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Résumé

Ce travail est consacré à l’étude de quelques problèmes économétriques associés
à la modélisation de l’hétérogénéité des comportements individuels lorsque l’on tra-
vaille avec des données microéconomiques en panel. Plus précisément, il poursuit
un double objectif : d’une part, proposer et discuter une extension du modèle à er-
reurs composées standard permettant de prendre en compte et de rendre compte
de phénomènes d’hétérogénéité individuelle variables, et d’autre part, fournir pour
l’estimation et la mise à l’épreuve de la spécification du modèle proposé un ensem-
ble cohérent de procédures d’estimation et de tests prenant explicitement en compte
une possible mauvaise spécification des moments d’ordre 2, c’est-à-dire de la forme
d’hétérogénéité modélisée. Il est composé de quatre chapitres.

Dans un cadre qui dépasse largement – mais inclut comme cas particulier – les
modèles à erreurs composées, le premier chapitre étudie la robustesse à une mauvaise
spécification de la variance des estimateurs de type pseudo-maximum de vraisem-
blance au deuxième ordre, c’est-à-dire d’une classe d’estimateurs estimant conjoin-
tement, au travers de la maximisation d’une fonction de pseudo-vraisemblance, les
paramètres de la moyenne et de la variance d’un modèle semi-paramétrique à l’or-
dre 2. On montre que des conditions nécessaires et suffisantes pour que ce type
d’estimateur soit robuste à une mauvaise spécification de la variance sont (1) que
les paramètres de la moyenne et de la variance varient indépendamment et (2) que les
pseudo-densités utilisées pour former la fonction de pseudo-vraisemblance appartien-
nent à une famille particulière de distributions que nous avons appelée exponentielle
quadratique restreinte. Les propriétés asymptotiques – convergence et distribution
– de cette classe d’estimateurs robustes sont étudiées sous différentes hypothèses
quant à l’importance de la mauvaise spécification présente dans le modèle.

Traité dans le même cadre général que le Chapitre 1, le second chapitre décrit
comment, à partir d’un estimateur robuste tel que celui évoqué ci-dessus, tirer
parti de l’approche ‘m-test’ / ‘m-test’ modifiée de Wooldridge pour tester, avec
ou sans hypothèse alternative clairement définie, la spécification des modèles semi-
paramétriques à l’ordre 2. On s’intéresse prioritairement aux hypothèses nulles de
spécification correcte de la moyenne conditionnelle et de spécification correcte de
la variance conditionnelle. Tant pour la moyenne que pour la variance, on montre
comment mettre en oeuvre des tests de type ‘Hausman’, de type ‘matrice d’informa-
tion’ ainsi que des tests contre des hypothèses alternatives auxiliaires emboîtées ou
non-emboîtées. On s’intéresse également à des tests du caractère dynamiquement
complet ou non des spécifications de la moyenne conditionnelle et de la variance
conditionnelle. Dans tous les cas, les hypothèses maintenues des tests sont claire-
ment précisées et réduites au minimum, de sorte que la validité des statistiques de
tests proposées ne requiert généralement guère plus que l’hypothèse nulle testée.
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Armé des outils statistiques généraux dérivés dans les deux premiers chapitres, le
troisième chapitre revient à notre objectif initial : proposer et discuter une extension
du modèle à erreurs composées standard permettant de prendre en compte et de
rendre compte de phénomènes d’hétérogénéité individuelle variables. L’idée centrale
en est simplement de “paramétriser” l’hétérogénéité, en d’autres termes, de faire
dépendre d’un certain nombre de variables explicatives les paramètres représentatifs
de l’hétérogénéité – variance du terme d’erreur général et variance du terme d’erreur
individuel – dans le modèle standard. Cela signifie adopter pour les moments
d’ordre deux une paramétrisation a priori assez flexible et intuitivement attractive,
permettant à une hétérogénéité variable de se manifester tant dans la dimension
‘intra’ que ‘inter’. Arguant de sa capacité à s’accommoder sans difficultés de données
non-calibrées (“unbalanced panel”), de sa robustesse à une mauvaise spécification
de l’hétérogénéité, de sa possible efficacité et de la commodité de son calcul, on
plaide en faveur de l’estimation de ce modèle par un estimateur pseudo-maximum
de vraisemblance gaussien à l’ordre 2. En conséquence, on fournit tous les ingrédients
nécessaires à sa mise en oeuvre pratique. S’appuyant sur les Chapitres 1 et 2, on
détaille les propriétés asymptotiques de l’estimateur et passe en revue les diverses
façons de tester la bonne spécification du modèle. Finalement, on dérive un test
simple permettant de se faire une idée de la pertinence du modèle hétéroscédastique
proposé avant d’entreprendre son estimation.

Le quatrième chapitre propose une illustration empirique des procédures d’esti-
mation et de tests exposées. Cette illustration, qui consiste en l’estimation et le test
de la spécification de fonctions de production, est basée sur un échantillon – forte-
ment non-calibré – de 824 entreprises françaises observées sur tout ou partie de la
période 1979 - 1988 (5 201 observations).
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Introduction and summary

Microeconomic theory typically thinks out in terms of ‘representative agent’. In
doing so, it provides “mean relationships” which should prevail, if the theory were
true, between given sets of economic variables.

However, when econometricians try to assess the relevance of the models pro-
posed by the theory, they rapidly face a fundamental problem : the strong hetero-
geneity of individual behaviors (see for example Mairesse (1988)). As such, the
empirical observation of some heterogeneity across individual behaviors does not
necessarily invalidate a theoretical hypothesis derived from a ‘representative agent’
economic model. But it makes at best incomplete, and at worst incorrect – some-
times in terms of consistency, most of the time in terms of inference – any econo-
metric model which does not take it into account.

The problem of heterogeneity is obviously not specific to microeconometric panel
data analysis. However, by the very nature of the data and economic models at hand,
it is particularly prevalent in this context.

Microeconomic panel dataset usually contains a lot of individuals and a few
periods of observation. Moreover, the observed dispersion typically appears to be
much stronger in the individual dimension, i.e., across individuals, than in the time
dimension, i.e., over time for a given individual. Accordingly, most of the litera-
ture in this area has been concerned with modelling individual heterogeneity, as
opposed to time heterogeneity. In such panel data models, individual heterogeneity
is typically captured through time-invariant individual-specific effects, allowing for
intercept variation and/or (in linear models) slope variation across individuals. Vir-
tually all panel data models, either static or dynamic, with exogenous or endogenous
regressors, conform to this basic scheme.

Among this very large spectrum of available models (see for example Mátyás-
Sevestre (1996)), the most popular and widely used in application is undoubtedly
the one-way error components model. In this model, individual heterogeneity is cap-
tured through random time-invariant individual-specific effects allowing for intercept
variation across individuals.

According to Hsiao’s (1986) view, the one-way error components model is in-
tended for making inference about some dependent variable Y conditionally to some
given set of explanatory variables X, but unconditionally to the observed individu-
als, i.e., unconditionally to the individual effects. In this perspective, it just appears
as a (multivariate, possibly non-linear) regression model allowing for intercept vari-
ation across individuals where the individual effect has been “purged” from the
conditional mean of Y , given X and the individual effect, by integrating it out.
Viewed in this way, the time-invariant individual-specific error term appearing in
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the model simply corresponds to the part of the individual effect which is (first or-
der) unpredictable given the chosen set of explanatory variables X. Obviously, the
conditional and the unconditional inference about the impact of X on Y will usu-
ally be different, and will vary for different choices of the conditioning variables X.
For given X, they will be the same in some situations, including the well-known
linear case where the individual effects are uncorrelated with the regressors. It is
ultimately up to the researcher to choose whether he wants to make conditional
or unconditional inference and eventually revise his judgment if his original choice
appears empirically “unfeasible”.

As a result of its focus on making inference unconditionally to the individual
effects, the one-way error components model confines the modelling of heterogeneity
to the second order conditional moments of Y given X. In its standard formulation,
it assumes that both the individual-specific error term and the general error term are
identically and independently distributed – and thus have constant variance –, as
well as mutually independent. In other words, following the heuristic interpretation
of the model, the individual heterogeneity in behavior across individuals, as well as
the heterogeneity of the repeated observations of an individual through time, are
assumed to be constant, unrelated to the individuals’s characteristics. This is quite
unrealistic. From an empirical point of view, heteroscedasticity, which in the present
framework is equivalent to variable heterogeneity, is indeed largely acknowledged as
an endemic problem when working with cross-sectional microeconomic data. There
is of course no reason to believe that the problems encountered in cross-section
“disappear” when considering panel data. On the other hand, from a conceptual
point of view, in many situations it appears reasonable to expect that the degree to
which an economic relationship may describe the actual behavior of individuals is
in one way or another related to their characteristics. Nonetheless, this issue seems
somewhat to have been ignored in both the theoretical and empirical literature.

Then, there is some need for generalized versions of the standard model which
take into account and account for phenomenons of variable heterogeneity. To pro-
pose and discuss such an extension of the standard model is one of the two basic
purposes of this thesis. The second one, which is its natural complement, is to pro-
vide a comprehensive and integrated inferential framework for its estimation and
specification testing. We shall argue that second order pseudo-maximum likelihood
methods in association with the m-testing / Wooldridge’s modified m-testing frame-
work offer an attractive statistical tool-box for the job.

As suggested above, one-way error components models (either standard or gener-
alized) are nothing more than static multivariate second order semi-parametric mod-
els, i.e., models which jointly specify the mean and the variance of some T -variate
(T being the number of observations over time) dependent variable Y conditional
on some information set, or conditioning variables X. The problem of estimation
and specification testing of error components models is then just a particular case of
the one of estimating and testing multivariate second order semi-parametric models.
This is the subject of our two first chapters.

An important issue when dealing with the estimation of second order semi-
parametric models is the question of the robustness of the estimation procedure to
a possible conditional variance misspecification. This is the question of whether
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or not, while yielding consistent estimators of both the conditional mean and the
conditional variance parameters when they are both correctly specified, it continues
to provide a consistent estimator of the mean parameters when the conditional mean
is correctly specified but the conditional variance is misspecified. From the one-way
error components models perspective, this is the question of whether assuming a
wrong specification for the heterogeneity is innocuous or not for the estimation of
the mean parameters, which usually are of primary interest.

In the first chapter, we study, in a somewhat abstract but widely applicable
multivariate non-linear dynamic framework, this robustness question for arbitrary
second order pseudo-maximum likelihood estimators, i.e., a class of estimators which
jointly estimate, through the maximisation of a pseudo log-likelihood function, the
mean and variance parameters of a second order semi-parametric model. We show
that sufficient and essentially necessary conditions for such an estimator to be robust
to conditional variance misspecification are (1) that the mean and variance parame-
ters vary independently and (2) that the pseudo-likelihood used as criterion function
belongs to a family of distributions that we call restricted quadratic exponential fam-
ilies and whose prominent example is just the (multivariate) normal density. We
name RPML2 a second order pseudo-maximum likelihood estimator which satisfies
these conditions, the ‘R’ standing for either robust or restricted. Furthermore, we
provide the limiting distribution properties of this class of estimators under different
assumptions regarding the degree of misspecification present in the model.

In Chapter 2, we deal with specification testing, in the same general framework
than in Chapter 1. According to the results of Chapter 1, the gaussian RPML2 es-
timator, i.e., RPML2 implemented using the gaussian density as pseudo-densities,
appears, because of its robustness, as a very convenient go-between estimator. In-
deed, it simultaneously allows to get efficiency gains from approximately taking into
account the scedastic structure of the data when, in a first step, concentrating on
the conditional mean specification, and, once this first step completed, to further
explore the conditional variance specification. The purpose of this chapter is to
describe how, from this nice go-between estimator, to take advantage of the very
powerful m-testing / Wooldridge’s modified m-testing framework for testing, either
with or without clear alternatives in mind, the specification of second order semi-
parametric models. We sequentially consider nested, non-nested, Hausman-type and
information matrix-type testing of the prominent hypotheses of first order correct
specification and second order correct specification. We also cover the testing of first
order and second order dynamic completeness. In all cases, maintained hypotheses
of the tests are precisely stated and reduced to their minimum so that the valid-
ity of the tests usually requires no more than just the hypothesis of interest under
the null. Although much of the material of this chapter is built from a collection of
published works, some of the proposed test statistics are new.

Armed with the quite comprehensive statistical tool-box provided in the first
two chapters, we go back to our first purpose in Chapter 3. We propose and dis-
cuss an extension of the standard one-way error components model which allows to
take into account and to account for phenomenons of variable heterogeneity. The
basic idea underlying this extension is very simple. It amounts to letting both the
individual-specific and the general error terms variances change by parametrically
specifying these variances as functions of the individual’s characteristics X. Doing



10

this means adopting for the conditional variance of Y given X a quite flexible para-
metrization allowing for variable heterogeneity both in the between and within di-
mensions. This specification obviously contains the standard model as a particular
case. Given that the model contains no functional links between mean and vari-
ance parameters, we argue for estimating this model by gaussian pseudo-maximum
likelihood of order 2, on the grounds of its ability to straightforwardly handle in-
complete (unbalanced) panel, its robustness to distributional misspecification and
possible misspecification of the heterogeneity, its computational convenience and its
potential efficiency. Consequently, we provide all the required ingredients needed
for its implementation. Further, as an application of the general results derived in
Chapters 1 and 2, we outline its limiting distribution properties, survey the different
ways in which its specification may be tested, and finally, derive a convenient joint
test statistic for checking the potential relevance of the heteroscedastic model before
undertaking the estimation procedure. This chapter emphasizes issues of practical
interest.

When proposing an extension of a well-established model, some questions nat-
urally come out : how does its estimation and testing work in practice ? what is
its empirical significance ? Chapter 4 exemplifies the potential usefulness of the
proposed model and statistical tools through an empirical illustration consisting in
production functions estimation and specification testing. This illustration is based
on a strongly unbalanced panel dataset of 824 french firms observed over the pe-
riod 1979 - 1988 (5 201 observations). It suggests (a) that heteroscedasticity-related
problems are indeed likely to be present when estimating production models using
(cross-section or) panel data, (b) that the proposed full heteroscedastic one-way er-
ror components model and its accompanying robust inferential methods may offer
a sensible way to deal with it, and finally (c) that the set of proposed specifica-
tion tests allows to get interesting insights about the empirical correctness of the
different estimated models. In this latter respect, it shows in particular that more
detailed models do not necessarily turn out to be the most appropriate. On bal-
ance, it then provides some support to the key points which motivate the theoretical
developments undertaken in this dissertation.
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Chapter 1

Second order pseudo-maximum

likelihood estimation and conditional

variance misspecification

1.1. Introduction

Several econometric models are interested in modelling the expectation of some
dependent variable conditional on some information set or conditioning variables.
For efficiency reasons and/or because it is of interest of its own, this basic speci-
fication is sometimes completed by jointly specifying the conditional variance of the
dependent variable. Examples of such second order semi-parametric models are nu-
merous : cross-section models with parametrized heteroscedasticity (e.g. Harvey
(1976) or Amemiya (1973)), SURE models (e.g. Magnus (1982)), panel data error
components models and their various extensions (random coefficients, heteroscedas-
tic or autocorrelated errors, see Mátyás-Sevestre (1996)), ARCH-type models in a
dynamic framework (see Bollerslev-Engle-Nelson (1994)), etc.

Since the seminal works of White (1982) and Gourieroux-Monfort-Trognon
(1984a,b), because of the relative simplicity of their implementation – in prac-
tice, all which is required is a maximum likelihood optimization routine, a feature
provided by most statistical software –, their close relationship with the founda-
tional standard maximum likelihood theory, and the fact that they do not rely on
any distributional assumption, pseudo-maximum likelihood methods have become
increasingly popular. For the estimation of second order semi-parametric models,
the methods proposed by the pseudo-maximum likelihood theory are twofold : quasi-
generalized pseudo-maximum likelihood of order one (hereafter denoted QGPML1)
and pseudo-maximum likelihood of order two (hereafter denoted PML2). The first
one (QGPML1) is based on the properties of the so-called generalized linear expo-
nential families. It is a three-step method whose first step consists in a preliminary
estimation – typically by pseudo-maximum likelihood of order one (hereafter de-
noted PML1) – of the conditional mean parameters, the second step, based on the
previous estimator, consists in the estimation of the conditional variance parameters,
while the third step is just a generalized PML1 re-estimation of the mean parame-
ters incorporating the conditional variance estimates, as well as possibly the first
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step conditional mean estimates, as auxiliary parameters. It contains as a special
case the well-known feasible generalized (nonlinear) least squares estimator. The
second method (PML2) is based on the properties of quadratic exponential fami-
lies. It is a one-step method in which the mean and variance parameters are jointly
estimated. It contains as a special (and prominent) case, multivariate maximum
likelihood estimation under normality.

QGPML1 is chiefly intended to tackle with situations where primary interest lies
in the conditional mean estimation, i.e., when the conditional variance has mainly
been specified for efficiency reasons. On the other hand, PML2 is primarily intended
to deal with situations where both the conditional mean and the conditional variance
are of interest and/or when do exist functional links between mean and variance
parameters. However, these typical roles are not exclusive. In particular, depending
on the case at hand, it may be wise to resort to PML2 even when the conditional
variance has mainly been specified for efficiency reasons.

Although at first sight more complex, compared to QGPML1, PML2 indeed
presents some potential attractive features, both from a computational and a statis-
tical point of view. From a computational point of view, because of the non-negative
nature of the variance – positive definiteness of covariance matrix –, the condi-
tional variance specification may be (should often be in order to prevent troubles)
nonlinear, implying that variance parameters cannot always be obtained in a simple
way, i.e., in avoiding nonlinear optimization. On the order hand, PML2 also requires
nonlinear optimization but simultaneously provides mean and variance parameters.
This argument is of course strengthened if the conditional mean is also nonlinear.
In this case, multiple nonlinear optimizations involved by QGPML1 are replaced by
a single nonlinear program. From a statistical point of view, under second order
correct (dynamic) specification, i.e., when the model is jointly correctly specified
(dynamically complete) for the conditional mean and the conditional variance, not
only PML2 may (almost) always be implemented in a way such that it provides an
estimator of the mean parameters which is at least as efficient as the one obtained
from QGPML1 – PML2 will usually be more efficient if possible structural links
between mean and variance parameters are taken into account, a possibility ruled
out by QGPML1 –, but it also has additional by-product properties for the vari-
ance parameters. Among them, the asymptotic precision of the variance estimator
is always easily obtained, and under favorable circumstances, it may be asymptoti-
cally efficient. In fact, most of the time, it may be expected to be more efficient than
the PML1-like estimator usually computed in the second step of QGPML1. This is
of course important when the conditional variance has not only been specified for
efficiency reasons but also because it is of interest of its own.

If the quest for first order correct specification, i.e., a model correctly speci-
fied for the conditional mean, is already a thorny assignment, the complementary
search for second order correct specification may be viewed as a heroic mission. This
is particularly true in a multivariate framework where not only variances but also
covariances have to be modeled. As a matter of fact, economic theory generally of-
fers less guidelines for specifying the conditional variance than for specifying the
conditional mean. Of course, intuition and/or empirical regularities often suggest
plausible specifications. For example, in panel data models, the observations of each
individual over time may be expected to be serially correlated. Also, if based on mi-
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croeconomic data – heteroscedasticity seems to be endemic in this kind of data –,
some heteroscedasticity-related phenomenon may be anticipated. Based on these
stylized facts, a heteroscedastic one-way error components disturbance structure
such as the one proposed in Chapter 3 appears plausible but alternative specifica-
tions, for example based on a heteroscedastic autoregresssive disturbance structure,
are equally appealing. Likewise, to give another example, for modelling the promi-
nent empirical regularities pertaining to the temporal variation in financial market
volatility, ARCH-type models offer a quite large spectrum of – non necessarily
nested – alternative plausible specifications. Clearly, the problem is not in nature
radically different for the specification of the conditional mean. Actually, the point
we want to stress here is that specification uncertainty, and thus possible misspeci-
fication, is likely to be more severe for the second order conditional moments than
for the first order conditional moments.

The recognition of this fact naturally leads to the question of robustness to condi-
tional variance misspecification of the pseudo-maximum likelihood methods outlined
above, i.e., to the question of whether or not they continue to provide a consistent es-
timator of the mean parameters when the conditional mean is correctly specified but
the conditional variance is not jointly correctly specified. QGPML1 has been shown
to be robust to conditional variance misspecification under weak conditions in a very
general multivariate dynamic framework. An extensive discussion and proof of this
result may be found in White (1994) (see also Wooldridge (1994)). This point has
not been investigated for general PML2 estimators. As far as we know, Pagan-Sabau
(1991) is the only available paper related to this problem. In this paper, the authors
examine, for univariate linear heteroscedastic regression models such as Poisson and
ARCH models, the robustness of the gaussian maximum likelihood estimator to con-
ditional variance misspecification. The present chapter offers a general treatment
of the robustness question for arbitrary second order pseudo-maximum likelihood
estimators without neither relying on distributional assumptions nor restricting to
specific forms the conditional variance misspecification. Further, it provides limiting
distribution results.

Derived in a somewhat abstract but widely applicable multivariate nonlinear dy-
namic framework, the fundamental consistency results of this chapter are twofold.
First, sufficient and essentially necessary conditions for a second order pseudo-
maximum likelihood estimator to be, regardless of the conditional variance (mis)spe-
cification, consistent for the mean parameters when the conditional mean is correctly
specified are (1) that mean and variance parameters vary independently and (2) that
the pseudo-likelihood used as criterion function belongs to a sub-family of general-
ized linear exponential families, a sub-family that we entitle restricted generalized
linear exponential families. These conditions imply that, as it stands and even if
mean and variance parameters vary independently, PML2 is generally not robust to
conditional variance misspecification. In other words, when the conditional mean is
correctly specified but the conditional variance is not jointly correctly specified, the
use of quadratic exponential families as pseudo-likelihood is no longer a sufficient
condition for consistent estimation of the conditional mean parameters. Second,
sufficient and essentially necessary conditions for a second order pseudo-maximum
likelihood estimator to be consistent for both mean and variance parameters when
the conditional mean and the conditional variance are jointly correctly specified,
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and to remain consistent for the mean parameters when the conditional mean is
correctly specified but the conditional variance is not jointly correctly specified are
(1) again that the mean and variance parameters vary independently and (2) that
the pseudo-likelihood used as criterion function belongs to a sub-family of both
quadratic exponential families and restricted generalized linear exponential families,
a sub-family that we call restricted quadratic exponential families.

We entitle a second order pseudo-maximum likelihood estimator which satisfies
the latter conditions RPML2, the ‘R’ standing for either robust or restricted. As
it could be expected, the (multivariate) normal density is a member of restricted
quadratic exponential families, implying that (provided of course that mean and vari-
ance parameters vary independently) pseudo-maximum likelihood estimation under
normality is a particular case – and undoubtedly the prominent one – of RPML2.
The requirement that mean and variance parameters have to vary independently is
no more surprising. It is also imposed by QGPML1. It is important to note that this
requirement does not signify that mean and variance parameters have to be func-
tionally unrelated in the structural model but simply that they have to be treated
as if they were not functionally related. In other words, for gaining robustness,
eventual structural cross-constraints between mean and variance parameters (here
considered in their reduced-form through parameters common to the conditional
mean and the conditional variance) have to be discarded.

Besides these consistency results, we investigate the limiting distribution of
RPML2 under different assumptions regarding the degree of misspecification present
in the model. So, along with possible dynamic misspecification, are covered the cases
where the model is only correctly specified for the conditional mean, the model is
jointly correctly specified for the conditional mean and the conditional variance,
the model is in addition jointly correctly specified for the third or the third and
the fourth order conditional moments and, finally, the model is correctly specified
for the entire conditional distribution. Further, we provide lower bounds for its as-
ymptotic covariance matrix and compare these bounds with the semi-parametric
efficiency bounds based on conditional moments restrictions. Also, we treat the spe-
cial case where the observations are independent, as in cross-section or panel data,
and briefly discuss the possible efficiency price to pay for robustness it may entail.
Finally, we compare its asymptotic distribution and relative merits with those of
QGPML1.

We concentrate on pseudo-maximum likelihood methods. This is by no means
the only way to handle second order semi-parametric models. As prominent alter-
natives, the generalized method of moments framework (hereafter denoted GMM)
mainly offers two methods which may be viewed, in the present context, as GMM
analogues of QGPML1 and PML2 (see Newey (1993) and Wooldridge (1994)). The
first one consists in instrumental variable estimation of the first order conditional mo-
ments parameters using optimal instruments. The optimal instruments are, among
other things, functions of the second order conditional moments. They have to be
estimated – possibly non-parametrically, which is more tricky but, as the first or-
der over-identified optimally weighted GMM estimator suggested by Cragg (1983),
allows handling heteroscedasticity of unknown form – in a first step. In the para-
metric case, this estimator has essentially the same properties than QGPML1. In
particular, it is robust to conditional variance misspecification. The second GMM
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technique consists in joint instrumental variable estimation of the first and sec-
ond order conditional moments parameters, possibly using optimal instruments. If
optimal instruments are used, this estimator, which achieves a semi-parametric effi-
ciency bound, will usually be more efficient than PML2. However this would require
non-parametric estimation of (dynamic) conditional third and fourth moments, as
well as numerous cross-product moments in the multivariate case. Needless to say,
except in very special cases, this estimator is not robust to conditional variance
misspecification.

The chapter proceeds as follows. Section 1.2 describes the general set-up and
notations. Section 1.3 defines second order pseudo-maximum likelihood estimation.
As a preliminary, Section 1.4 provides a generalized version of the standard consis-
tency properties of PML2 and outlines a first result suggesting its general incon-
sistency under conditional variance misspecification. Section 1.5 provides sufficient
and essentially necessary conditions for a second order pseudo-maximum likelihood
estimator to be robust to conditional variance misspecification. Section 1.6 deals
with the limiting distribution of RPML2, mentionning in passing its close connec-
tion with those of QGPML1. Finally, concluding comments are proposed in Section
1.7.

1.2. Set-up and Notation

We adopt a general multivariate dynamic framework essentially similar to those
of White (1994) and Wooldridge (1994). Throughout the chapter, matrix cal-
culus notational conventions are in accordance with those of Magnus-Neudecker
(1986,1988).

We assume that the observed data are a realization of a stochastic process
W ≡ {Wt : Ω → R

ν, ν ∈ N, t = 1, 2, ...} on a complete probability space (Ω,F , Po).
We will refer to Po as the “true data generating process” (true DGP). Unless other-
wise explicitly stated, all expectations and conditional expectations are taken with
respect to this true DGP.

Let Wt be partitioned as Wt = (Y ′

t
, Z ′

t
)′, where Yt is a G × 1 vector and Zt is

a (ν − G)× 1 vector. Further, let Xt stand for some subset of the information set
(Zt, W̃t−1), where W̃t−1 ≡ (Yt−1, Zt−1, ..., Y1, Z1) is the information available on Y
and Z at time t − 1. Let also Xt ⊂ R

kxt denote the range of Xt. The dimension
kxt of Xt is allowed to depend on t, in particular to grow with t. Finally, let Y n ≡
(Y1, Y2, ..., Yn) and Xn ≡ (X1,X2, ...,Xn) be finite random samples of size n.

Yt denotes the vector of dependent or endogenous variables. We suppose that
interest lies in explaining Yt in terms of the explanatory or conditioning variables
Xt. This setting puts up with most of usual practical situations. In a pure time-
series context, Xt will only contain some (possibly growing) number of lags of the
dependent variable Yt. In more general time-series, Xt will usually contain (some
sub-vector of) Zt and some (possibly growing) number of lags of both Yt and (some
sub-vector of) Zt. In a cross-section or panel data framework, Xt is by definition
restricted to (some sub-vector of) Zt and the observations are assumed to be inde-
pendently distributed across t. Note that Xt may be a constant vector for all t, in
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which case interest lies in the unconditional distribution of Yt.

LetDt(.|Xt) denote the conditional distribution of Yt givenXt and pt(.|Xt) stand
for the conditional density of Yt givenXt. Dt(.|Xt) always exists while pt(.|Xt) exists
under weak conditions on Dt(.|Xt) (see White (1994)). We will assume that these
conditions hold whenever needed.

In what follows, we suppose that the researcher’s primary interest lies in par-
ticular aspects of Dt(.|Xt), namely the conditional expectation of Yt given Xt and,
either for efficiency reasons or because it is of interest of its own, the conditional
variance of Yt given Xt. Accordingly, we assume that the following semi-parametric
model S is jointly specified for respectively E(Yt|Xt) and V (Yt|Xt)

S ≡
{ {

mt(Xt, θ) : Xt ∈ Xt, θ ∈ Θ ⊂ R
kθ
}{

Ωt(Xt, θ) : Xt ∈ Xt, θ ∈ Θ ⊂ R
kθ
} , t = 1, 2, ...

where θ is a kθ × 1 vector of parameters, the functions mt are known G× 1 vector
functions which may depend on t, and the functions Ωt are G × G known matrix
functions which may also depend on t and are symmetric positive definite, ∀ θ ∈ Θ,
∀ Xt ∈ Xt, t = 1, 2, ...

