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Discontinuous Galerkin Methods

e Main idea
— Finite-element discretization
— Same discontinuous polynomial approximations for the

e Test functions ¢, and ! |
* Trial functions og J: |\ |
|
i L | X
(a-1y (@1)* (@ (@*(a+l) (@+)*

— Definition of operators on the interface trace:
« Jump operator: [e]=e"—e"

o+—0—o*
 Mean operator: () = s

— Continuity is weakly enforced, such that the method

* |s consistent

 |s stable

» Has the optimal convergence rate @

N
.
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Discontinuous Galerkin Methods

e Discontinuous Galerkin methods vs Continuous
— More expensive (more degrees of freedom)
— More difficult to implement

e So0 why discontinuous Galerkin methods?

— Weak enforcement of C! continuity for high-order equations
« Strain-gradient effect
» Shells with complex material behaviors
e Toward computational homogenization of thin structures?
— Exploitation of the discontinuous mesh to simulate dynamic
fracture [Seagraves, Jérusalem, Noels, Radovitzky, col. ULg-MIT].
« Correct wave propagation before fracture
e Easy to parallelize & scalable
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Discontinuous Galerkin Methods

e Continuous field / discontinuous derivative

— No new nodes

— Weak enforcement of
C! continuity

— Displacement formulations |
of high-order differential | @1l) (@  (atl)
equations

— Usual shape functions in 3D (no new requirement)

— Applications to

e Beams, plates [Engel et al., CMAME 2002; Hansbo & Larson, CALCOLO 2002; Wells
& Dung, CMAME 2007]

Field
/
|

* Linear & non-linear shells [Noels & Radovitzky, CMAME 2008; Noels IINME
2009]

 Damage & Strain Gradient [wells et al., CMAME 2004; Molari, CMAME 2006;
Bala-Chandran et al. 2008]
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Topics

« Key principles of DG methods
— [llustration on volume FE

e Kirchhoff-Love Shell Kinematics
 Non-Linear Shells
 Numerical examples

e Conclusions & Perspectives
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Key principles of DG methods

« Application to non-linear mechanics
— Formulation in terms of the first Piola stress tensor P

P.-N =T on oxQ
vo-Pl=0ma & N

@n = @p on opB
— New weak formulation obtained by integration by parts on
each element ¢

Z]VO-PT(qoh)-ésodBo
™

—P(Lph):VocSLde+Z/5@-P(<ph)-NdaB:0
¢ a0g
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Key principles of DG methods

Interface term rewritten as the sum of 3 terms
— Introduction of the numerical flux h

f[[écp-P(goh)]]-N_ dOB — / [0¢] - h (P, P~ N™) dOB
6;30 aIBD
h(Pt, P~ N~)=—h(P~,P", NT)

e Has to be consistent:
h (Pexacta Pexa‘ctp Nﬁ) — Pexa.ct -IN—

* One possible choice: h(PY,P~,N")=(P)-N~
— Weak enforcement of the compatibility

opP
/ [en] - <ﬁ :V06<p> N~ doB
81 Bo

— Stabilization controlled by parameter g, for all mesh sizes hs

[ tonon (22 paron- won

8, By Noels & Radovitzky, IINME 2006 & JAM 2006

— These terms can also be explicitly derived from a variational
formulation (Hu-Washizu-de Veubeke functional)
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Key principles of DG methods

 Numerical applications

— Properties for a polynomial approximation of order k

« Consistent, stable for #>Ck, convergence in the e-norm in k
o Explicit time integration with conditional stability At = e [po

| . iV E
* High scalability
— Examples
Taylor's impact Wave propagation
* = Theoretical
Plastic strain 1.5 ° CG
K —f=1 !
g i 1l =—B=100 !
& * B=10000

X4
QOOQOOC 0O
. X th G
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Time evolution of the free face velocity
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Kirchhoff-Love Shell Kinematics

* Description of the thin body

2= (£) = o (€1)+ €Nt (€°)

