

A one-field discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells

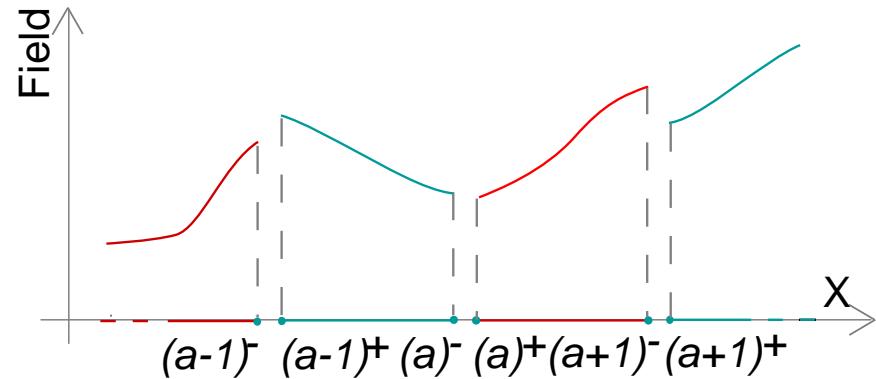
Ludovic Noels

Computational & Multiscale Mechanics of Materials, ULg
Chemin des Chevreuils 1, B4000 Liège, Belgium
L.Noels@ulg.ac.be

Discontinuous Galerkin Methods

- Main idea
 - Finite-element discretization
 - Same **discontinuous** polynomial approximations for the

- **Test functions** φ_h and
- **Trial functions** $\delta\varphi$



- Definition of operators on the interface trace:
 - **Jump operator:** $[\![\bullet]\!] = \bullet^+ - \bullet^-$
 - **Mean operator:** $\langle \bullet \rangle = \frac{\bullet^+ + \bullet^-}{2}$
- Continuity is weakly enforced, such that the method
 - Is consistent
 - Is stable
 - Has the optimal convergence rate

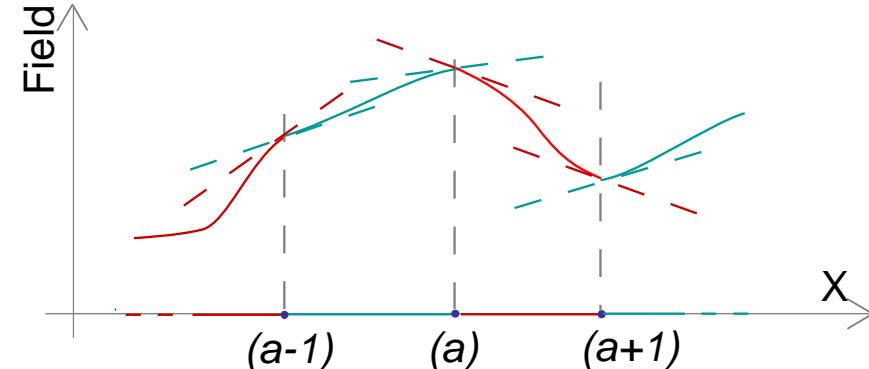
Discontinuous Galerkin Methods

- Discontinuous Galerkin methods vs Continuous
 - More expensive (more degrees of freedom)
 - More difficult to implement
 - ...
- So why discontinuous Galerkin methods?
 - Weak enforcement of C^1 continuity for high-order equations
 - Strain-gradient effect
 - Shells with complex material behaviors
 - Toward computational homogenization of thin structures?
 - Exploitation of the discontinuous mesh to simulate dynamic fracture [Seagraves, Jérusalem, Noels, Radovitzky, col. ULg-MIT]:
 - Correct wave propagation before fracture
 - Easy to parallelize & scalable

Discontinuous Galerkin Methods

- Continuous field / discontinuous derivative

- No new nodes
- Weak enforcement of C^1 continuity
- Displacement formulations of high-order differential equations
- Usual shape functions in 3D (no new requirement)
- Applications to
 - Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells & Dung, CMAME 2007]
 - Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IJNME 2009]
 - Damage & Strain Gradient [Wells et al., CMAME 2004; Molari, CMAME 2006; Bala-Chandran et al. 2008]



Topics

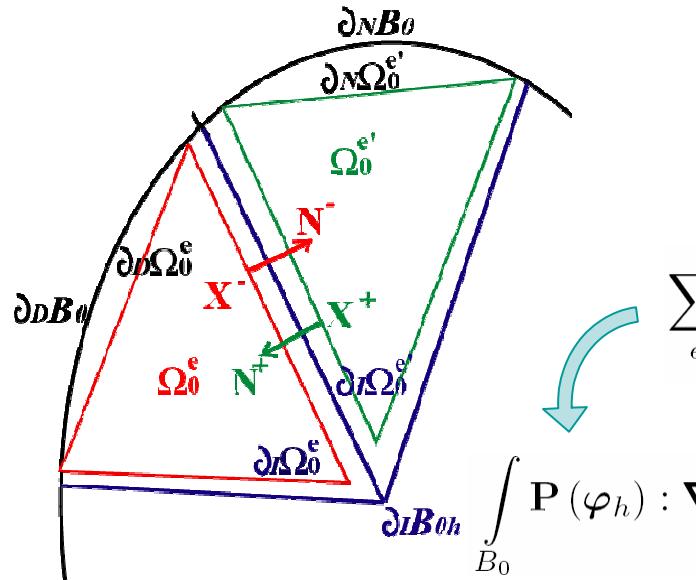
- Key principles of DG methods
 - Illustration on volume FE
- Kirchhoff-Love Shell Kinematics
- Non-Linear Shells
- Numerical examples
- Conclusions & Perspectives

