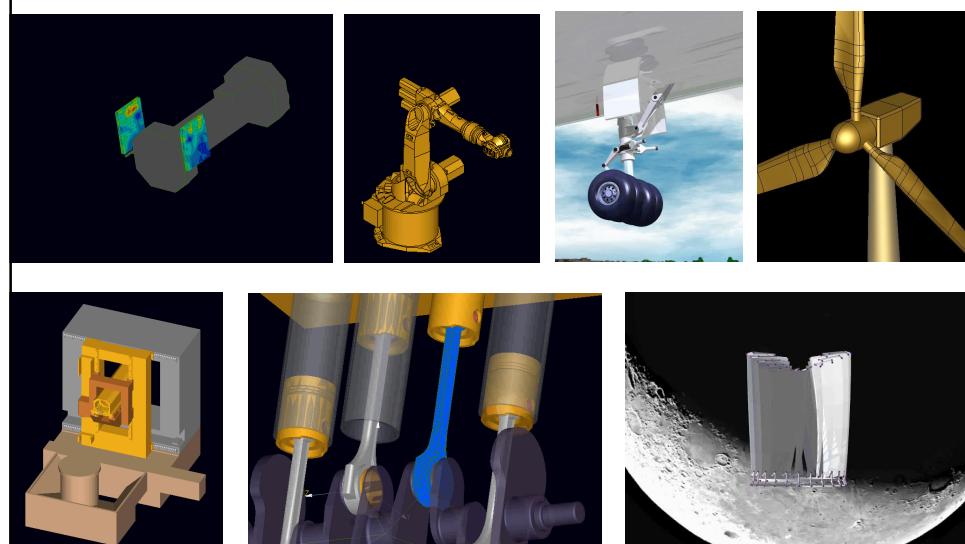
[o.bruls@ulg.ac.be](mailto:o.bruls@ulg.ac.be)



*University of Stuttgart, June 8, 2010*



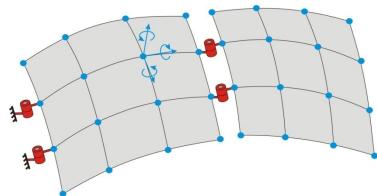
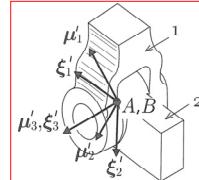
## Introduction



Some SAMCEF/MECANO models

## Introduction

Finite element approach for MBS [Gérardin & Cardona 2001]



Other elements:  
rigid bodies,  
flexible beams,  
superelements...

Nodal coordinates

➤ translations & rotations

Kinematic joints & rigidity conditions

➤ algebraic constraints

$$\begin{aligned} \mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{g}(\mathbf{q}, \dot{\mathbf{q}}, t) + \mathbf{B}^T \boldsymbol{\lambda} &= \mathbf{0} \\ \boldsymbol{\Phi}(\mathbf{q}, t) &= \mathbf{0} \end{aligned}$$

index-3 DAE with rotation coordinates

## Outline

- Introduction
- Modelling of tape-spring hinges for space systems
  - Single-tape spring study
  - Full hinge study
- Advanced solvers for DAEs on Lie group
- Topology optimization of structural components

## Tape-spring hinge



[Watt & Pellegrino 2002]

- Deployable space systems
- One or several tape-springs (Carpenter tapes)

### MAEVA Hinge

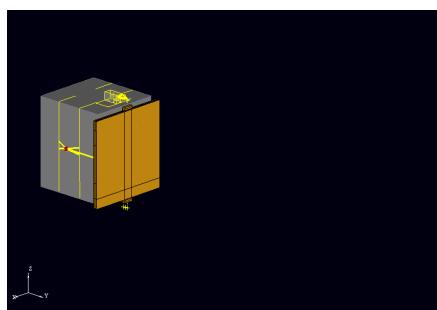
- Developed by METRAVIB & CNES
- Guiding, driving and locking functions
- No contact between sliding surfaces



## Prediction of dynamic behaviour?

Design of ESEO educational spacecraft sponsored by ESA

A first modelling attempt



Comparison with experiments:

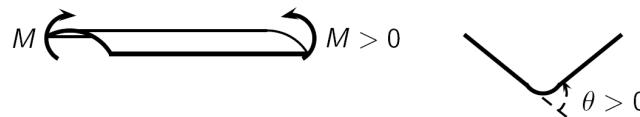
- 3D behaviour?
- Self-locking?

A tape-spring hinge cannot be modelled as an ideal hinge with equivalent springs and dampers...

