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A ONE-FIELD DISCONTINUOUS GALERKIN FORMULATION OF
NON-LINEAR KIRCHHOFF-LOVE SHELLS
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ABSTRACT: Spatially-discontinuous Galerkin methods constitute a generalization of weak formulations, which allow
for discontinuities of the problem unknowns in its domain interior. This is particularly appealing for problems involving
high-order derivatives, since discontinuous Galerkin (DG) methods can also be seen as a means of enforcing higher-order
continuity requirements. Recently, DG formulations of linear and non-linear Kirchhoff-Love shell theories have been
proposed. This new one-field formulations take advantage of the weak enforcement in such a way that the displacements
are the only discrete unknowns, while the C1 continuity is enforced weakly. The Resulting one field formulation is a
simple and efficient method to model thin structures and can be applied to various computational methods.
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1 INTRODUCTION
When modeling thin structures, a finite-element formu-
lation without rotation degree of freedom simplifies the
implementation, which can be appealing when dealing
with computational homogenization of thin structures [1].
Kirchhoff-Love assumption for shells constrains the sur-
face normal to remain perpendicular to the shell. This
omission of the shearing allows the formulation of the
problem as a one-field displacement method, but leads
to weak formulations involving high order derivatives.
These high-order derivative terms require polynomial ap-
proximations of the displacement field with the same de-
gree of continuity, which, for finite-elements methods,
corresponds to the use of shape-functions fulfilling the
high-order continuity requirements.
A solution is to enforce weakly the high-order continu-
ity requirements by recourse to DG methods. This weak
enforcement corresponds to allow for jumps at the inter-
element boundaries, while consistency and stability of the
formulation are ensured by boundary integral terms. If, in
the context of solid mechanics, DG can be developed for
problems involving discontinuities in the unknown field,
see [2–5] for non-linear solid mechanics, but it has also
been exploited in the case of C0 displacement unknown
fields, which suffer from discontinuities in their deriva-
tive. This method has been exploited for applications to
beams and plates [6–8], and more recently for linear and
non-linear Kirchhoff-Love shells [9, 10]. In this resulting
one-field formulation, the jump discontinuities are related
to the derivatives of the continuous unknown field.
Consistency, optimal convergence rate and stability of this
DG weak form are ensured by the addition of the integra-
tion on the element-boundaries of respectively the resul-
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tant moment, its symmetric counterpart and a (sufficiently
large) quadratic term. This method was also shown to re-
duce locking inherent to finite-element discretizations, es-
pecially for thin structures like beams, plates or shells, for
which the locking results in excessive stiffness when the
membrane and bending modes are mixed.

2 KIRCHHOFF-LOVE SHELLS

Figure 1: Description of the different configurations of the
shell.

A thin body can be described by considering its mid-
surface section as a Cosserat plane (ξ1, ξ2) ∈ A0 and
a third coordinate, representing the thickness, and be-
longing to the interval ξ3 ∈ [hmin0; hmax0]. The repre-
sentation of the body in the inertial frame is illustrated
in Fig. 1. A configuration S of the shell is described
by using ϕ

(
ξ1, ξ2

)
the mapping of the mid-surface and

by the unit vector t, which is the director of the mid-
surface (‖t‖ = 1). Therefore, the position x of the points
in this configuration S can be defined by the mapping
x = Φ

(
ξI

)
= ϕ (ξα) + ξ3λht (ξα), with λh the thick-

ness stretch of the shell resulting from the Cosserat plane
deformation. The transformation χ = Φ ◦Φ−1

0 between



two configurations is characterized by the two-point de-
formation gradient

F = ∇Φ ◦ [∇Φ0]
−1

, (1)

with ∇Φ = gi⊗Ei when defined in the reference frame.
The Jacobian related to the deformation of the mid-surface
is computed by

J̄ =
j̄

j̄0
, with j̄ = ‖ϕ,1 ∧ϕ,2‖ . (2)

Since the particular case of Kirchhoff-Love shells corre-
sponds to neglect shearing deformations, the unit vector t
remains always perpendicular to ϕ,α with

t =
ϕ,1 ∧ϕ,2

‖ϕ,1 ∧ϕ,2‖
. (3)

Following [11], the governing equations of a thin body are
obtained by integrating on the thickness the equations of
force and moment equilibrium, leading to

1
j̄

(j̄nα),α + nA0 = 0 on A0 and (4)

1
j̄

(j̄m̃α),α − l + λt + m̃A0 = 0 on A0 , (5)

where, nα is the resultant stress vector, m̃α is the resul-
tant torque vector, l is the resultant across-the-thickness
stress vector, λ is an undefined pressure, where nA0 is the
resultant external surface traction and where m̃A0 is the
resultant external torque by unit surface.
The resultant vectors can be obtained from any compu-
tational method. For example, assuming an homoge-
neous structure under the plane stress assumption, they
can be evaluated from a Simpson integration in terms of
the Kirchhoff stress tensor τ , leading to

nα =
1
j̄

∫ hmax0

hmin0

τβαgβ det (∇Φ0) dξ3 , (6)

m̃α =
1
j̄

∫ hmax0

hmin0

ξ3τβαgβ det (∇Φ0) dξ3 , and (7)

l =
1
j̄

∫ hmax0

hmin0

τ i3gidet (∇Φ0) dξ3 = 0 . (8)