Key principles of DG methods

- Application to non-linear mechanics
 - Formulation in terms of the first Piola stress tensor \mathbf{P}

$$\nabla_0 \cdot \mathbf{P}^T = 0 \text{ in } \Omega \quad \& \quad \left\{ \begin{array}{l} \mathbf{P} \cdot \mathbf{N} = \bar{T} \text{ on } \partial_N \Omega \\ \varphi_h = \bar{\varphi}_h \text{ on } \partial_D B \end{array} \right.$$

- New weak formulation obtained by integration by parts **on each element Ω^e**



$$\sum_e \int_{\Omega_0^e} \nabla_0 \cdot \mathbf{P}^T(\varphi_h) \cdot \delta \varphi \, dB = 0$$

$$\sum_e \int_{\Omega_0^e} -\mathbf{P}(\varphi_h) : \nabla_0 \delta \varphi \, dB + \sum_e \int_{\partial\Omega_0^e} \delta \varphi \cdot \mathbf{P}(\varphi_h) \cdot \mathbf{N} \, d\partial B = 0$$

$$+ \int_{\partial_I B_0} \llbracket \delta \varphi \cdot \mathbf{P}(\varphi_h) \rrbracket \cdot \mathbf{N}^- d\partial B = \int_{\partial_N B_0} \bar{\mathbf{T}} \cdot \delta \varphi d\partial B$$

Key principles of DG methods

- Interface term rewritten as the sum of 3 terms

- Introduction of the numerical flux \mathbf{h}

$$\int_{\partial_I B_0} \llbracket \delta \varphi \cdot \mathbf{P}(\varphi_h) \rrbracket \cdot \mathbf{N}^- d\partial B \rightarrow \int_{\partial_I B_0} \llbracket \delta \varphi \rrbracket \cdot \mathbf{h}(\mathbf{P}^+, \mathbf{P}^-, \mathbf{N}^-) d\partial B$$

- Has to be consistent:
$$\begin{cases} \mathbf{h}(\mathbf{P}^+, \mathbf{P}^-, \mathbf{N}^-) = -\mathbf{h}(\mathbf{P}^-, \mathbf{P}^+, \mathbf{N}^+) \\ \mathbf{h}(\mathbf{P}_{\text{exact}}, \mathbf{P}_{\text{exact}}, \mathbf{N}^-) = \mathbf{P}_{\text{exact}} \cdot \mathbf{N}^- \end{cases}$$

- One possible choice: $\mathbf{h}(\mathbf{P}^+, \mathbf{P}^-, \mathbf{N}^-) = \langle \mathbf{P} \rangle \cdot \mathbf{N}^-$

- Weak enforcement of the compatibility

$$\int_{\partial_I B_0} \llbracket \varphi_h \rrbracket \cdot \left\langle \frac{\partial \mathbf{P}}{\partial \mathbf{F}} : \nabla_0 \delta \varphi \right\rangle \cdot \mathbf{N}^- d\partial B$$

- Stabilization controlled by parameter β , for all mesh sizes h^s

$$\int_{\partial_I B_0} \llbracket \varphi_h \rrbracket \otimes \mathbf{N}^- : \left\langle \frac{\beta}{h^s} \frac{\partial \mathbf{P}}{\partial \mathbf{F}} \right\rangle : \llbracket \delta \varphi \rrbracket \otimes \mathbf{N}^- d\partial B$$

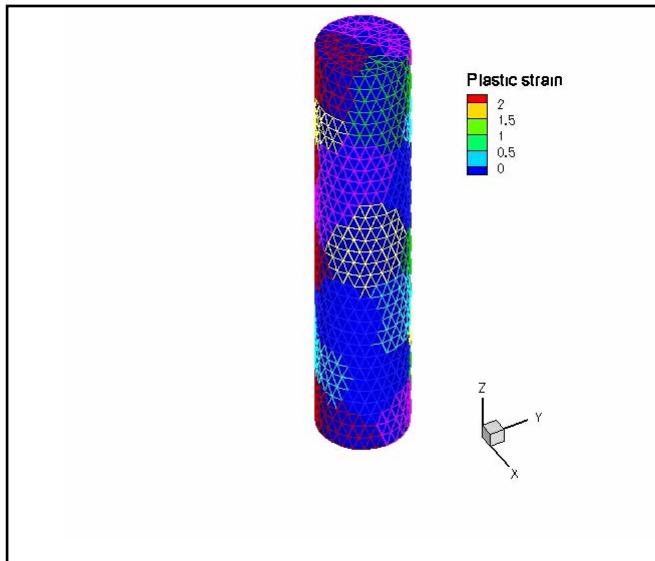
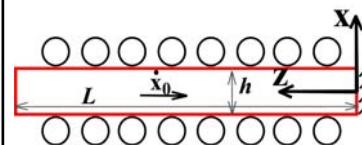
Noels & Radovitzky, IJNME 2006 & JAM 2006

- These terms can also be explicitly derived from a variational formulation (Hu-Washizu-de Veubeke functional)

Key principles of DG methods

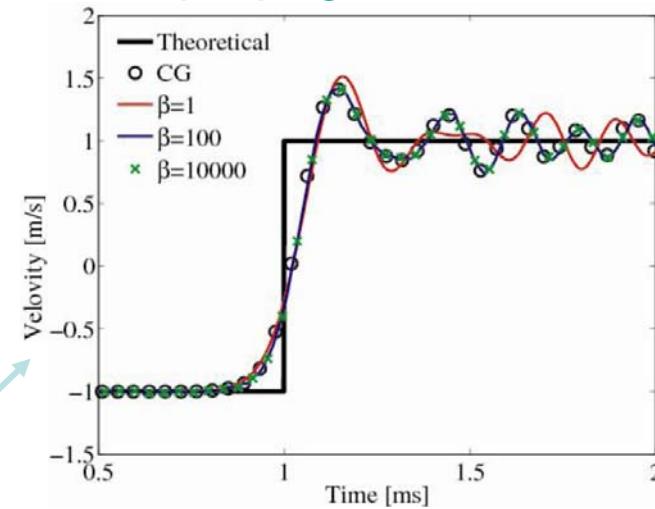
- Numerical applications
 - Properties for a polynomial approximation of order k
 - Consistent, stable for $\beta > C^k$, convergence in the e -norm in k
 - Explicit time integration with conditional stability
 - High scalability
 - Examples