## Preamble: Single tape-spring analysis

Sign convention:

(a) opposite-sense bending



(b) equal-sense bending



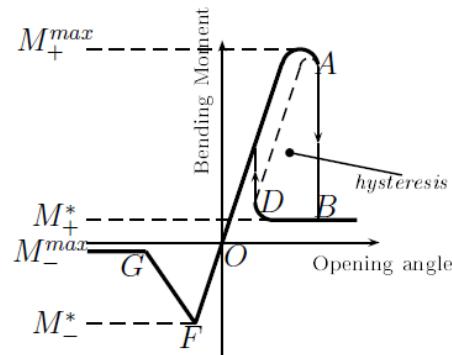
## State of the art

Static behaviour: bending moment vs. opening angle

➤ Variational method and large deformation shell theory

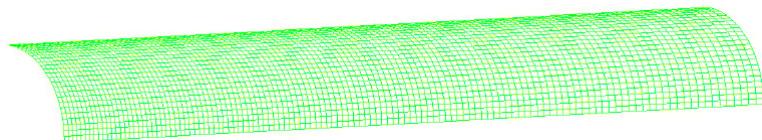
[Mansfield 1973]

➤ FE study & experimental tests [Seffen et al 1997]



## Single tape-spring study

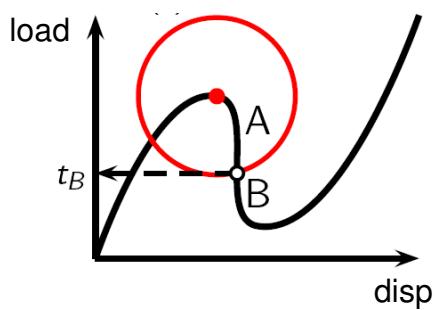
- Second order Mindlin shell elements
- Higher mesh densities in the center
- Symmetry is exploited



## Methods

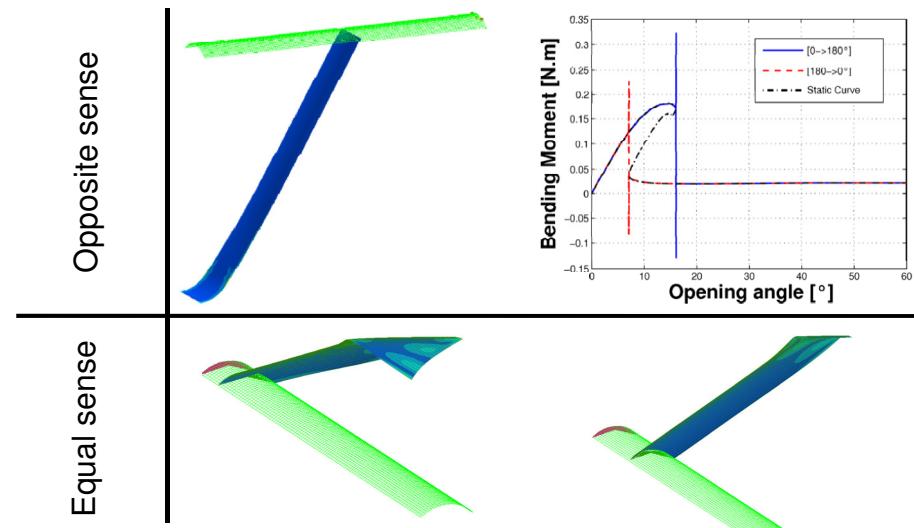
Strongly nonlinear behaviour with a limit point

- Static analysis
  - Continuation method
  - Pseudo-dynamic method
- Dynamic analysis
  - Generalized- $\alpha$ , HHT



## Static behaviour of a single tape-spring

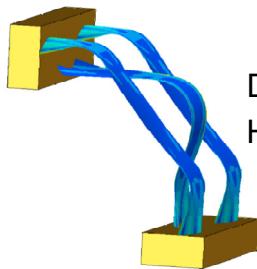
- Continuation vs. pseudo-dynamics
- Agreement with Mansfield's results



## Outline

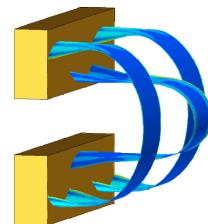
- ❑ Introduction
- ❑ Modelling of tape-spring hinges for space systems
  - Single-tape spring study
  - Full hinge study
- ❑ Advanced solvers for DAEs on Lie group
- ❑ Topology optimization of structural components

## Static behaviour of a full hinge



Driving torque : 0.152 Nm

Holding torque : 6.67 Nm



Driving torque : 0.194 Nm

Holding torque : 6.67 Nm

Experimental tests (Metrvib) :

Driving torque > 0.15 Nm

Holding torque > 4.5 Nm

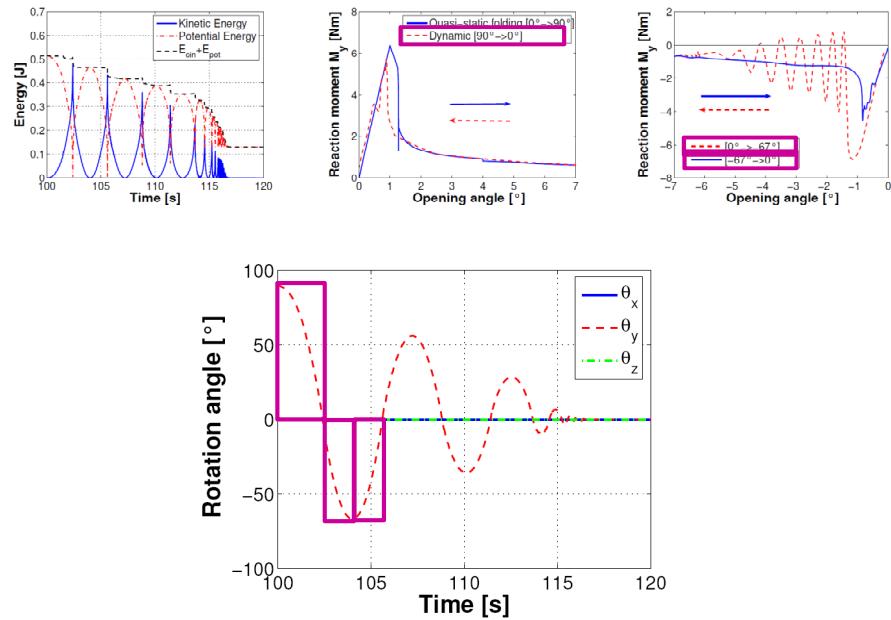
## Dynamic behaviour of a full hinge

Method :