It is worth noting that the choice of the conditioning variables Xt is entirely
free. It only depends on what is of interest to the researcher. For example, in a
cross-section or panel data context, one might be more interested in the “reduced-
form relationship” which may exist between Yt and a small subset of Zt rather
than in the “structural relationship” which presumably exists between Yt and the
entire information set Zt. Likewise, in a time-series framework, one might only be
interested in the contemporaneous relationship between Yt and Zt. Also, note that in
the present framework, there is no presumption that some sort of strict exogeneity
(Granger noncausality) of the process {Zt : t = 1, 2, ...} holds (for a discussion of
these points, see Wooldridge (1994)).

Actually, from a statistical point of view– but of course not from an economical
interpretation point of view –, only the following definitions of correct specification
matter.

Definition 1 The semi-parametric model S is said (a) first order correctly specified
(correctly specified for the conditional mean) if there exists a true value θo in Θ such
that

mt(Xt, θ
o) = E(Yt|Xt), a.s.− Po, t = 1, 2, ...

and (b) second order correctly specified (jointly correctly specified for the conditional
mean and the conditional variance) if there exists a true value θo in Θ such that{

mt(Xt, θ
o) = E(Yt|Xt)

Ωt(Xt, θ
o) = V (Yt|Xt)

, a.s.− Po, t = 1, 2, ...

First (resp. second) order correct specification basically means that, for a given
choice of the conditional variables Xt, we have been able to (resp. jointly) correctly
specify, up to an unknown vector of parameters, the functional forms of the first
(resp. the two first) conditional moment(s) of Yt given Xt. When first order correct
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specification holds, second order misspecification may follow either from the fact
that the conditional variance is misspecified, i.e., there is no θo in Θ such that
Ωt(Xt, θ

o) = V (Yt|Xt), or from the fact that, although in itself correctly specified, the
correct conditional variance specification holds at a true value θo of θ different from
the one at which the correct conditional mean specification holds. Obviously, the
latter situations are tautologically ruled out whenever mean and variance parameters
vary independently.

As it may be seen, the above definitions have nothing to do with the fact that
the semi-parametric model S captures or not all the dynamics of Yt, i.e., the entire
dependence of Yt on the past. Such dynamic incompleteness does not matter for
the issue of consistency. However, it has important consequences for inference. The
concept of dynamic misspecification crucially hinges on the choice of the conditioning
variables Xt.

Definition 2 The semi-parametric model S is said (a) first order dynamically com-
plete (dynamically complete for the conditional mean) if

E(Yt|Xt) = E(Yt|Xt,Ψt−1), a.s.− Po, t = 1, 2, ...

and (b) second order dynamically complete (dynamically complete for the condi-
tional mean and the conditional variance) if it is first order dynamically complete
and in addition

V (Yt|Xt) = V (Yt|Xt,Ψt−1), a.s.− Po, t = 1, 2, ...

where Ψt−1 ≡ (Yt−1, Xt−1, ..., Y1, X1) is the information available at time t− 1.

Note that Definition 2(a) and 2(b) allow Xt and Ψt−1 to overlap, as happens
if Xt contains lags of Yt or lags of some other variables Zt. For example, if Xt ≡
(Zt, Yt−1, Zt−1), then Ψt−1 ≡ (Yt−1, Zt−1, ..., Y1, Z1).

Note also that the concept of dynamic misspecification is only related to the
choice of the conditioning variables Xt, and not to the functional forms of the condi-
tional moments. So, the semi-parametric model S could be second order dynamically
complete although misspecified for the conditional mean and/or the conditional vari-
ance. Following Wooldridge (1994), correct dynamic specification basically means
that if interest lies in explaining Yt in terms of past Y and possibly current and
past values of some other sequence {Zt}, then enough lags of Y and Z have been
included in the conditioning variables Xt to capture the entire dependence of Yt on
the past. Clearly, the whole concept of dynamic misspecification is irrelevant when
dealing with independent observations as in cross-section or panel data.

Finally, in order to prevent misunderstandings, a last remark. In the definition
of the semi-parametric model S, as well as in the various definitions of correct
specification, the assumed set of conditioning variables Xt may be seen to be the
same in the conditional mean and in the conditional variance. Just as for the
vector of parameters θ , this does not mean that both the conditional mean and the
conditional variance actually depend on all the conditioning variables Xt. It simply
means that the information set Xt is defined as including all the variables which
appear either in the conditional mean or in the conditional variance. For example,
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if the conditional mean only depends on say X1

t
and the conditional variance only

depends on say X2

t
, then Xt must be defined as Xt ≡ (X1

t
, X2

t
). This point is

important since it implies that for judging conditional mean or conditional variance
(dynamic) specification, we must take into account the variables which appear in
both moments and not only in the one under scrutiny. In other words, continuing
the above example, first order correct specification requires that there exists θo in Θ
such that E(Yt|X1

t
, X2

t
) = mt(X

1

t
, θo) and not only such thatE(Yt|X1

t
) = mt(X

1

t
, θo).

The same reasoning applies to every definition.

Throughout the chapter, it is assumed that first order correct specification holds.
Our primary concern is the consequences of the violation of second order correct
specification when performing second order pseudo-maximum likelihood estimation.
The consequences for inference of dynamic misspecification– as well as higher order
misspecification – is also examined.

1.3. Second order pseudo-maximum likelihood

estimation

We concentrate on second order pseudo-maximum likelihood estimators, i.e., on
a class of estimators which jointly estimate, through the maximization of a pseudo
log-likelihood function, the mean and variance parameters of the semi-parametric
model S. The following definition makes this statement more precise.

Definition 3 A second order pseudo-maximum likelihood estimator θ̂n of the semi-
parametric model S is defined as a solution of

Maxθ∈Θ Ln(Y
n, Xn, θ) ≡ 1

n

n∑
t=1

ln ft (Yt, mt(Xt, θ),Ωt(Xt, θ))

where the p.d.f. ft (Y,m,Σ) are indexed by their mean m ∈ Mt ⊂ R
G and by their

covariance matrix Σ ∈ Et, Et being a subset of the G×G positive definite matrices,
t = 1, 2, ..., and where, ∀ θ ∈ Θ and ∀ Xt ∈ Xt, mt(Xt, θ) ∈ Mt and Ωt(Xt, θ) ∈ Et,
t = 1, 2, ...

According to Definition 3, a second order pseudo-maximum likelihood estimator
is based on a sequence {ft} of probability distribution functions adapted for the
first and second order moments and “compatible” with the semi-parametric model
S. Note that ft may be different for all t. Note also that the above definition contains
no explicit “compatibility” assumption in terms of the range of Y. This is simply
because such assumption is not always necessary (see below). If necessary, it will be
implicitly assumed to hold.

Finding p.d.f. ft adapted for the first and second order moments, i.e., such that
E(Y ) = m and V (Y ) = Σ, is not very complicated1. It suffices to start with a
G-variate p.d.f. gt(Y

∗) such that E(Y ∗) = 0 and V (Y ∗) = IG (for example, take the
product of the p.d.f. of suitably scaled univariate random variables), and then define

1 I owe this way of looking at the point to Alain Trognon.
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Y through the linear transformation Y = m + Σ1/2Y ∗, where Σ1/2 is a symmetric
positive definite matrix. The desired first and second order moments adapted p.d.f.
ft is given by

ft (Y,m,Σ) = gt
(
Σ−1/2(Y −m)

)
detΣ−1/2

Since ft is a p.d.f. adapted for the first and second order moments and “com-
patible” with S, ft (., mt(Xt, θ),Ωt(Xt, θ)) = λt (., Xt, θ) characterizes a well-defined
conditional density for Yt given Xt, for which the two first conditional moments are
by definition respectively equal to mt(Xt, θ) and Ωt(Xt, θ), and the higher condi-
tional moments (if they exist) depend on the choice of the adapted p.d.f. ft. In
other words, for each choice of the sequence {ft}, a second order pseudo-maximum

likelihood estimator θ̂n corresponds to a well-defined standard2 (conditional) max-
imum likelihood estimator, namely a standard maximum likelihood estimator of
the following possibly misspecified parametric model P implicitly defined by the
semi-parametric model S and the chosen sequence {ft}
P ≡ {

λt (., Xt, θ) = ft (., mt(Xt, θ),Ωt(Xt, θ)) : Xt ∈ Xt, θ ∈ Θ ⊂ R
kθ
}
, t = 1, 2, ...

Obviously, when S is first order correctly specified, P, i.e., the collection of
conditional densities for Yt given Xt underlying θ̂n, is correct for the first condi-
tional moments of Yt given Xt, while possibly misspecified for higher conditional
moments. Likewise, if S is second order correctly specified, P is correct for the two
first conditional moments of Yt given Xt, while again possibly misspecified for higher
conditional moments.

In some circumstances, i.e., in particular, under second order correct specifica-
tion, for a suitable choice of the sequence {ft}, P may be correctly specified for
some higher conditional moments or further for the entire conditional densities of Yt
given Xt. In this respect, the following definitions of correct specification, as well as
further definitions of correct dynamic specification, will be useful in the sequence.

Definition 4 The parametric model P arising from the semi-parametric model S
and a given sequence {ft} as defined in Definition 3 is said (a) third order correctly
specified (jointly correctly specified for the three first conditional moments) if the
semi-parametric model S is second order correctly specified and in addition

Covλot [ (vec (YtY
′

t ) , Yt)|Xt] = Cov [ (vec (YtY
′

t ) , Yt)|Xt] , a.s.− Po, t = 1, 2, ...

(b) fourth order correctly specified (jointly correctly specified for the four first con-
ditional moments) if it is third order correctly specified and in addition

Vλot [vec (YtY
′

t )|Xt] = V [vec (YtY
′

t )|Xt] , a.s.− Po, t = 1, 2, ...

where Covλot [.|Xt] and Vλot [.|Xt] respectively denote covariance and variance taken
with respect to λt (Yt, Xt, θ

o) .

and (c) correctly specified for the conditional density if there exists a true value θo

2But possibly different from a classical (conditional) maximum likelihood estimator which requires
the specification of the joint density of Y n

≡ (Y1, Y2, ..., Yn) conditional on Zn
≡ (Z1, Z2, ..., Zn). See

Wooldridge (1994) for a discussion of this point.
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in Θ such that

λt (., Xt, θ
o) = pt(.|Xt), ∀Xt ∈ Xt, t = 1, 2, ...

Definition 5 The semi-parametric model S is said (a) third order dynamically
complete (dynamically complete for the three first conditional moments) if it is
second order dynamically complete and in addition

Cov [ (vec (YtY
′

t ) , Yt)|Xt] = Cov [ (vec (YtY
′

t ) , Yt)|Xt,Ψt−1] , a.s.−Po, t = 1, 2, ...

(b) fourth order dynamically complete (dynamically complete for the four first con-
ditional moments) if it is third order dynamically complete and in addition

V [vec (YtY
′

t )|Xt] = V [vec (YtY
′

t )|Xt,Ψt−1] , a.s.− Po, t = 1, 2, ...

and (c) dynamically complete for the conditional distribution if

Dt(.|Xt) = D̃t(.|Xt,Ψt−1), t = 1, 2, ...

where D̃t(.|Xt,Ψt−1) denotes the conditional distribution of Yt given Xt and Ψt−1.

These definitions of correct (dynamic) specification may be interpreted exactly
in the same way than Definition 1 and Definition 2. Definition 4(a), 4(b) and 4(c)
basically mean that, for a given choice of the conditioning variables Xt, we have
been able to jointly correctly specify, up to an unknown vector of parameters and
only through the parametrization of the two first conditional moments and a suit-
able choice of the sequence {ft}, the functional forms of, respectively, the three
first conditional moments, the four first conditional moments and the entire condi-
tional densities of Yt given Xt, i.e., all conditional moments of Yt given Xt. In the
latter case, θ̂n is just a standard maximum likelihood estimator, and thus, under
usual regularity conditions, is consistent for θo (see for example Wooldridge (1994)).
On the other hand, Definition 5(a), 5(b) and 5(c) allow to state to which order
the semi-parametric model S captures or not all the dynamics of Yt, i.e., the en-
tire dependence of Yt on the past, a feature which only hinges on the choice of the
conditioning variables Xt. As outlined above, such dynamic completeness does typ-
ically not matter for the issue of consistency but may have important consequences
for inference. As a matter of fact, under conditional density correct specification,
i.e., when θ̂n is a just standard maximum likelihood estimator, conditional distribu-
tion correct dynamic specification is usually needed for the traditional information
matrix equality to hold (again, see for example Wooldridge (1994)). Obviously,
conditional density correct specification implies first, second, third and fourth or-
der correct specification and conditional distribution correct dynamic specification
implies first, second, third and fourth order correct dynamic specification.

Hereafter, the fact that the implicit parametric model P corresponding to θ̂n
(resp. the semi-parametric model S) might be correctly specified (resp. dynamically
complete) up to orders higher than the two first will only be used as benchmark when
discussing the limiting distribution of RPML2.
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1.4. Pseudo-maximum likelihood of order 2

(PML2)

As mentioned in the introduction, PML2, which is a particular sub-class of
second order pseudo-maximum likelihood estimators, relies on the properties of
quadratic exponential families. We first outline the definition and essential char-
acteristics of quadratic exponential families. Then we provide a generalized version
of the standard consistency properties of PML2 under second order correct specifi-
cation. Finally, we give a first result suggesting its general inconsistency under first
order correct specification but second order misspecification.

1.4.1. Quadratic exponential families

According to Gourieroux-Monfort-Trognon (1984a), quadratic exponential fam-
ilies may be defined as follows.

Definition 6 A family of probability measures on R
G indexed by m ∈ M ⊂ R

G

and Σ ∈ E, where E is a subset of the G × G positive definite matrices, is called
quadratic exponential if (a) every element of the family has a density function with
respect to a given measure υ(dY ) which may be written as

l(Y,m,Σ) = exp (A(m,Σ) +B(Y ) + C(m,Σ)′Y + Y ′D(m,Σ)Y )

where A(m,Σ) andB(Y ) are scalar, C(m,Σ) is aG×1 vector andD(m,Σ) is aG×G
matrix, and (b) m is the mean and Σ is the covariance matrix of the distribution
l(Y,m,Σ).

The prominent member of quadratic exponential families is undoubtedly the
normal density. For the normal density, we simply have

A(m,Σ) = −G

2
ln 2π − 1

2
ln |Σ| − 1

2
m′Σ−1m,

B(Y ) = 0, C(m,Σ) = Σ−1m and D(m,Σ) = −1

2
Σ−1

(1.1)

Quadratic exponential families have some important properties. Three of them
will be particularly useful in the sequence.

Property 1 If l(Y,m,Σ) is a quadratic exponential family, then ∀ m, mo ∈ M, ∀
Σ, Σo ∈ E , we have

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o
))

≥ A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

where the equality holds if and only if m = mo and Σ = Σo.

Proof. See Appendix B.

Property 2 If l(Y,m,Σ) is a quadratic exponential family, then ∀ mo ∈ M, ∀ Σ,
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Σo ∈ E such that Σ �= Σo, it may exist m ∈ M such that m �= mo and that we have

A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o
))

< A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o
))

Proof. See Appendix B.

Property 3 If l(Y,m,Σ) is a quadratic exponential family and if the functions
A(m,Σ), C(m,Σ) and D(m,Σ) are continuously differentiable with respect to m
and Σ on respectively intM and int E, then ∀ m ∈ intM, ∀ Σ ∈ int E, we have

∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
m+

∂ (vecD(m,Σ))′

∂m
vec(Σ +mm′) = 0

∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
m+

∂ (vecD(m,Σ))′

∂ vecΣ
vec(Σ +mm′) = 0

Proof. See Appendix B.

The consistency of PML2 under second order correct specification basically relies
on Property 1. On the other hand, the general inconsistency of PML2 under first
order correct specification but second order misspecification essentially derives from
Property 2. Property 3 will be used later for outlining a property of restricted
quadratic exponential families.

1.4.2. Consistency of PML2 under second order correct

specification

In this section, we focus on conditions ensuring consistent estimation of θo when
the semi-parametric model S is jointly correctly specified for the conditional mean
and the conditional variance.

In general, i.e., for an arbitrary choice of the sequence {ft}, a second order

pseudo-maximum likelihood estimator θ̂n as given in Definition 3 will not provide
a consistent estimator of the true value θo. However, both sufficient and essentially
necessary conditions for θ̂n to be a consistent estimator of θo may be derived. Suf-
ficient conditions for consistency are given in Proposition 1.

Proposition 1 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R6 in Appendix A hold. If the semi-parametric model S is second order
correctly specified, and if, for all t = 1, 2, ..., ft belongs to the quadratic exponential
family, then θ̂n → θo as n → ∞ a.s.− Po.

Proof. Given regularity conditions R1-R6, from Theorem 3.5 of White (1994), we

have θ̂n − θ∗n → 0 as n → ∞ a.s. − Po, where θ∗n = Argmaxθ∈ΘE(Ln(Y
n,Xn, θ)).

Thus, it is enough to show that θ∗n = θo for all n = 1, 2, ... Since, for all t = 1, 2, ...,
ft belongs to the quadratic exponential family, letting mt stand for mt(Xt, θ) and Ωt

stand for Ωt(Xt, θ), we have that, for all t = 1, 2, ..., E(ln ft(Yt, mt(Xt, θ),Ωt(Xt, θ)))
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is equal to

E [At(mt,Ωt) +Bt(Yt) + Ct(mt,Ωt)
′Yt + tr (Dt(mt,Ωt)YtY

′

t
)] (1.2)

Given second order correct specification, E (Yt|Xt) and E(YtY
′

t
|Xt) = V (Yt|Xt)+

E (Yt|Xt)E (Yt|Xt)
′ by definition exist and the law of iterated expectations applies

such that (1.2) may be written

E [At(mt,Ωt) +Bt(Yt) + Ct(mt,Ωt)
′E (Yt|Xt) + tr (Dt(mt,Ωt)E(YtY

′

t
|Xt))] (1.3)

Since Bt(Yt) does not depend on mt and Ωt, from Property 1, (1.3) has a unique
maximum when mt(Xt, θ) = E (Yt|Xt) and Ωt(Xt, θ) = V (Yt|Xt), or, given second
order correct specification, a maximum at θ = θo. The identifiable uniqueness of
{θ∗

n
} ensures that θo is the unique maximum of E (Ln(Y

n,Xn, θ)), i.e., that θ∗
n
= θo

for all n = 1, 2, ...

In other words, a second order pseudo-maximum likelihood estimator obtained
by specifying the pseudo-densities ft as members of the quadratic exponential fam-
ily, i.e., PML2, provides a consistent estimator of the true value of a second order
correctly specified semi-parametric model S regardless of the true DGP Po, i.e., re-
gardless of whether or not the implicit parametric model P corresponding to θ̂n is
correctly specified for other aspects of the “true conditional densities” of Yt given
Xt, and thus in particular whether or not these “true underlying densities” are in
the quadratic exponential family. This seminal result has been first brought out,
in a more restrictive framework, by Gourieroux-Monfort-Trognon (1984a). It has
been shown to hold for dynamic models under the assumption that the pseudo log-
likelihood is specified as a normal density by Bollerslev-Wooldridge (1992). Propo-
sition 1 is a straightforward generalization of these previous results.

Note that the identifiability of θo is ensured by the regularity condition R6. Such
an identifiability condition typically holds under the more primitive – but also more
restrictive – assumption that S is second order identifiable, i.e., that ∀ θ, θo ∈ Θ{

mt(Xt, θ) = mt(Xt, θ
o)

Ωt(Xt, θ) = Ωt(Xt, θ
o)

⇒ θ = θo a.s.− Po, t = 1, 2, ...

By the way, note also that, as pointed out by Gourieroux-Monfort-Trognon
(1984a) for PML1, because in the definition of the quadratic exponential fam-
ily B(Y ) does not depend on parameters, it makes no differences to maximize∑

n

t=1
[At(mt,Ωt) + Bt(Yt) + Ct(mt,Ωt)

′Yt + Y ′

t
Dt(mt,Ωt)Yt] or

∑
n

t=1
[At(mt,Ωt) +

Ct(mt,Ωt)
′Yt + Y ′

tDt(mt,Ωt)Yt]. Therefore, it is not necessary to impose on Yt the
“compatibility” constraints which may be implied by the definition of Bt(.).

Remarkably, at least for G = 1, there exists a reciprocal to Proposition 1 which
shows that, for a second order pseudo-maximum likelihood estimator to be consistent
for θo, a specification of ft based on quadratic exponential families is not only
sufficient but also necessary in some sense. This necessary condition is outlined
in Proposition 2.

Proposition 2 (G = 1) Suppose that θ̂n is as given in Definition 3, where Mt

and Et are closures of open connected sets. If for any probability measure Po such
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that regularity conditions R1-R5, R6 ′, R7-R9 in Appendix A hold, when the
semi-parametric model S is second order correctly specified, we have that θ∗

n
=

Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)) = θo for all n = 1, 2, ..., then, for all t = 1, 2, ...,

ft belongs to the quadratic exponential family.

Proof. See Appendix C.

Again, Proposition 2 is a straightforward generalization of a seminal result of
Gourieroux-Monfort-Trognon (1984a). Note that Proposition 2 is not entirely a con-
verse of Proposition 1. Besides the fact that G = 1, as pointed out by White (1994)
for a similar result holding for PML1, Proposition 2 imposes additional regularity
conditions, in particular differentiability (R7 and R8) as well as interiority of θ∗

n

(R6
′

). Moreover, for consistent estimation of θo, it is only necessary that θ∗n → θo

rather than θ∗n = θo for all n = 1, 2, ... as assumed. For this reason, it is possible to
consistently estimate θo even when ft is not a member of the quadratic exponential
family for some (necessary asymptotically negligeable) indices t. Bearing this minor
qualification in mind, Proposition 2 basically says that the quadratic exponential
family is essentially the only family that provides a consistent second order pseudo-
maximum likelihood estimator of the true value of a second order correctly specified
semi-parametric model S regardless of the true DGP Po. In other words, only a
very limited subset of the class of second order pseudo-maximum likelihood estima-
tors is insensitive to distributional misspecification. If Po was further restricted, it
would presumably be possible to find others families which would also yield such es-
timators. For an interesting result closely related to this point, see (Theorem 1 of)
Newey-Steigerwald (1997).

1.4.3. PML2 and first order correct specification but second

order misspecification

We now turn our attention to the consistency properties of PML2 when the semi-
parametric model S is first order correctly specified but second order misspecified.

As intuitively appealing and according to the special results obtained by Pagan-
Sabau (1991) for the univariate gaussian maximum likelihood estimator, if S is such
that the conditional mean and the conditional variance depend on common parame-
ters, PML2 may be expected to be generally inconsistent for the mean parameters
true value whenever the conditional variance is not jointly correctly specified. It is
not so obvious if mean and variance parameters vary independently.

In this section, we assume that the vector of parameters θ is partitioned as
θ = (θ′1, θ

′

2)
′

, where θ1 and θ2 denote respectively mean-specific and variance-specific
parameters, such that the semi-parametric model S is as described in the following
assumption.

Assumption 1 The semi-parametric model S is such that for θ partitioned as
θ = (θ′1, θ

′

2)
′

and Θ accordingly defined as Θ = Θ1 ×Θ2, we have

S ≡
{ {

mt(Xt, θ) = mt(Xt, θ1) : Xt ∈ Xt, θ1 ∈ Θ1 ⊂ R
kθ1

}{
Ωt(Xt, θ) = Ωt(Xt, θ2) : Xt ∈ Xt, θ2 ∈ Θ2 ⊂ R

kθ2

} , t = 1, 2, ...
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where the kθ1 × 1 vector of parameters θ1 and the kθ2 × 1 vector of parameters θ2
(kθ1 + kθ2 = kθ) vary independently on respectively Θ1, a compact subset of Rkθ1 ,
and Θ2, a compact subset of Rkθ2 .

The semi-parametric model S as defined in Assumption 1 is just a special case
of the one defined in Section 1.2. Proposition 3 outlines the fact that, even un-
der the a priori favorable circumstances where mean and variance parameters vary
independently, specifying the pseudo-densities ft underlying a second order pseudo-
maximum likelihood estimator as members of the quadratic exponential family does
no longer appear as a sufficient condition for getting a consistent estimator of the
mean-specific parameters when the model is correctly specified for the conditional
mean but not jointly correctly specified for the conditional variance.

Proposition 3 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R6 in Appendix A hold. Suppose further that the semi-parametric model
S is as described in Assumption 1 and is first order correctly specified but second or-
der misspecified, and that, for all t = 1, 2, ..., ft belongs to the quadratic exponential
family. Then we may have that θ∗n = Argmaxθ∈ΘE (Ln(Y

n,Xn, θ)) �= (
θo′1 , θ

∗′

2n

)
′

for
all n = 1, 2, ..., where θo1 is the true value of θ1.

Proof. Given regularity conditions R1-R6, from Theorem 3.5 of White (1994), we

have θ̂n − θ∗n → 0 as n → ∞ a.s. − Po, where, given S as defined in Assumption

1, θ∗
n
=
(
θ∗′1n , θ

∗′

2n

)
′

= Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)). It is enough to show that for a

given choice of Po, S and {ft} which satisfy the assumptions of the Proposition, we
may already have θ∗′1n �= θo1 for all n = 1, 2, ... Suppose that Po is such that Yt is i.i.d.
with E (Yt|Xt) = θo1 and V (Yt|Xt) = Σo, that S is specified as {mt(Xt, θ1) = θ1} and
{Ωt(Xt, θ2) = Ω (θ2)}, where Ω (.) is one-to-one and such that, ∀ θ2 ∈ Θ2, Ω(θ2) �=
Σo, and that, for all t = 1, 2, ..., ft = f , where f belongs to the quadratic exponential
family. Then, we have that E (Ln(Y

n, Xn, θ)) = E (ln f (Yt, θ1,Ω (θ2))) is equal to

E [A(θ1,Ω(θ2)) +B(Yt) + C(θ1,Ω(θ2))
′Yt + tr (D(θ1,Ω(θ2))YtY

′

t
)]

= A(θ1,Ω(θ2)) + E (B(Yt)) + C(θ1,Ω(θ2))
′E (Yt) + tr (D(θ1,Ω(θ2))E(YtY

′

t ))

= A(θ1,Ω(θ2)) + E (B(Yt)) + C(θ1,Ω(θ2))
′θo1 + tr (D(θ1,Ω(θ2))(Σ

o + θo1θ
o′

1 ))

From Property 2, since ∀ θ2 ∈ Θ2, Ω(θ2) �= Σo, ∀ θo1, it may exist θ∗1 �= θo1 (θ
∗

n1
= θ∗1,

n = 1, 2, ... because Yt is i.i.d. and, ft, mt and Ωt do not depend on t) such that we
have

A(θo1,Ω (θ2)) + C(θo1,Ω(θ2))
′θo1 + tr (D(θo1,Ω(θ2))(Σ

o + θo1θ
o′

1 ))

< A(θ∗1,Ω(θ2)) + C(θ∗1,Ω(θ2))
′θo1 + tr (D(θ∗1,Ω(θ2))(Σ

o + θo1θ
o′

1 ))

or, in other words, θ∗
n
=
(
θ∗′1n , θ

∗′

2n

)
′

= Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)) �= (

θo′1 , θ
∗′

2n

)
′

for
all n = 1, 2, ...

The result of Proposition 3 is not in itself very strong. It does not say that
PML2 will never be consistent for the mean-specific parameters when the semi-
parametric model S is correctly specified for the conditional mean but not jointly
correctly specified for the conditional variance. It does not even show that such
inconsistency occurs in a particular case. It simply means that PML2, i.e., specify-
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ing the pseudo-densities ft underlying a second order pseudo-maximum likelihood
estimator as members of the quadratic exponential family, offers no guaranties for
consistent estimation of the correctly specified part of the model. Clearly, what is
true for models where mean and variance parameters vary independently is all the
more so true for more general models, such that the following more general form of
Proposition 3 obviously holds.

Corollary 4 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R6 in Appendix A hold. Suppose further that the semi-parametric model
S is first order correctly specified but second order misspecified, and that, for all
t = 1, 2, ..., ft belongs to the quadratic exponential family. Then we may have that
θ∗
n
= Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) �= θo for all n = 1, 2, ....

Proof. This directly follows from Proposition 3 by considering the special case
where mean and variance parameters vary independently.

1.5. Robust pseudo-maximum likelihood of order 2

(R1PML2 and RPML2)

We are ultimately looking for sufficient and essentially necessary conditions for
a second order pseudo-maximum likelihood estimator to be, regardless of the true
DGP Po, consistent for both mean and variance parameters when the conditional
mean and the conditional variance are jointly correctly specified, and to remain
consistent for the mean parameters when the conditional mean is correctly specified
but the conditional variance is not jointly correctly specified. Although they do not
formally prove it, the results of Section 1.4.3 strongly suggest that the conditions
underlying PML2 do not ensure such consistency properties.