Taylor's impact



Time evolution of the free face velocity

Wave propagation



Kirchhoff-Love Shell Kinematics

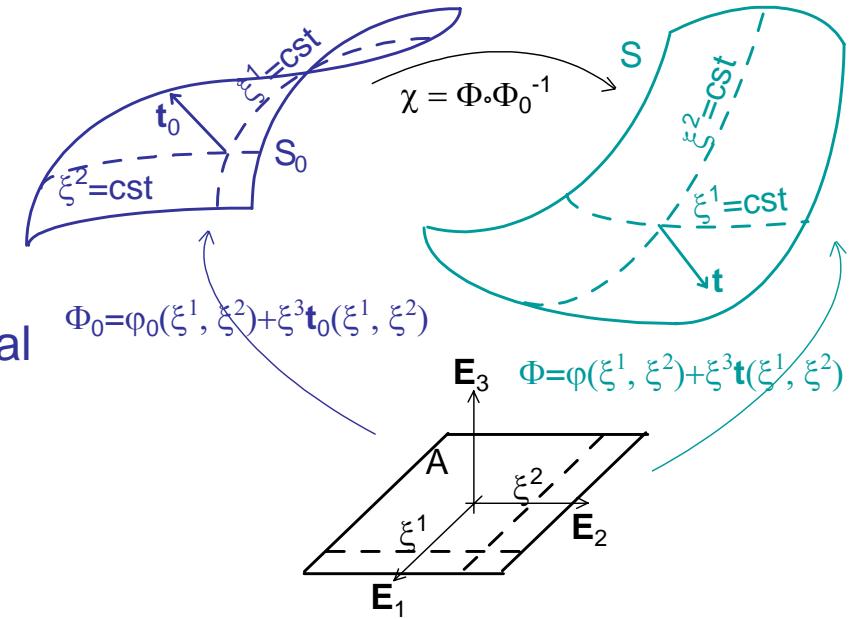
- Description of the thin body

$$x = \Phi(\xi^I) = \varphi(\xi^\alpha) + \xi^3 \lambda_h \mathbf{t}(\xi^\alpha)$$

Mapping of the mid-surface

Thickness stretch

Mapping of the normal to the mid-surface



- Deformation mapping

$$\mathbf{F} = \nabla \Phi \circ [\nabla \Phi_0]^{-1} \text{ with}$$

$$\nabla \Phi = g_i \otimes \mathbf{E}^i \quad \& \quad g_i = \nabla \Phi \mathbf{E}_i = \frac{\partial \Phi}{\partial \xi^i}$$

$$\rightarrow g_\alpha = \frac{\partial \Phi}{\partial \xi^\alpha} = \varphi_{,\alpha} + \xi^3 \lambda_h \mathbf{t}_{,\alpha} + \xi^3 \mathbf{t} \lambda_{h,\alpha} \quad \& \quad g_3 = \frac{\partial \Phi}{\partial \xi^3} = \lambda_h \mathbf{t}$$

- Shearing is neglected

$$\rightarrow t = \frac{\varphi_{,1} \wedge \varphi_{,2}}{\|\varphi_{,1} \wedge \varphi_{,2}\|}$$

& the gradient of thickness stretch $\lambda_{h,\alpha}$ neglected

Kirchhoff-Love Shell Kinematics

- Resultant equilibrium equations:

- Linear momentum

$$\frac{1}{\bar{j}} (\bar{j} \mathbf{n}^\alpha)_{,\alpha} + \mathbf{n}^A = 0$$

- Angular momentum

$$\frac{1}{\bar{j}} (\bar{j} \tilde{\mathbf{m}}^\alpha)_{,\alpha} - \mathbf{l} + \lambda \mathbf{t} + \tilde{\mathbf{m}}^A = 0$$

- In terms of resultant stresses:

$$\mathbf{n}^\alpha = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \sigma \mathbf{g}^\alpha \det(\nabla \Phi) d\xi^3$$

$$\tilde{\mathbf{m}}^\alpha = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \xi^3 \sigma \mathbf{g}^\alpha \det(\nabla \Phi) d\xi^3$$

$$\mathbf{l} = \frac{1}{\bar{j}} \int_{h_{\min 0}}^{h_{\max 0}} \sigma \mathbf{g}^3 \det(\nabla \Phi) d\xi^3$$

of resultant applied tension \mathbf{n}^A and torque $\tilde{\mathbf{m}}^A$

and of the mid-surface Jacobian $\bar{j} = \|\varphi_{,1} \wedge \varphi_{,2}\|$

Non-linear Shells

- Material behavior

- Through the thickness integration by Simpson's rule
- At each Simpson point

- Internal energy $W(\mathbf{C}=\mathbf{F}^T\mathbf{F})$ with

$$\left\{ \begin{array}{l} \mathbf{C} = \mathbf{g}_i \cdot \mathbf{g}_j \mathbf{g}_0^i \otimes \mathbf{g}_0^j = g_{ij} \mathbf{g}_0^i \otimes \mathbf{g}_0^j \\ \boldsymbol{\sigma} = \boldsymbol{\sigma}^{ij} \mathbf{g}_i \otimes \mathbf{g}_j = 2 \frac{\det(\boldsymbol{\nabla}\Phi_0)}{\det(\boldsymbol{\nabla}\Phi)} \frac{\partial W}{\partial g_{ij}} \mathbf{g}_i \otimes \mathbf{g}_j \end{array} \right.$$