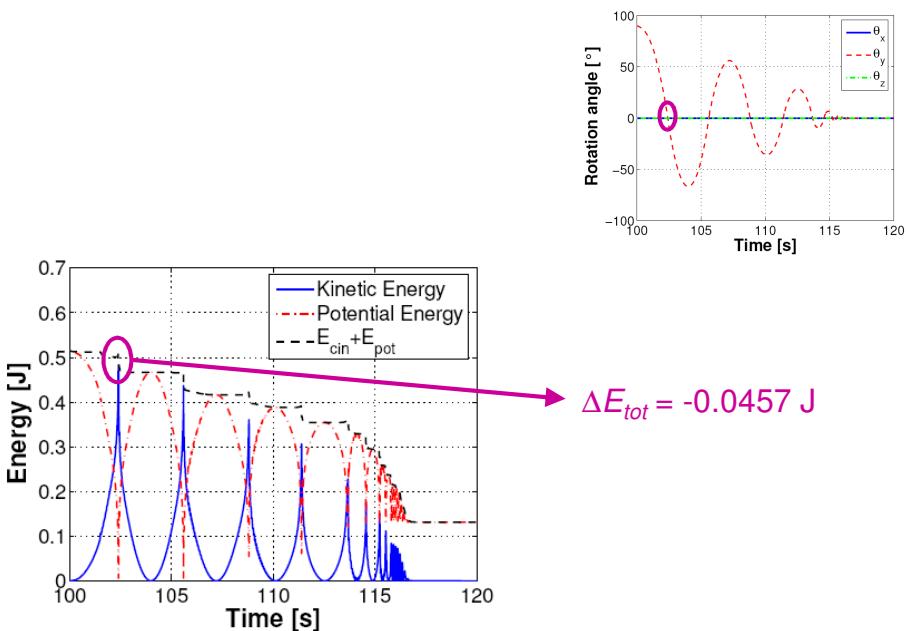
- Detailed hinge model
- The mass of the appendix (solar panel) is considered
- No structural damping but **numerical damping**
- Analysis procedure
  1. Quasi-static folding
  2. Dynamic deployment