In order to find out sufficient and essentially necessary conditions for a second
order pseudo-maximum likelihood estimator to behave as just outlined, namely to
be robust to conditional variance misspecification, it seems logical to first looking at
sufficient and essentially necessary conditions for a second order pseudo-maximum
likelihood estimator to be, regardless of the conditional variance (mis)specification,
consistent for the mean parameters when the conditional mean is correctly specified.
At this stage, further consistency for the variance parameters when second order
correct specification also holds is not required. We entitle this intermediary class
of second order pseudo-maximum likelihood estimators R1PML2. These conditions
now formally imply the general inconsistency of PML2 under conditional variance
misspecification. Then, by “mixing” the conditions underlying PML2 and R1PML2,
we deduce sufficient and essentially necessary conditions for a second order pseudo-
maximum likelihood estimator to be robust to conditional variance misspecification,
i.e., to be what we call a RPML2 estimator.

1.5.1. R1PML2

Sufficient and essentially necessary conditions for a second order pseudo-maxi-
mum likelihood estimator to be, regardless of the conditional variance (mis)specifica-
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tion, consistent for the mean parameters when the conditional mean is correctly
specified are based on a sub-family of generalized linear exponential families. We
entitle this sub-family restricted generalized linear exponential families. We first
define it and outline its main properties. Then, we investigate the consistency
properties of the class of second order pseudo-maximum likelihood estimators based
on it, i.e., R1PML2 estimators.

1.5.1.1. Restricted generalized linear exponential families

Restricted generalized linear exponential families may be defined as follows.

Definition 7 A family of probability measures on R
G indexed by m ∈ M ⊂ R

G

and Σ ∈ E, where E is a subset of the G × G positive definite matrices, is called
restricted generalized linear exponential if (a) every element of the family has a
density function with respect to a given measure υ(dY ) which may be written as

l(Y,m,Σ) = exp (A(m,Σ) +B(Σ, Y ) + C(m,Σ)′Y )

where A(m,Σ) and B(Σ, Y ) are scalar, C(m,Σ) is a G× 1 vector, and (b) m is the
mean and Σ is the covariance matrix of the distribution l(Y,m,Σ).

The restricted generalized linear exponential family is just a special case of gen-
eralized linear exponential families, the family of density functions which underlies
QGPML1. To see this, just recall that the “generic form” of generalized linear expo-
nential families is l(Y,m, η) = exp (A(m, η) +B(η, Y ) + C(m, η)′Y ), where m is the
mean of the distribution l(Y,m, η) and the extra parameter η is, for any given m,
one-to-one related with the “built into” covariance matrixΣ of l(Y,m, η) through the
function η = Γ(m,Σ) (see Gourieroux-Monfort-Trognon (1984) or White (1994)).
The result follows by letting η = Γ(m,Σ) = Σ. Note also that the restricted gener-
alized linear exponential family does not contain the quadratic exponential family.
For this to be true, B(Σ, Y ) should be allowed to depend on m, a feature ruled out
in the above definition. Finally, remark that, as it may be readily seen from (1.1),
the normal density is a member – and undoubtedly again the prominent one – of
this sub-family of the generalized linear exponential family.

Restricted generalized linear exponential families have essentially the same prop-
erties than generalized linear exponential families.

Property 4 If l(Y,m,Σ) is a restricted generalized linear exponential family, then
∀ m, mo ∈ M, ∀ Σ, Σo ∈ E , we have (a)

A(mo,Σo) + Elo [B(Σo, Y )] + C(mo,Σo)
′mo

≥ A(m,Σ) + Elo [B(Σ, Y )] + C(m,Σ)′mo

where Elo [.] denotes expectation taken with respect to l(Y,mo,Σo) and the equality
holds if and only if m = mo and Σ = Σo, and (b)

A(mo,Σo) + C(mo,Σo)
′mo

≥ A(m,Σo) + C(m,Σo)
′mo
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where the equality holds, ∀ Σo, if and only if m = mo.

Proof. See Appendix B.

Property 5 If l(Y,m,Σ) is a restricted generalized linear exponential family, and
if the functions A(m,Σ), B(Σ, Y ) and C(m,Σ) are continuously differentiable with
respect tom and Σ on respectively intM and int E , then ∀m ∈ intM, ∀ Σ ∈ int E ,
we have (a)

∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
m = 0

∂A(m,Σ)

∂ vecΣ
+ El

[
∂B(Σ, Y )

∂ vecΣ

]
+

∂C(m,Σ)′

∂ vecΣ
m = 0

where El [.] denotes expectation taken with respect to l(Y,m,Σ), and (b)

∂C(m,Σ)′

∂m
= Σ−1

Proof. See Appendix B.

Property 6 If l(Y,m,Σ) is a restricted generalized linear exponential family and
if the functions A(m,Σ), B(Σ, Y ) and C(m,Σ) are continuously differentiable with
respect to m and Σ on respectively intM and int E , then we cannot have, ∀ Y ∈ Y,
where Y denotes the support of Y , ∀ m ∈ intM, ∀ Σ ∈ int E ,

∂B(Σ, Y )

∂ vecΣ
= 0

Proof. See Appendix B.

The crucial property of the restricted generalized linear exponential family is
Property 4(b). The insensitivity to the conditional variance (mis)specification of
R1PML2 basically relies on this property. Note that it is a similar property which
underlies the robustness to conditional variance misspecification of QGPML1. On
the other hand, the general inconsistency for variance parameters of R1PML2 despite
second order correct specification essentially stems from Property 4(a). Property
6 outlines the fact that for l(Y,m,Σ) to be a proper restricted generalized linear
exponential family, the term B(.) has to depend on Σ. This fact, as well as Property
5(a), will serve when demonstrating Proposition 6 in the next section. Finally,
Property 5(b) will be used later for outlining a property of restricted quadratic
exponential families.

1.5.1.2. Consistency of R1PML2 under first order correct specification

but possible second order misspecification

Throughout this section, we assume that the semi-parametric model S is at least
correctly specified for the conditional mean, while possibly second order misspecified.
Further, as in section 1.4.3, we assume for now that the vector of parameters θ is
partitioned as θ = (θ′1, θ

′

2)
′

, where θ1 and θ2 respectively denote mean-specific and
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variance-specific parameters, such that the semi-parametric model S is as described
in Assumption 1.

Sufficient conditions for a second order pseudo-maximum likelihood estimator
to be, regardless of the conditional variance (mis)specification, consistent for the
assumed correctly specified part of S are given in the following proposition.

Proposition 5 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R6 in Appendix A hold. If the semi-parametric model S is as described
in Assumption 1 and is first order correctly specified, and if, for all t = 1, 2, ..., ft
belongs to the restricted generalized linear exponential family, then θ̂n − θ∗n → 0 as
n → ∞ a.s.− Po, where θ∗

n
=
(
θo′1 , θ

∗′

2n

)
′

and θo1 is the true value of θ1.

Proof. Given regularity conditions R1-R6, from Theorem 3.5 of White (1994), we

have θ̂n − θ∗n → 0 as n → ∞ a.s. − Po, where, given S as defined in Assumption

1, θ∗n =
(
θ∗′1n , θ

∗′

2n

)
′

= Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)). Thus, it is enough to show that

θ∗1n = θo1 for all n = 1, 2, ... Since, for all t = 1, 2, ..., ft belongs to the restricted
generalized linear exponential family, letting mt stand for mt(Xt, θ1) and Ωt stand
for Ωt(Xt, θ2), we have that, for all t = 1, 2, ..., E (ln ft (Yt, mt(Xt, θ1),Ωt(Xt, θ2)))
is equal to

E [At(mt,Ωt) +Bt(Ωt, Yt) + Ct(mt,Ωt)
′Yt] (1.4)

Given first order correct specification, E (Yt|Xt) by definition exists and the law of
iterated expectations applies such that (1.4) may be written

E [At(mt,Ωt) +Bt(Ωt, Yt) + Ct(mt,Ωt)
′E (Yt|Xt)] (1.5)

Since Bt(Ωt, Yt) does not depend on mt, from Property 4(b), ∀ Ωt ∈ Et, (1.5) has
a unique maximum in mt when mt(Xt, θ1) = E (Yt|Xt), or, given that θ1 and θ2
vary independently and first order correct specification, ∀ θ2 ∈ Θ2, a maximum in
θ1 at θ1 = θo1. The identifiable uniqueness of {θ∗n} ensures that, ∀ θ∗2n ∈ Θ2, θ

o

1 is the
unique maximum in θ1 of E (Ln(Y

n, Xn, θ)), i.e., that θ∗1n = θo1 for all n = 1, 2, ....

In other words, provided that mean and variance parameters vary independently,
a second order pseudo-maximum likelihood estimator obtained by specifying the
pseudo-densities ft as members of the restricted generalized linear exponential fam-
ily, i.e., R1PML2, yields a consistent estimator of the true mean parameters value
of a first order correctly specified semi-parametric model S regardless of the true
DPG Po and the conditional variance (mis)specification, i.e., regardless of whether

or not the implicit parametric model P corresponding to θ̂n is correctly specified for
other aspects of the “true conditional densities” of Yt given Xt, and thus in particu-
lar whether or not these “true underlying densities” are in the restricted generalized
linear exponential family. This result contains as a particular case – but under
much less restrictive assumptions – Theorem 1 of Pagan-Sabau (1991).

Note that in Proposition 5, the forms of the conditional variance (mis)specifica-
tion allowed are only restricted through the “compatibility” assumption contained
in Definition 3 and the regularity conditions. In this latter respect, it is worth noting
that Assumption R6 is actually unnecessary restrictive. This assumption requires

that {E (Ln(Y
n, Xn, θ))} has identifiably unique maximizers

{
θ∗n =

(
θ∗′1n , θ

∗′

2n

)
′

}
on
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Θ = Θ1 × Θ2. However, for the most important part of Proposition 5 to hold, i.e.,
θ̂1n → θo1 as n → ∞ a.s.−Po, it is not necessary that θ̂2n converges to the well-defined
unique quantity θ∗2n = Argmaxθ2∈Θ2

1

n

∑
n

t=1
E(ln ft(Yt, mt(Xt, θ

o

1),Ωt(Xt, θ2))). For
example, multiple maximums could be allowed. The identifiability of θo1 is of course
required. As above, such an identifiability condition typically holds under the more
primitive – but also more restrictive – assumption that S is first order identifiable,
i.e., that ∀ θ1, θ

o

1 ∈ Θ1

mt(Xt, θ1) = mt(Xt, θ
o

1) ⇒ θ1 = θo1, a.s.− Po, t = 1, 2, ...

By the way, it is also worth recalling the remark made at the end of Section 1.2 :
for judging conditional mean or conditional variance specification, we must take into
account the variables which appear in both moments. In other words, specifying the
conditional variance as functions of variables which do not enter in the conditional
mean may dismantle first order correct specification.

Noticeably, if S is in addition second order correctly specified, according to
Proposition 2, R1PML2 will usually not further provide a consistent estimator of the
variance parameters. It simply follows from the fact that members of the restricted
generalized linear exponential family are not necessarily – although some are, see
below – members of the quadratic exponential family. Another way to see this is
to remember Property 4(a). From this property, it is easily seen that unless the
implicit parametric model P is correctly specified for the conditional density, in
which case θ̂n is just a genuine maximum likelihood estimator, expectations taken
with respect to the true DGP Po and expectations taken with respect to the pseudo-
densities {λt (Yt, Xt, θ

o)} – in terms of Property 4(a), Elo (.) – will usually differ
and thus, although always maximized in θ1 at θ

o

1, E (Ln(Y
n, Xn, θ)) will usually not

be maximized in θ2 at the true value θo2.

Just as for Proposition 1, there exists a reciprocal to Proposition 5 which shows
that the outlined conditions for consistent estimation of the assumed correctly spec-
ified part of S are not only sufficient but also necessary in a sense.

To show that, it is convenient to again reparametrize the semi-parametric model
S. We assume for now that the vector of parameters θ is partitioned as θ = (θ′1, θ

′

2)
′

,
where θ1 and θ2 respectively denote mean-and-variance-common and variance-specific
parameters, such that the semi-parametric model S is as described in the following
assumption.

Assumption 2 The semi-parametric model S is such that for θ partitioned as
θ = (θ′1, θ

′

2)
′

and Θ accordingly defined as Θ = Θ1 ×Θ2, we have

S ≡
{ {

mt(Xt, θ) = mt(Xt, θ1) : Xt ∈ Xt, θ1 ∈ Θ1 ⊂ R
kθ1

}{
Ωt(Xt, θ) = Ωt(Xt, θ1, θ2) : Xt ∈ Xt, θ1 ∈ Θ1 ⊂ R

kθ1 , θ2 ∈ Θ2 ⊂ R
kθ2

} ,

t = 1, 2, ... where the kθ1 × 1 vector of parameters θ1 and the kθ2 × 1 vector of
parameters θ2 (kθ1 + kθ2 = kθ) vary independently on respectively Θ1, a compact
subset of Rkθ1 , and Θ2, a compact subset of Rkθ2 .

As defined in Assumption 2, S may either be taken literally or be viewed as the
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“reduced-form” of a more general model incorporating cross-constraints between
mean and variance parameters. We are now ready to state our converse of Proposi-
tion 5.

Proposition 6 Suppose that θ̂n is as given in Definition 3, where Mt is the closure
of an open connected set, and that the semi-parametric model S is as described in
Assumption 2. If for any probability measure Po such that regularity conditions R1-
R5, R6 ′, R7-R9 in Appendix A hold, when the semi-parametric model S is first order
correctly specified, we have that θ∗

n
= Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) =
(
θo′1 , θ

∗′

2n

)
′

for
all n = 1, 2, ..., where θo1 is the true value of θ1, then, for all t = 1, 2, ..., ft belongs to
the restricted generalized linear exponential family and Ωt(Xt, θ1, θ

∗

2n
) = Ωt(Xt, θ

∗

2n
),

∀ θ1 ∈ intΘ1, ∀ θ∗2n ∈ intΘ2 and ∀ Xt ∈ Xt.

Proof. See Appendix C.

As Proposition 2, Proposition 6 imposes additional regularity conditions, in par-
ticular differentiability (R7 and R8) as well as interiority of θ∗

n
(R6

′

), and thus is
not entirely a converse of Proposition 5. Keeping this minor qualification in mind,
Proposition 6 basically says that a specification of ft belonging to restricted gen-
eralized linear exponential families and functional independence between mean and
variance parameters are essentially necessary conditions for a second order pseudo-
maximum likelihood estimator to yield a consistent estimator of the mean parame-
ters true value of a first order correctly specified semi-parametric model S regardless
of the true DGP Po and the conditional variance (mis)specification. In other words,
again only a very limited subset of the class of second order pseudo-maximum like-
lihood estimators is jointly insensitive to distributional misspecification and condi-
tional variance (mis)specification.

If Po and the kind of allowed conditional variance (mis)specification were further
restricted, these necessary conditions would no longer hold. As a matter of fact,
Pagan-Sabau (1991) gives conditions under which the univariate gaussian maximum
likelihood estimator of certain conditional variance misspecified ARCH regression
models provides a consistent estimator of the mean parameters despite functional
links between mean and variance parameters.

An important corollary of Proposition 6 is that, even under the a priori favor-
able circumstances where mean and variance parameters vary independently, PML2
is generally not robust to conditional variance misspecification. Again, it follows
from the fact that members of the quadratic exponential family are not necessarily
members of the restricted generalized linear exponential family.

1.5.2. RPML2

Let us summarize the results that we already obtained. From Proposition 1
and 2, we know that a sufficient and essentially necessary condition for a second
order pseudo-maximum likelihood estimator θ̂n to be, regardless of the true DGP
Po, consistent for the true parameters value of a second order correctly specified
semi-parametric model S is to specify the pseudo-densities ft as members of the
quadratic exponential family. On the other hand, from Proposition 5 and 6, we
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know that sufficient and essentially necessary conditions for such an estimator θ̂n to
be, regardless of the true DGP Po and the conditional variance (mis)specification,
consistent for the mean parameters true value of a first order correctly specified
semi-parametric model S are that the pseudo-densities ft belong to the restricted
generalized linear exponential family and that mean and variance parameters vary
independently.

Mixing the sufficient conditions of Proposition 1 and Proposition 5 in order to
get sufficient conditions for a second order pseudo-maximum likelihood estimator
θ̂n to be robust to conditional variance misspecification, namely to be, regardless
of the true DGP Po, consistent for both mean and variance parameters when the
conditional mean and the conditional variance are jointly correctly specified, and to
remain consistent for the mean parameters when the conditional mean is correctly
specified but the conditional variance is not jointly correctly specified, basically
means finding a family of density functions which jointly belongs to both quadratic
exponential families and restricted generalized linear exponential families. On the
other hand, mixing the essentially necessary conditions of Proposition 2 and Propo-
sition 6 in order to get essentially necessary conditions for such an estimator θ̂n
to be robust to conditional variance misspecification basically means finding the
largest family of density functions which jointly belongs to both quadratic exponen-
tial families and restricted generalized linear exponential families. We entitle this
family of density functions restricted quadratic exponential families. We first define
it and sketch out its main properties. Then, we outline the consistency properties
of the class of second order pseudo-maximum likelihood estimators based on it, i.e.,
RPML2 estimators.

1.5.2.1. Restricted quadratic exponential families

Restricted quadratic exponential families may be defined as follows.

Definition 8 A family of probability measures on R
G indexed by m ∈ M ⊂ R

G

and Σ ∈ E, where E is a subset of the G × G positive definite matrices, is called
restricted quadratic exponential if (a) every element of the family has a density
function with respect to a given measure υ(dY ) which may be written as

l(Y,m,Σ) = exp (A(m,Σ) +B(Y ) + C(m,Σ)′Y + Y ′D(Σ)Y )

where A(m,Σ) and B(Y ) are scalar, C(m,Σ) is a G×1 vector and D(Σ) is a G×G
matrix, and (b) m is the mean and Σ is the covariance matrix of the distribution
l(Y,m,Σ).

The only difference between quadratic exponential families and restricted quadra-
tic exponential families is that in the expression of the latter, the G×G matrix D(.)
does no longer depend on the mean m. While not preventing it from still being a
member of quadratic exponential families, this small change makes the restricted
quadratic exponential family a special case of restricted generalized linear exponen-
tial families, a special case where the term B(Σ, Y ) appearing in the expression of
the latter is simply given by B(Y ) + Y ′D(Σ)Y , i.e., as required, does not depend
on m. Further, it is readily seen that the restricted quadratic exponential family is
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indeed the largest class of density functions which jointly belongs to both quadratic
exponential families and restricted generalized linear exponential families. By the
way, note that, as it may be easily checked from (1.1), the normal density is still a
member – and undoubtedly again the prominent one – of this family.

Since the restricted quadratic exponential family is a sub-family of both quadratic
exponential families and restricted generalized linear exponential families, it obvi-
ously inherits all their properties. It also has some additional properties.

Property 7 If l(Y,m,Σ) is a restricted quadratic exponential family, then ∀ m,
mo ∈ M, ∀ Σ, Σo ∈ E, we have (a)

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(Σo)(Σo +mom

′

o
))

≥ A(m,Σ) + C(m,Σ)′mo + tr (D(Σ)(Σo +mom
′

o
))

where the equality holds if and only if m = mo and Σ = Σo, and (b)

A(mo,Σo) + C(mo,Σo)
′mo

≥ A(m,Σo) + C(m,Σo)
′mo

where the equality holds, ∀ Σo, if and only if m = mo.

Proof. See Appendix B.

Property 8 If l(Y,m,Σ) is a restricted quadratic exponential family and if the
functions A(m,Σ), C(m,Σ) and D(Σ) are continuously differentiable with respect
to m and Σ on respectively intM and int E, then ∀ m ∈ intM, ∀ Σ ∈ int E, we
have (a)

∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
m = 0

∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
m+

∂ (vecD(Σ))′

∂ vecΣ
vec(Σ +mm′) = 0

(b)
∂C(m,Σ)′

∂m
= Σ−1

(c)
∂C(m,Σ)′

∂ vecΣ
= −∂ (vecD(Σ))′

∂ vecΣ
Covl [(vec (Y Y ′) , Y )] Σ−1

∂C(m,Σ)′

∂ vecΣ
Covl [(Y, vec (Y Y ′))] = IG2 − ∂ (vecD(Σ))′

∂ vecΣ
Vl [vec (Y Y ′)]

and (d)

∂ (vecD(Σ))′

∂ vecΣ
NG =

(
D+

uG

)
′

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )]

Σ−1Covl [(Y, vech (Y Y ′))]

)−1

D+

uG
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where3 Covl[.] and Vl [.] denote respectively covariance and variance taken with re-
spect to l(Y,m,Σ), D+

uG
= (D′

uG
DuG)

−1D′

uG
, NG = DuGD

+

uG
= 1

2
(IG2 +KGG) , DuG

is the G2 × 1

2
G (G+ 1) duplication matrix, i.e., a matrix such that, for any sym-

metric G×G matrix A, DuG vechA = vecA, and KGG is the G2×G2 commutation
matrix, i.e., a matrix such that, for any G×G matrix A, KGG vecA = vecA′.

Proof. See Appendix B.

The robustness to conditional variance misspecification of RPML2 basically re-
lies on Property 7. Just reported for the sake of clarity, Property 7 outlines the way
in which restricted quadratic exponential families cumulate the nice properties of
quadratic exponential families and restricted generalized linear exponential families.
Property 8 will be used later for deriving the limiting distribution of RPML2.

1.5.2.2. Consistency of RPML2 under first order correct specification

but possible second order misspecification

As in Section 1.5.1.2, we assume throughout this section that the semi-parametric
model S is at least correctly specified for the conditional mean, while possibly sec-
ond order misspecified. Further, we assume for now that the vector of parameter θ
is partitioned as θ = (θ′1, θ

′

2)
′

, where θ1 and θ2 denote respectively mean-specific and
variance-specific parameters, such that the semi-parametric model S is as described
in Assumption 1.

Obtained by mixing the conditions of Proposition 1 and Proposition 5, sufficient
conditions for a second order pseudo-maximum likelihood estimator to be robust to
conditional variance misspecification are given in the following proposition.

Proposition 7 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R6 in Appendix A hold. If the semi-parametric model S is as described
in Assumption 1 and is first order correctly specified, and if, for all t = 1, 2, ..., ft
belongs to the restricted quadratic exponential family, then θ̂n − θ∗

n
→ 0 as n → ∞

a.s. − Po, where θ∗
n
=
(
θo′1 , θ

∗′

2n

)
′

and θo1 is the true value of θ1. If, in addition, the
semi-parametric model S is also second order correctly specified, then θ̂n → θo as
n → ∞ a.s.− Po, where θo = (θo′1 , θ

o′

2 )
′ and θo2 is the true value of θ2.

Proof. Since restricted quadratic exponential families are jointly members of both
quadratic exponential families and restricted generalized linear exponential families,
it directly follows from Proposition 1 and Proposition 5.

In other words, provided that mean and variance parameters vary independently,
a second order pseudo-maximum likelihood estimator obtained by specifying the
pseudo-densities ft as members of the restricted quadratic exponential family yields,
regardless of the true DGP Po – i.e., regardless of whether or not the implicit
parametric model P corresponding to θ̂n is correctly specified for other aspects of
the “true conditional densities” of Yt given Xt, and thus in particular whether or
not these “true underlying densities” are in the restricted quadratic exponential
family –, a consistent estimator of both mean and variance parameters when the

3For details on the properties of DuG, KGG and NG, see Magnus-Neudecker (1986).
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semi-parametric model S is jointly correctly specified for the conditional mean and
the conditional variance, and a consistent estimator of the mean-specific parameters
when the semi-parametric model S is correctly specified for the conditional mean
but not jointly correctly specified for the conditional variance.

As outlined for PML2, because in the definition of the restricted quadratic expo-
nential family B(Y ) does not depend on parameters, note that the terms Bt(Yt) may
be dropped from the pseudo log-likelihood such that it is not necessary to impose on
Yt the “compatibility” constraints which may be implied by the definition of Bt(.).
Recall also that, as outlined after Proposition 5, the form of the conditional variance
misspecification allowed is only restricted through the “compatibility” assumption
contained in Definition 3 and the regularity conditions.

Again by mixing the conditions of Proposition 2 and Proposition 6, at least for
G = 1, a converse of Proposition 7 may be obtained. So, Proposition 8 shows that
the outlined conditions for robust to conditional variance misspecification estimation
of S are not only sufficient but also necessary in a sense.

As above, for convenience, we assume for now that the vector of parameter θ is
partitioned as θ = (θ′1, θ

′

2)
′

, where θ1 and θ2 denote respectively mean-and-variance-
common and variance-specific parameters, such that the semi-parametric model S
is as described in Assumption 2.

Proposition 8 (G = 1) Suppose that θ̂n is as given in Definition 3, where Mt and
Et are closures of open connected sets, and that the semi-parametric model S is as
described in Assumption 2. If for any probability measure Po such that conditions
R1-R5, R6 ′, R7-R9 in Appendix A hold, when the semi-parametric model S is first
order correctly specified, we have that θ∗

n
= Argmaxθ∈ΘE (Ln(Y

n,Xn, θ)) =
(
θo′1 , θ

∗′

2n

)
′

for all n = 1, 2, ..., where θo1 is the true value of θ1, and when, in addition, the
semi-parametric model S is also second order correctly specified, we have that θ∗

n
=

Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)) = (θo′1 , θ

o′

2 )
′ for all n = 1, 2, ..., where θo2 is the true

value of θ2, then, for all t = 1, 2, ..., ft belongs to the restricted quadratic exponential
family and Ωt(Xt, θ1, θ

∗

2n
) = Ωt(Xt, θ

∗

2n
), ∀ θ1 ∈ intΘ1, ∀ θ∗2n ∈ intΘ2 and ∀ Xt ∈

Xt.

Proof. (G = 1) Since the restricted quadratic exponential family is the largest
family of density functions which jointly belongs to both quadratic exponential fam-
ilies and restricted generalized linear exponential families, it directly follows from
Proposition 2 and Proposition 6.

As Proposition 2 and 6, Proposition 8 is not entirely a converse of Proposi-
tion 7. Keeping this qualifying statement in mind, Proposition 8 basically says that
both a specification of ft belonging to restricted quadratic exponential families and
functional independence between mean and variance parameters are essentially nec-
essary conditions for a second order pseudo-maximum likelihood estimator to yield,
regardless of the true DGP Po, a consistent estimator of both mean and variance
parameters when the semi-parametric model S is second order correctly specified,
and a consistent estimator of the mean parameters when the semi-parametric model
S is first order correctly specified but second order misspecified. In other words,
again only a very narrow subset of the class of second order pseudo-maximum like-
lihood estimators, and in particular a narrow subset of PML2 estimators, is robust
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to conditional variance misspecification.

Before concluding this section, let us stress that the requirement that mean
and variance parameters have to vary independently for robust estimation does not
signify that mean and variance parameters have to be functionally unrelated in
the structural model, but simply that they have to be treated as if they were not
functionally related. In other words, eventual structural cross-constraints between
mean and variance parameters have to be discarded. For example, if the structural
semi-parametric model S of interest is as given in Assumption 2, RPML2 means
that, for robustness, it has to be treated as if it were given by

S ≡
{ {

mt(Xt, θ) = mt(Xt, θ1) : Xt ∈ Xt, θ1 ∈ Θ1 ⊂ R
kθ1

}{
Ωt(Xt, θ) = Ωt(Xt, θ12, θ2) : Xt ∈ Xt, θ12 ∈ Θθ12 ⊂ R

kθ1 , θ2 ∈ Θ2 ⊂ R
kθ2

} ,

t = 1, 2, ... where the vector of parameters θ1 and θ12 are now assumed to vary inde-
pendently. Note that QGPML1 means exactly the same thing, but is implemented
in three steps rather than in one step.

Although in most cases it should not entail any problems – it is for example true
for GARCH models –, in certain cases, discarding cross-constraints between mean
and variance parameters while continuing to jointly estimate them could lead to
identification problems. If, as it may be expected, the identification problem arises
in the variance, as an alternative to RPML2 and QGPML1, a quasi-generalized ro-
bust pseudo-maximum likelihood of order 2 estimation procedure (hereafter denoted
QGRPML2) may be proposed. It is a two-step procedure which basically amounts
to first estimating the conditional mean parameters – presumably by PML1 – and
then applying a RPML2-like procedure where the mean parameters which appear in
the conditional variance, in the above example θ12, are replaced by their first step es-
timates. This allows to bypass one of the three steps implied by QGPML1, namely
the estimation of the variance-specific parameters which, as outlined above, is po-
tentially the hardiest, in particular in multivariate cases. Clearly, if the structural
model does not contain any variance-specific parameters, i.e., if all variance parame-
ters appear in the conditional mean, then QGRPML2 collapses to QGPML1. Using
Property 7 and the general results of White (1994) for quasi-generalized pseudo-
maximum likelihood, it is not very complicated to show that this estimator is in-
deed consistent for the mean parameters true value of a first order correctly specified
semi-parametric model S regardless of the true DGP Po and possible second order
misspecification, while consistent for the mean and variance parameters true value
under second order correct specification, again regardless of the true DGP Po.

1.6. Limiting distribution of RPML2

We now examine the limiting distribution of RPML2 estimators under different
assumptions regarding the degree of misspecification present in the model. We first
state a classical limiting distribution result for M-estimators.