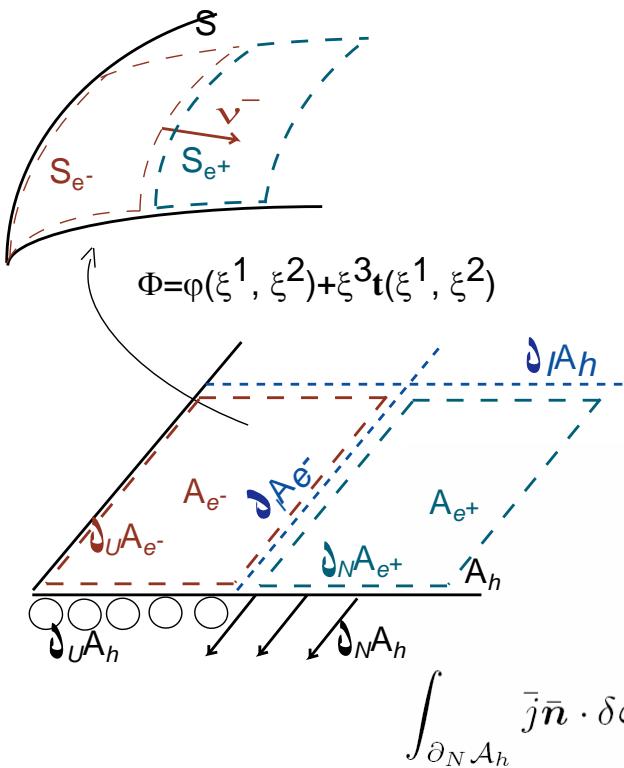
- Iteration on the thickness ratio $\lambda_h = \frac{h_{\max} - h_{\min}}{h_{\max 0} - h_{\min 0}}$ in order to reach the plane stress assumption $\sigma^{33}=0$

- Simpson's rule leads to the resultant stresses:

$$\left\{ \begin{array}{l} \mathbf{n}^\alpha = \frac{1}{j} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \mathbf{g}^\alpha \det(\boldsymbol{\nabla}\Phi) d\xi^3 \\ \tilde{\mathbf{m}}^\alpha = \frac{1}{j} \int_{h_{\min 0}}^{h_{\max 0}} \xi^3 \boldsymbol{\sigma} \mathbf{g}^\alpha \det(\boldsymbol{\nabla}\Phi) d\xi^3 \\ \mathbf{l} = \frac{1}{j} \int_{h_{\min 0}}^{h_{\max 0}} \boldsymbol{\sigma} \mathbf{g}^3 \det(\boldsymbol{\nabla}\Phi) d\xi^3 \end{array} \right.$$

Non-linear Shells

- Discontinuous Galerkin formulation
 - New weak form obtained from the momentum equations
 - Integration by parts on each element A^e
 - Across 2 elements δt is discontinuous



$$0 = \int_{A_e} (\bar{j} \mathbf{n}^\alpha (\varphi_h))_{,\alpha} \cdot \delta \varphi dA + \int_{A_e} \mathbf{n}^A \cdot \delta \varphi \bar{j} dA + \int_{A_e} \left[(\bar{j} \tilde{\mathbf{m}}^\alpha (\varphi_h))_{,\alpha} - \bar{j} \mathbf{l} \right] \cdot \delta \mathbf{t} \lambda_h dA + \int_{A_e} \tilde{\mathbf{m}}^A \cdot \delta \mathbf{t} \lambda_h \bar{j} dA$$

$$- \sum_e \int_{\bar{A}_e} \bar{j} \tilde{\mathbf{m}}^\alpha (\varphi_h) \cdot (\delta \mathbf{t} \lambda_h)_{,\alpha} dA + \sum_e \int_{\partial A_e} \bar{j} \tilde{\mathbf{m}}^\alpha (\varphi_h) \cdot \delta \mathbf{t} \lambda_h \nu_\alpha dA$$

$$\int_{A_h} \bar{j} \mathbf{n}^\alpha (\varphi_h) \cdot \delta \varphi_{,\alpha} dA + \int_{A_h} \bar{j} \mathbf{l} \cdot \delta \mathbf{t} \lambda_h dA + \int_{A_h} \bar{j} \tilde{\mathbf{m}}^\alpha (\varphi_h) \cdot (\delta \mathbf{t} \lambda_h)_{,\alpha} dA + \int_{\partial_I A_h \cup \partial_T A_h} [\delta \mathbf{t} \cdot \bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha] \nu_\alpha^- d\partial A = \int_{\partial_N A_h} \bar{j} \bar{\mathbf{n}} \cdot \delta \varphi dA + \int_{\partial_M A_h} \bar{j} \tilde{\mathbf{m}} \cdot \delta \mathbf{t} \lambda_h dA + \int_{A_h} \mathbf{n}^A \cdot \delta \varphi \bar{j} dA + \int_{A_h} \tilde{\mathbf{m}}^A \cdot \delta \mathbf{t} \lambda_h \bar{j} dA$$

Non-linear Shells

- Interface terms rewritten as the sum of 3 terms

- Introduction of the numerical flux \mathbf{h}

$$\int_{\partial_I \mathcal{A}_h} \llbracket \bar{j} \tilde{\mathbf{m}}^\alpha(\varphi_h) \cdot \delta \mathbf{t} \lambda_h \rrbracket \nu_\alpha^- d\mathcal{A} \rightarrow \int_{\partial_I \mathcal{A}_h} \llbracket \delta \mathbf{t} \rrbracket \cdot \mathbf{h} \left((\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha)^+, (\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha)^-, \nu_\alpha^- \right) d\mathcal{A}$$