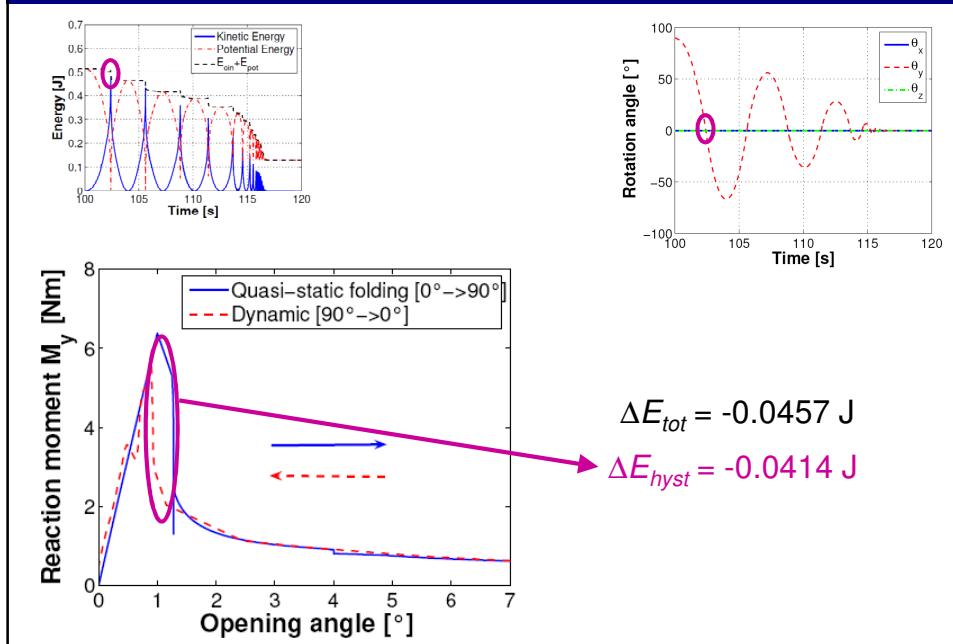
## Full hinge - Torsional mode blocked



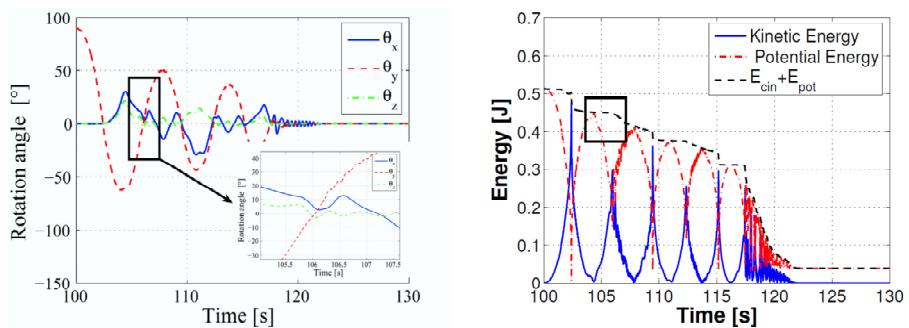
## Full hinge - Torsional mode blocked



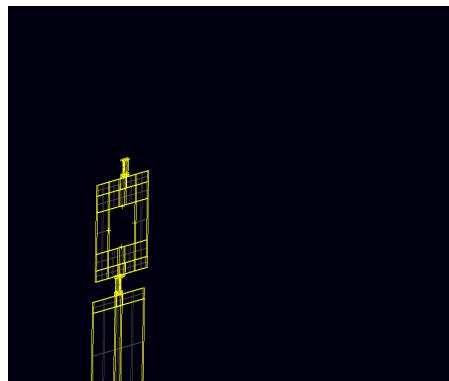
## Full hinge - Torsional mode blocked



## Full hinge - Torsional mode free



## Application to the ESEO satellite



## Summary

- FE model of a tape-spring hinge using SAMCEF/MECANO
- Validation for a single tape-spring
- Detailed model of a full hinge
- Self-locking is caused by the hysteresis phenomenon
- Numerical vs. physical dissipation

Motivation for **simplified** and **robust** FE-MBS solvers:

- sensitivity analysis
- structural optimization
- optimal control
- nonlinear model reduction (POD)
- RT simulation

## Liège - Belgium



Liège-Guillemins  
train station

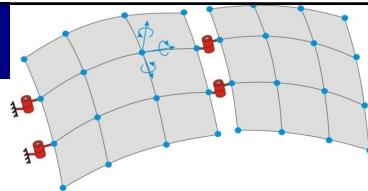
## Outline

- Introduction
- Modelling of tape-spring hinges for space systems
- Advanced solvers for DAEs on Lie group
- Topology optimization of structural components

## Generalized- $\alpha$ method

- Solution of stiff 2<sup>nd</sup> order ODEs [Chung & Hulbert 1993]
- Includes Newmark & HHT as special cases
- 2<sup>nd</sup> order accuracy
- Unconditional stability (A-stability) for linear problems
- Controllable numerical damping at high frequencies
- **Direct integration of index-3 DAEs** [Cardona & Géradin 1989; Bottasso, Bauchau & Cardona 2007; Arnold & B. 2007]
- Reduced index formulations for DAEs [Lunk & Simeon 2006; Jay & Negrut 2007; Arnold 2009]

## About rotations...



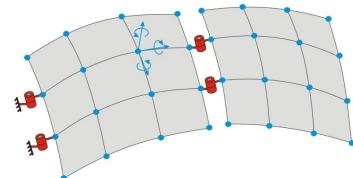
How to avoid parameterization singularities?

- 3-dimensional parameterization + updated Lagrangian point of view [Cardona & Géradin 1989]
- Higher dimensional parameterization + kinematic constraints [Betsch & Steinmann 2001]
- Rotationless formulation, e.g. ANCF [Shabana]
- **Lie group time integrator**: no parameterization of the manifold is required *a priori* [Crouch & Grossmann 1993; Munthe-Kaas 1995; B. & Cardona 2010; B., Cardona & Arnold 2010]

## Lie group formalism for flexible MBS

Nodal configuration variables

$$q = (\mathbf{x}_1, \dots, \mathbf{x}_N, \mathbf{R}_1, \dots, \mathbf{R}_N)$$



The configuration evolves on the  $k$ -dimensional Lie group

$$G = \mathbb{R}^3 \times \dots \times \mathbb{R}^3 \times SO(3) \times \dots \times SO(3)$$

with the composition  $q_{tot} = q_1 \circ q_2$  such that

$$\mathbf{x}_{i,tot} = \mathbf{x}_{i,1} + \mathbf{x}_{i,2} \quad \text{and} \quad \mathbf{R}_{i,tot} = \mathbf{R}_{i,1} \mathbf{R}_{i,2}$$

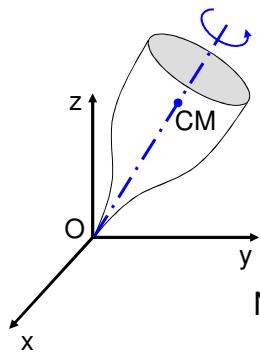
Constrained equations of motion (DAEs on a Lie group)

$$\begin{aligned} \dot{q} &= DL_q(e) \cdot \tilde{\mathbf{v}} \\ \mathbf{M}(q)\dot{\mathbf{v}} + \mathbf{g}(q, \mathbf{v}, t) + \mathbf{B}^T(q)\boldsymbol{\lambda} &= \mathbf{0} \\ \boldsymbol{\Phi}(q) &= \mathbf{0} \end{aligned}$$

## Lie group formalism for flexible MBS

$$\begin{aligned} \dot{q} &= DL_q(e) \cdot \tilde{\mathbf{v}} \\ \mathbf{M}(q)\dot{\mathbf{v}} + \mathbf{g}(q, \mathbf{v}, t) + \mathbf{B}^T(q)\boldsymbol{\lambda} &= \mathbf{0} \\ \boldsymbol{\Phi}(q) &= \mathbf{0} \end{aligned}$$

Example: an unconstrained system



$$\begin{aligned} \dot{\mathbf{R}} &= \mathbf{R}\tilde{\boldsymbol{\Omega}} \\ \mathbf{J}\dot{\boldsymbol{\Omega}} + \boldsymbol{\Omega} \times \mathbf{J}\boldsymbol{\Omega} &= \mathbf{C} \end{aligned}$$

No rotation parameterization is required!