Proposition 9 Suppose that θ̂n is as given in Definition 3 and that regularity con-
ditions R1-R5, R6 ′-R8 ′, R9-R12 in Appendix A hold. Then θ̂n− θ∗

n
→ 0 as n → ∞
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a.s.− Po, √
n(θ̂n − θ∗

n
) = −A∗

−1

n

√
n
∂

∂θ
Ln(Y

n, Xn, θ∗n) + oPo(1)

and
B∗−1/2

n A∗

n

√
n(θ̂n − θ∗n)

d→ N(0, Ikθ)

where θ∗n = Argmaxθ∈ΘE (Ln(Y
n, Xn, θ)), A∗

n = E
(

∂2

∂θ∂θ′
Ln(Y

n, Xn, θ∗n)
)
, B∗

n =

V
(
n1/2 ∂

∂θ
Ln(Y

n, Xn, θ∗n)
)
, so that avar θ̂n = C∗

n = A∗
−1

n B∗

nA
∗
−1

n .

Proof. It follows from Theorem 3.5 and Theorem 6.4 of White (1994).

Proposition 9 describes the asymptotic behavior and the asymptotic covariance
matrix of an arbitrary second order pseudo-maximum likelihood estimator θ̂n under
arbitrary misspecification. All subsequent results are particular cases of this result.

According to the conditions underlying RPML2 estimation, throughout this sec-
tion, it is assumed both that the pseudo-densities ft used to form θ̂n all belong to
restricted quadratic exponential families and that the semi-parametric model S is
as given in Assumption 1, i.e., that mean and variance parameters vary indepen-
dently, either as a consequence of the structural model or because, as required for
robustness, structural cross-constraints has been discarded. Further, we will always
maintain the hypothesis that the model is first order correctly specified. As out-
lined by Proposition 10, this minimal assumption already ensures a nice structure
for the asymptotic covariance matrix C∗

n of RPML2 estimators, a nice structure
which basically follows from the block-diagonality of A∗

n between mean and variance
parameters. By the way, note that this nice structure does generally not hold for
PML2 estimators, even if mean and variance parameters vary independently.

Proposition 10 Suppose that all the assumptions of Proposition 9 hold. If, for
all t = 1, 2, ..., ft belongs to the restricted quadratic exponential family, and if the
semi-parametric model S is as described in Assumption 1 and is first order correctly
specified, then, for all n = 1, 2, ..., θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and we have

A∗

n12 = A∗′

n21 = E

[
∂2

∂θ1∂θ
′

2

Ln(Y
n,Xn, θ∗n)

]
= 0

such that

C∗

n =

[
C∗

n11
C∗

n12

C∗′

n12 C∗

n22

]
=

[
A∗

−1

n11
B∗

n11
A∗

−1

n11
A∗

−1

n11
B∗

n12
A∗

−1

n22

A∗
−1

n22
B∗′

n12
A∗

−1

n11
A∗

−1

n22
B∗

n22
A∗

−1

n22

]
where

A∗

n11
= −1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t

∂mo
t

∂θ′1

]

A∗

n22
= −1

n

n∑
t=1

E

[
∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt

∂ vecΩ∗

t

∂θ′2
−∆∗

t

]
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= −1

n

n∑
t=1

E

[
∂ (vechΩ∗

t )
′

∂θ2

(
M4∗

t −M3∗
t Ω∗

−1

t M3∗′
t

)
−1 ∂ vechΩ∗

t

∂θ′2
−∆∗

t

]

B∗

nij
= E

[(
n−1/2

n∑
t=1

si∗t

)(
n−1/2

n∑
t=1

sj∗t

)
′
]
, i = 1, 2 ; j = 1, 2

=
1

n

n∑
t=1

E
[
si∗t s

j∗′
t

]
+

1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
si∗t s

j∗′
t−τ

]
+ E

[
si∗t−τs

j∗′
t

])
and

s1∗t =
∂mo′

t

∂θ1
Ω∗

−1

t (Yt −mo
t ) , mo

t = mt (Xt, θ
o
1) , Ω∗

t = Ωt

(
Xt, θ

∗

2n

)
s2∗t =

∂ (vecΩ∗

t )
′

∂θ2

(
∂C∗′

t

∂ vecΩt

(Yt −mo
t ) +

∂ (vecD∗

t )
′

∂ vecΩt

vec (YtY
′

t − Ω∗

t −mo
tm

o′
t )

)
=

∂ (vechΩ∗

t )
′

∂θ2

(
M4∗

t −M3∗
t Ω∗

−1

t M3∗′
t

)
−1

(
vech (YtY

′

t − Ω∗

t −mo
tm

o′
t )−M3∗

t Ω∗
−1

t (Yt −mo
t )
)

∆∗

t =
(
(vec (YtY

′

t −Ω∗

t −mo
tm

o′
t ))

′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt

)]
M3∗

t = Cov
λ∗
t
[ (vech (YtY

′

t ) , Yt)|Xt] , M4∗
t = Vλ∗t [vech (YtY

′

t )|Xt]

with Cov
λ∗
t
[.|Xt] and Vλ∗t [.|Xt] denoting respectively covariance and variance taken

with respect to λt

(
Yt, Xt, θ

o
1, θ

∗

2n

)
.

Proof. See Appendix C.

Proposition 10 sketches out two important things. First, regardless of second
order misspecification and dynamic incompleteness, first order correct specification
ensures a sort of “independence” between mean and variance parameter estimators :
the fact that θ∗2n is estimated has no effect on the asymptotic distribution of θ̂1n ,
and conversely. Note that a similar property holds for QGPML1, at least for the
asymptotic distribution of θ̂1n. Second, under the same conditions and contrary to
C∗

n22
or C∗

n12
, the analytical expression of C∗

n11
–but not its value since, under second

order misspecification, θ∗2n depends on {ft} – is unchanged whatever the choice of
ft, t = 1, 2, ... Again, a similar property holds for QGPML1. This double similarity
with QGPML1 simply follows from the fact that the restricted quadratic exponential
family is a sub-family of the generalized linear exponential family. Actually, the
RPML2 mean parameters estimator θ̂1n is a just a QGPML1-like estimator where
the auxiliary (or nuisance) parameters are jointly estimated with the parameters of
interest θ1 (see below for more details).

According to the above results, when only first order correct specification is as-
sumed, the asymptotic covariance matrix C∗

n11
of θ̂1n basically depends on the chosen

(misspecified) conditional variance specification and on the chosen sequence {ft} –
through the pseudo-true value θ∗2n implied by {ft} (as well as, of course, by the vari-
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ance specification itself) –, but not on the fact that θ∗2n has been estimated. The
dependence of C∗

n11
on the sequence {ft} only through the pseudo-true value θ∗2n is

important since it implies that if second order correct specification is in addition as-
sumed, in which case θ∗2n = θo2, C

o
n11 will no longer depend on which members {ft} of

the restricted quadratic exponential family are used to form θ̂n. On the other hand,
the asymptotic covariance matrix C∗

n22
of θ̂2n and the asymptotic covariance matrix

C∗

n12
between θ̂1n and θ̂2n similarly depend on the chosen (misspecified) conditional

variance specification and on the chosen sequence {ft} – in particular through the
quantities ∂C(m,Σ)′/ ∂ vecΣ and ∂ (vecD(Σ))′

/
∂ vecΣ, which, as shown by Prop-

erty 8(c)-(d) and made explicit in the second expressions of A∗

n22
and s2∗t , are related

to the third and fourth order moments “built into” the restricted quadratic expo-
nential specification –, but not on the fact that θo1 has been estimated. In contrast
with C∗

n11
, C∗

n22
and C∗

n12
directly and strongly depend on the chosen sequence {ft}

and this dependence does not disappear if second order correct specification is in
addition assumed.

If, in addition to first order correct specification, only second order correct speci-
fication is assumed, the basic structure of C∗

n is only marginally affected. Proposition
11 portrays this minor change.

Proposition 11 Suppose that all the assumptions of Proposition 9 hold. If, for all
t = 1, 2, ..., ft belongs to the restricted quadratic exponential family, and if the semi-
parametric model S is as described in Assumption 1 and is second order correctly
specified, then, for all n = 1, 2, ..., θ∗n = (θo′1 , θ

o′
2 )

′ and, for all t = 1, 2, ..., E (∆o
t ) = 0

such that A∗

n22
collapses to

Ao
n22

= − 1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt

∂ vecΩo
t

∂θ′2

]

= − 1

n

n∑
t=1

E

[
∂ (vechΩo

t )
′

∂θ2

(
M4o

t −M3o
t Ωo−1

t M3o′
t

)
−1 ∂ vechΩo

t

∂θ′2

]

Proof. See Appendix C.

Besides the fact that all quantities are now defined at the true value θo =
(θo′1 , θ

o′
2 )

′

rather than at a mixture θ∗n =
(
θo′1 , θ

∗′

2n

)
′

of the true value θo1 and of the
pseudo-true value θ∗2n, the only noticeable change is thus that, as A∗

n11
, Ao

n22
now

only depends on first order derivatives, a feature which is very convenient for their
estimation.

Without relying on additional assumptions to either first or second order correct
specification, a consistent estimator of C∗

n may not be easy to obtain. Indeed, if
obvious consistent – under usual regularity conditions – estimators of A∗

n11
and

A∗

n22
are given by their empirical counterparts, i.e., under only first order correct

specification,

Ân11 = −1

n

n∑
t=1

∂m̂′

t

∂θ1
Ω̂

−1

t

∂m̂t

∂θ′1
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Ãn22 = −1

n

n∑
t=1

∂
(
vec Ω̂t

)
′

∂θ2

∂
(
vec D̂t

)
′

∂ vecΩt

∂ vec Ω̂t

∂θ′2
− ∆̂t

 ,

or, if in addition second order correct specification is assumed,

Ân22 = −1

n

n∑
t=1

∂
(
vec Ω̂t

)
′

∂θ2

∂
(
vec D̂t

)
′

∂ vecΩt

∂ vec Ω̂t

∂θ′2

 ,

the story is considerably more complicated for B∗

n11
, B∗

n12
and B∗

n22
. In this respect,

the basic problem arises from the second term of B∗

nij
. This term contains n − 1

quantities which have each to be adequately estimated. With only n observations,
this is not possible unless relying on additional specific assumptions. Different con-
sistent – under such additional specific assumptions – estimators of quantities like
B∗

nij
have been proposed in the literature. We shall not discuss them here. We re-

fer the reader to White (1994), Wooldridge (1994) or Pötscher-Prucha (1997) for
both a general discussion and references. We will only outline one point : gener-
ally speaking, under arbitrary misspecification, such a consistent estimator need not
exist. In the present context, because of the maintained hypothesis of first order
correct specification, such a consistent estimator of B∗

n11
will usually be available.

Likewise, if second order correct specification is in addition assumed, so it will usu-
ally be for B∗

n12
and B∗

n22
. However, under (first order correct specification but)

arbitrary second order misspecification, i.e., not only dynamic misspecification, it is
not necessarily the case.

As suggested by the above discussion and as already mentioned, dynamic com-
pleteness or incompleteness has important consequences for inference. Indeed, if it
does not influence the expression of A∗

n, it crucially governs the form of B∗

n, and thus
the expression of C∗

n. Proposition 12 details this crucial influence as well as the effect
of second order correct specification and possible correct specification up to higher
order conditional moments on the limiting distribution of RPML2 estimators.

Proposition 12 Suppose that all the assumptions of Proposition 9 hold. If, for all
t = 1, 2, ..., ft belongs to the restricted quadratic exponential family, and if the semi-
parametric model S is as described in Assumption 1 and is first order correctly spec-
ified and first order dynamically complete, then, for all n = 1, 2, ..., θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and B∗

n11
collapses to

B
∗

n11 =
1

n

n∑
t=1

E
[
s1∗t s1∗′t

]
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t Σo
tΩ

∗
−1

t

∂mo
t

∂θ′1

]
where Σo

t = V (Yt|Xt) is the actual conditional covariance matrix of Yt given Xt,
such that C∗

n11
collapses to

C
∗

n11
= A∗

−1

n11
B

∗

n11
A∗

−1

n11

If, in addition, the semi-parametric model S is also second order correctly specified,
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then, for all n = 1, 2, ..., θ∗n = (θo′1 , θ
o′
2 )

′ and B∗

n11
further collapses to

B
o

n11
=

1

n

n∑
t=1

E
[
s1ot s1o′t

]
= B̄

o

n11
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t

∂mo
t

∂θ′1

]
= −Ao

n11

such that C∗

n11 further collapses to

C
o

n11
= C̄

o

n11
= −Ao−1

n11
= B̄

o−1

n11
= B

o−1

n11

and we have
C
∗

n11
− C̄

o

n11
� 0

i.e, C̄
o

n11
is the minimum asymptotic covariance matrix of a RPML2 mean parame-

ters estimator of a semi-parametric model S first order correctly specified and first
order dynamically complete.

If, in addition, the semi-parametric model S is also second order dynamically com-
plete, then, for all n = 1, 2, ..., B∗

n12 and B∗

n22 collapse to

B
o

n12
=

1

n

n∑
t=1

E
[
s1ot s2o′t

]
B

o

n22
=

1

n

n∑
t=1

E
[
s2ot s2o′t

]
such that C∗

n12
and C∗

n22
collapse to

C
o

n12 = Ao−1

n11B
o

n12A
o−1

n22

C
o

n22
= Ao−1

n22
B

o

n22
Ao−1

n22

If, in addition, the implicit parametric model P arising from the semi-parametric
model S and the sequence {ft} is also third order correctly specified, then, for all
n = 1, 2, ..., B∗

n12 further collapses to

B̄
o

n12
= Ao

n12
= 0

such that C∗

n12
further collapses to

C̄
o

n12 = 0

Finally, if, in addition, the implicit parametric model P arising from the semi-
parametric model S and the sequence {ft} is also fourth order correctly specified,
then, for all n = 1, 2, ..., B∗

n22
further collapses to

B̄
o

n22 =
1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )
′

∂ vecΩt

∂ vecΩo
t

∂θ′2

]
= −Ao

n22

=
1

n

n∑
t=1

E

[
∂ (vechΩo

t )
′

∂θ2

(
M̄

4o

t − M̄
3o

t Ωo−1

t M̄
3o′

t

)−1 ∂ vechΩo
t

∂θ′2

]
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where M̄
3o

t = Cov [ (vech (YtY
′

t ) , Yt)|Xt] and M̄
4o

t = V [vech (YtY
′

t )|Xt] are respec-
tively the actual third and fourth order conditional moments of Yt given Xt, such
that C∗

n22 further collapses to

C̄
o

n22
= −Ao−1

n22
= B̄

o−1

n22

and we have
C

o

n − C̄
o

n � 0

i.e., C̄
o

n is the minimum asymptotic covariance matrix of a RPML2 estimator of a
semi-parametric model S second order correctly specified and second order dynami-
cally complete.

Proof. See Appendix C.

As it may be seen from Proposition 12, dynamic completeness is of great prac-
tical importance for inference : when associated with the assumption of first (resp.
second) order correct specification, first (resp. second) order correct dynamic speci-
fication indeed drastically simplifies the correlative expression of B∗

nij
, both making

it possible to be consistently – under usual regularity conditions – estimated by
the common outer-product gradient estimator

B̂nij =
1

n

n∑
t=1

ŝitŝ
j′
t

and allowing, under additional assumptions, to retrieve traditional information ma-
trix equalities and to outline efficiency bounds.

So, when S is assumed correctly specified and dynamically complete for the
conditional mean, the asymptotic covariance matrix C∗

n11
of θ̂1n is equal to C

∗

n11
=

A∗
−1

n11
B

∗

n11
A∗

−1

n11
, and an appropriate consistent – under usual regularity conditions

– estimator of it is simply Ĉn11 = Â−1
n11

B̂n11Â
−1
n11

, i.e., a generalized form of the
seminal White’s (1980c) heteroscedasticity-consistent covariance matrix estimator.
As it may be check from White (1994)4, the only difference between the asymp-

totic covariance matrix C
∗

n11
of θ̂1n and those of a QGPML1 estimator under the

same conditions (i.e., first order correct specification and first order correct dynamic
specification but second order misspecification) stems from the fact the pseudo-true
values θ∗2n , and thus the misspecified covariance matrices Ω∗

t = Ωt

(
Xt, θ

∗

2n

)
, as-

sociated with each estimator are generally different : in the RPML2 case, θ∗2n is
“endogenously” determined through the choice of {ft}, while in the QGPML1 case,
it “exogenously” depends on the way the misspecified conditional variance specifi-
cation {Ωt (Xt, θ2)} is estimated. Note that, as suggested above, the same similarity

between θ̂1n and QGPML1 already holds when only first order correct specification
is assumed.

Further simplifications arise if, in addition to first order correct specification and

4This result is not readily apparent from the results reported in White (1994) since his results are
expressed in terms of a direct parametrization η = κt (Xt, α) of the extra parameter η of the generalized
linear exponential family, rather than in terms of a parametrization Σ = Ωt(Xt, θ2) of the covariance
matrix (uniquely for given m) associated with η through the function η = Γ(m,Σ).
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first order correct dynamic specification, it is also assumed that S is jointly correctly
specified for the conditional variance. In this case, the asymptotic covariance matrix

C∗

n11
of θ̂1n is equal to C̄

o

n11
= −Ao

−1

n11
= B̄

o
−1

n11
, i.e., the traditional information equality

Bo

n11
= −Ao

n11
holds for the mean parameters, and appropriate consistent – under

usual regularity conditions – estimators of it are Ĉn11
= −Â−1

n11
or Čn11

= B̂−1

n11
(Ĉn11

typically has better finite sample properties than Čn11
). C̄

o

n11
does no longer depend

in any way on the choice of {ft} . Interestingly, note that all this holds regardless
of whether or not S is dynamically complete for the conditional variance : only first
order correct dynamic specification is required. According to the similarity between

QGPML1 and RPML2 just described, the asymptotic covariance matrix C̄
o

n11
of

θ̂1n now exactly corresponds to the asymptotic covariance matrix of a QGPML1
estimator under the same conditions (i.e., second order correct specification and
first order correct dynamic specification). It simply follows from the fact that we
now have θ∗

2n
= θo

2
for both estimators.

C̄
o

n11
is the minimum asymptotic covariance matrix of a RPML2 mean para-

meters estimator of a semi-parametric model S correctly specified and dynami-
cally complete for the conditional mean. For reaching this lower bound, it suf-
fices to be able to jointly correctly specify the conditional variance. It may be

easily checked that C̄
o

n11
is identical to the common lower bound for the asymp-

totic covariance matrix of PML1 and QGPML1 estimators outlined by Gourieroux-
Monfort-Trognon (1984a) and White (1994). In other words, as QGPML1, RPML2

will never yield a mean parameters estimator θ̂1n (of a first order dynamically

complete model) with an asymptotic covariance matrix smaller than C̄
o

n11
. Like-

wise, a mean parameters estimator θ̂1n as efficient as (asymptotically equivalent to)
a genuine maximum likelihood estimator of a (first order dynamically complete)
parametric model whose “true conditional densities” of Yt given Xt belong to the
linear exponential family λ̃t (Yt, Xt, θ1) = exp (At(mt) +Bt(Yt) + Ct(mt)

′Yt), where
mt = mt(Xt, θ1), may always be obtained by RPML2 or QGPML15. Note that this
lower bound is identical to the well-known semi-parametric efficiency bound (e.g.,
Chamberlain (1987), Newey (1990,1993), Wooldridge (1994)) associated with op-
timal GMM estimation based on the first order conditional moments restrictions
E [(Yt −mt(Xt, θ1)) |Xt] = 0.

When second order correct dynamic specification is added to the previous as-
sumptions of second order correct specification and first order correct dynamic speci-
fication, the asymptotic covariance matrix C∗

n22
of θ̂2n and the asymptotic covariance

matrix C∗

n12
between θ̂1n and θ̂2n are respectively equal to C

o

n22
= Ao

−1

n22
B

o

n22
Ao

−1

n22
and

C
o

n12
= Ao

−1

n11
B

o

n12
Ao

−1

n22
, and appropriate consistent – under usual regularity condi-

tions – estimators of them are Ĉn22
= Â

−1

n22
B̂n22

Â
−1

n22
and Ĉn12

= Â
−1

n11
B̂n12

Â
−1

n22
, i.e.,

again generalized forms of the seminal White’s (1980c) heteroscedasticity-consistent

5For an example, see Gourieroux-Monfort-Trognon (1984a). Note that a stronger result is actually
available. According to Theorem 5 of Gourieroux-Monfort-Trognon (1984a), it may be showed that a
mean parameters estimator θ̂1n as efficient as a genuine maximum likelihood estimator of a (first order
dynamically complete) parametric model whose “true conditional densities” of Yt given Xt belong to
the generalized linear exponential family λ̆t (Yt, Xt, θ1, α) = exp (At(mt, ηt) +Bt(ηt, Yt) + Ct(mt, ηt)

′Yt),
where mt = mt(Xt, θ1), ηt = κt (Xt, α) and θ1 and α vary independently, may always be obtained by
RPML2 or QGPML1.
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covariance matrix estimator. In this case, the entire covariance matrix C∗

n
may thus

be readily estimated. Needless to say, both C
o

n12
and C

o

n22
strongly depend on which

members {ft} – through their “built into” third and fourth order moments – of

the restricted quadratic exponential family are used to form θ̂n.

The two last situations considered in Proposition 12 are those where, in addition
to the previous assumptions, we are lucky enough for the implicit parametric model
P arising from S and the sequence {ft} to be also jointly correctly specified for the
third or for the third and the fourth order conditional moments. Since it already
attained its lower bound, nothing changes for the asymptotic covariance matrix C∗

n11

of θ̂1n, which is still as given above by C̄
o

n11
= −Ao

−1

n11
= B̄

o
−1

n11
. Under third order

correct specification, the asymptotic covariance matrix C∗

n12
between θ̂1n and θ̂2n is

simply equal to C̄
o

n12
= Ao

n12
= B̄

o

n12
= 0 : θ̂1n and θ̂2n are now truly asymptotically

independent. If, in addition, fourth order correct specification is also assumed, the

asymptotic covariance matrix C∗

n22
of θ̂2n is equal to C̄

o

n22
= −Ao

−1

n22
= B̄

o
−1

n22
and

appropriate consistent – under usual regularity conditions – estimators of it are
Ĉn22

= −Â−1

n22
or Čn22

= B̂−1

n22
(Ĉn22

typically has better finite sample properties than

Čn22
). C̄

o

n
does no longer depend in any way on the choice of {ft} and the traditional

information matrix equality Bo

n
= −Ao

n
now fully applies. Interestingly, note that

all this holds without requiring S to be dynamically complete for the third and
the fourth order conditional moments, or, a fortiori, dynamically complete for the
conditional distribution : only second order correct dynamic specification is required.
This follows from the very special form of the score associated with (restricted)
quadratic exponential families.

C̄
o

n
is the minimum asymptotic covariance matrix of a RPML2 estimator of a

semi-parametric model S jointly correctly specified and dynamically complete for
the conditional mean and the conditional variance. In other words, RPML2 will
never yield a estimator θ̂n (of a second order dynamically complete model) with

an asymptotic covariance matrix smaller than C̄
o

n
. For fully reaching this lower

bound – according to the results outlined above, its sub-block C̄
o

n11
correspond-

ing to the mean parameters is reached under much less restrictive assumptions –
it is necessary to be able to pick up a sequence of pseudo-densities {ft} belonging
to restricted quadratic exponential families and such that the implicit parametric
model P is jointly correctly specified for the third and the fourth order conditional

moments. Contrary to C̄
o

n11
, the lower bound C̄

o

n
is mainly of theoretical interest

since it is usually unfeasible both because third and fourth order conditional mo-
ments are typically unknown and, if it were known, because nothing guarantees
that such a choice for {ft} always exists. If it exists, as shown in Appendix D, it
is worth noting that this bound is again identical to the semi-parametric efficiency

bound C̄
oGMM

n
associated with optimal GMM estimation jointly based on the first

and second order conditional moments restrictions E [(Yt −mt(Xt, θ1)) |Xt] = 0 and
E [vech (YtY

′

t
−Ωt (Xt, θ2)−mt(Xt, θ1)mt(Xt, θ1)

′) |Xt] = 0.

Obviously, since it already attained its lower bound, if instead of fourth order
correctly specified, P were assumed correctly specified for the conditional density,
i.e., for all conditional moments, the asymptotic covariance matrix C∗

n
of θ̂n would
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still be given by C̄
o

n
. However, θ̂n would now reach, or at least would be closer to,

asymptotic efficiency. Although θ̂n would be now a standard maximum likelihood
estimator, it is worth emphasizing that it would not be necessarily asymptotically
efficient, and this for at least two reasons. First, if we actually had functional links
between mean and variance parameters in the structural model, taking them into
account – a possibility ruled out for robustness by RPML2 – would usually yield a
more efficient estimator. See for example Gourieroux (1992) for a discussion of this
efficiency loss in a univariate conditionally gaussian ARCH(p) model. Further, even
in absence of such structural cross-constraints, as extensively discussed in White
(1994), conditional density correct specification and conditional distribution correct
dynamic specification (a condition which is not assumed here) are not sufficient for
assuring asymptotic efficiency (see White (1994) for details). Be that as it may, the
fact is that RPML2 may get efficiency gains from an eventual proximity between
the “true conditional densities” and the chosen sequence {ft} . It is a practical
important point since, as already outlined, the prominent member of restricted
quadratic exponential families is just the normal density6, i.e., a distribution which
is often presented as a plausible approximation of the true underlying distribution
in a lot of empirical works.

To follow, a special result which is of importance when dealing with independent
observations as in cross-section or panel data. When the observations are indepen-
dent, second order correct dynamic specification tautologically holds. Proposition
13 outlines the fact that, in such situations and contrary to the general dynamic
case, whenever first order correct specification holds, the covariance matrix C∗

n12
be-

tween θ̂1n and θ̂2n and an upper bound for the covariance matrix C∗

n22
of θ̂2n can

always be easily obtained.

Proposition 13 Suppose that all the assumptions of Proposition 9 hold. If, for
all t = 1, 2, ..., ft belongs to the restricted quadratic exponential family, if the semi-
parametric model S is as described in Assumption 1 and is first order correctly
specified, and if the observations are independent across t, then, for all n = 1, 2, ...,
θ∗
n
=
(
θo′
1
, θ∗′

2n

)
′

, B∗

n12
and B∗

n22
collapse to

B
∗

n12
=

1

n

n∑
t=1

E
[
s1∗t s2∗′t

]
B̈∗

n22
=

1

n

n∑
t=1

E
[
s2∗t s2∗′t

]− 1

n

n∑
t=1

E
(
s2∗t

)
E
(
s2∗t

)
′

such that C∗

n12
collapses to

C
∗

n12
= A∗

−1

n11
B
∗

n12
A∗

−1

n22

and
C∗

n22 
 Q
∗

n22 = A∗
−1

n22B
∗

n22A
∗
−1

n22

6Simplified forms, for the normal density, of the general expressions appearing in Proposition 10-13

are given in Appendix E.
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where

B
∗

n22
=

1

n

n∑
t=1

E
[
s2∗t s2∗′t

] � B̈∗

n22

Proof. See Appendix C.

Thus, when the observations are independent and S is first order correctly spec-
ified but second order misspecified, the covariance matrix C∗

n12
between θ̂1n and

θ̂2n is simply equal to C
∗

n12 = A∗
−1

n11B
∗

n12A
∗
−1

n22 and an appropriate consistent – un-

der usual regularity conditions – estimator of it is C̃n12 = Â
−1

n11
B̂n12Ã

−1

n22
(note that

Ân22cannot be used). On the other hand, an upper bound Q
∗

n22 of C∗

n22 is given by

A∗
−1

n22
B
∗

n22
A∗

−1

n22
and an appropriate consistent – under usual regularity conditions

– estimator of it is Q̂n22 = Ã
−1

n22
B̂n22Ã

−1

n22
(again, note that Ân22cannot be used).

Needless to say, the covariance matrix C∗

n11of θ̂1n is, and may be estimated, as out-
lined above when assuming first order correct specification and first order correct
dynamic specification. This ability to easily obtain an upper bound of C∗

n22
allows

to perform conservative tests, i.e., tests with true asymptotic size necessarily in-
ferior to their specified nominal size, on the pseudo-true value θ∗2n . This may for
example be useful for readily checking through Wald tests some possibly meaningful
restrictions despite conditional variance misspecification. Note that a similar result,
i.e., the ability to readily obtain an upper bound Q

∗

n of the true asymptotic co-

variance matrix C∗

n of θ̂
n
when the observations are independent, holds for the case

where both the conditional mean and the conditional variance are misspecified and
a consistent – under usual regularity conditions – estimator Q̂n of it may simply
be obtained through the empirical hessian and the empirical outer-product gradi-

ent : Q̂n = Ǎ
−1

n B̌nǍ
−1

n where Ǎn = 1
n

∑n
t=1

∂2

∂θ∂θ′
ln f̂t, B̌n = 1

n

∑n
t=1

[
∂
∂θ

ln f̂t
∂
∂θ′

ln f̂t
]
,

ln f̂t = ln ft
(
Yt,mt(Xt, θ̂1n),Ωt(Xt, θ̂2n)

)
and θ = (θ′1, θ

′

2)
′

(note that no sub-blocks

of Ǎn is equal to the already outlined estimators Ân11, Ân22 or Ãn22). This crude
estimator, or some of its components (sub-blocks), may of course also be used –
although it may have poor finite sample properties – for computing in a purely
numerical way the true asymptotic covariance matrix C∗

n under correct (dynamic)
specification whenever analytical derivatives are difficult to derive and/or to com-
pute.