. /
Mapping of the

mid-surface

— N2y 23 rel g2
Mapping of the normal Do=o(&', SY+5 (S, &)

Es ®=(&', E)+EUENE)

Thickness stretch to the mid-surface
. . A ) //
 Deformation mapping A 4
F=V&o |V, ! with =
| oP
V=g, oE §& gi:V@Ei:agi
B odb B 3 3 B oP B
—_— g, = o =patE& )\ht@ + & t/\hﬂ & g3 = C)fg = A\t

e Shearing is neglected

— t:m & the gradient of thickness stretch *...neglected
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Kirchhoff-Love Shell Kinematics

e Resultant equilibrium equations:
i 1 -
— Linear momentum |5 (n®) , +n* =0

J
1
J

- (Gm) 1+ M Emt =0

— Angular momentum

1 hmaXD
n" = —,/ og“det (V&) de?
J Jh

hmaXO
— In terms of resultant stresses: < [m°® == f Eogtdet (V) d¢®
h

'j min

hmax[]
I == f ag’det (V@) de?
\ j hmin[]

of resultant applied tension »* and torque ="

and of the mid-surface Jacobian j=|viA el
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Non-linear Shells

 Material behavior

— Through the thickness integration by Simpson’s rule

— At each Simpson point - o o
P P C=gi-99029) =292 g}

det (Vo) OW
det (V®) g, 79

 Internal energy W(C=F'F) with <

oc=0"g ®g;=2

-

. . - hmax - hmin .
e |teration on the thickness ratio X, = In order to reach

hmaxO - hminO
the plane stress assumption ¢23=0

. y r max0

— Simpson’s rule leads to the o ;/h g™ det (V) de?
J Jhmino

. hmaxO
resultant stresses: ezl / B oghdet (VE) e’
J Shming
1 [hmaxo
l = 3/ og’det (V®) de?

h

\ mini
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Non-linear Shells

 Discontinuous Galerkin formulation

— New weak form obtained from the momentum equations

— Integration by parts on each element A ©

— Across 2 elements ¢t is discontinuous

(¢n)) 6cpd./4+/ nt . Spjd A+

/‘ﬂ 5tAhdA+/ A - §th,jdA

Z/ im? (en) - (0tA,). dA+Z/ (en) - 0t A dA

” & / Jn® (en) - 0p adA +f gl - otA,dA +
/ 2 A,’L .A;
h — ~ :
T (on) - (68n) . dA+/ [6t - A v doA =
QOOO ///gNAh Ap , Or ApUoT Ay,

/ 37 - Spd A+ / G - StARdA + / nt SpjdA + |t 5t jdA
In Ay Onr Ay An Ap
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Non-linear Shells

e [nterface terms rewritten as the sum of 3 terms
— Introduction of the numerical flux h

/ [[jma (Soh) . 5tAh]] V;d,A — Hét]]h ((j)\hma)—l- ’ (j)\h?’ha)_ ? I/a) dA
dr An

drAp

¢ HaS to be ConSIStent h()\hjmgxa.ct? j)\hmgxactv ‘UOC') — Ah;mgxa.ctyc;

« One possible choice: & ((j/\hmaﬁ, GAn®) ™, y;) — uT (A
— Weak enforcement of the compatibility

/ [t (er)] - (6 (GAnm)) v, dOA Linearization leads to the
91 An / material tangent modulii 4,

% / [t (r)]-CGoHn ™ (30 -t + 0y - Ot s) @5 + JARY -5 Op 5) v dOA
OrAp

— Stabilization controlled by parameter g, for all mesh sizes hs

o o
[t e {2 st v doa
Or ApUor Ay
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Non-linear Shells

e New weak formulation
/ jna (Soh) 0@ o dA +/ j’ﬁ’ba (goh) . (5tAh).a dA Jr/ jl Ot dA +
An An ' An