## Lie group generalized- $\alpha$ method

$$\mathbf{M}(q_{n+1})\dot{\mathbf{v}}_{n+1} = -\mathbf{g}(q_{n+1}, \mathbf{v}_{n+1}, t_{n+1}) - \mathbf{B}^T(q_{n+1})\boldsymbol{\lambda}_{n+1}$$

$$\Phi(q_{n+1}) = \mathbf{0}$$

$$\Delta \mathbf{q}_n = \mathbf{v}_n + (0.5 - \beta)h^2 \mathbf{a}_n + \beta h^2 \mathbf{a}_{n+1}$$

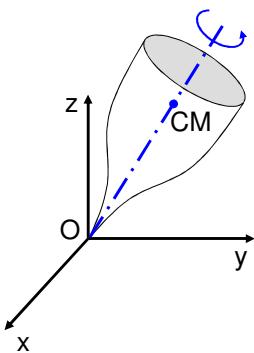
$$q_{n+1} = q_n \circ \exp\left(h \widetilde{\Delta \mathbf{q}_n}\right)$$

$$\mathbf{v}_{n+1} = \mathbf{v}_n + (1 - \gamma)h \mathbf{a}_n + \gamma h \mathbf{a}_{n+1}$$

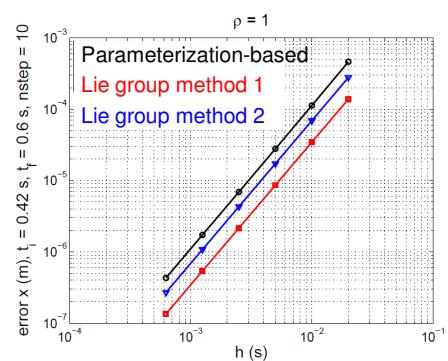
$$(1 - \alpha_m) \mathbf{a}_{n+1} + \alpha_m \mathbf{a}_n = (1 - \alpha_f) \dot{\mathbf{v}}_{n+1} + \alpha_f \dot{\mathbf{v}}_n$$

1. Non-parameterized equations of motion at time  $n+1$
2. Nonlinear integration formulae (composition & exponential)
3. For a vector space  $\Rightarrow$  classical generalized- $\alpha$  algorithm
4. Newton iterations involve (only)  $k+m$  unknowns
5. Second-order convergence is proven [B., Cardona & Arnold 2010]

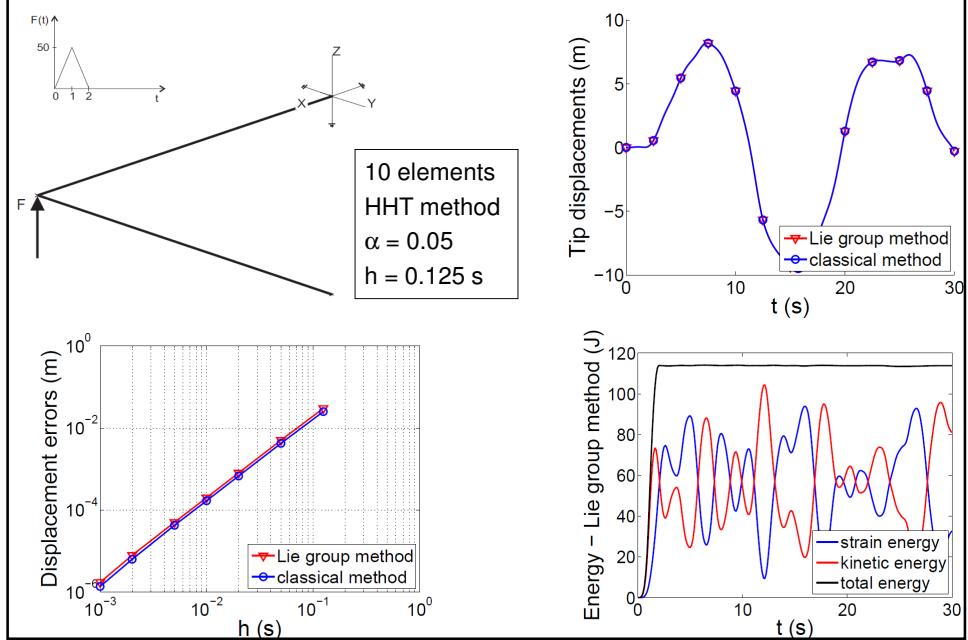
## Example 1: Spinning top



spherical ellipsoid of inertia and  
constant follower torque  
 $\Rightarrow$  analytical solution [Romano 2008]