To conclude this section, a few words about the possible efficiency price to pay
for robustness entailed by RPML2. Besides using pseudo-densities belonging to
restricted quadratic exponential families, a feature which, compared to PML2, at
least theoretically reduces the possible choices for the sequence {ft} and thus also
the possibility to get efficiency benefits from an eventual proximity between of the
“true conditional densities” and the chosen sequence {ft}, RPML2 means discarding
eventual structural cross-constraints between mean and variance parameters. We al-
ready mentioned that, when the implicit parametric model P is correctly specified
for the conditional density and second order correct dynamic specification holds,
if we actually had functional links between mean and variance parameters in the
structural model, taking them into account would usually yield a more efficient es-
timator. The point we want to emphasize here is that, in most other situations,
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this efficiency price is not at all enforced. Indeed, generally speaking, the difference
between the asymptotic covariance matrix of an unconstrained consistent asymp-
totically normal (CAN) extremum estimator and a constrained version of it may
be shown to be necessarily positive semidefinite only when the unconstrained CAN
estimator is such that the information matrix equality Bo

n = −Ao
n holds and, of

course, the constraints are correct (see for example Gourieroux-Monfort (1989)). In
all other cases, the constrained estimator may be either more efficient or less effi-
cient than the unconstrained one. In other words, unless the information matrix
equality holds – in the present context, when P is jointly correctly specified for the
first four order conditional moments and second order correct dynamic specification
holds – taking into account structural cross-constraints between mean and vari-
ance parameters while continuing to use the same restricted quadratic exponential
pseudo-densities {ft} to form θ̂n does not necessarily, although it likely will when-
ever the distributional misspecification is not too severe, improve efficiency. On the
contrary, it may entail efficiency losses.

The above discussion concerns second order pseudo-maximum likelihood esti-
mators. From a GMM perspective, according to the intuitively appealing inequality

C
o

n − C̄
oGMM

n � 0 shown in Appendix D, unless the implicit parametric model P
is fourth order correctly specified, optimal GMM estimation jointly based on the
first and second order conditional moments restrictions E[(Yt −mt(Xt, θ1))|Xt] = 0
and E[vech(YtY

′

t −Ωt (Xt, θ2)−mt(Xt, θ1)mt(Xt, θ1)
′)|Xt] = 0 will usually yield, at

least for the variance parameters, a more efficient – but of course not robust to
conditional variance misspecification – estimator than RPML2, and, because for
such an estimator the information matrix equality holds, it is all the more so true if
there are functional links between mean and variance parameters in the structural
model. From this perspective, at least under severe distributional misspecification
and when mean and variance parameters are functionally related, the possible effi-
ciency price to pay for robustness entailed by RPML2 might be more substantial.
However, it is worth recalling that such an “ideal” optimal GMM estimator requires
non-parametric estimation of (dynamic) third and fourth order conditional moments.
As a practical matter, it then have limitations, especially in the multivariate case
and when the dimension of Xt is large.

1.7. Concluding comments

In view of the limiting distribution results outlined in the preceding section,
just as PML2 but now as a robust to conditional variance misspecification alterna-
tive, compared to QGPML1, RPML2 presents some potential attractive features.
Under second order correct specification (and dynamic completeness of the condi-
tional mean), we saw that the asymptotic distributions of the mean parameters
estimator of RPML2 and QGPML1 are identical. Both of them attain the semi-
parametric efficiency bound based on first order conditional moments restrictions.
This signifies that most of what we said about the potential advantages of PML2
over QGPML1 remains valid for RPML2 : one-step estimation procedure and addi-
tional by-product properties for the variance parameters including (under dynamic
completeness) asymptotic precision always easily obtained and, under favorable cir-
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cumstances, asymptotic efficiency. Moreover, at least when there are no functional
links between mean and variance parameters in the structural model and because
of its ability to get efficiency benefits from an eventual proximity between of the
“true conditional densities” and the used pseudo-densities, it may be conjectured
that in a lot of practical cases, the RPML2 variance parameters estimator will com-
pete favorably with the PML1-like estimator usually computed in the second step of
QGPML1. On the other hand, under first order correct specification (and dynamic
completeness of the conditional mean) but second order misspecification, we saw
that the asymptotic distributions of the mean parameters estimator of RPML2 and
QGPML1 are generally different. They can generally not be compared. Roughly
speaking, the most efficient will be the one which approximates the best the true sec-
ond order conditional moments of the observations. In this respect, RPML2 could
again compete favorably with QGPML1. This is in particular true when the struc-
tural second order misspecified model which is thought to be a good approximation
of the true one contains functional links between mean and variance parameters.
Indeed, in this case, the way in which RPML2 is computed (recall that such struc-
tural links must be discarded) will generally allow more flexibility for the second
order conditional moments approximate adjustment than the standard second step
of QGPML1 which usually uses the first step conditional mean estimates as auxiliary
parameters. Be that as it may, RPML2 continues to preserve the following attractive
features : one-step estimation procedure and, in the case of independent observa-
tions (cross-section and panel data), an upper bound for the asymptotic precision
of the estimated variance parameters pseudo-true value always easily obtained.

From a practical point of view, the easiest way– and probably the only manage-
able one – to implement RPML2 is to use the normal density as pseudo-densities.
Because of the relative simplicity of its implementation and its potential efficiency,
we believe that this estimator should be useful in a variety of situations. In particu-
lar as an alternative to QGPML1, it constitutes an attractive tool for implementing
the natural sequential “bottom-up” model construction/specification testing strat-
egy advocated by Wooldridge (1991a). As such, it appears as a very convenient
go-between estimator which simultaneously allows to get efficiency gains from ap-
proximately taking into account the scedastic structure of the data when, in a first
step, concentrating on the conditional mean specification, and, once this first step
completed, to further explore, for efficiency reasons and/or because it is of interest
of its own, the conditional variance specification. Accordingly, it should encourage
researchers to use second order semi-parametric models whenever both good rea-
sons suggest that second order conditional moments are not trivial (proportional
to an identity matrix) and a plausible, even approximative, specification is avail-
able for them. Likewise, besides its natural role as an estimator of second order
semi-parametric models where there is no link between mean and variance parame-
ters, it should be considered as an attractive first step estimator when dealing with
second order semi-parametric models containing structural links between mean and
variance parameters such as ARCH-type models.
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Appendix A

This appendix contains the set of regularity conditions to which it is referred to
in the various propositions.

Assumption R1 Θ is compact.

Assumption R2 The functions mt : R
kxt × Θ → R

G are such that for each θ in
Θ, a compact subset of Rkθ , mt(., θ) is measurable -Bkxt , and mt(Xt, .) is continuous
on Θ, a.s.− Po, t = 1, 2, ...

Assumption R3 The functions Ωt : R
kxt ×Θ → R

G×G are such that for each θ in
Θ, a compact subset of Rkθ , Ωt(., θ) is measurable -Bkxt , and Ωt(Xt, .) is continuous
on Θ, a.s.− Po, t = 1, 2, ...

Assumption R4 The functions ft : R
G × R

G × R
G×G → R

+ are such that for
each m ∈ Mt ⊂ R

Gand each Σ ∈ Et ⊂ R
G×G, ft (., m,Σ) is measurable -BG, and

ft (Yt, ., .) is continuous on Mt × Et, a.s.− Po, t = 1, 2, ...

Assumption R5 (a) E (ln ft (Yt, mt(Xt, θ),Ωt(Xt, θ))) < ∞, for each θ in Θ, t =
1, 2, ...; (b) E (ln ft (Yt, mt(Xt, θ),Ωt(Xt, θ))) is continuous on Θ, t = 1, 2, ...; and
(c) {ln ft (Yt,mt(Xt, θ),Ωt(Xt, θ))} obeys a strong ULLN (White (1994), Definition
3.1).

Assumption R6 {E (Ln(Y
n, Xn, θ))} has identifiably unique maximizers {θ∗n} on

Θ (White (1994), Definition 3.3).

Assumption R7 The functions mt(Xt, .) and Ωt(Xt, .) are continuously differen-
tiable on Θ, a.s.− Po, t = 1, 2, ...

Assumption R8 The functions ft (Yt, ., .) are continuously differentiable onMt×Et,
a.s.− Po, t = 1, 2, ...

Assumption R6′ {E (Ln(Y
n,Xn, θ))} has identifiably unique maximizers {θ∗n} on

intΘ, the interior of Θ, uniformly in n.

Assumption R7′ The functions mt(Xt, .) and Ωt(Xt, .) are twice continuously dif-
ferentiable on Θ, a.s.− Po, t = 1, 2, ...

Assumption R8′ The functions ft (Yt, ., .) are twice continuously differentiable on
Mt × Et, a.s.− Po, t = 1, 2, ...

Assumption R9 ∂
∂θ
E (Ln(Y

n,Xn, θ)) = E
(
∂
∂θ
Ln(Y

n, Xn, θ)
)
< ∞, for each θ in

Θ, n = 1, 2, ...

Assumption R10 (a) ∂2

∂θ∂θ′
E (Ln(Y

n,Xn, θ)) = E
(

∂2

∂θ∂θ′
Ln(Y

n, Xn, θ)
)
< ∞, for

each θ in Θ, n = 1, 2, ...; (b) E
(

∂2

∂θ∂θ′
Ln(Y

n, Xn, θ)
)
is continuous on Θ uniformly

in n = 1, 2, ...; and (c)
{

∂2

∂θ∂θ′
ln ft (Yt, mt(Xt, θ),Ωt(Xt, θ))

}
obeys a weak ULLN

(White (1994), Definition 3.2).

Assumption R11 {A∗

n} is O(1) and negative definite uniformly in n.

Assumption R12 The double array
{
n−1/2 ∂

∂θ
ln ft (Yt,mt(Xt, θ

∗

n),Ωt(Xt, θ
∗

n)
}
obeys

a central limit theorem with covariance matrix {B∗

n} (White (1994), Definition 6.3),
where {B∗

n} is O(1) and positive definite uniformly in n.
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Appendix B

This appendix contains the proofs of Property 1-8.

Proof of Property 1 From the Kullback inequality (e.g. White (1994), theorem
2.3), we have

I [l(Y,mo,Σo) : l(Y,m,Σ)] =

∫
ln

(
l(Y,mo,Σo)

l(Y,m,Σ)

)
l(Y,mo,Σo)υ(dY )

=

∫
ln l(Y,mo,Σo)l(Y,mo,Σo)υ(dY )−

∫
ln l(Y,m,Σ)l(Y,mo,Σo)υ(dY )

= A(mo,Σo) + C(mo,Σo)
′Elo(Y ) + tr (D(mo,Σo)Elo(Y Y ′))

− [A(m,Σ) + C(m,Σ)′Elo(Y ) + tr (D(m,Σ)Elo(Y Y ′))]

= A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))

− [A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))] ≥ 0

or
A(mo,Σo) + C(mo,Σo)

′mo + tr (D(mo,Σo)(Σo +mom
′

o))

≥ A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

where the equality holds if and only if l(Y,m,Σ) = l(Y,mo,Σo) a.s. − υ, or, given
identifiability, if and only if m = mo and Σ = Σo.

Proof of Property 2 From Property 1, ∀ m, mo ∈ M, ∀ Σ, Σo ∈ E such that
Σ �= Σo, the following strict inequality holds

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))

> A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

or equivalently, subtracting the same quantity from both sides,

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))

− [A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))]

> A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

− [A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))]

or, multiplying both sides by minus 1,

A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))

− [A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))]

> A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))

− [A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))]

(B-1)
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Again from property 1, since ∀ mo ∈ M, ∀ Σ, Σo ∈ E such that Σ �= Σo, we have

A(mo,Σo) + C(mo,Σo)
′mo + tr (D(mo,Σo)(Σo +mom

′

o))

> A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))

the right-hand side of (B-1) is strictly inferior to zero. Thus, the left-hand side of
(B-1) is only necessary superior to a strictly negative quantity, or equivalently, it
may exist m ∈ M such that m �= mo and that we have

A(mo,Σ) + C(mo,Σ)
′mo + tr (D(mo,Σ)(Σo +mom

′

o))

< A(m,Σ) + C(m,Σ)′mo + tr (D(m,Σ)(Σo +mom
′

o))

Proof of Property 3 Differentiating∫
l(Y,m,Σ)υ(dY ) = 1

with respect to m and vecΣ, we get respectively∫
∂ ln l(Y,m,Σ)

∂m
l(Y,m,Σ)υ(dY ) = 0∫

∂ ln l(Y,m,Σ)

∂ vecΣ
l(Y,m,Σ)υ(dY ) = 0

or, noting that Y ′D(m,Σ)Y = (vecD(m,Σ))′ vec (Y Y ′),∫ (
∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
Y +

∂ (vecD(m,Σ))′

∂m
vec (Y Y ′)

)
l(Y,m,Σ)υ(dY ) = 0∫ (

∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
Y +

∂ (vecD(m,Σ))′

∂ vecΣ
vec (Y Y ′)

)
l(Y,m,Σ)υ(dY ) = 0

which is equivalent to

∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
El(Y ) +

∂ (vecD(m,Σ))′

∂m
vec(El(Y Y ′)) = 0

∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
El(Y ) +

∂ (vecD(m,Σ))′

∂ vecΣ
vec(El(Y Y ′)) = 0

and to

∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
m+

∂ (vecD(m,Σ))′

∂m
vec(Σ +mm′) = 0

∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
m+

∂ (vecD(m,Σ))′

∂ vecΣ
vec(Σ +mm′) = 0

Proof of Property 4 (a) As Property 1, it directly follows from the Kullback
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inequality

I [l(Y,mo,Σo) : l(Y,m,Σ)] =

∫
ln

(
l(Y,mo,Σo)

l(Y,m,Σ)

)
l(Y,mo,Σo)υ(dY )

= A(mo,Σo) + Elo [B(Σo, Y )] + C(mo,Σo)
′Elo (Y )

− [A(m,Σ) + Elo [B(Σ, Y )] + C(m,Σ)′Elo (Y )]

= A(mo,Σo) + Elo [B(Σo, Y )] + C(mo,Σo)
′mo

− [A(m,Σ) + Elo [B(Σ, Y )] + C(m,Σ)′mo] ≥ 0

or
A(mo,Σo) + Elo [B(Σo, Y )] + C(mo,Σo)

′mo

≥ A(m,Σ) + Elo [B(Σ, Y )] + C(m,Σ)′mo

where the equality holds if and only if l(Y,m,Σ) = l(Y,mo,Σo) a.s. − υ, or, given
identifiability, if and only if m = mo and Σ = Σo. (b) It follows from (a) by taking
Σ = Σo and then subtracting equal terms from both sides of the inequality.

Proof of Property 5 (a) As for Property 3, differentiating∫
l(Y,m,Σ)υ(dY ) = 1

with respect to m and vecΣ, we get respectively∫
∂ ln l(Y,m,Σ)

∂m
l(Y,m,Σ)υ(dY ) = 0∫

∂ ln l(Y,m,Σ)

∂ vecΣ
l(Y,m,Σ)υ(dY ) = 0

or ∫ (
∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
Y

)
l(Y,m,Σ)υ(dY ) = 0

∫ (
∂A(m,Σ)

∂ vecΣ
+

∂B(Σ, Y )

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
Y

)
l(Y,m,Σ)υ(dY ) = 0

which is equivalent to
∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
m = 0

∂A(m,Σ)

∂ vecΣ
+ El

[
∂B(Σ, Y )

∂ vecΣ

]
+

∂C(m,Σ)′

∂ vecΣ
m = 0

(b) Since m is the mean of the distribution l(Y,m,Σ), we have∫
Y ′l(Y,m,Σ)υ(dY ) = m′

According to the analycity property of the Laplace transform, differentiating this
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equality with respect to m, we get∫
∂ ln l(Y,m,Σ)

∂m
Y ′l(Y,m,Σ)υ(dY ) = IG

or ∫ (
∂A(m,Σ)

∂m
+

∂C(m,Σ)′

∂m
Y

)
Y ′l(Y,m,Σ)υ(dY ) = IG

Further, using the first equality of (a), we obtain∫ (
∂C(m,Σ)′

∂m
Y − ∂C(m,Σ)′

∂m
m

)
Y ′l(Y,m,Σ)υ(dY ) = IG

or ∫
∂C(m,Σ)′

∂m
(Y −m)Y ′l(Y,m,Σ)υ(dY ) = IG

which, since El ((Y −m)Y ′) = Σ and Σ is positive definite, is equivalent to

IG =
∂C(m,Σ)′

∂m
Σ ⇔ ∂C(m,Σ)′

∂m
= Σ−1

Proof of Property 6 Since m is the mean of the distribution l(Y,m,Σ), we have∫
Y ′l(Y,m,Σ)υ(dY ) = m′

As above, differentiating this equality with respect to vecΣ, we get∫
∂ ln l(Y,m,Σ)

∂ vecΣ
Y ′l(Y,m,Σ)υ(dY ) = 0

or ∫ (
∂A(m,Σ)

∂ vecΣ
+

∂B(Σ, Y )

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
Y

)
Y ′l(Y,m,Σ)υ(dY ) = 0

which is equivalent to

∂A(m,Σ)

∂ vecΣ
m′ + El

[
∂B(Σ, Y )

∂ vecΣ
Y ′

]
+

∂C(m,Σ)′

∂ vecΣ
(Σ +mm′) = 0 (B-2)

If ∀ Y ∈ Y, ∀ m ∈ intM, ∀ Σ ∈ int E , we have ∂B(Σ, Y ) /∂ vecΣ = 0, using
Property 5(a) which in this case collapses to the equality

∂A(m,Σ)

∂ vecΣ
= −∂C(m,Σ)′

∂ vecΣ
m

(B-2) implies that, ∀ Y ∈ Y, ∀ m ∈ intM, ∀ Σ ∈ int E , we have

∂A(m,Σ)

∂ vecΣ
m′ +

∂C(m,Σ)′

∂ vecΣ
(Σ +mm′) =

∂C(m,Σ)′

∂ vecΣ
Σ = 0
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or, since Σ is positive definite,

∂C(m,Σ)′

∂ vecΣ
= 0 and

∂A(m,Σ)

∂ vecΣ
= 0

which would mean that l(Y,m,Σ) does actually not depend onΣ, i.e., that l(Y,m,Σ)
is not a restricted generalized linear exponential family.

Proof of Property 7 (a) As Property 1 and Property 4(a), whose it is a special
case, it directly follows from the Kullback inequality. (b) As Property 4(b), whose
it is a special case, it follows from (a) by taking Σ = Σo and then subtracting equal
terms from both sides of the inequality.

Proof of Property 8 (a) It follows from Property 3 since D(m,Σ) = D(Σ) ⇔
∂(vecD(m,Σ))′

∂m
= 0,∀ m ∈ intM,∀ Σ ∈ int E (Obviously, it is also a special case of

Property 5(b)). (b) It follows from Property 5(b) since the restricted quadratic ex-
ponential family is a special case of restricted generalized linear exponential families.
(c) Since m is the mean of the distribution l(Y,m,Σ), we have∫

Y ′l(Y,m,Σ)υ(dY ) = m′

As for Property 6, differentiating this equality with respect to vecΣ, we get∫
∂ ln l(Y,m,Σ)

∂ vecΣ
Y ′l(Y,m,Σ)υ(dY ) = 0

or, noting that Y ′D(Σ)Y = (vecD(Σ))′ vec (Y Y ′),∫ (
∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
Y +

∂ (vecD(Σ))′

∂ vecΣ
vec (Y Y ′)

)
Y ′l(Y,m,Σ)υ(dY ) = 0

which is equivalent to

∂A(m,Σ)

∂ vecΣ
m′ +

∂C(m,Σ)′

∂ vecΣ
(Σ +mm′) +

∂ (vecD(Σ))′

∂ vecΣ
El [vec (Y Y ′)Y ′] = 0

Since El [vec (Y Y ′)Y ′] = Covl [(vec (Y Y ′) , Y )]+(vec (Σ +mm′))m′, using Property
8(a) which may be written as

∂A(m,Σ)

∂ vecΣ
m′ +

∂C(m,Σ)′

∂ vecΣ
mm′ +

∂ (vecD(Σ))′

∂ vecΣ
(vec(Σ +mm′))m′ = 0

by subtraction, we get

∂C(m,Σ)′

∂ vecΣ
Σ+

∂ (vecD(Σ))′

∂ vecΣ
Covl [(vec (Y Y ′) , Y )] = 0

or, since Σ is positive definite,

∂C(m,Σ)′

∂ vecΣ
= −∂ (vecD(Σ))′

∂ vecΣ
Covl [(vec (Y Y ′) , Y )] Σ−1 (B-3)
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Similarly, by definition, we have∫
(vec (Y Y ′))

′

l(Y,m,Σ)υ(dY ) = (vec(Σ +mm′))
′

As above, differentiating this equality with respect to vecΣ, we get∫
∂ ln l(Y,m,Σ)

∂ vecΣ
(vec (Y Y ′))

′

l(Y,m,Σ)υ(dY ) = IG2

or ∫ (
∂A(m,Σ)

∂ vecΣ
+

∂C(m,Σ)′

∂ vecΣ
Y +

∂ (vecD(Σ))′

∂ vecΣ
vec (Y Y ′)

)
(vec (Y Y ′))′ l(Y,m,Σ)υ(dY ) = IG2

which is equivalent to

∂A(m,Σ)

∂ vecΣ
(vec(Σ +mm′))′ +

∂C(m,Σ)′

∂ vecΣ
El

[
Y (vec (Y Y ′))′

]
+
∂ (vecD(Σ))′

∂ vecΣ
El

[
vec (Y Y ′) (vec (Y Y ′))′

]
= IG2

Since El

[
Y (vec (Y Y ′))′

]
= Covl [(Y, vec (Y Y ′))] + m (vec (Σ +mm′))′ and

El

[
vec (Y Y ′) (vec (Y Y ′))′

]
= Vl [vec (Y Y ′)] + vec(Σ +mm′) (vec(Σ +mm′))′, using

Property 8(a) which may be written as

∂A(m,Σ)

∂ vecΣ
(vec(Σ +mm′))′ +

∂C(m,Σ)′

∂ vecΣ
m (vec(Σ +mm′))′

+
∂ (vecD(Σ))′

∂ vecΣ
vec(Σ +mm′) (vec(Σ +mm′))′ = 0

by subtraction, we get

∂C(m,Σ)′

∂ vecΣ
Covl [(Y, vec (Y Y ′))] +

∂ (vecD(Σ))′

∂ vecΣ
Vl [vec (Y Y ′)] = IG2

or

∂C(m,Σ)′

∂ vecΣ
Covl [(Y, vec (Y Y ′))] = IG2 − ∂ (vecD(Σ))′

∂ vecΣ
Vl [vec (Y Y ′)] (B-4)

(d) Substituting (B-3) into (B-4), we obtain

−∂ (vecD(Σ))′

∂ vecΣ
Covl [(vec (Y Y ′) , Y )] Σ−1Covl [(Y, vec (Y Y ′))]

= IG2 − ∂ (vecD(Σ))′

∂ vecΣ
Vl [vec (Y Y ′)]

or

IG2 =
∂ (vecD(Σ))′

∂ vecΣ

(
Vl [vec (Y Y ′)]− Covl [(vec (Y Y ′) , Y )] Σ−1Covl [(Y, vec (Y Y ′))]

)
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Now, since vec (Y Y ′) = DuG vech (Y Y ′), we have that

Vl [vec (Y Y ′)]− Covl [(vec (Y Y ′) , Y )] Σ−1Covl [(Y, vec (Y Y ′))]

= DuG

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )] Σ−1Covl [(Y, vech (Y Y ′))]

)
D′

uG

and thus

IG2 =
∂ (vecD(Σ))′

∂ vecΣ
DuG

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )]

Σ−1Covl [(Y, vech (Y Y ′))]

)
D′

uG

or, post-multiplying both sides by DuG (D′

uGDuG)
−1,

DuG (D′

uGDuG)
−1

=
∂ (vecD(Σ))′

∂ vecΣ
DuG

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )]

Σ−1Covl [(Y, vech (Y Y ′))]

)
(Vl [vech (Y Y ′)]−Covl [(vech (Y Y ′) , Y )] Σ−1Covl [(Y, vech (Y Y ′))]) is just the lower

diagonal block of the inverse of the covariance matrix Vl

[(
(Y ′, vech (Y Y ′))′

)
′

]
, it is

thus positive definite if the latter matrix is positive definite. We may thus write

∂ (vecD(Σ))′

∂ vecΣ
DuG = DuG (D′

uGDuG)
−1

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )]

Σ−1Covl [(Y, vech (Y Y ′))]

)−1

or, post-multiplying both sides by (D′

uGDuG)
−1D′

uG = D+
uG, since DuGD

+
uG = NG,

∂ (vecD(Σ))′

∂ vecΣ
NG =

(
D+

uG

)
′

(
Vl [vech (Y Y ′)]− Covl [(vech (Y Y ′) , Y )]

Σ−1Covl [(Y, vech (Y Y ′))]

)−1

D+
uG

Appendix C

This appendix contains the proofs of Proposition 2, 6 and 10-13.

Proof of Proposition 2 (G = 1) It suffices to show that the condition is al-

ready necessary for a given choice P̃o and S̃ of respectively Po and S which sat-
isfies the assumptions of the Proposition. Suppose that P̃o is such that each Yt
is distributed with E (Yt|Xt) = mo and V (Yt|Xt) = σ2o, and that S̃ is specified
as {mt(Xt, θ) = m} and {Ωt(Xt, θ) = σ2}. Given regularity conditions R1-R5, R6′,

from Theorem 3.5 of White (1994), we have θ̂n − θ∗n → 0 as n → ∞ a.s. − Po,
where θ∗n = Argmaxθ∈ΘE (Ln(Y

n,Xn, θ)), and θ∗n ∈ intΘ. Further, given R7-R9,
θ∗n = Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) implies that E
(
∂
∂θ
Ln(Y

n, Xn, θ∗n)
)
= 0. Given

the assumed structure for P̃o and S̃, for all n = 1, 2, ..., we thus have θ∗n = (mo, σ
2
o)

and

1

n

n∑
t=1

E

[
∂

∂m
ln ft

(
Yt, mo, σ

2
o

)]
= 0 and

1

n

n∑
t=1

E

[
∂

∂σ2
ln ft

(
Yt, mo, σ

2
o

)]
= 0

These relations must hold for all n = 1, 2, ... and any “regular”, i.e., which satisfies
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the assumptions of the Proposition, choice of P̃o, mo, σ
2
o, and ft. It follows that for

any such choice and for all t = 1, 2, ..., we must have

E

[
∂

∂m
ln ft

(
Yt, mo, σ

2
o

)]
= 0 and E

[
∂

∂σ2
ln ft

(
Yt,mo, σ

2
o

)]
= 0

From this point, the proof of theorem 7 in Gourieroux-Monfort-Trognon (1984a)
applies for each t = 1, 2, ... such that, for all t = 1, 2, ..., we must have

ln ft
(
Y,m, σ2

)
= A(m, σ2) +B(Y ) + C(m,σ2)Y +D(m, σ2)Y 2

Proof of Proposition 6 We proceed in two steps. First, we show that ft has to
belong to the restricted generalized linear exponential family. The proof of this first
step is adapted from a similar proof given by Gourieroux-Monfort-Trognon (1984a)
and White (1994) for PML1. Then, using this first result, we show that mean and
variance parameters have to vary independently.

First step : It suffices to show that the condition is already necessary for a given
choice P̃o and S̃ of respectively Po and S which satisfies the assumptions of the
Proposition. For now, set G = 1 and suppose that P̃o is such that each Yt is
distributed with E (Yt|Xt) = mo and V (Yt|Xt) = σ2ot, and that S̃ is specified as
{mt(Xt, θ1) = m} and {Ωt(Xt, θ1, θ2) = σ2}. Given regularity conditions R1-R5,

R6′, from Theorem 3.5 of White (1994), we have θ̂n − θ∗n → 0 as n → ∞ a.s.− Po,
where θ∗n = Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) and θ∗n ∈ intΘ. Further, given R7-R9,
θ∗n = Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) implies that E
(
∂
∂θ
Ln(Y

n, Xn, θ∗n)
)
= 0. Given

the assumed structure for P̃o and S̃, for all n = 1, 2, ..., we thus have θ∗n = (mo, σ
2∗
n )

and
1

n

n∑
t=1

E

[
∂

∂m
ln ft

(
Yt,mo, σ

2∗
n

)]
= 0

This relation must hold for all n = 1, 2, ... and any “regular”, i.e., which satisfies the
assumptions of the Proposition, choice of P̃o,mo, σ

2
ot, and ft. It follows that for any

such choice and for all t = 1, 2, ..., we must have

E

[
∂

∂m
ln ft

(
Yt, mo, σ

2∗
n

)]
= 0

In particular, this has to be true if the support of each Yt consists in two points y1t
and y2t such that −∞ < y1t < mo < y2t < ∞. Then, for any “regular” choice of y1t ,
y2t , mo and ft – once y1t , y

2
t , mo and ft are chosen, σ2ot and σ2∗n are enforced –,

and for all t = 1, 2, ..., we must have

mo = p1ty
1
t +

(
1− p1t

)
y2t (C-1)

where P̃o[Yt = y1t ] = p1t and P̃o[Yt = y2t ] = 1− p1t , and

E

[
∂

∂m
ln ft

(
Yt, mo, σ

2∗
n

)]
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= p1t
∂ ln ft (y

1
t , mo, σ

2∗
n )

∂m
+
(
1− p1t

) ∂ ln ft (y2t , mo, σ
2∗
n )

∂m
= 0 (C-2)

Since from (C-1), we have that p1t = (y2t −mo)/(y
2
t −y1t ) and 1−p1t = (mo−y1t )/(y

2
t −

y1t ), (C-2) may be written as

(y2t −mo)
∂ ln ft (y

1
t , mo, σ

2∗
n )

∂m
+ (mo − y1t )

∂ ln ft (y
2
t ,mo, σ

2∗
n )

∂m
= 0 (C-3)

So, we have that

∂ ln ft (y
2
t ,mo, σ

2∗
n )

∂m
= (y2t −mo)

(
∂ ln ft (y

1
t , mo, σ

2∗
n )

∂m

/
(y1t −mo)

)
Now, fix y1t and consider y2t , mo and σ2∗n as variables. Since the above relation must
hold for any y1t , it follows that for any “regular” choice of y1t , y

2
t , mo and ft, and for

all t = 1, 2, ..., we must have

∂ ln ft (y
2
t , mo, σ

2∗
n )

∂m
= (y2t −mo)φ

2
t (mo, σ

2∗
n ) (C-4)

where φ2t (mo, σ
2∗
n ) =

∂ ln ft(y1t ,mo,σ2∗n )
∂m

/(y1t −mo) depends only on mo and σ2∗n .