[t (pr)] - GoHp " (8@ - ts + @ - Ot6) o+ T -5 0 5) v, dOA

]81./—1;1 Uor.Ay

o BioHZPT® L
/ ot - G v do.Al| [ [t(on)]- 05 ( 2 ) [68] -0z dOA L
A ApUOT Ap Ir Ap UoT Ap

/ G- dpdA + f G- StAdA + / nA . spidA+ [ A seajdA
OnNAp, O Ap A

An
* Implementation
— Shell elements
« Membrane and bending responses _
o 2Xx2 (4x4) Gauss points for bi-quadraticlr -

(bi-cubic) quadrangles ¢ <
— Interface elements LY ’
e 3 contributions el L

o 2 (4) Gauss points for quadratic (cubic) meshes
» Contributions of neighboring shells evaluated at these points

B A

Department of Aerospace and Mechanical Engineering Université || I

de Liége -



Numerical examples

 Pinched open hemisphere

— Properties:
« 18-degree hole
* Thickness 0.04 m; Radius 10 m
* Young 68.25 MPa; Poisson 0.3

— Comparison of the DG methods
» Quadratic, cubic & distorted el.

with literature

20
- = i Eqquivelznt van Mises sirass
8 %30 oy linear 0.000 '|_9.a'~.+rjr15| 2.50%+005 5 01005
— dYp 12 bi-quad. el. “TH
15¢ 1 — 8X,, 12 bi-quad. el.
— -3 Vg 8 bi-cubic el.
35 Xys 8 bi-cubic el.
E10 o 0 o -8 Yy 8 bi-cubic el. dist.
“ x 82X, 8 bi-cubic el. dist.
o 8Yg Areias et al. 2005
5L ) N o 89X, Areias et al. 2005
% 200 400 600 800

P(N)
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Numerical examples

Pinched open hemisphere

Influence of the stabilization Influence of the mesh size
parameter
10 : : ‘ 10"
8,
107}
6 p
E :
4 T
— dYp 12 bi-quad. el.
2t 1| = 3%y 12 bi-quad. el.
-3 Vg 8 bi-cubic el.
‘ ‘ ‘ __ §Xx., 8 bi-cubic el. 10°
(1)00 10" 10° 10° 10° A 107 10
B hS/ R

— Stability if 5> 10
— Order of convergence in the L2-norm in k+1

do §
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Numerical examples

* Plate ring
— Properties:
« Radii6 -10 m
e Thickness 0.03 m
* Young 12 GPa; Poisson 0
— Comparison of DG methods
» Quadratic elements
with literature

— §z,, 16x3 bi-quad. el.
= 15} — §z_, 16x3 bi-quad. el.
+ &z,., Sansour, Kollmann 2000

o >

A
107, % O g Sansour, Kollmann 2000
x 82y, Areias et al. 2005
5 o & zZ, Areias et al. 2005
‘ ‘ ‘ ‘ ‘ \
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Numerical examples

« Clamped cylinder

— Properties:

« Radius 1.016 m; Length
3.048 m; Thickness 0.03 m
* Young 20.685 MPa; Poisson
0.3
— Comparison of DG methods
* Quadratic & cubic elements
with literature

— 82, 12 bi-quad. el.
v 8 zZ,, 8 bi-cubic el.
g o Z,, Ibrahimbegovic et al. 2001
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Conclusions & Perspectives

* Development of a discontinuous Galerkin framework for
non-linear Kirchhoff-Love shells

— Displacement formulation (no additional degree of freedom)
« Strong enforcement of C° continuity
» Weak enforcement of C' continuity

— Quadratic elements:
* Method is stable if § =2 10
» Reduced integration (but hourglass-free)

— Cubic elements:
* Method is stable if § =2 10
» Full Gauss integration (but locking-free)

— Convergence rate:
* k-1 in the energy norm
e k+1 in the L2-norm
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Conclusions & Perspectives

* Perspectives
— Next developments:
 Plasticity
* Dynamics ...
— Full DG formulation
» Displacements and their derivatives discontinuous
» Application to fracture

— Application of this displacement formulation to computational
homogenization of thin structures
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