- Has to be consistent: $\mathbf{h}(\lambda_h \bar{j} \tilde{\mathbf{m}}_{\text{exact}}^\alpha, \bar{j} \lambda_h \tilde{\mathbf{m}}_{\text{exact}}^\alpha, \nu_\alpha^-) = \lambda_h \bar{j} \tilde{\mathbf{m}}_{\text{exact}}^\alpha \nu_\alpha^-$
- One possible choice: $\mathbf{h}((\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha)^+, (\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha)^-, \nu_\alpha^-) = \nu_\alpha^- \langle \bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha \rangle$

- Weak enforcement of the compatibility

$$\int_{\partial_I \mathcal{A}_h} \llbracket \mathbf{t}(\varphi_h) \rrbracket \cdot \langle \delta(\bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha) \rangle \nu_\alpha^- d\partial\mathcal{A} \rightarrow \text{Linearization leads to the material tangent modulii } \mathcal{H}_m$$

↓

$$\int_{\partial_I \mathcal{A}_h} \llbracket \mathbf{t}(\varphi_h) \rrbracket \cdot \langle \bar{j}_0 \mathcal{H}_m^{\alpha\beta\gamma\delta} (\delta \varphi_{,\gamma} \cdot \mathbf{t}_{,\delta} + \varphi_{,\gamma} \cdot \delta \mathbf{t}_{,\delta}) \varphi_{,\beta} + \bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha \cdot \varphi_{,\beta} \delta \varphi_{,\beta} \rangle \nu_\alpha^- d\partial\mathcal{A}$$

- Stabilization controlled by parameter β , for all mesh sizes h^s

$$\int_{\partial_I \mathcal{A}_h \cup \partial_T \mathcal{A}_h} \llbracket \mathbf{t}(\varphi_h) \rrbracket \cdot \varphi_{,\beta} \left\langle \frac{\beta \bar{j}_0 \mathcal{H}_m^{\alpha\beta\gamma\delta}}{h^s} \right\rangle \llbracket \delta \mathbf{t} \rrbracket \cdot \varphi_{,\gamma} \nu_\alpha^- \nu_\delta^- d\partial\mathcal{A}$$

Non-linear Shells

- New weak formulation

$$\begin{aligned}
 & \int_{\mathcal{A}_h} \bar{j} \mathbf{n}^\alpha (\varphi_h) \cdot \delta \varphi_{,\alpha} d\mathcal{A} + \int_{\mathcal{A}_h} \bar{j} \tilde{\mathbf{m}}^\alpha (\varphi_h) \cdot (\delta \mathbf{t} \lambda_h)_{,\alpha} d\mathcal{A} + \int_{\mathcal{A}_h} \bar{j} \mathbf{l} \cdot \delta \mathbf{t} \lambda_h d\mathcal{A} + \\
 & \int_{\partial_I \mathcal{A}_h \cup \partial_T \mathcal{A}_h} \llbracket \mathbf{t} (\varphi_h) \rrbracket \cdot \langle \bar{j}_0 \mathcal{H}_m^{\alpha\beta\gamma\delta} (\delta \varphi_{,\gamma} \cdot \mathbf{t}_{,\delta} + \varphi_{,\gamma} \cdot \delta \mathbf{t}_{,\delta}) \varphi_{,\beta} + \bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha \cdot \varphi_{,\beta} \delta \varphi_{,\beta} \rangle \nu_\alpha^- d\partial \mathcal{A} \\
 & \int_{\partial_I \mathcal{A}_h \cup \partial_T \mathcal{A}_h} \llbracket \delta \mathbf{t} \rrbracket \cdot \langle \bar{j} \lambda_h \tilde{\mathbf{m}}^\alpha \rangle \nu_\alpha^- d\partial \mathcal{A} + \int_{\partial_I \mathcal{A}_h \cup \partial_T \mathcal{A}_h} \llbracket \mathbf{t} (\varphi_h) \rrbracket \cdot \varphi_{,\beta} \left\langle \frac{\beta \bar{j}_0 \mathcal{H}_m^{\alpha\beta\gamma\delta}}{h^s} \right\rangle \llbracket \delta \mathbf{t} \rrbracket \cdot \varphi_{,\gamma} \nu_\alpha^- \nu_\delta^- d\partial \mathcal{A} = \\
 & \int_{\partial_N \mathcal{A}_h} \bar{j} \bar{\mathbf{n}} \cdot \delta \varphi d\mathcal{A} + \int_{\partial_M \mathcal{A}_h} \bar{j} \bar{\mathbf{m}} \cdot \delta \mathbf{t} \lambda_h d\mathcal{A} + \int_{\mathcal{A}_h} \mathbf{n}^\mathcal{A} \cdot \delta \varphi \bar{j} d\mathcal{A} + \int_{\mathcal{A}_h} \tilde{\mathbf{m}}^\mathcal{A} \cdot \delta \mathbf{t} \lambda_h \bar{j} d\mathcal{A}
 \end{aligned}$$

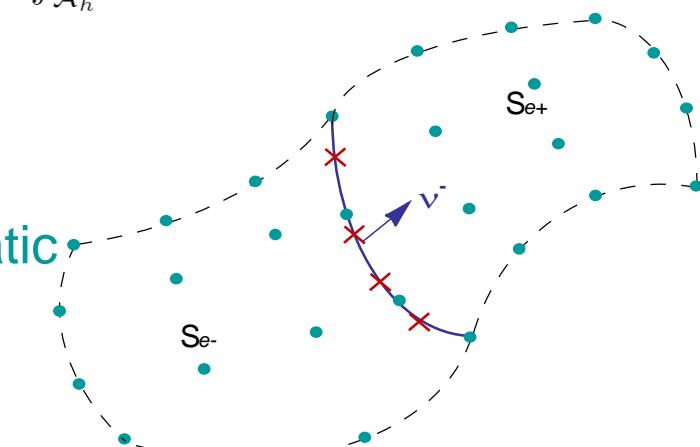
- Implementation

- Shell elements

- Membrane and bending responses
 - 2x2 (4x4) Gauss points for bi-quadratic (bi-cubic) quadrangles