The same reasoning establishes that, for any “regular” choice of y1t , y
2
t , mo and ft,

and for all t = 1, 2, ..., we must have

∂ ln ft (y
1
t , mo, σ

2∗
n )

∂m
= (y1t −mo)φ

1
t (mo, σ

2∗
n ) (C-5)

where φ1t (mo, σ
2∗
n ) =

∂ ln ft(y2t ,mo,σ2∗n )
∂m

/(y2t −mo) depends only on mo and σ2∗n .

Substituting (C-4) and (C-5) into (C-3), we get

(y2t −mo)(y
1
t −mo)φ

1
t (mo, σ

2∗
n )− (y1t −mo)(y

2
t −mo)φ

2
t (mo, σ

2∗
n ) = 0

or
φ1t (mo, σ

2∗
n ) = φ2t (mo, σ

2∗
n ) = φt(mo, σ

2∗
n )

Hence, for any “regular” choice of yit (i = 1, 2), mo and ft, and for all t = 1, 2, ...,
we must have

∂ ln ft (y
i
t, mo, σ

2∗
n )

∂m
= (yit −mo)φt(mo, σ

2∗
n ) (C-6)

The result that, for all t = 1, 2, ..., ft has to belong to the restricted generalized
linear exponential family

ln ft
(
Y,m, σ2

)
= At(m, σ2) +Bt(σ

2, Y ) + Ct(m, σ2)′Y

follows by recalling that, by assumption, ft (Y,m, σ2) is a p.d.f. with E(Y ) = m
and V (Y ) = σ2 and integrating both sides of (C-6) with respect to m on intMt

(= intΘ1), a connected set, and extending to Mt (= Θ1) using the continuity of
ln ft (y,m, σ2) on Mt (= Θ1). For the case G > 1, a similar proof is available
by considering distributions whose supports consist in G + 1 independent points
y1t , ...y

G+1
t so that

∑G=1
i=1 pity

i
t = mo.
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Second step : Using the result of step one, it again suffices to show that the con-
dition is already necessary for a given choice P̃o and S̃ of respectively Po and S
which satisfies the assumptions of the Proposition. Suppose that P̃o is such that
each Yt is distributed with E (Yt|Xt) = θo1, V (Yt|Xt) = Σo

t , and that S̃ is specified as
{mt(Xt, θ1) = θ1} and {Ωt(Xt, θ1, θ2)} . As already outlined, given regularity condi-

tions R1-R5, R6′, from Theorem 3.5 of White (1994), we have θ̂n−θ∗n → 0 as n → ∞
a.s. − Po, where θ∗n = Argmaxθ∈ΘE (Ln(Y

n,Xn, θ)) and θ∗n ∈ intΘ. Further, given
R7-R9, θ∗n = Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) implies that E
(
∂
∂θ
Ln(Y

n,Xn, θ∗n)
)
= 0.

Given the assumed structure for P̃o and S̃, for all n = 1, 2, ..., we thus have
θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and

1

n

n∑
t=1

E

[
∂

∂θ1
ln ft

(
Yt, θ

o
1,Ωt(Xt, θ

o
1, θ

∗

2n)
)]

= 0 (C-7)

Since for all t = 1, 2, ..., from step one, ft has to belong to the restricted generalized
linear exponential family, letting Ωo∗

t stand for Ωt(Xt, θ
o
1, θ

∗

2n) and recalling that, for
L scalar, m and θ column vectors and Ω a matrix, by chain rule,

∂

∂θ
L (m (θ) ,Ω(θ)) =

(
∂L

∂m′

∂m

∂θ′
+

∂L

∂ (vecΩ)′
∂ vecΩ

∂θ′

)
′

=
∂m′

∂θ

∂L

∂m
+

∂ (vecΩ)′

∂θ

∂L

∂ vecΩ

(C-8)

we have

∂

∂θ1
ln ft (Yt, θ

o
1,Ω

o∗
t )

=
∂

∂θ1
[At(θ

o
1,Ω

o∗
t ) +Bt(Ω

o∗
t , Yt) + Ct(θ

o
1,Ω

o∗
t )′Yt]

=
∂At(θ

o
1,Ω

o∗
t )

∂θ1
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂θ1
Yt +

∂ (vecΩo∗
t )′

∂θ1


∂At(θ

o
1,Ω

o∗
t )

∂ vecΩt
+

∂Bt(Ω
o∗
t , Yt)

∂ vecΩt

+
∂Ct(θ

o
1,Ω

o∗
t )′

∂ vecΩt
Yt


Given first order correct specification, E (Yt|Xt) by definition exists and the law of
iterated expectations applies such that (C-7) may be written

0 =
1

n

n∑
t=1

E

[(
∂At(θ

o
1,Ω

o∗
t )

∂θ1
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂θ1
E(Yt|Xt)

)

+
∂ (vecΩo∗

t )′

∂θ1

(
∂At(θ

o
1,Ω

o∗
t )

∂ vecΩt
+

∂Bt(Ω
o∗
t , Yt)

∂ vecΩt
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂ vecΩt
E(Yt|Xt)

)]
or

0 =
1

n

n∑
t=1

E

[(
∂At(θ

o
1,Ω

o∗
t )

∂θ1
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂θ1
θo1

)

+
∂ (vecΩo∗

t )′

∂θ1

(
∂At(θ

o
1,Ω

o∗
t )

∂ vecΩt
+

∂Bt(Ω
o∗
t , Yt)

∂ vecΩt
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂ vecΩt
θo1

)]
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Since this relation must hold for all n = 1, 2, ... and any “regular” choice of P̃o, θ
o
1,

Σo
t , ft, Ωt (.) and Xt (simply assume that {Xt} is a sequence of degenerated random

variables, i.e., a sequence of a.s. constants), it follows that for any such choice and
for all t = 1, 2, ..., we must have

0 =
∂At(θ

o
1,Ω

o∗
t )

∂θ1
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂θ1
θo1

+
∂ (vecΩo∗

t )′

∂θ1

(
∂At(θ

o
1,Ω

o∗
t )

∂ vecΩt
+ E

[
∂Bt(Ω

o∗
t , Yt)

∂ vecΩt

∣∣∣∣Xt

]
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂ vecΩt
θo1

) (C-9)

Now, from Property 5(a), we have

0 =
∂At(θ

o
1,Ω

o∗
t )

∂θ1
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂θ1
θo1

+
∂ (vecΩo∗

t )′

∂θ1

(
∂At(θ

o
1,Ω

o∗
t )

∂ vecΩt
+ Eλ∗t

[
∂Bt(Ω

o∗
t , Yt)

∂ vecΩt

∣∣∣∣Xt

]
+

∂Ct(θ
o
1,Ω

o∗
t )′

∂ vecΩt
θo1

) (C-10)

where Eλ∗t [.|Xt] denotes expectation taken with respect to λt(Yt, Xt, θ
o
1, θ

∗

2n). Then,
subtracting (C-10) from (C-9), we get

∂ (vecΩo∗
t )′

∂θ1

(
E

[
∂Bt(Ω

o∗
t , Yt)

∂ vecΩt

∣∣∣∣Xt

]
− Eλ∗t

[
∂Bt(Ω

o∗
t , Yt)

∂ vecΩt

∣∣∣∣Xt

])
= 0 (C-11)

The relation (C-11) must hold for any “regular” choice of P̃o, θ
o
1, Σ

o
t , ft, Ωt (.) and

Xt. Since, according to Property 6, we cannot have ∂Bt(Ω
o∗
t , Yt) /∂ vecΩt = 0, it

follows that for any such choice and for all t = 1, 2, ..., we must have

∂ (vecΩo∗
t )′

∂θ1
=

∂
(
vecΩt(Xt, θ

o
1, θ

∗

2n)
)
′

∂θ1
= 0

which means that Ωt(Xt, θ1, θ
∗

2n) = Ωt(Xt, θ
∗

2n), ∀ θ1 ∈ intΘ1, ∀ θ∗2n ∈ intΘ2 and ∀
Xt ∈ Xt, or in other words that, for all t = 1, 2, ..., Ωt(Xt, θ1, θ2) does not depend
on θ1.

Proof of Proposition 10 From Proposition 9, we have that θ̂n−θ∗n → 0 as n → ∞
a.s. − Po and B

∗−1/2
n A∗

n

√
n(θ̂n − θ∗n)

d→ N(0, Ikθ) where θ∗n = Argmaxθ∈ΘE(Ln(Y
n,

Xn, θ)), A∗

n = E( ∂2

∂θ∂θ′
Ln(Y

n, Xn, θ∗n)), B∗

n = V (n1/2 ∂
∂θ
Ln(Y

n,Xn, θ∗n)), so that

avar θ̂n = C∗

n = A∗−1
n B∗

nA
∗−1
n . Now, since, for all t = 1, 2, ..., ft belongs to the

restricted quadratic exponential family, and thus to the restricted generalized linear
exponential family, and S is as described in Assumption 1 and is first order cor-
rectly specified, according to the proof of Proposition 5, for all n = 1, 2, ..., we have
θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and

Ln(Y
n, Xn, θ) =

1

n

n∑
t=1

ln ft (Yt, mt(Xt, θ1),Ωt(Xt, θ2)) =
1

n

n∑
t=1

lnλt (Yt, Xt, θ1, θ2)

where, letting mt stand for mt(Xt, θ1) and Ωt stand for Ωt(Xt, θ2), for all t = 1, 2, ...,

lnλt (Yt, Xt, θ1, θ2) = At(mt,Ωt) +Bt(Yt) + Ct(mt,Ωt)
′Yt + Y ′

tDt(Ωt)Yt
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Then, recalling the chain rule (C-8), we get

s1t =
∂ lnλt (Yt, Xt, θ1, θ2)

∂θ1
=

∂m′

t

∂θ1

(
∂At

∂mt
+

∂C ′

t

∂mt
Yt

)
or, given Property 8(a) and 8(b),

s1t =
∂m′

t

∂θ1
Ω−1
t (Yt −mt) (C-12)

Similarly, noting that Y ′

tDt(Ωt)Yt = (vecDt(Ωt))
′ vec (YtY

′

t ), we get

s2t =
∂ lnλt (Yt, Xt, θ1, θ2)

∂θ2
=

∂ (vecΩt)
′

∂θ2

(
∂At

∂ vecΩt
+

∂C ′

t

∂ vecΩt
Yt +

∂ (vecDt)
′

∂ vecΩt
vec (YtY

′

t )

)
or, given Property 8(a),

s2t =
∂ (vecΩt)

′

∂θ2

(
∂C ′

t

∂ vecΩt

(Yt −mt) +
∂ (vecDt)

′

∂ vecΩt

vec (YtY
′

t − Ωt −mtm
′

t)

)
(C-13)

Further, from Property 8(d), we have

∂ (vecDt)
′

∂ vecΩt
NG =

(
D+

uG

)
′

(
Vλt [vech (YtY

′

t )|Xt]− Cov
λt
[ (vech (YtY

′

t ) , Yt)|Xt]

Ω
−1

t Cov
λt
[ (Yt, vech (YtY

′

t ))|Xt]

)
−1

D+
uG

=
(
D+

uG

)
′

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

D+
uG (C-14)

whereM3
t = Cov

λt
[ (vech (YtY

′

t ) , Yt)|Xt],M
4
t = Vλt [vech (YtY

′

t )|Xt], andCov
λt
[.|Xt]

and Vλt [.|Xt] denotes respectively covariance and variance taken with respect to
λt (Yt, Xt, θ1, θ2) . Likewise, from Property 8(c), we have

∂C ′

t

∂ vecΩt
= −∂ (vecDt)

′

∂ vecΩt
Cov

λt
[ (vec (YtY

′

t ) , Yt)|Xt] Ω
−1

t

or, since vec (Y Y ′) = DuG vech (Y Y ′) and NGDuG = DuG,

∂C ′

t

∂ vecΩt

= −∂ (vecDt)
′

∂ vecΩt

DuGCov
λt
[ (vech (YtY

′

t ) , Yt)|Xt] Ω
−1

t

= −∂ (vecDt)
′

∂ vecΩt
DuGM

3
t Ω

−1

t = −∂ (vecDt)
′

∂ vecΩt
NGDuGM

3
t Ω

−1

t

which, using (C-14) and the fact that D+
uGDuG = I 1

2
G(G+1), is equivalent to

∂C ′

t

∂ vecΩt
= − (

D+
uG

)
′

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

D+
uGDuGM

3
t Ω

−1

t

= − (
D+

uG

)
′

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

M3
t Ω

−1

t (C-15)
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Since for A symmetric, vecA = NG vecA, (C-13) may be written as

s2t =
∂ (vecΩt)

′

∂θ2

(
∂C ′

t

∂ vecΩt
(Yt −mt) +

∂ (vecDt)
′

∂ vecΩt
NG vec (YtY

′

t −Ωt −mtm
′

t)

)
or, substituting (C-14) and (C-15),

s2t =
∂ (vecΩt)

′

∂θ2

(
D+

uG

)
′

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

(
D+

uG vec (YtY
′

t −Ωt −mtm
′

t)−M3
t Ω

−1

t (Yt −mt)
)

Noting that, for A symmetric, D+
uG vecA = vechA and that, since Ωt is symmetric,

D+
uG

∂ vecΩt
∂θ′

2

= ∂ vechΩt
∂θ′

2

, we finally get

s2t =
∂ (vechΩt)

′

∂θ2

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

(C-16)(
vech (YtY

′

t −Ωt −mtm
′

t)−M3
t Ω

−1

t (Yt −mt)
)

s1∗t and s2∗t follow by evaluating (C-12), (C-13) and (C-16) at θ∗n =
(
θo′1 , θ

∗′

2n

)
′

.

Recalling that vecABC = (C ′ ⊗A) vecB, (C-12) may be written

s1t =
∂m′

t

∂θ1
Ω−1
t (Yt −mt) = vec s1t =

(
(Yt −mt)

′ ⊗ ∂m′

t

∂θ1

)
vecΩ−1

t

Then, we have that

∂2 lnλt (Yt, Xt, θ1, θ2)

∂θ1∂θ
′

2

=
∂s1t
∂θ′2

=

(
∂2 lnλt (Yt, Xt, θ1, θ2)

∂θ2∂θ
′

1

)
′

=

(
(Yt −mt)

′ ⊗ ∂m′

t

∂θ1

)
vecΩ−1

t

∂θ′2

Given first order correct specification, for all t = 1, 2, ..., by definition, E (Yt|Xt) =
mt (Xt, θ

o
1) = mo

t , and the law of iterated expectations applies such that

E

[
∂2 lnλt

(
Yt,Xt, θ

o
1, θ

∗

2n

)
∂θ1∂θ

′

2

]
= E

[(
(E (Yt|Xt)−mo

t )
′ ⊗ ∂mo′

t

∂θ1

)
vecΩ∗

−1

t

∂θ′2

]
= 0

A∗

n12 = A∗′

n21 = E
[

∂2

∂θ1∂θ
′

2

Ln(Y
n,Xn, θ∗n)

]
= 0 directly follows.

Recalling that, for m and θ column vectors, M and Ω matrices,

∂

∂θ′
[M(θ)Ωm(θ)] = M(θ)Ω

∂m(θ)

∂θ′
+ (m(θ)′Ω′ ⊗ I)

∂ vecM(θ)

∂θ′
(C-17)
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we have that

∂2 lnλt (Yt, Xt, θ1, θ2)

∂θ1∂θ
′

1

=
∂s1t
∂θ′1

= −∂m′

t

∂θ1
Ω−1
t

∂mt

∂θ′1
+
(
(Yt −mt)

′Ω−1
t ⊗ Ikθ1

) ∂

∂θ′1

[
vec

(
∂m′

t

∂θ1

)]
Again, for all t = 1, 2, ..., given first order correct specification and according to the
law of iterated expectations, we have

E

[(
(Yt −mo

t )
′Ω∗

−1

t ⊗ Ikθ1

) ∂

∂θ′1

[
vec

(
∂mo′

t

∂θ1

)]]
= E

[(
(E (Yt|Xt)−mo

t )
′Ω∗

−1

t ⊗ Ikθ1

) ∂

∂θ′1

[
vec

(
∂mo′

t

∂θ1

)]]
= 0

such that

E

[
∂2 lnλt

(
Yt,Xt, θ

o
1, θ

∗

2n

)
∂θ1∂θ

′

1

]
= −E

[
∂mo′

t

∂θ1
Ω∗

−1

t

∂mo
t

∂θ′1

]
A∗

n11
directly follows.

Similarly, using (C-17), we have that

∂2 lnλt (Yt, Xt, θ1, θ2)

∂θ2∂θ
′

2

=
∂s2t
∂θ′2

=
(
(Yt −mt)

′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩt)

′

∂θ2

∂C ′

t

∂ vecΩt

)]
+
(
(vec (YtY

′

t − Ωt −mtm
′

t))
′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩt)

′

∂θ2

∂ (vecDt)
′

∂ vecΩt

)]
−∂ (vecΩt)

′

∂θ2

∂ (vecDt)
′

∂ vecΩt

∂ vecΩt

∂θ′2

Once again, for all t = 1, 2, ..., given first order correct specification and according
to the law of iterated expectations, we have

E

[(
(Yt −mo

t )
′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩ∗

t )
′

∂θ2

∂C∗′

t

∂ vecΩt

)]]
= E

[(
(E (Yt|Xt)−mo

t )
′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩ∗

t )
′

∂θ2

∂C∗′

t

∂ vecΩt

)]]
= 0

such that

E

[
∂2 lnλt

(
Yt,Xt, θ

o
1, θ

∗

2n

)
∂θ2∂θ

′

2

]
= −E

[
∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt

∂ vecΩ∗

t

∂θ′2
−∆∗

t

]
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where

∆∗

t =
(
(vec (YtY

′

t − Ω∗

t −mo
tm

o′
t ))

′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt

)]
The first expression ofA∗

n22 directly follows. Further, sinceΩ
∗

t is symmetric,NG
∂ vecΩ∗

t

∂θ′
2

= ∂ vecΩ∗

t

∂θ′
2

and D+
uG

∂ vecΩ∗

t

∂θ′
2

= ∂ vechΩ∗

t

∂θ′
2

. Using (C-14) evaluated at θ∗n =
(
θo′1 , θ

∗′

2n

)
′

, we

thus have that

∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt

∂ vecΩ∗

t

∂θ′2

=
∂ (vecΩ∗

t )
′

∂θ2

∂ (vecD∗

t )
′

∂ vecΩt
NG

∂ vecΩ∗

t

∂θ′2

=
∂ (vecΩ∗

t )
′

∂θ2

(
D+

uG

)
′

(
M4∗

t −M3∗
t Ω∗

−1

t M3∗′
t

)
−1

D+
uG

∂ vecΩ∗

t

∂θ′2

=
∂ (vechΩ∗

t )
′

∂θ2

(
M4∗

t −M3∗
t Ω∗

−1

t M3∗′
t

)
−1 ∂ vechΩ∗

t

∂θ′2

The second expression of A∗

n22 directly follows.

Finally, the structure of C∗

n follows from the block-diagonality of A∗

n while the ex-
pression of B∗

nij
directly follows by suitably partitioning and breaking down

B∗

n = V

[
n1/2

∂

∂θ
Ln(Y

n, Xn, θ∗n)

]
, θ = (θ′1, θ

′

2)
′

= V

[
n−1/2

n∑
t=1

∂ lnλt
(
Yt,Xt, θ

o
1, θ

∗

2n

)
∂θ

]

= E

[(
n−1/2

n∑
t=1

∂ lnλt
(
Yt, Xt, θ

o
1, θ

∗

2n

)
∂θ

)(
n−1/2

n∑
t=1

∂ lnλt
(
Yt, Xt, θ

o
1, θ

∗

2n

)
∂θ

)
′
]

where the last equality holds because, under the assumed regularity conditions, θ∗n =
Argmaxθ∈ΘE (Ln(Y

n, Xn, θ)) implies that

E

[
∂

∂θ
Ln(Y

n, Xn, θ∗n)

]
= E

[
n∑
t=1

∂ lnλt
(
Yt, Xt, θ

o
1, θ

∗

2n

)
∂θ

]
= 0

Proof of Proposition 11 Given all the assumptions of Proposition 9, since, for
all t = 1, 2, ..., ft belongs to the restricted quadratic exponential family, and thus
to the quadratic exponential family, and S is as described in Assumption 1 and
is second order correctly specified, according to the proof of Proposition 1, for all
n = 1, 2, ..., we have θ∗n = θo = (θo′1 , θ

o′
2 )

′

. Further, for all t = 1, 2, ..., by definition,
E (Yt|Xt) = mo

t and E(YtY
′

t |Xt) = V (Yt|Xt)+ E (Yt|Xt)E (Yt|Xt)
′ = (Ωo

t +mo
tm

o′
t ),

where mo
t = mt (Xt, θ

o
1) and Ωo

t = Ωt (Xt, θ
o
2), and the law of iterated expectations
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applies such that

E (∆o
t )

= E

[(
(vec (YtY

′

t −Ωo
t −mo

tm
o′
t ))

′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt

)]]
= E

[(
(vec (E (YtY

′

t |Xt)−Ωo
t −mo

tm
o′
t ))

′ ⊗ Ikθ2

) ∂

∂θ′2

[
vec

(
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt

)]]
= 0

Ao
n22

directly follows from Proposition 10 by evaluating the remaining terms of A∗

n22

at θ∗n = (θo′1 , θ
o′
2 )

′

.

Proof of Proposition 12 Given all the assumptions of Proposition 9, since, for
all t = 1, 2, ..., ft belongs to the restricted quadratic exponential family and S is as
described in Assumption 1 and is first order correctly specified, from Proposition
10, for all n = 1, 2, ..., we have θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and

B∗

nij
=

1

n

n∑
t=1

E
[
si∗t s

j∗′
t

]
+
1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
si∗t s

j∗′
t−τ

]
+ E

[
si∗t−τs

j∗′
t

])
, i = 1, 2 ; j = 1, 2

where

s1∗t =
∂mo′

t

∂θ1
Ω∗

−1

t (Yt −mo
t )

s2∗t =
∂ (vecΩ∗

t )
′

∂θ2

(
∂C∗′

t

∂ vecΩt
(Yt −mo

t ) +
∂ (vecD∗

t )
′

∂ vecΩt
vec (YtY

′

t −Ω∗

t −mo
tm

o′
t )

)
Given first order correct specification and first order correct dynamic specification,
for all t = 1, 2, ..., by definition, E (Yt|Xt) = mt (Xt, θ

o
1) = mo

t = E(Yt|Xt,Ψt−1),
such that we have

E
(
s1∗t |Xt

)
=

∂mo′
t

∂θ1
Ω∗

−1

t (E (Yt|Xt)−mo
t )

= E
(
s1∗t |Xt,Ψt−1

)
= 0

where Ψt−1 ≡ (Yt−1, Xt−1, ..., Y1, X1). By the law of iterated expectations,

E
(
s1∗t |Xt,Ψt−1

)
= E

(
s1∗t |Ψt−1

)
= E

(
s1∗t

)
= 0 (C-18)

Since s1∗t is by definition measurable with respect to Ψt, {s1∗t } is a martingale differ-
ence sequence with respect to {Ψt}, so that s1∗t is uncorrelated with its past values.
We then have

B∗

n11
= B

∗

n11
=

1

n

n∑
t=1

E
[
s1∗t s1∗′t

]
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t (Yt −mo
t ) (Yt −mo

t )
′Ω∗

−1

t

∂mo
t

∂θ′1

]
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or, using again the law of iterated expectations,

B
∗

n11
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t E
[
(Yt −mo

t ) (Yt −mo
t )
′
∣∣Xt

]
Ω∗

−1

t

∂mo
t

∂θ′1

]

=
1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t Σo
tΩ

∗
−1

t

∂mo
t

∂θ′1

]
C
∗

n11 = A∗
−1

n11B
∗

n11A
∗
−1

n11 directly follows from Proposition 10.

If, in addition, the semi-parametric model S is also second order correctly specified,
from Proposition 11, for all n = 1, 2, ..., we have θ∗n = (θo′1 , θ

o′
2 )

′

and, for all t = 1, 2, ...,
by definition, Σo

t = V (Yt|Xt) = Ωo
t = Ωt(Xt, θ

o
2), such that

Bo
n11

= B
o

n11
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t Σo
tΩ

o−1

t

∂mo
t

∂θ′1

]

= B̄
o

n11
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t

∂mo
t

∂θ′1

]
= −Ao

n11

where the last equality, as well as C
o

n11
= C̄

o

n11
= −Ao−1

n11
= B̄

o−1

n11
= B

o−1

n11
directly

follows from Proposition 10 by evaluating all relevant terms at θ∗n = (θo′1 , θ
o′
2 )

′

.

Given the assumed regularity assumptions, according to Theorem 2.6 of Bates and

White (1993), for proving that C
∗

n11
− C̄

o

n11
� 0, i.e., that C̄

o

n11
is the minimum

asymptotic covariance matrix of a RPML2 mean parameters estimator of a semi-
parametric model S first order correctly specified and first order dynamically com-
plete, it suffices to show that

−A∗

n11
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t

∂mo
t

∂θ′1

]
= Cov

[
n−1/2

n∑
t=1

s1∗t , n−1/2
n∑
t=1

s1ot

]

where s1∗t and A∗

n11
are respectively the individual score and the expected hessian as-

sociated with an arbitrary RPML2 mean parameters estimator of a semi-parametric
model S first order correctly specified and first order dynamically complete, and s1ot
is the individual score associated with an arbitrary RPML2 mean parameters es-
timator of the same semi-parametric model S for the conditional mean and such
that S is in addition also second order correctly specified. Now, given the martin-
gale difference property of s1∗t , and thus also of s1ot , and using the law of iterated
expectations, we get

Cov

[
n−1/2

n∑
t=1

s1∗t , n−1/2
n∑
t=1

s1ot

]
=

1

n

n∑
t=1

E
[
s1∗t s1o′t

]

=
1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t (Yt −mo
t ) (Yt −mo

t )
′Ωo−1

t

∂mo
t

∂θ′1

]
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=
1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t E
[
(Yt −mo

t ) (Yt −mo
t )
′
∣∣Xt

]
Ωo−1

t

∂mo
t

∂θ′1

]

=
1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t Ωo
tΩ

o−1

t

∂mo
t

∂θ′1

]
= −A∗

n11

and the proof is complete.

If, in addition, the semi-parametric model S is also second order dynamically com-
plete, for all t = 1, 2, ..., by definition, we have that V (Yt|Xt) = Ωo

t = V (Yt|Xt,Ψt−1),
or, since V (Yt|.) = E(YtY

′

t |.)−E (Yt|.)E (Yt|.)′ andE (Yt|Xt) = mo
t = E(Yt|Xt,Ψt−1),

E(YtY
′

t |Xt) = Ωo
t +mo

tm
o′
t = E(YtY

′

t |Xt,Ψt−1), such that

E (s2ot |Xt)

=
∂ (vecΩo

t )
′

∂θ2

(
∂Co′

t

∂ vecΩt

(E (Yt|Xt)−mo
t ) +

∂ (vecDo
t )

′

∂ vecΩt

vec (E(YtY
′

t |Xt)− Ωo
t −mo

tm
o′
t )

)
= E (s2ot |Xt,Ψt−1) = 0

By the law of iterated expectations,

E
(
s2ot |Xt,Ψt−1

)
= E

(
s2ot |Ψt−1

)
= E

(
s2ot

)
= 0 (C-19)

Letting sot stand for (s1o′t , s2o′t )
′

and collecting (C-18) and (C-19), we have

E (sot |Ψt−1) = E (sot ) = 0

As above, since sot is by definition measurable with respect toΨt, {sot} is a martingale
difference sequence with respect to {Ψt}, so that sot is uncorrelated with its past
values. We then have

Bo
n = B

o

n =
1

n

n∑
t=1

E [sots
o′
t ] (C-20)

and thus in particular

Bo
n12

= B
o

n12
=

1

n

n∑
t=1

E
[
s1ot s2o′t

]
and Bo

n22
= B

o

n22
=

1

n

n∑
t=1

E
[
s2ot s2o′t

]
C
o

n12
= Ao−1

n11
B
o

n12
Ao−1

n22
and C

o

n12
= Ao−1

n22
B
o

n22
Ao−1

n22
directly follow from Proposition 10

and 11 by evaluating all relevant terms at θ∗n = (θo′1 , θ
o′
2 )

′

.