This set of governing equations is accompanied by bound-
ary conditions applied on the boundary ∂A0 of the mid-
surface A0. This boundary ∂A0 is decomposed into a part
∂TA0 where the unit vector is constraint to t = t̄ and
into a part ∂MA0 where the applied torque is constraint to
m̃ανα = ¯̃m. Similarly, the boundary ∂A0 is also decom-
posed into a part ∂UA0 where the position is constraint to
ϕ = ϕ̄ and into a part ∂NA0 where the traction is con-
strained to nανα = n̄. In these equations, να are the
component of the external normal in the dual convected
basis ϕ,α.

3 DISCONTINUOUS GALERKIN FOR-
MULATION

In this section, a framework for numerical approximation
of the shell equations described above based on a C0 poly-
nomial approximation of the unknown field ϕ is proposed.
In this formulation, the resulting discontinuity in the sur-
face director t is accounted for using a new discontinuous
Galerkin formulation.

3.1 WEAK FORMULATION OF THE PROBLEM

At this point, the mid-surface A0 is approximated by a
discretization Ah into finite-elements Ae of A0 ' Ah =⋃

e Āe. The boundary ∂Ae of an element Ae can be com-
mon with the boundary of Ah, leading to the boundary
parts ∂UAe, ∂TAe, ∂MAh, and ∂NAe. The remaining
part of the boundary ∂Ae is shared with another finite el-
ement and is part of the interior boundary ∂IAh, with

∂IAe = ∂Ae\∂Ah
, and ∂IAh =

⋃
e

∂Ae \∂Ah
.(9)

Instead of seeking the exact solution ϕ, a polynomial ap-
proximation ϕh constitutes the solution to the finite ele-
ment problem. In this work, a continuous polynomial ap-
proximation is considered, but the derivatives of the dis-
placement field are allowed to be discontinuous on the
element boundaries. Therefore, both the displacement
field ϕh and the test functions δϕ are continuous across
element-interfaces but allow for jump discontinuities in
their derivative, which has to be accounted for when es-
tablishing the new weak form of the problem.
Multiplying Eq. (4) by a test function δϕ and Eq. (5)
by the corresponding variation of unit vector λhδt =
λht (δϕ), state the problem as finding ϕh such that

0 =
∑
e

∫
Āe

(j̄nα (ϕh)),α · δϕdA0 +∑
e

∫
Āe

[
(j̄m̃α (ϕh)),α − j̄l

]
· δtλhdA0 +∫

Ah
nA0 · δϕj̄dA0 +

∫
Ah

m̃A0 · δtλhj̄dA0 . (10)

The integration by parts of these integrals followed by the
application of the Gauss theorem leads to

0 = −
∑
e

∫
Āe

j̄nα (ϕh) · δϕ,αdA0 +∑
e

∫
∂Ae

j̄nα (ϕh) · δϕναdA0 −∑
e

∫
Āe

j̄m̃α (ϕh) · (δtλh),α dA0 +∑
e

∫
∂Ae

j̄m̃α (ϕh) · δtλhναdA0 −∑
e

∫
Āe

j̄l · δtλhdA0 +∫
Ah

m̃A0 · δtλhj̄dA0 +
∫
Ah

nA0 · δϕj̄dA0 . (11)

Variation δλh is omitted as it corresponds to the plane
stress or plane strain assumption.
When analyzing the boundary integrals in Eq. (11), it
appears that the contribution involving the scalar product



with δϕ has the same meaning as for continuous Galerkin
methods. Indeed, since δϕ ∈ C0 (Ah), and since for the
exact solution nα is also continuous, the following substi-
tution satisfies the consistency requirement:∑

e

∫
∂Ae

j̄nα (ϕh) · δϕναdA0 →∫
∂Ah

j̄nα (ϕh) · δϕναdA0 . (12)

By contrast, the contribution involving the tensorial prod-
uct with δt requires particular attention since it is discon-
tinuous across interelement boundaries. Since only the C0

continuity is ensured across ∂IAh, jump J•K and mean 〈•〉
operators are defined on this boundary, with

J•K = •+ − •− , and (13)

〈•〉 =
1
2

(
•+ + •−

)
. (14)

It is worth noticing that if definition (13) of the jump oper-
ator is not independent of the choice of the + and − sides
of an element edge, when this jump is used in combina-
tion with the outward unit normal of the − element ν−,
the formulation becomes consistent and independent on
this choice. Although jump and mean operators are mean-
ingful on the interior boundary ∂IA0, jump definition can
be extended on ∂TA0 as a way of enforcing weakly the
boundary conditions, see [10]. From these definitions, the
boundary term dependent on δt is rewritten∑

e

∫
∂IAe

j̄m̃α (ϕh) · δtλhναdA0 =

−
∫

∂IAh

Jj̄m̃α (ϕh) · δtλhK να
−dA0 . (15)