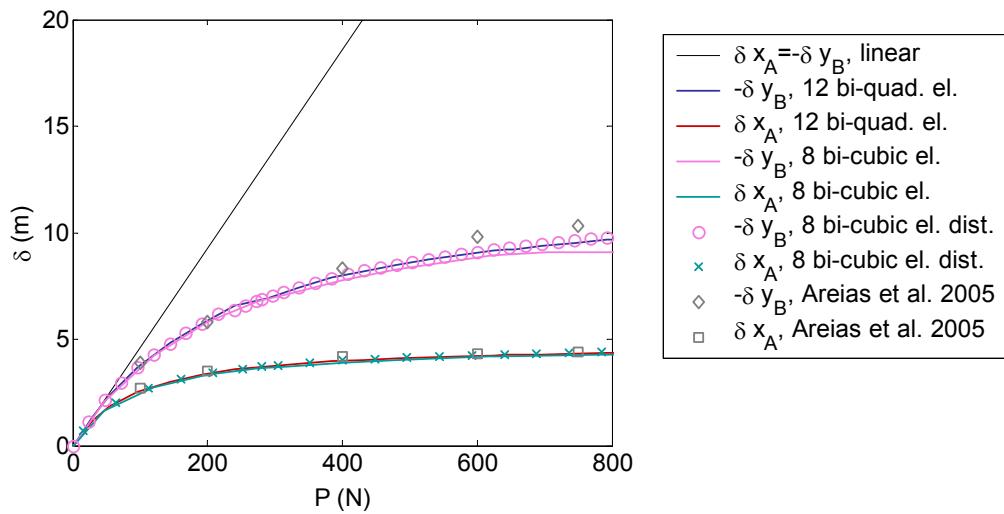
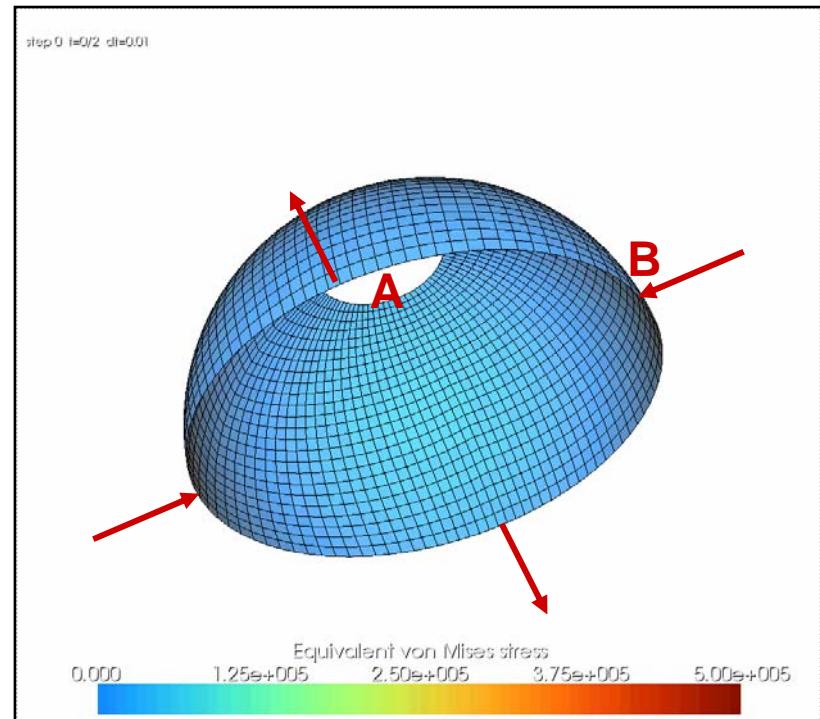
- Interface elements

- 3 contributions
 - 2 (4) Gauss points for quadratic (cubic) meshes
 - Contributions of neighboring shells evaluated at these points



Numerical examples

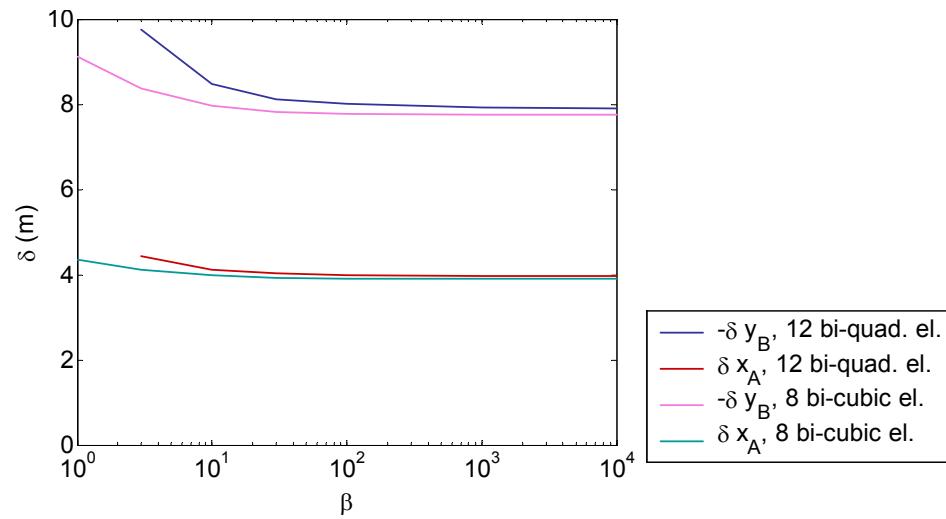
- Pinched open hemisphere
 - Properties:
 - 18-degree hole
 - Thickness 0.04 m; Radius 10 m
 - Young 68.25 MPa; Poisson 0.3
 - Comparison of the DG methods
 - Quadratic, cubic & distorted el. with literature