## Example 2: Rightangle flexible beam



## Summary

The **generalized- $\alpha$  method** combines

- Second-order accuracy (demonstrated for ODEs)
- Adjustable numerical damping
- Computational efficiency for large and stiff problems

Formulation for **coupled DAEs on Lie groups**:

- Kinematic constraints
- Rotational variables (no parameterization is required)
- Control state variables
- **Proven convergence properties!**

## Department of Aerospace & Mechanical Eng.



Campus of  
Sart-Tilman



## Outline

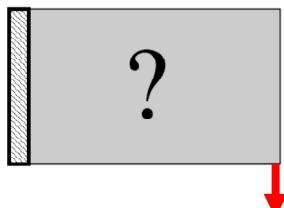
- ❑ Introduction
- ❑ Modelling of tape-spring hinges for space systems
- ❑ Advanced solvers for DAEs on Lie group
- ❑ Topology optimization of structural components
  - Motivation
  - Method
  - Two-dofs robot arm

## Motivation

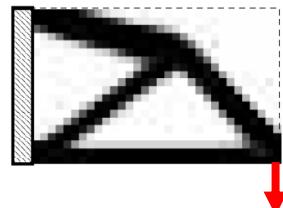
Structural topology optimization :

[Bendsøe & Kikuchi 1988]

[Sigmund 2001]



FE discretization  
& optimization



- Design volume
- Material properties
- Boundary conditions
- Applied loads
- Objective function
- Design constraints

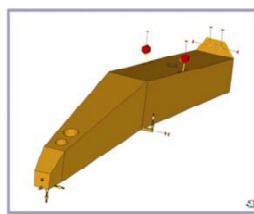
Large scale problem !

## Motivation

Achievements in structural topology optimization

- Gradient-based algorithms (CONLIN, MMA, GCMMA...)
- Relevant problem formulations (SIMP penalization...)

A powerful design tool:

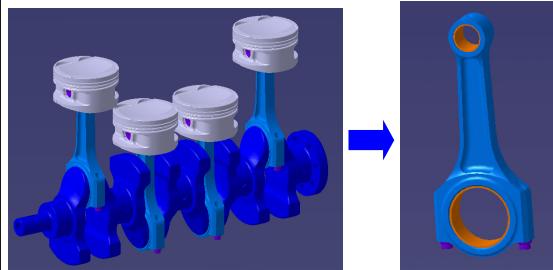


[Poncelet et al. 2005]

## Motivation

**Our objective:** Topology optimization for the design of components of multibody systems

**Equivalent static load approach**, see e.g. [Kang & Park 2005]



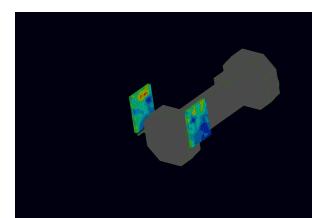
Equivalent static problem  
➤ boundary conditions ?  
➤ load case(s) ?  
➤ objective function ?

⇒ experience and intuition are required  
⇒ optimal solution for a wrong problem!

## Motivation

**Topology optimization based on the actual dynamic response**  
[B., Lemaire, Duysinx & Eberhard 2010]

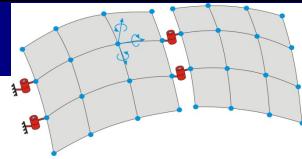
- Flexible multibody model (FE)
- Time integrator ( $g-\alpha$ )
- Sensitivity analysis
- Coupling with an optimizer



Advantages:

- ⇒ Systematic approach
- ⇒ More realistic objective function

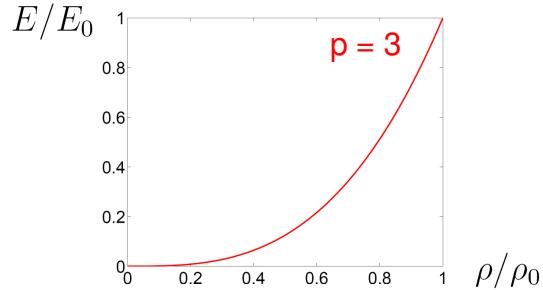
## Topology optimization



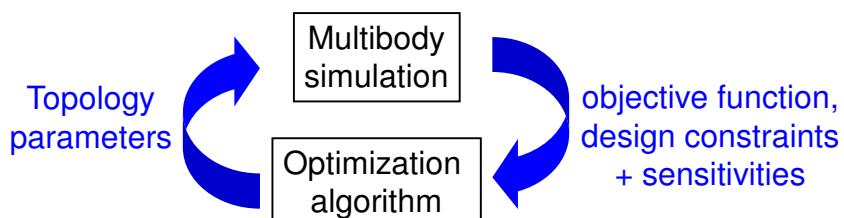
Parameterization of the topology: **for each element**,

- one density variable is defined  $x = \rho/\rho_0$ ,  $x \in [0, 1]$
- the Young modulus is computed according to the SIMP law

$$E = x^p E_0$$



## Global optimization framework



Coupled industrial software

- OOFELIE (simulation and sensitivity analysis)
- CONLIN (gradient-based optimization) [Fleury 1989]

Efficient and reliable **sensitivity analysis** ?