The main idea of the discontinuous Galerkin method
is to address the contribution of the inter-element
discontinuity terms by introducing a numerical flux
h

(
(j̄λhm̃α)+ , (j̄λhm̃α)− , ν−α

)
, chosen equal to

ν−α 〈j̄λhm̃α〉 in the present work, which leads to the
substitution∫

∂IAh

Jj̄m̃α (ϕh) · δtλhK ν−α dA0 →∫
∂IAh

JδtK · 〈j̄λhm̃α〉 ν−α dA0 . (16)

Combining Eqs. (12) to (16) allows rewriting the weak
form (11) as∫

Ah
j̄nα (ϕh) · δϕ,αdA0 +

∫
Ah

j̄l · δtλhdA0 +∫
Ah

j̄m̃α (ϕh) · (δtλh),α dA0 +∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 =∫
∂NAh

j̄n̄ · δϕdA0 +
∫

∂MAh
j̄ ¯̃m · δtλhdA0 +∫

Ah
nA0 · δϕj̄dA0 +

∫
Ah

m̃A0 · δtλhj̄dA0 . (17)

Although this formation is consistent, it is nor stable nei-
ther verifying the compatibility condition JtK = 0 on the

interior domain definition. Toward this end, symmetriza-
tion and quadratic terms are added, see [10] for details.
This quadratic term depends on a stabilization parameter
β that has to be chosen large enough to lead to a stable
weak statement of the problem. Therefore, after adding
such contributions, the final weak statement of the prob-
lem is∫

Ah
j̄nα (ϕh) · δϕ,αdA0 +

∫
Ah

j̄l · δtλhdA0 +∫
Ah

j̄m̃α (ϕh) · (δtλh),α dA0 +∫
∂IAh∪∂TAh

JδtK · 〈j̄λhm̃α〉 ν−α d∂A0 +∫
∂IAh∪∂TAh

Jt (ϕh)K ·
〈
j̄0Hαβγδ

m (δϕ,γ · t,δ+

ϕ,γ · δt,δ) ϕ,β + j̄λhm̃α ·ϕ,β δϕ,β〉 ν−α d∂A0 +∫
∂IAh∪∂TAh

Jt (ϕh)K ·ϕ,β

〈
βj̄0Hαβγδ

m

hs

〉
JδtK ·ϕ,γν−α ν−δ d∂A0

=
∫

∂NAh
j̄n̄ · δϕdA0 +

∫
∂MAh

j̄ ¯̃m · δtλhdA0 +∫
Ah

nA0 · δϕj̄dA0 +
∫
Ah

m̃A0 · δtλhj̄dA0 , (18)

which enforces weakly the condition JtK = 0. In this last
equation, the linearized bending tangent moduli

Hαβγδ
m = E(hmax−hmin)

3

12(1−ν2)

[
νϕ,α

0 ·ϕ,β
0 ϕ,γ

0 ·ϕ,δ
0 +

1
2 (1− ν) ϕ,α

0 ·ϕ,γ
0 ϕ,δ

0 ·ϕ,β
0 +

1
2 (1− ν) ϕ,α

0 ·ϕ,δ
0 ϕ,γ

0 ·ϕ,β
0

]
(19)

are used in order to ensure the stability of the formulation
for any possible constitutive model, see [4] for discussion.

4 NUMERICAL APPLICATION

Figure 2: Study of the thin plate ring: a) Geometry of the
initially cut ring (one side of line AB is clamped and the
other one is uniformly loaded. b) Final deformation of the
test for a regular mesh of 16 bi-quadratic quadrangular el-
ements on the circumference and 3 bi-quadratic quadran-
gular elements on the edge AB.

This example consists into a thin plate ring cut along a ra-
dius AB. On one side of this cutting, the plate is clamped,
while a uniform vertical loading q is applied on the other
side, see Figure 2a. This test has widely been used in the



literature to compare shells formulations when large rota-
tions arise.

Figure 3: Study of the plate ring: force-displacement evo-
lutions of the nodes located at the cutting. Stabilization
parameter β = 102.

This simulation is computed using the proposed discon-
tinuous Galerkin formulation applied to 4-Gauss-point 9-
node bi-quadratic elements. The final deformed config-
uration is illustrated in Figure 2b, and the displacement
evolutions of nodes A and B located at the cutting are
shown in Figure 3. Although the mesh experiences large
distortion during the deformation process, the solution is
in good agreement with the ones obtained in the litera-
ture, and in particular with: (i) The hybrid stress formu-
lation proposed by Sansour and Kollmann [12], for whom
results are displayed for q <3000 N·m−1 (which is the
maximum loading considered in this reference). (ii) The
mixed formulation based on mid-side rotations proposed
by Areias et al. [13], which converges for an applied lin-
ear force reaching 12000 N·m−1.

5 CONCLUSIONS

A general DG formulation of linear Kirchhoff-Love shells
for finite deformations has been presented. When estab-
lishing this weak form, the discontinuities in the displace-
ment derivative between two elements are accounted for
by recurse to a DG method, leading to a one-field formu-
lation.
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