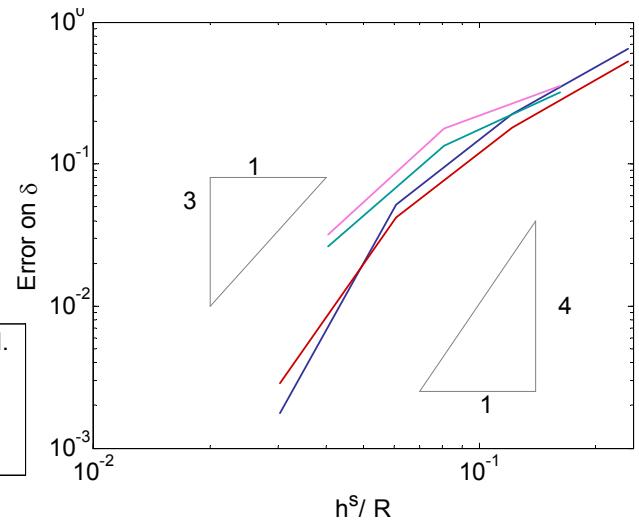
Numerical examples

- Pinched open hemisphere

Influence of the stabilization
parameter



Influence of the mesh size



- Stability if $\beta > 10$
- Order of convergence in the L^2 -norm in $k+1$

Numerical examples

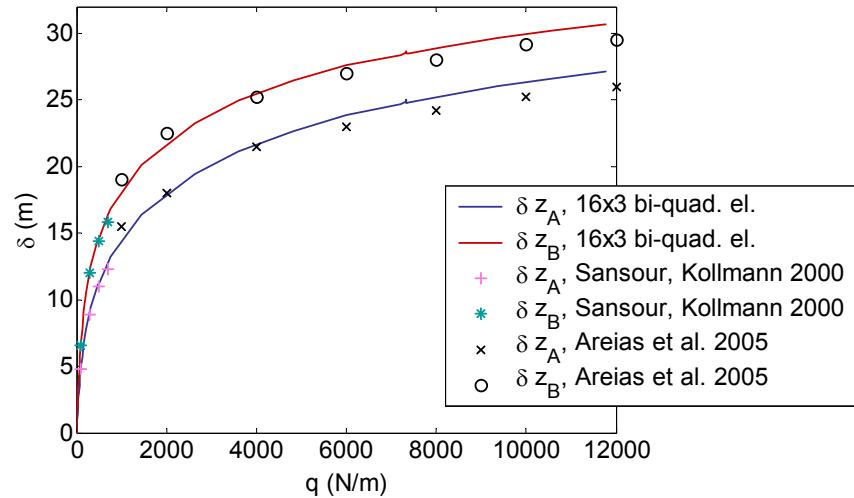
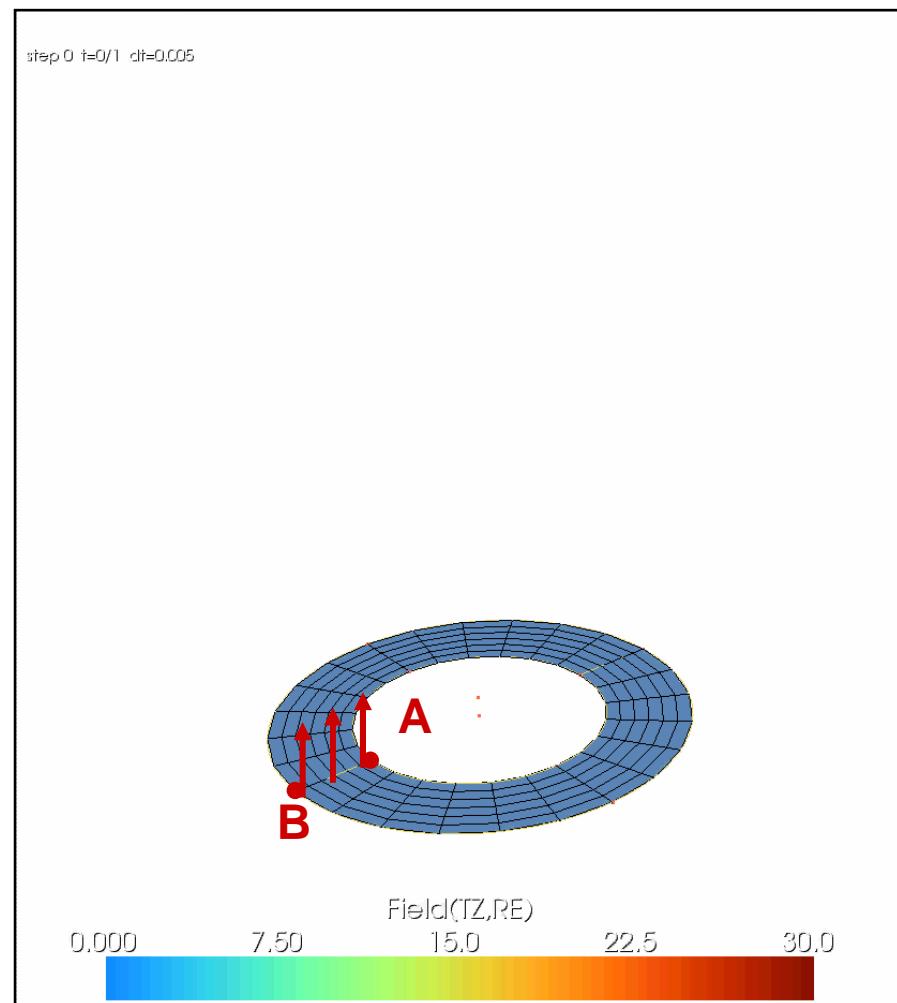
- Plate ring

- Properties:

- Radii 6 -10 m
 - Thickness 0.03 m
 - Young 12 GPa; Poisson 0

- Comparison of DG methods
 - Quadratic elements

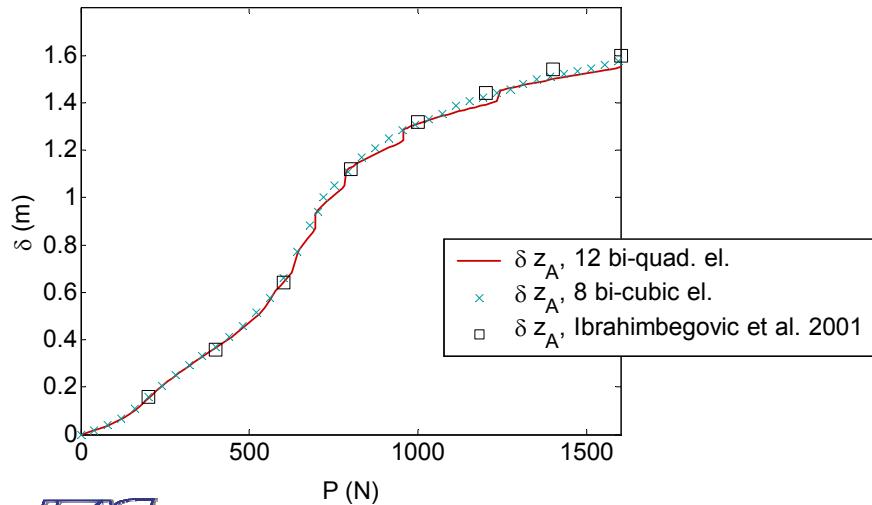
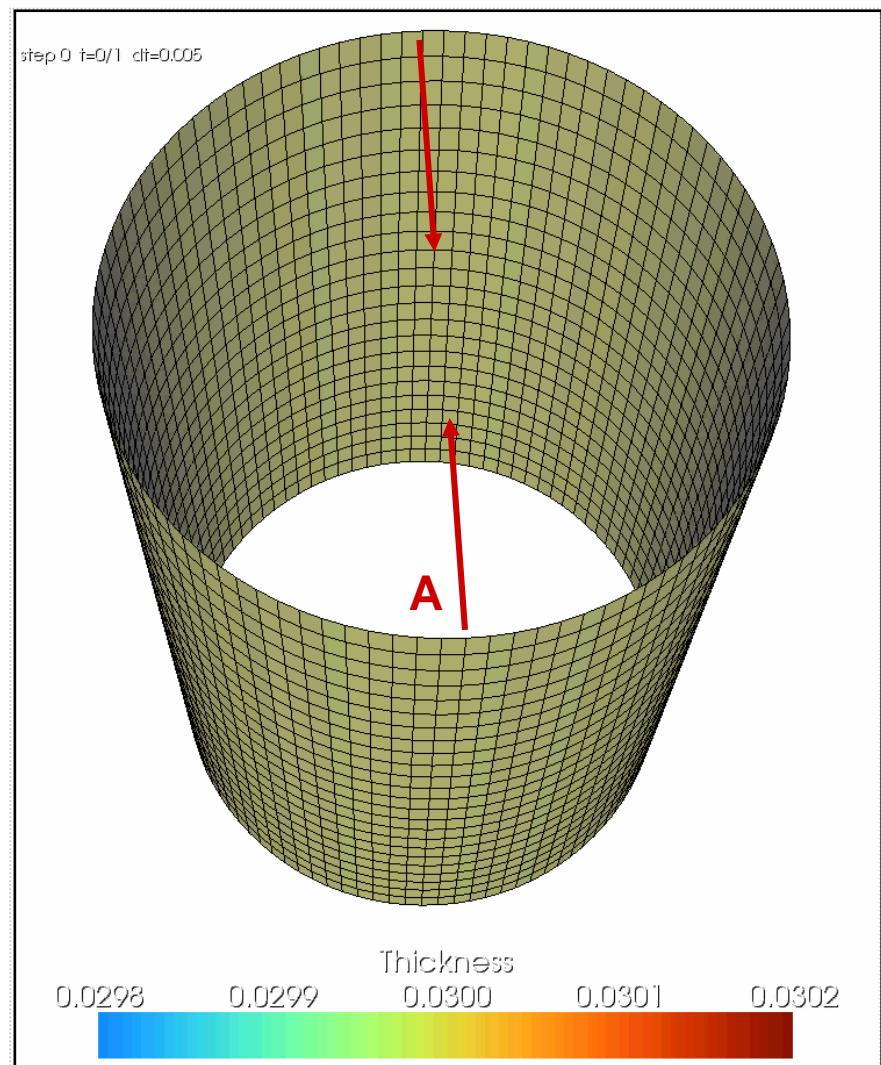
with literature



Numerical examples

- Clamped cylinder

- Properties:
 - Radius 1.016 m; Length 3.048 m; Thickness 0.03 m
 - Young 20.685 MPa; Poisson 0.3
- Comparison of DG methods
 - Quadratic & cubic elements with literature



Conclusions & Perspectives

- Development of a discontinuous Galerkin framework for non-linear Kirchhoff-Love shells
 - Displacement formulation (no additional degree of freedom)
 - Strong enforcement of C^0 continuity
 - Weak enforcement of C^1 continuity
 - Quadratic elements:
 - Method is stable if $\beta \geq 10$
 - Reduced integration (but hourglass-free)
 - Cubic elements:
 - Method is stable if $\beta \geq 10$
 - Full Gauss integration (but locking-free)
 - Convergence rate:
 - $k-1$ in the energy norm
 - $k+1$ in the L2-norm

Conclusions & Perspectives

- Perspectives
 - Next developments:
 - Plasticity
 - Dynamics ...
 - Full DG formulation
 - Displacements and their derivatives discontinuous
 - Application to fracture
 - Application of this displacement formulation to computational homogenization of thin structures