- ➡ Direct differentiation technique

## Sensitivity analysis

For one design variable  $x$ , direct differentiation leads to

$$\begin{aligned} M\ddot{q}' + C_t\dot{q}' + K_t q' + \Phi_q^T \lambda' + \textcolor{blue}{r_{,x}} &= 0 \\ \Phi_q q' + \textcolor{blue}{\Phi_{,x}} &= 0 \end{aligned}$$

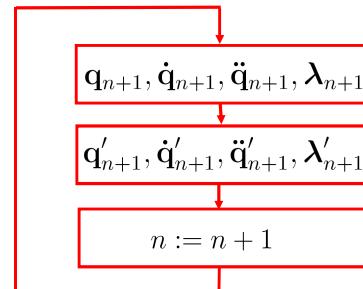
pseudo-loads

Inertia forces  $\propto \rho$   
Elastic forces  $\propto E$

$\Rightarrow$  Analytical expressions for  $r_{,x}$

Integration of the sensitivities

- iteration matrix already computed and factorized
- one linear pseudo-load case for each design variable



## Sensitivity analysis

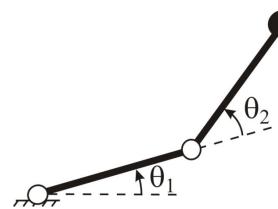
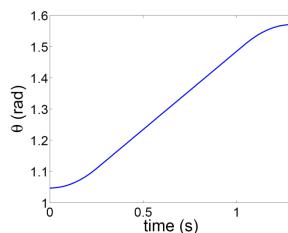
### Importance of an efficient sensitivity analysis :

- Test problem with (only) 60 design variables
- Finite difference (61 simulations)  
 $\Rightarrow$  **CPU time = 141 s**
- Direct differentiation (1 extended simulation)  
 $\Rightarrow$  **CPU time = 16 s**

Moreover, the direct differentiation method leads to **higher levels of accuracy**

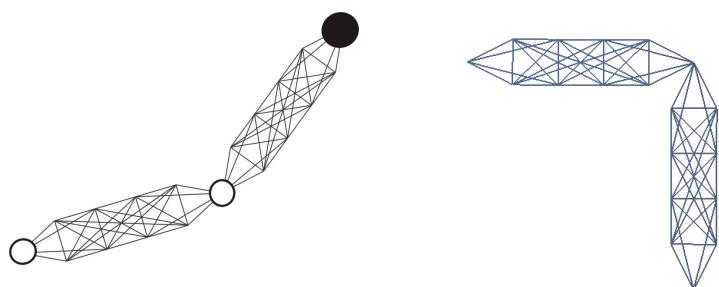
[B. & Eberhard 2008]

## Two dofs robot arm

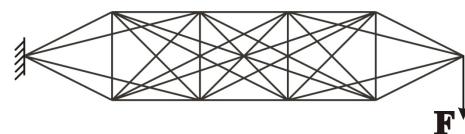


Point-to-point joint trajectory

Initial structural universe of beams:

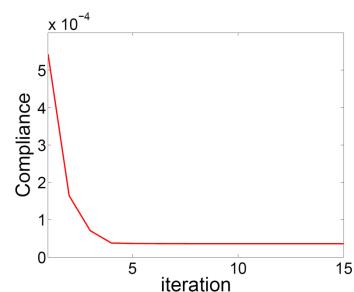


## Equivalent static case



Minimization of the compliance  $c = \frac{1}{2} \int_V \boldsymbol{\epsilon}^T \mathbf{H} \boldsymbol{\epsilon} dV$

subject to a volume constraint  $V \leq 0.4V_{full}$



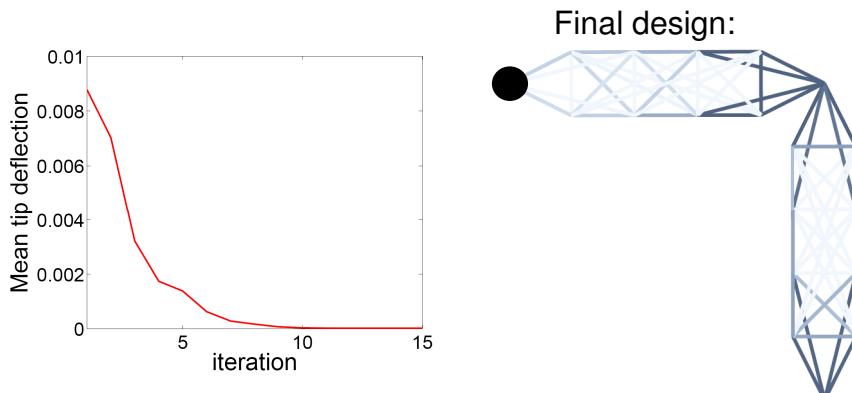
Final design:



## Optimization based on multibody simulations

Minimization of the tip deflection  $\frac{1}{t_f} \int_0^{t_f} \|\mathbf{r} - \mathbf{r}_{rigid}\|^2 dt$

subject to a volume constraint  $V_{(i)} \leq 0.4 V_{full,(i)}$



## Summary

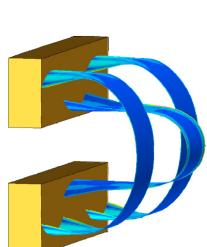
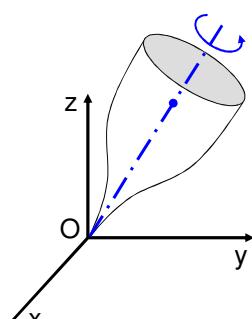
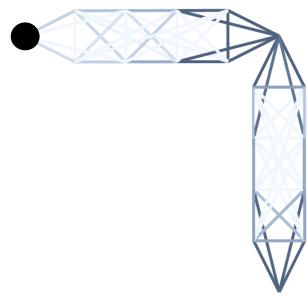
- Topology optimization of mechanisms components
- Equivalent static load  $\Rightarrow$  multibody dynamics approach
  - flexible multibody simulation
  - semi-analytical sensitivity analysis
  - coupling with an optimization code
- Application to a two dofs robot arm with truss linkages
  - importance of problem formulation
- Perspectives
  - 3D mechanisms
  - Mechatronic systems

## Danke für Ihre Aufmerksamkeit!

### Finite element modelling and optimization of flexible multibody systems

Olivier Brüls

Acknowledgements: P. Duysinx, G. Kerschen, S. Hoffait, E. Lemaire  
M. Arnold, A. Cardona, P. Eberhard

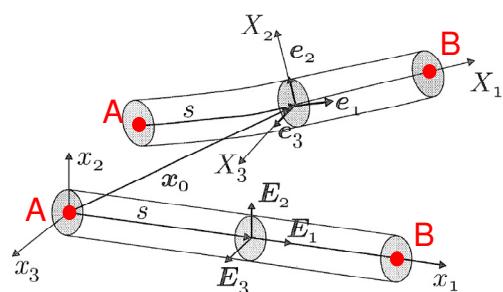


University of Stuttgart, June 8, 2010



## Modelling of flexible multibody systems

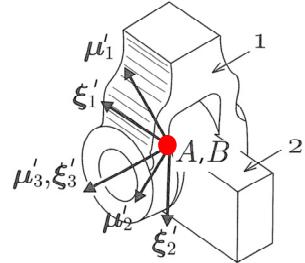
### Flexible beam element



- Timoshenko-type geometrically exact model
- Two nodes A and B
- Nodal translations ( $\mathbf{x}_A, \mathbf{x}_B$ ) and rotations ( $\mathbf{R}_A, \mathbf{R}_B$ )
- Strain energy : bending, torsion, traction and shear
- Kinetic energy : translation and rotation

## Modelling of flexible multibody systems

### Hinge element



- Two nodes A (on body 1) and B (on body 2)
- Nodal translations ( $\mathbf{x}_A, \mathbf{x}_B$ ) and rotations ( $\mathbf{R}_A, \mathbf{R}_B$ )
- 5 kinematic constraints

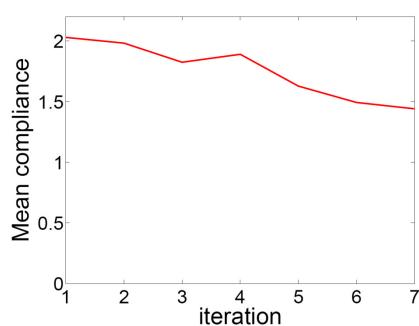
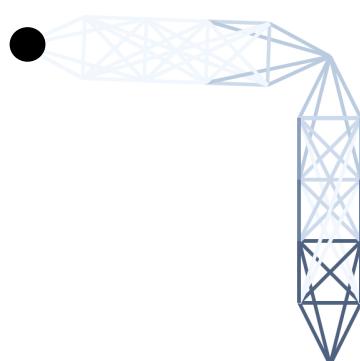
$$\begin{aligned}\mathbf{x}_A - \mathbf{x}_B &= \mathbf{0} \\ \boldsymbol{\mu}'_1(\mathbf{R}_A) \cdot \boldsymbol{\xi}'_3(\mathbf{R}_B) &= 0 \\ \boldsymbol{\mu}'_2(\mathbf{R}_A) \cdot \boldsymbol{\xi}'_3(\mathbf{R}_B) &= 0\end{aligned}$$

## Multibody dynamics approach

Minimize the mean compliance:  $\frac{1}{t_f} \int_0^{t_f} \sum_{i=1}^{n_c} c_{(i)} dt$

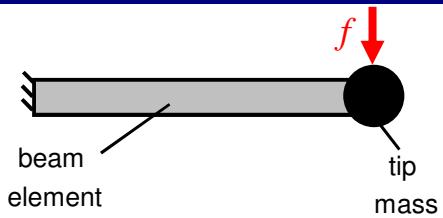
subject to a volume constraint  $V_{(i)} \leq 0.4 V_{full,(i)}$

Final design:



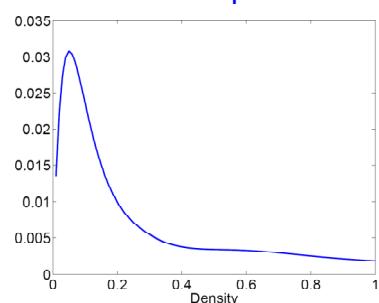
## Choice of the objective function

A one-element test-case :



Objective functions :

Mean compliance



Mean square tip deflection