If, in addition, the implicit parametric model P arising from the semi-parametric
model S and the sequence {ft} is also third order correctly specified, for all t =
1, 2, ..., by definition, we have that Cov [ (vec (YtY

′

t ) , Yt)|Xt] =
Covλot [ (vec (YtY

′

t ) , Yt)|Xt]. Then, since

Bo
n12

= B
o

n12
=

1

n

n∑
t=1

E
[
s1ot s2o′t

]
=

1

n

n∑
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E

[
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∂θ1
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t (Yt −mo
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t
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+
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t

∂θ1
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t (Yt −mo
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′

t − Ωo
t −mo

tm
o′
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′
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]
using the law of iterated expectations, we get

B
o
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1

n
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E
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t Ωo
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t
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′
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t

∂θ′2

]
Since from Property 8(c), we have

∂Co
t

∂ (vecΩt)
′
= −Ωo−1

t Covλot [ (Yt, vec (YtY
′

t ))|Xt]
∂ vecDo

t

∂ (vecΩt)
′

(C-21)

it is easily seen that

B
o

n12
= B̄

o

n12
= 0 = Ao

n12

where the last equality, as well as C̄
o

n12
= 0 directly follow from Proposition 10 by

evaluating relevant terms at θ∗n = (θo′1 , θ
o′
2 )

′

.

Finally, if, in addition, the implicit parametric model P arising from the semi-
parametric model S and the sequence {ft} is also fourth order correctly spec-
ified, for all t = 1, 2, ..., by definition, we also have that V [ (vec (YtY

′

t ))|Xt] =
Vλot [ (vec (YtY

′

t ))|Xt]. Then, since
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]
using the law of iterated expectations, we get

B
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Since from Property 8(c), we also have
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′
(C-22)

using (C-21) and (C-22), it is easily seen that B
o

n22
may be simplified such that we

finally get

B
o

n22
= B̄

o

n22
=

1

n

n∑
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∂ (vecΩo
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′
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]

where the equality B̄
o

n22
= −Ao

n22
, as well as C̄

o

n22
= −Ao−1

n22
= B̄

o−1

n22
, directly follow

from Proposition 10 and 11 by evaluating all relevant terms at θ∗n = (θo′1 , θ
o′
2 )

′

and the

fact that M3o
t = M̄

3o

t and M4o
t = M̄

4o

t are now respectively equal to the actual third
and fourth order conditional moments of Yt given Xt, Cov [ (vech (YtY

′

t ) , Yt)|Xt] and
V [vech (YtY

′

t )|Xt] obviously follow from (third and) fourth order correct specifica-
tion.

As above, given the assumed regularity conditions, according to Theorem 2.6 of

Bates and White (1993), for proving that C
o

n−C̄
o

n � 0, i.e., that C̄
o

n is the minimum
asymptotic covariance matrix of a RPML2 estimator of a semi-parametric model S
second order correctly specified and second order dynamically complete, it suffices
to show that

−Ao
n = Cov

[
n−1/2

n∑
t=1

sot , n
−1/2

n∑
t=1

s
ofo
t

t

]
(C-23)

where sot and Ao
n are respectively the individual score and the expected hessian

associated with an arbitrary RPML2 estimator of a semi-parametric model S second

order correctly specified and second order dynamically complete, and s
ofo
t

t is the
individual score associated with an arbitrary RPML2 estimator of the same semi-
parametric model S for the conditional mean and the conditional variance and such
that the implicit parametric model P arising from S and the sequence {f ot } is in
addition also fourth order correctly specified. Now, given the martingale difference

property of sot , and thus also of s
ofo
t

t , we have
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]
We proceed block-by-block. Since s1ot , and thus also s

1ofo
t

t , does not depend on the



70

sequence {ft}, we have
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, the upper diagonal block of (C-23) holds. Further,
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Using the law of iterated expectations, since Cov [ (vec (YtY
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t ) , Yt)|Xt] =
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2ofo
t
′

t

]

=
1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t Ωo
t

∂C
ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂mo′

t

∂θ1
Ωo−1

t Cov
λ
ofo
t

t

[ (Yt, vec (YtY
′

t ))|Xt]
∂ vecD

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

]
Given (C-21), it is easily seen that

1

n

n∑
t=1

E
[
s1ot s

2ofo
t
′

t

]
= 0 = Ao

n12
=
(
Ao
n21

)
′

=

(
1

n

n∑
t=1

E
[
s2ot s

1ofo
t
′

t

])′

where the last equalities follow from the symmetry of the problem at hand. Thus
(C-23) also holds for both off-diagonal blocks. Finally, we have

1

n

n∑
t=1

E
[
s2ot s

2ofo
t
′

t

]

=
1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

∂Co′
t

∂ vecΩt
(Yt −mo

t ) (Yt −mo
t )
′ ∂C

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂ (vecΩo

t )
′

∂θ2

∂Co′
t

∂ vecΩt

(Yt −mo
t ) (vec (YtY

′

t − Ωo
t −mo

tm
o′
t ))

′ ∂ vecD
ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt
vec (YtY

′

t − Ωo
t −mo

tm
o′
t ) (Yt −mo

t )
′ ∂C

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2
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+
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt
vec (YtY

′

t − Ωo
t −mo

tm
o′
t )

(vec (YtY
′

t − Ωo
t −mo

tm
o′
t ))

′ ∂ vecD
ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

]
Using the law of iterated expectations, since we also have V [ (vec (YtY

′

t ))|Xt] =
V
λ
ofo
t

t

[ (vec (YtY
′

t ))|Xt], we get

1

n

n∑
t=1

E
[
s2ot s

2ofo
t
′

t

]
=

1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

∂Co′
t

∂ vecΩt

Ωo
t

∂C
ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂ (vecΩo

t )
′

∂θ2

∂Co′
t

∂ vecΩt
Cov

λ
ofo
t

t

[ (Yt, vec (YtY
′

t ))|Xt]
∂ vecD

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )
′

∂ vecΩt
Cov

λ
ofo
t

t

[ (vec (YtY
′

t ) , Yt)|Xt]
∂C

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

+
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt
V
λ
ofo
t

t

[ (vec (YtY
′

t ))|Xt]
∂ vecD

ofo
t

t

∂ (vecΩt)
′

∂ vecΩo
t

∂θ′2

]
Given (C-21) and (C-22), it is easily seen that this expression may be simplified
such that we finally get

1

n

n∑
t=1

E
[
s2ot s

2ofo
t
′

t

]
=

1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

∂ (vecDo
t )

′

∂ vecΩt

∂ vecΩo
t

∂θ′2

]
= −Ao

n22

Thus (C-23) also holds for the lower diagonal block and the proof is complete.

Proof of Proposition 13 Given all the assumptions of Proposition 9, since, for
all t = 1, 2, ..., ft belongs to the restricted quadratic exponential family and S is as
described in Assumption 1 and is first order correctly specified, from Proposition 9
and 10, for all n = 1, 2, ..., we have θ∗n =

(
θo′1 , θ

∗′

2n

)
′

and

B∗

n = V

(
n1/2

∂

∂θ
Ln(Y

n, Xn, θ∗n)

)
= V

(
n−1/2

n∑
t=1

s∗t

)

where s∗t = (s1∗′t , s2∗′t )
′

, or, because the observations are independent across t,

B∗

n =
1

n

n∑
t=1

V (s∗t ) =
1

n

n∑
t=1

E [s∗t s
∗′

t ]−
1

n

n∑
t=1

E (s∗t )E (s∗t )
′

and thus

B∗

nij
=

1

n

n∑
t=1

E
[
si∗t s

j∗′
t

]− 1

n

n∑
t=1

E
(
si∗t
)
E
(
sj∗t

)′
, i = 1, 2 ; j = 1, 2
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According to the proof of Proposition 12, given first order correct specification (and
tautologically correct dynamic specification), E (s1∗t ) = 0 while, unless second order
correct specification, E (s2∗t ) �= 0. Consequently, we have

B∗

n12
= B

∗

n12
=

1

n

n∑
t=1

E
[
s1∗t s2∗′t

]
B∗

n22
= B̈∗

n22
=

1

n

n∑
t=1

E
[
s2∗t s2∗′t

]− 1

n

n∑
t=1

E
(
s2∗t

)
E
(
s2∗t

)
′

C
∗

n12 = A∗
−1

n11B
∗

n12A
∗
−1

n22 , and C∗

n22 = A∗
−1

n22 B̈
∗

n22A
∗
−1

n22 
 Q
∗

n22 = A∗
−1

n22B
∗

n22A
∗
−1

n22 directly

follow from Proposition 10 and the fact that 1
n

∑n
t=1E (s2∗t )E (s2∗t )

′

is positive semi-

definite, and thus that B
∗

n22 � B̈∗

n22.

Appendix D

In this appendix, we first show that the asymptotic covariance matrix C
o

n of
an RPML2 estimator of a semi-parametric model S second order correctly specified
and second order dynamically complete is always greater or equal than the asymp-

totic covariance matrix C̄
oGMM

n of the optimal GMM estimator associated with the
first and second order conditional moments restrictions E[(Yt −mt(Xt, θ1)) |Xt] = 0
and E[vech (YtY

′

t − Ωt (Xt, θ2)−mt(Xt, θ1)mt(Xt, θ1)
′) |Xt] = 0, i.e., that C

o

n −
C̄
oGMM

n � 0. Next we show that, if there exists a sequence of pseudo-densities
{f ot } such that the implicit parametric model P arising from the semi-parametric
model S and the sequence {f ot } is in addition also fourth order correctly specified,

then the minimum asymptotic covariance matrix C̄
o

n associated with an RMPL2 es-

timator based on it is equal to the semi-parametric efficiency bound C̄
oGMM

n , i.e.,

that C̄
o

n = C̄
oGMM

n . Before proceeding, note that the maintained assumption that
the semi-parametric model S is jointly correctly specified and dynamically complete
for the conditional mean and the conditional variance ensures that the conditional
moments restrictions on which optimal GMM is assumed to be based are both dy-
namically complete and satisfied at θ = (θ′1, θ

′

2)
′

= (θo′1 , θ
o′
2 )

′

.

Let rt = rt(Yt, Xt, θ1, θ2) = (r1′t , r
2′
t )

′

, where r1t = r1t (Yt, Xt, θ1) = Yt −mt(Xt, θ1)
and r2t = r2t (Yt, Xt, θ1, θ2) = vech(YtY

′

t −Ωt (Xt, θ2)−mt(Xt, θ1)mt(Xt, θ1)
′). Accord-

ing toWooldrigdge (1994) (see also Newey (1993)), under usual regularity conditions,
the optimal GMM estimator is given by

θ̂
GMM

n = Argminθ∈Θ

(
1

n

n∑
t=1

F o
t (Xt)

′ rt(Yt, Xt, θ1, θ2)

)
′
(
1

n

n∑
t=1

F o
t (Xt)

′ rt(Yt, Xt, θ1, θ2)

)

where F o
t (Xt)

′ = PRo′
t Ξ̄

o−1

t are optimal instruments, P is any non singular kθ × kθ
matrix and

Ro
t = E

[
∂rt(Yt,Xt, θ

o
1, θ

o
2)

∂θ′

∣∣∣∣Xt

]
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Ξ̄
o

t = E [rt(Yt, Xt, θ
o
1, θ

o
2)rt(Yt, Xt, θ

o
1, θ

o
2)
′|Xt]

The asymptotic covariance matrix of this estimator is given by the semi-parametric
efficiency bound

C̄
oGMM

n =

(
1

n

n∑
t=1

E

[
Ro′
t Ξ̄

o−1

t Ro
t

])−1

According to the notation of Proposition 12, we have

Ξ̄
o−1

t =

 Ωo
t M̄

3o′

t

M̄
3o

t M̄
4o

t

−1

=

 Ξ̄
o11

t Ξ̄
o21′

t

Ξ̄
o21

t Ξ̄
o22

t


where, by partitioned inverse,

Ξ̄
o11

t =

(
Ωo
t − M̄

3o′

t M̄
4o−1

t M̄
3o

t

)
−1

Ξ̄
o21

t = −
(
M̄

4o

t − M̄
3o

t Ωo−1

t M̄
3o′

t

)−1
M̄

3o

t Ωo−1

t = −Ξ̄
o22

t M̄
3o

t Ωo−1

t

Ξ̄
o22

t =
(
M̄

4o

t − M̄
3o

t Ωo−1

t M̄
3o′

t

)−1
On the other hand, we have

Ro
t =

[
R11o
t R12o

t

R21o
t R22o

t

]
with

R11o
t = E

[
∂r1t (Yt,Xt, θ

o
1)

∂θ′1

∣∣∣∣Xt

]
= −∂mo

t

∂θ′1

R12o
t = E

[
∂r1t (Yt,Xt, θ

o
1)

∂θ′2

∣∣∣∣Xt

]
= 0

R21o
t = E

[
∂r2t (Yt,Xt, θ

o
1, θ

o
2)

∂θ′1

∣∣∣∣Xt

]
= −2D+

uG (IG ⊗mo
t )

∂mo
t

∂θ′1

R22o
t = E

[
∂r2t (Yt,Xt, θ

o
1, θ

o
2)

∂θ′2

∣∣∣∣Xt

]
= −∂ vechΩo

t

∂θ′2

where R21o
t follows from the fact that, because of the symmetry of the matrix mtm

′

t,

∂ vech (mtm
′

t)

∂θ′1
= D+

uG

∂ vec (mtm
′

t)

∂θ′1
= D+

uG ((IG ⊗mt) + (mt ⊗ IG))
∂mt

∂θ′1

or, since for any G × G matrix A and G × 1 vector b, 1
2
((A⊗ b) + (b⊗A)) =

NG (A⊗ b) = NG (b⊗ A), and D+
uGNG = D+

uG,

∂ vech (mtm
′

t)

∂θ′1
= 2D+

uGNG (IG ⊗mt)
∂mt

∂θ′1
= 2D+

uG (IG ⊗mt)
∂mt

∂θ′1
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Setting P = −Ikθ , a set of optimal instruments F o
t (Xt)

′ is given by

F o
t (Xt)

′ =


∂mo′

t

∂θ1
2
∂mo′

t

∂θ1
(IG ⊗mo′

t )
(
D+

uG

)
′

0
∂ (vechΩo

t )
′

∂θ2


 Ξ̄

o11

t Ξ̄
o21′

t

Ξ̄
o21

t Ξ̄
o22

t



According to (C-12) and (C-16) given in the proof of Proposition 10, the score

of an RPML2 estimator θ̂n may be written as

st =

[
s1t

s2t

]
=


∂m′

t

∂θ1
Ω

−1

t r1t

∂ (vechΩt)
′

∂θ2

(
M4

t −M3
t Ω

−1

t M3′
t

)
−1 (

r2t −M3
t Ω

−1

t r1t

)


=


∂m′

t

∂θ1
0

0
∂ (vechΩt)

′

∂θ2


[
Ω

−1

t 0

Ξ
21

t Ξ
22

t

][
r1t

r2t

]

= Ht(Xt, θ1, θ2)
′rt(Yt,Xt, θ1, θ2)

where Ξ
22

t =
(
M4

t −M3
t Ω

−1

t M3′
t

)
−1

and Ξ
21

t = −Ξ
22

t M
3
t Ω

−1

t .

Now, consider the following just-identified GMM estimator based on an arbi-
trary chosen sequence of pseudo-densities {ft} belonging to restricted quadratic
exponential families

θ̂
RPML2

n = Argminθ∈Θ

(
1

n

n∑
t=1

Ho
t (Xt)

′ rt(Yt,Xt, θ1, θ2)

)
′
(
1

n

n∑
t=1

Ho
t (Xt)

′ rt(Yt, Xt, θ1, θ2)

)
where

Ho
t (Xt)

′ =


∂mo′

t

∂θ1
0

0
∂ (vechΩo

t )
′

∂θ2


[
Ωo−1

t 0

Ξo21

t Ξo22

t

]

θ̂
RPML2

n is just a GMM (or IV) analogue of the RPML2 estimator θ̂n based on the
chosen sequence of pseudo-densities {ft} . Again according to Wooldrigdge (1994)

and under usual regularity conditions, because θ̂
RPML2

n is a just-identified estimator,
its asymptotic covariance matrix is given by

CoRPML2

n =

(
1

n

n∑
t=1

E
[
Ho

t (Xt)
′Ro

t

])−1
1

n

n∑
t=1

V
[
Ho

t (Xt)
′ rot

]( 1

n

n∑
t=1

E
[
Ho

t (Xt)
′Ro

t

]
′

)
−1

SinceHo
t (Xt)

′ rot = sot is equal to the score, evaluated at θ = (θo′1 , θ
o′
2 )

′

, of the RPML2

estimator θ̂n based on the chosen sequence of pseudo-densities {ft}, and since the
semi-parametric model S is assumed second order correctly specified and second
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order dynamically complete, from Proposition 12, we have

1

n

n∑
t=1

V
[
Ho

t (Xt)
′ rot

]
=

1

n

n∑
t=1

E [sots
o′
t ] = B

o

n

Likewise, since st = Ht(Xt, θ1, θ2)
′rt(Yt, Xt, θ1, θ2), we have

Ao
n = Ao′

n =
1

n

n∑
t=1

E

[
∂sot
∂θ′

]
=

1

n

n∑
t=1

E

[
∂ (Ho′

t r
o
t )

∂θ′

]

=
1

n

n∑
t=1

E

[
Ho′

t

∂rot
∂θ′

+
(
ro

′

t ⊗ Ikθ

) ∂ vec (Ho′
t )

∂θ′

]
(D-1)

=
1

n

n∑
t=1

E

[
Ho′

t

∂rot
∂θ′

]
=

1

n

n∑
t=1

E
[
Ho

t (Xt)
′Ro

t

]
where the last equality holds because, using the law of iterated expectations,

E

[(
ro

′

t ⊗ Ikθ

) ∂ vec (Ho′
t )

∂θ′

]
= E

[(
E
(
ro

′

t |Xt

)
⊗ Ikθ

) ∂ vec (Ho′
t )

∂θ′

]
= 0

Thus, CoRPML2

n = Ao−1

n B
o

nA
o−1

n = C
o

n, i.e., θ̂
RPML2

n is asymptotically equivalent to

the RPML2 estimator θ̂n based on the chosen sequence of pseudo-densities {ft}.
Since the only difference between θ̂

RPML2

n and θ̂
GMM

n stems from the choice of the
instruments (Ho

t (Xt) �= F o
t (Xt)) and that the latter uses the optimal instruments,

it follows that CoRPML2

n − C̄
oGMM

n � 0, or because CoRPML2

n = C
o

n, C
o

n − C̄
oGMM

n � 0.

Next, suppose that there exists a sequence of pseudo-densities {f ot } such that the
implicit parametric model P arising from the semi-parametric model S and the se-
quence {f ot } is in addition also fourth order correctly specified. Because the pseudo

conditional densities {λfott (., Xt, θ
o) = f ot (.,mt(Xt, θ

o
1),Ωt(Xt, θ

o
2))} are jointly cor-

rect for the first four conditional moments of Yt given Xt, we have

E
[
F o
t (Xt)

′ rot |Xt

]
= E

λ
fo
t
t

[
F o
t (Xt)

′ rot |Xt

]
=
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F o
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o
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o
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)
λ
fot
t (Yt, Xt, θ

o) υt(dYt) = 0

Differentiating this equality with respect to θ′, we get
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′ ∂r
o
t

∂θ′
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∂ lnλ
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′ ∂r
o
t

∂θ′
+ F o
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λ
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λ
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λ
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t
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t
′

t
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(D-2)
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Setting for convenience P = Ikθ , F
o
t (Xt)

′ = Ro′
t Ξ̄

o−1

t and we have

E
λ
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t
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o
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λ
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]
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Further, since s
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t
′
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ofo
t

t (Xt), we have
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λ
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′ rot s
ofo
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λ
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t
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o′
t |Xt]H
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t

t (Xt) = −Ro′
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o−1

t Ξ̄
o
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ofo
t

t (Xt) = −Ro′
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ofo
t
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Thus, according to (D-2), we get
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n =

(
1

n

n∑
t=1

E

[
Ro′
t Ξ̄

o−1

t Ro
t

])−1

=

(
1

n

n∑
t=1

E
[
−Ro′

t H
ofo
t
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Finally, since, according to (D-1), −Ao−1

n =
(
1
n

∑n
t=1E

[
−Ro′

t H
ofo
t

t (Xt)
])

−1

, and

from Proposition 12, C̄
o

n = −Ao−1

n , we thus have C̄
oGMM

n = C̄
o

n.

Appendix E

This appendix contains the simplified forms7, for the normal density, of the
general expressions appearing in Proposition 10-13 as well as a convenient writing
of sufficient conditions for the information equality Bo

n = −Ao
n to hold when using

this density as pseudo-densities {ft}.
If, for all t = 1, 2, ..., ft is the multivariate normal density, we have

Ln(Y
n, Xn, θ1, θ2) =

1

n

n∑
t=1

ln ft (Yt,mt(Xt, θ1),Ωt(Xt, θ2)) =
1

n

n∑
t=1

lnλt (Yt, Xt, θ1, θ2)

=
1

n

n∑
t=1

(
−G

2
ln (2π)− 1

2
ln |Ωt| − 1

2
(Yt −mt)

′Ω−1
t (Yt −mt)

)
where mt = mt (Xt, θ1) and Ωt = Ωt (Xt, θ2) .

Then, following Magnus-Neudecker (1988), letting ut stand for (Yt −mt), for the
first order derivatives, we have

s1t =
∂ lnλt (Yt,Xt, θ1, θ2)

∂θ1
=

∂m′

t

∂θ1
Ω

−1

t ut (E-1)

7See Chapter 3 for further simplifications of the derivatives with respect to the vector of variance

parameters.
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s2t =
∂ lnλt (Yt,Xt, θ1, θ2)

∂θ1
= −1

2

∂
(
vecΩ−1

t

)
′

∂θ2
vec(utu

′

t − Ωt)

=
1

2

∂ (vecΩt)
′

∂θ2

(
Ω

−1

t ⊗ Ω
−1

t

)
vec(utu

′

t −Ωt) (E-2)

=
1

2

∂ (vecΩt)
′

∂θ2
vec

(
Ω

−1

t (utu
′

t − Ωt)Ω
−1

t

)
Useful identities for decoding (E-2) as well as subsequent expressions, and linking

them to the general expressions appearing in Proposition 10 are that, for the normal
density, we have

∂C (m,Σ)′

∂ vecΣ
= − (

Σ−1m⊗ Σ−1
)

and
∂ (vecD (Σ))′

∂ vecΣ
=

1

2

(
Σ−1 ⊗Σ−1

)
while, on the other hand, we have

∂ vecΩ−1
t

∂θ′2
= − (

Ω−1
t ⊗ Ω−1

t

) ∂ vecΩt

∂θ′2

vec (ABC) = (C ′ ⊗ A) vecB and (A⊗B) (C ⊗D) = (AC)⊗ (BD)

Further, for the second order derivatives, we have

h11t =
∂2 lnλt (Yt,Xt, θ1, θ2)

∂θ1∂θ
′

1

=
∂s1t
∂θ′1

= −∂m′

t

∂θ1
Ω−1
t

∂mt

∂θ′1
+
(
u′tΩ

−1
t ⊗ Ikθ1

) ∂

∂θ′1

[
vec

(
∂m′

t

∂θ1

)]
(E-3)

h12t =
∂2 lnλt (Yt,Xt, θ1, θ2)

∂θ1∂θ
′

2

=
∂s1t
∂θ′2

=

(
∂s2t
∂θ′1

)
′

=

(
∂2 lnλt (Yt, Xt, θ1, θ2)

∂θ2∂θ
′

1

)
′

=
(
h21t

)
′

=

(
u′t ⊗

∂m′

t

∂θ1

)
∂ vecΩ−1

t

∂θ′2
= −

(
u′t ⊗

∂m′

t

∂θ1

)(
Ω−1
t ⊗Ω−1

t

) ∂ vecΩt

∂θ′2

= −
(
u′tΩ

−1
t ⊗ ∂m′

t

∂θ1
Ω−1
t

)
∂ vecΩt

∂θ′2

h22t =
∂2 lnλt (Yt,Xt, θ1, θ2)

∂θ2∂θ
′

2

=
∂s2t
∂θ′2

=
1

2

∂
(
vecΩ−1

t

)
′

∂θ2

∂ vecΩt

∂θ′2
− 1

2

(
(vec(utu

′

t − Ωt))
′ ⊗ Ikθ1

)
Υt (E-4)

= −1

2

∂ (vecΩt)
′

∂θ2

(
Ω

−1

t ⊗Ω
−1

t

) ∂ vecΩt

∂θ′2
− 1

2

(
(vec(utu

′

t −Ωt))
′ ⊗ Ikθ1

)
Υt

where

Υt =
∂

∂θ′2

[
vec

(
∂
(
vecΩ−1

t

)
′

∂θ2

)]
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i.e., a G2kθ2 × kθ2 matrix.

Simplified expressions of s∗t = (s1∗′t , s2∗′t )
′

and sot = (s1o′t , s2o′t )
′

follow by evaluating

(E-1) and (E-2) at respectively θ∗n =
(
θo′1 , θ

∗′

2n

)
′

and θon = (θo′1 , θ
o′
2 ) . Obviously, A∗

n11
and Ao

n11 are unchanged while A∗

n12 = Ao
n12 = 0. Finally, from (E-4), we have

A∗

n22
= − 1

2n

n∑
t=1

E

 ∂ (vecΩ∗

t )
′

∂θ2

(
Ω∗

−1

t ⊗ Ω∗
−1

t

) ∂ vecΩ∗

t

∂θ′2
+
(
(vec(uotu

o′
t −Ω∗

t ))
′ ⊗ Ikθ1

)
Υ∗

t


and

Ao
n22

= − 1

2n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

(
Ωo−1

t ⊗ Ωo−1

t

) ∂ vecΩo
t

∂θ′2

]

From Proposition 12, for the information equality Bo
n = −Ao

n to hold, it is
sufficient that, in addition to second order correct specification and second order
correct dynamic specification, the implicit parametric P be also jointly correctly
specified for the third and the fourth order conditional moments. According to
Wooldridge (1994), when using the normal density as pseudo-densities {ft}, these
latter conditions are respectively satisfied if, for all t = 1, 2, ..., we have

(a) E [vec(uotu
o′
t )u

o′
t |Xt] = 0

(b) E
[
vec(uotu

o′
t − Ωo

t ) (vec(u
o
tu

o′
t − Ωo

t ))
′
∣∣Xt

]
= 2NG (Ωo

t ⊗ Ωo
t )

In the univariate case, (a) is the symmetry condition E [uo3t |Xt] = 0 and (b) is

the familiar fourth order moment condition E
[
(uo2t − σo2t )

2 |Xt

]
= 2σo4t . The above

sufficient conditions are just the multivariate version of these assumptions, and they
could hold for distributions other than multivariate normal.
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Chapter 2

Robust pseudo-maximum likelihood

of order two estimation and

specification testing

2.1. Introduction

In Chapter 1, we studied the behavior of second order pseudo-maximum likeli-
hood estimators of second order semi-parametric models under possible conditional
variance misspecification. We showed that sufficient and essentially necessary con-
ditions for such an estimator to be robust to conditional variance misspecification
are (1) that the mean and variance parameters vary independently and (2) that
the pseudo-likelihood used as criterion function belongs to a family of distributions
that we called restricted quadratic exponential families. We entitled a second or-
der pseudo-maximum likelihood estimator which satisfies these conditions RPML2.
Further, we provided the limiting distribution properties of this class of estimators
under different assumptions regarding the degree of misspecification present in the
model.

As concluding comments we argued that implemented using the normal density
as pseudo-densities – which is probably the only manageable way to implement
it –, because of its relative simplicity and its potential efficiency, this estimator
should be useful in a variety of situations. In particular, we suggested that it consti-
tutes an attractive tool for implementing the natural sequential “bottom-up” model
construction/specification testing strategy advocated by Wooldridge (1991a). The
purpose of the present chapter is to prop up this assertion.

In the framework of second order semi-parametric models, a sequential “bottom-
up” model construction/specification testing strategy basically means first concen-
trating on the conditional mean specification, and, once this first step completed,
to further explore, for efficiency reasons and/or because it is of interest of its own,
the conditional variance specification. This obviously requires both estimation and
specification testing procedures which allow to concentrate on some aspects of the
conditional distribution of interest without having to worry about possible misspec-
ification of the aspects which are actually not under scrutiny.

For such a job, in particular as an alternative to quasi-generalized pseudo-
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maximum likelihood of order one (QGPML1), gaussian RPML2 appears as a very
convenient go-between estimator. Because of its robustness, it indeed allows to get
efficiency gains from approximately taking into account the scedastic structure of
the data when in a first step concentrating on the conditional mean specification,
while in the same time it provides a basis to further explore the conditional variance
specification.

This chapter describes how, from this nice go-between estimator, to take advan-
tage of the very powerful m-testing / Wooldridge’s modified m-testing framework
for testing, either with or without clear alternatives in mind, the specification of
second order semi-parametric models. We sequentially consider nested, non-nested,
Hausman-type and information matrix-type testing of the prominent hypotheses of
first order correct specification and second order correct specification. We also cover
the testing of first order and second order dynamic completeness. In all cases, main-
tained hypotheses of the tests are precisely stated and reduced to their minimum
so that the validity of the tests usually requires no more than just the hypothesis
of interest under the null. This is an essential point for the outcomes of the testing
procedures to be as unambiguous as possible, and thus for their practical usefulness.

Much of the material of this chapter is built from White (1981,1982,1987,1990,
1994) andWooldridge (1990,1991a,1991b). Some of the proposed test statistics seem
to be new.

The analysis is organized in the following manner. Section 2.2 defines gaussian
robust pseudo-maximum likelihood of order two estimation and outlines some of
its properties as they follow from Chapter 1. Section 2.3 sets up the principle of
specification testing via m-tests. Section 2.4 portrays the m-testing / Wooldridge’s
modified m-testing framework. Section 2.5 is concerned with specification testing
of the conditional mean and Section 2.6 with specification testing of the conditional
variance. Finally, Section 2.7 proposes some concluding comments.

2.2. Gaussian robust pseudo-maximum likelihood

of order two estimation (GRPML2)

We adopt the same general multivariate nonlinear dynamic framework and no-
tational conventions than in Chapter 1.

For the record, the observations are denoted by {(Y ′

t , Z
′

t)
′ : t = 1, 2, ...}, where

Yt is a G×1 vector and Zt is a (ν−G)×1 vector, and are assumed to be a realization
of an unknown stochastic process to which it is referred as the “true data generating
process” (true DGP) Po. Xt stands for some subset of the information set (Zt, W̃t−1),
where W̃t−1 ≡ (Yt−1, Zt−1, ..., Y1, Z1) is the information available on Y and Z at time
t − 1, and Y n ≡ (Y1, Y2, ..., Yn) and Xn ≡ (X1,X2, ...,Xn) denote finite random
samples of size n.

We suppose that interest lies in modelling the conditional expectation of Yt
given Xt and, either for efficiency reasons or because it is of interest of its own, the
conditional variance of Yt given Xt. Accordingly, we assume that some structural
second order semi-parametric model S̃ is available for E(Yt|Xt) and V (Yt|Xt), t =
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1, 2, ..., Xt being defined as comprising all the variables which appear either in the
conditional mean or in the conditional variance.

Robust pseudo-maximum likelihood of order two estimation of S̃ basically means
discarding eventual structural cross-constraints between mean and variance para-
meters and specifying the pseudo-densities underlying the second order pseudo-
maximum likelihood estimator as members of restricted quadratic exponential fam-
ilies. The first requirement imposes that we treat the structural model S̃ as if it
were given by

S ≡
{

{mt(Xt, θ1) : θ1 ∈ Θ1}
{Ωt(Xt, θ2) : θ2 ∈ Θ2}

, t = 1, 2, ...

where the functions mt are known G × 1 vector functions which may depend on t,
and the functions Ωt are known G × G matrix functions which may also depend
on t and are symmetric positive definite, and the kθ1 × 1 vector of parameters θ1
and the kθ2 × 1 vector of parameters θ2 vary independently on respectively Θ1 and
Θ2. Obviously, if mean and variance parameters already varied independently in the
structural model S̃, S and S̃ are identical.

As mentioned, the easiest way to fulfill the second requirement is to resort to the
gaussian density as pseudo-densities. A gaussian robust pseudo-maximum likelihood

of order two estimator θ̂n =
(
θ̂
′

1n
, θ̂

′

2n

)
′

(GRPML2) is then defined as a solution of

Maxθ∈Θ Ln(Y
n, Xn, θ) ≡ 1

n

n∑
t=1

ln f (Yt, mt (Xt, θ1) ,Ωt (Xt, θ2))

where

f (Yt, mt,Ωt) = −G

2
ln 2π − 1

2
ln |Ωt| − 1

2
u′tΩ

−1
t ut

with ut = Yt −mt, mt = mt (Xt, θ1), Ωt = Ωt (Xt, θ2) and Θ = Θ1 ×Θ2.

According to the results1 of Chapter 1, under usual regularity conditions, if S
is correctly specified for the conditional mean (first order correct specification), i.e.,
if for some θo1 ∈ Θ1, E(Yt|Xt) = mt(Xt, θ

o
1), t = 1, 2, ..., from Proposition 7, we have

that
θ̂1n

a.s.−→ θo1 and θ̂2n − θ∗2n
a.s.−→ 0, as n → ∞

where θ∗2n is a pseudo-true value. Further, regarding the mean parameters estimator

θ̂1n , from Proposition 9 and 10, we also have that

√
n(θ̂1n − θo1) = −A∗

−1

n11n
−1/2

n∑
t=1

s1∗t + oPo(1) (2.1)

where

A∗

n11
= −1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ω∗

−1

t

∂mo
t

∂θ′1

]
1We only outline here the properties of GRPML2 which will be used in the sequence of this Chapter.

All its limiting distribution properties may be retrieved by using Proposition 9-13 and the expressions

given in Appendix E of Chapter 1. We will detail them for the case at hand in Chapter 3.
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and

s1∗t =
∂mo′

t

∂θ1
Ω∗

−1

t (Yt −mo
t ), mo

t = mt(Xt, θ
o
1), Ω∗

t = Ωt(Xt, θ
∗

2n
)

On the other hand, if S is in addition also correctly specified for the conditional
variance (second order correct specification), i.e., if, in addition, for some θo2 ∈ Θ2,
V (Yt|Xt) = Ωt(Xt, θ

o
2), t = 1, 2, ..., again from Proposition 7, we have that

θ̂n
a.s.−→ θo, as n → ∞

where θo = (θo′1 , θ
o′
2 )

′

. Now, regarding the variance parameters estimator θ̂2n, from
Proposition 9, 10 and 11, we similarly have that

√
n(θ̂2n − θo2) = −Ao−1

n22
n−1/2

n∑
t=1

s2ot + oPo(1) (2.2)

where, for the normal density,

Ao
n22

= − 1

2n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2

(
Ωo−1

t ⊗ Ωo−1

t

) ∂ vecΩo
t

∂θ′2

]
and

s2ot =
1

2

∂ (vecΩo
t )
′

∂θ2

(
Ωo−1

t ⊗ Ωo−1

t

)
vec(uotu

o′
t − Ωo

t ), uot = Yt −mo
t , Ωo

t = Ωt(Xt, θ
o
2)

To conclude this section, note that the first order conditions defining of the
GRPML2 estimator are given by

∂Ln(Y
n, Xn, θ̂n)

∂θ1
=

1

n

n∑
t=1

∂m̂′

t

∂θ1
Ω̂

−1

t ût = 0 (2.3)

∂Ln(Y
n, Xn, θ̂n)

∂θ2
=

1

2n

n∑
t=1

∂
(
vec Ω̂t

)
′

∂θ2

(
Ω̂

−1

t ⊗ Ω̂
−1

t

)
vec(ûtû

′

t − Ω̂t) = 0 (2.4)

where ût = Yt − m̂t, m̂t = mt(Xt, θ̂1n) and Ω̂t = Ωt(Xt, θ̂2n).

2.3. Specification testing via m-tests

Let us summarize the situation. We have data which are supposed to arise from
an unknown DGP Po. Because we are interested in explaining Yt in terms of Xt,
we make assumptions about the two first conditional moments of Yt given Xt. On
the other hand, we have an estimation procedure which is known to deliver an n-
root consistent estimator of either the mean or the mean and variance parameters
depending on the extent of the correct specification of our tentative model. The
question is now : how to check the extent to which our tentative model is actually
correctly specified?
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The null hypothesis that the conditional mean is correctly specified is equivalent
to the null

Hm
0 : E(uot |Xt) = 0 for some θo1 ∈ Θ1, t = 1, 2, ...

If Hm
0 is true, for any “regular” G × q matrix functions Fm

t (Xt) depending on
Xt – and possibly on some vector of nuisance parameters, see below –, by the law
of iterated expectations, we must have that

E
[
Fm
t (Xt)

′ uot
]
= 0, t = 1, 2, ...

while we may generally expect that

E
[
Fm
t (Xt)

′ uot
] �= 0, t = 1, 2, ...

whenever Hm
0 is false.

Both θo1 and the expectations – taken with respect to the DGP Po – above are
unknown. However, 1

n

∑n
t=1E[Fm

t (Xt)
′ uot ] can usually be consistently estimated.

This suggests that a test of first order correct specification may be undertaken by
looking at the empirical covariances

Φ̂n =
1

n

n∑
t=1

Fm
t (Xt)

′ ût

θ̂1n being a consistent estimator of θo1 under Hm
0 . When Hm

0 is true, Φ̂n should be
close to zero while we may generally expect it to be far from zero otherwise.

This way of looking at specification testing is just an example of what it is
sometimes referred to as ‘specification testing via m-tests’. The m-testing framework
provides a very powerful unified framework for specification testing. Virtually all
specification tests – actually most usual tests– may indeed be viewed as m-tests.
The m-testing framework was first suggested by Newey (1985) and Tauchen (1985)
for the detection of misspecification in the context of maximum likelihood models. It
has been further developed by White (1987, 1990, 1994), Wooldridge (1990, 1991a,
1991b) and Bollerslev-Wooldridge (1992). Related works may be found in Bierens
(1994), among others.

Testing that the model is in addition also correctly specified for the conditional
variance may be performed along the same lines. The null hypothesis is now equiv-
alent to the null

Hv
0 : E(uot |Xt) = 0 and E [vec(uotu

o′
t − Ωo

t )|Xt] = 0 for some θo ∈ Θ, t = 1, 2, ...

Given the nested nature of Hm
0 and Hv

0, according to the sequential “bottom-
up” model construction/specification testing strategy evoked in the introduction, it
seems sensible to emphasize the construction of statistics for testing departures from
E [vec(uotu

o′
t −Ωo

t )|Xt] = 0, i.e., the conditional variance, letting first order correct
specification test statistics to take care of detecting departures from Hm

0 .

So, as above, if Hv
0 is true, for any “regular” G2 × q matrix functions F v

t (Xt)
depending on Xt – and again possibly on some vector of nuisance parameters –,
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we must have that

E
[
F v
t (Xt)

′ vec(uotu
o′
t − Ωo

t )
]
= 0, t = 1, 2, ...

and this similarly suggests looking at the empirical covariances

Φ̂n =
1

n

n∑
t=1

F v
t (Xt)

′ vec(ûtû
′

t − Ω̂t)

θ̂
n
being a consistent estimator of θo under Hv

0.

The implementation of the above specification testing scheme requires three
ingredients. First consistent estimators under the null hypotheses. Although they
are by no means the only possible ones, GRPML2 provides such estimators.

Secondly relevant choices for the matrix functions Fm
t and F v

t . The choice of the

misspecification indicators Φ̂n is of course crucial : it determines the directions of
the departures from the null in which the tests will have power. Appropriate choices
of misspecification indicators, in particular as they follow from a variety of popular
specification tests, are provided in Section 2.5 and 2.6, for respectively conditional
mean and conditional variance testing.

The last needed ingredient is a statistical decision rule for deciding how far
from zero a value of the misspecification indicator Φ̂n constitutes an evidence of
misspecification. This question of how far from zero is too far may be answered
asymptotically by finding the limiting distribution of Φ̂n. That is the purpose of
next section.

2.4. The m-testing / Wooldridge’s modified

m-testing framework

In this section, we outline abstract results following from the m-testing frame-
work and adapted to our testing problem. We will make use of them in Section 2.5
and 2.6.

According to the previous section, as a general setting, suppose that interest lies
in testing the null hypothesis

H0 : E [rt (Yt, Xt, ϕ
o) |Xt] = 0 for some ϕo ∈ Θϕ, t = 1, 2, ...

where the possibly time-varying functions rt are known l× 1 vector functions of the
data and some kϕ × 1 vector of parameters.

As it will be shown to be relevant below, following Wooldridge (1990), consider
testing H0 through q × 1 empirical moment restrictions of the form

Φ̂n =
1

n

n∑
t=1

φt (Yt,Xt, ϕ̂n, π̂n)
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=
1

n

n∑
t=1

Wt (Xt, ϕ̂n, π̂n)
′ Λt(Xt, ϕ̂n, π̂n)

−1rt (Yt, Xt, ϕ̂n) (2.5)

where the functions Wt are known l×q matrix functions which may depend on t, the
functions Λt are known l × l matrix functions which may also depend on t and are
symmetric positive definite, ϕ̂n is a n-root consistent estimator of ϕo under H0 and
π̂n is assumed to be, under H0, a n-root consistent estimator of some non-stochastic
sequence of kπ × 1 vectors of pseudo-true values {π∗n : n = 1, 2, ...}. Note that the
π∗n need not have any meaningful interpretation under H0. Hereafter, we will refer
to the Wt as the indicator matrices, to the Λt – which could simply be identity
matrices – as the weighting matrices, and to π as the nuisance parameters.

Following the White’s (1987, 1990, 1994) general treatment of m-testing, to use

Φ̂n as a basis for testing the null H0 entails finding the limiting distribution of
√
nΦ̂n

under H0. Under usual regularity conditions, a standard mean value expansion of√
nΦ̂n around (ϕo′, π∗′n )

′ yields

√
nΦ̂n =

√
nΦo∗

n +Go∗
nϕ

√
n (ϕ̂n − ϕo) +Go∗

nπ

√
n (π̂n − π∗n) + oPo(1) (2.6)

where

Φo∗
n =

1

n

n∑
t=1

φo∗t , φo∗t = φt (Yt, Xt, ϕ
o, π∗n)

Go∗
nϕ =

1

n

n∑
t=1

E

[
∂φo∗t
∂ϕ′

]
and Go∗

nπ =
1

n

n∑
t=1

E

[
∂φo∗t
∂π′

]
Letting W o∗

t , Λo∗
t , and rot respectively denote Wt (Xt, ϕ

o, π∗n), Λt(Xt, ϕ
o, π∗n) and

rt (Yt, Xt, ϕ
o), and recalling that vec (ABC) = (C ′ ⊗ A) vecB, we have

∂φo∗t
∂ϕ′

= W o∗′
t Λo∗−1

t

∂rot
∂ϕ′

+ (ro′t ⊗ Il)
∂

∂ϕ′

[
vec

(
W o∗′

t Λo∗−1

t

)]
(2.7)

∂φo∗t
∂π′

= (ro′t ⊗ Il)
∂

∂π′

[
vec

(
W o∗′

t Λo∗−1

t

)]
(2.8)

Further, assuming that the l × kϕ matrix functions Rt of conditional expectations

Rt (Xt, ϕ
o) = E

[
∂rt (Yt, Xt, ϕ

o)

∂ϕ′

∣∣∣∣Xt

]
, t = 1, 2, ... (2.9)

are of known form under H0, since E(rot |Xt) = 0, from (2.7) and (2.8), applying the
law of iterated expectations, we get

Go∗
nϕ =

1

n

n∑
t=1

E
[
W o∗′

t Λo∗−1

t Ro
t

]
and Go∗

nπ = 0 (2.10)

where Ro
t = Rt(Xt, ϕ

o). (2.6) then collapses to

√
nΦ̂n =

√
nΦo∗

n +Go∗
nϕ

√
n (ϕ̂n − ϕo) + oPo(1) (2.11)

According to (2.11), the limiting distribution of
√
nΦ̂n under H0 thus depends
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on the limiting distribution of the estimator ϕ̂n but not on the one of the nuisance
parameters estimator π̂n. It however depends on the pseudo-true values π∗n.

As it will again be shown to be relevant below – GRPML2 estimators indeed
satisfy such a condition – let us further assume that the n-root consistent estimator
ϕ̂n of ϕo satisfies the first order expansion

√
n (ϕ̂n − ϕo) = −

(
1

n

n∑
t=1

E
[
Ro′
t Λ

o∗−1

t Ro
t

])−1

n−1/2
n∑
t=1

R̂′

tΛ̂
−1
t r̂t + oPo(1) (2.12)

where, R̂t = Rt (Xt, ϕ̂n), Λ̂t = Λt(Xt, ϕ̂n, π̂n) and r̂t = rt (Yt,Xt, ϕ̂n) . (2.12) is
typically satisfied when

n∑
t=1

Rt(Xt, ϕ)
′Λt(Xt, ϕ, π̂n)

−1rt (Yt, Xt, ϕ) = 0 (2.13)

are the first order conditions that defines ϕ̂n.

Substituting (2.10) and (2.12) into (2.11), we get

√
nΦ̂n = n−1/2

n∑
t=1

(W o∗
t −Ro

tP
o∗
n )′ Λo∗−1

t rot + oPo(1)

= n−1/2
n∑
t=1

ξo∗t + oPo(1) (2.14)

where

ξo∗t = (W o∗
t −Ro

tP
o∗
n )′ Λo∗−1

t rot

P o∗
n =

(
n∑
t=1

E
[
Ro′
t Λ

o∗−1

t Ro
t

])−1 n∑
t=1

E
[
Ro′
t Λ

o∗−1

t W o∗
t

]
Usually, a central limit theorem will ensure that the sum n−1/2

∑n
t=1 ξ

o∗
t is as-

ymptotically normal with zero mean and covariance matrix Ko∗
n . Then, under stan-

dard regularity conditions, a test of H0 may be based on the asymptotic chi-square
statistic

Mn = nΦ̂′

nK̂
−1
n Φ̂n

d→ χ2(q)

where K̂n is a consistent estimator of

Ko∗
n =

1

n

n∑
t=1

E [ξo∗t ξo∗′t ] +
1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
ξo∗t ξo∗′t−τ

]
+ E

[
ξo∗t−τξ

o∗′
t

])
The validity of the test statistic Mn crucially relies on the assumed limiting

distribution property (2.12) for the estimator ϕ̂n.Wooldrige (1990) proposed a clever
modification of the above m-testing scheme which allows to perform the testing
of H0 without having to worry about the limiting distribution properties of the
estimator used to estimate ϕo under the null. Its basic idea is to modify the original
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misspecification indicator Φ̂n in order to get rid of its influence.

Wooldridge (1990) considers the modified misspecification indicator

Φ̂w
n =

1

n

n∑
t=1

φwt (Yt, Xt, ϕ̂n, π̂n)

=
1

n

n∑
t=1

(
Wt (Xt, ϕ̂n, π̂n)−Rt (Xt, ϕ̂n) P̂n

)
′

Λt(Xt, ϕ̂n, π̂n)
−1rt (Yt, Xt, ϕ̂n)

where

P̂n =

(
n∑
t=1

R̂′

tΛ̂
−1
t R̂t

)
−1 n∑

t=1

R̂′

tΛ̂
−1
t Ŵt

with Ŵt = Wt (Xt, ϕ̂n, π̂n), the other quantities having already been defined.

The fundamental result regarding this modified misspecification indicator is that
if we apply essentially the same reasoning than above (with P̂n viewed as an ad-
ditional nuisance parameter), according to Theorem 2.1 of Wooldridge (1990) (see
also White (1994)), we now get that

√
nΦ̂w

n =
√
nΦ̂wo∗

n + oPo(1) (2.15)

where

Φ̂wo∗

n =
1

n

n∑
t=1

φw
o∗

t , φw
o∗

t = φwt (Yt, Xt, ϕ
o, π∗n) = (W o∗

t −Ro
tP

o∗
n )′ Λo∗−1

t rot

i.e.,
√
nΦ̂w

n = n−1/2
n∑
t=1

ξo∗t + oPo(1) (2.16)

In other words, according to (2.15), and unlike
√
nΦ̂n – see equation (2.11) –,

the limiting distribution of
√
nΦ̂w

n does no longer depends on the limiting distribution
of the estimator used to estimate ϕo under the null. Further, comparing (2.14) and

(2.16), it appears that
√
nΦ̂w

n and
√
nΦ̂n are asymptotically equivalent – obviously

under the null, but also under local alternatives, see Wooldrige (1990) – while they

(trivially) are numerically equal if both Φ̂w
n and Φ̂n are computed at an estimator

ϕ̂n which satisfies the first order conditions (2.13).

So, from (2.16) and provided that standard regularity conditions hold, a test of
H0 may alternatively be based on the asymptotic chi-square statistic

Mw
n = nΦ̂w′

n K̂
−1

n Φ̂w
n

d→ χ2(q)

Now, unlike Mn, Mw
n is valid whatever the n-root consistent estimator used to

estimate ϕo under the null.

To sum up, any test of H0 originally intended to be performed based on a mis-
specification indicator of the kind of Φ̂n and using an estimator ϕ̂n of ϕo satisfying
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the first order expansion (2.12), so that Mn is the relevant “standard” m-test sta-
tistic, may equivalently – from a local alternatives point of view – be undertaken
through the Wooldridge’s modified Mw

n statistic using any n-root consistent esti-
mator of ϕo under the null. Further, if the estimator ϕ̂n also satisfies the first order

conditions (2.13) and the same estimator K̂n of Ko∗
n is used, then Mw

n evaluated at
ϕ̂n will yield a statistic numerically equal – and thus trivially also equivalent under
global alternatives – to Mn. In this case, Mw

n then appears as a particular way
to compute Mn which has the additional property to remain valid – and locally
equivalent to Mn – when evaluated at any alternative n-root consistent estimator
of ϕo. Mw

n is thus in this case particularly appealing. This are exactly the situations
that we will encounter hereafter.

2.5. Testing the conditional mean

In this section, we are concerned with testing the null that the conditional mean
is correctly specified, i.e., testing the null

Hm
0 : E (Yt|Xt) = mt(Xt, θ

o
1) for some θo1 ∈ Θ1, t = 1, 2, ...

against the alternative
Hm
1 : Hm

0 is false

Hereafter, we outline misspecification indicators suitable for testing Hm
0 against

auxiliary nested alternatives, auxiliary non-nested alternatives, as well as for testing
Hm
0 without resorting to explicit alternatives. As an extension, misspecification

indicators for testing the dynamic completeness of the conditional mean specification
are also discussed.

All considered misspecification indicators are special cases – for various choices
of Ŝn and Wm

t – of

Φ̂
m

n = ŜnΦ̂
m
n (2.17)

where

Φ̂m
n =

1

n

n∑
t=1

Wm
t (Xt, θ̂1n, θ̂2n, γ̂n)

′Ωt(Xt, θ̂2n)
−1ut(Yt, Xt, θ̂1n) (2.18)

ut(Yt, Xt, θ̂1n) = Yt −mt(Xt, θ̂1n), the W
m
t are G× q indicator matrix functions, θ̂1n

and θ̂2n are the GRPML2 estimators of model S, γ̂n is, under Hm
0 , a n-root consistent

estimator of some non-stochastic sequence of kγ × 1 vectors of pseudo-true values

{γ∗n : n = 1, 2, ...} and Ŝn is a stochastic p × q (p ≤ q) selection matrix converging
in probability under Hm

0 to some non-stochastic sequence {S∗

n : n = 1, 2, ...} .
Φ̂m
n is obviously a special case of (2.5) with r̂t = ût = ut(Yt, Xt, θ̂1n), Λ̂t =

Ω̂t = Ωt(Xt, θ̂2n), Ŵt = Ŵm
t = Wm

t (Xt, θ̂1n, θ̂2n , γ̂n), ϕ̂n = θ̂1n , π̂n =
(
θ̂
′

2n
, γ̂′n

)
′

–

the vector of variance parameters θ2 thus appears as a nuisance parameter – and
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l = G. The matrices Rt of conditional expectations (2.9) are here equal to

Rt (Xt, θ
o
1) = E

[
∂ut (Yt, Xt, θ

o
1)

∂θ′1

∣∣∣∣Xt

]
= −∂mt (Xt, θ

o
1)

∂θ′1

In view of (2.1) and (2.3), it is easily seen that the GRPML2 mean parameters esti-

mator θ̂1n satisfies both the first order expansion (2.12) and the first order conditions
(2.13). An Mw

n -like test statistic is thus the most appealing to look at. Using the

general results of Section 2.4, and noting that, because Ŝn − S∗

n = oPo(1), we have

Ŝn

√
nΦ̂mw

n = S∗

n

√
nΦ̂mw

n + oPo(1)

it may be readily checked that the relevant Mw
n -like statistic for testing Hm

0 based

on Φ̂
m

n is given by

Mmw

n = nΦ̂mw
′

n Ŝ
′

n

[
ŜnK̂

m
n Ŝ

′

n

]
−1

ŜnΦ̂
mw

n
d→ χ2(p) (2.19)

where

Φ̂mw

n =
1

n

n∑
t=1

ξ̂
m

t =
1

n

n∑
t=1

(
Ŵm

t − R̂m
t P̂

m
n

)
′

Ω̂−1
t ût

with2

R̂m
t =

∂mt(Xt, θ̂1n)

∂θ′1
, P̂m

n =

(
n∑
t=1

R̂m′

t Ω̂−1
t R̂m

t

)
−1 n∑

t=1

R̂m′

t Ω̂−1
t Ŵm

t

and K̂m
n is a consistent estimator of

Kmo∗

n =
1

n

n∑
t=1

E
[
ξm

o∗

t ξm
o∗
′

t

]
+

1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
ξm

o∗

t ξm
o∗
′

t−τ

]
+ E

[
ξm

o∗

t−τ ξ
mo∗

′

t

])
where

ξm
o∗

t =
(
Wmo∗

t −Rmo

t Pmo∗

n

)′
Ω∗

−1

t uot

Wmo∗

t = Wm
t

(
Xt, θ

o
1, θ

∗

2n
, γ̂∗n

)
, Rmo

t =
∂mt(Xt, θ

o
1)

∂θ′1

Pmo∗

n =

(
n∑
t=1

E
[
Rmo

′

t Ω∗
−1

t Rmo

t

])−1 n∑
t=1

E
[
Rmo

′

t Ω∗
−1

t Wmo∗

t

]

Evaluated at θ̂1n (and any given π̂n = (θ̂
′

2n
, γ̂′n)

′

), Mmw

n is identical to its stan-

dard Mn-like counterpart – obtained by replacing Φ̂mw

n by Φ̂m
n in (2.19) – and re-

mains valid and asymptotically locally equivalent to it whatever the n-root consistent

estimator used to estimate θo1 (and π̂∗n =
(
θ̂
∗′

2n
, γ̂∗′n

)
′

). Because the asymptotic behav-

ior ofMmw

n depends on the nuisance parameters pseudo-true values π̂∗n =
(
θ̂
∗′

2n
, γ̂∗′n

)
′

,

2Note that changing the sign of ˆR
m
t does not affect the product ˆR

m
t
ˆP
m
n .
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remark that not using the GRPML2 estimator θ̂n =
(
θ̂
′

1n
, θ̂

′

2n

)
′

will however usually

yield a different – although valid – test statistic since, if the conditional variance

{Ωt(Xt, θ2)} is misspecified, θ̂
∗

2n
itself depends on the chosen alternative estimator

used for its estimation. The same is obviously true for the other nuisance parameters
vector γ.

In the general case, obtaining a consistent estimator of Kmo∗

n entails the same
difficulties than those evoked in Chapter 1 regarding consistent estimation of the
variance B∗

n of the score of RPML2 estimators. We shall not discuss them here. As
in Chapter 1, we refer the reader to White (1994), Wooldridge (1994) or Pötscher-
Prucha (1997) for both a general discussion and references.

Getting a consistent estimator of Kmo∗

n is considerably simplified if model S is
dynamically complete for conditional mean (first order dynamically complete), i.e.,
if we have that

E (Yt|Xt) = E (Yt|Xt,Ψt−1) , t = 1, 2, ... (2.20)

where Ψt−1 ≡ (Yt−1, Xt−1, ..., Y1, X1) is the information available at time t−1. When
(2.20) holds, under Hm

0 , u
o
t is a martingale difference sequence with respect to {Ψt},

and thus so does ξm
o∗

t , so that ξm
o∗

t is uncorrelated with its past values. Kmo∗

n then
collapses to

K
mo∗

n =
1

n

n∑
t=1

E
[
ξm

o∗

t ξm
o∗
′

t

]
and, under usual regularity conditions, a consistent estimator of it is simply given
by

1

n

n∑
t=1

ξ̂
m

t ξ̂
m′

t (2.21)

The auxiliary assumption (2.20) trivially holds if the observations are indepen-
dent across t as in cross-section or panel data. Note that whenever (2.20) holds,
Mmw

n may be computed as n minus the residual sum of squares (= nR2
u, R

2
u being

the uncentered R-squared) of the OLS regression

1 =
[
û′tΩ̂

−1/2
t Ω̂

−1/2
t

(
Ŵm

t − R̂m
t P̂

m
n

)
Ŝ
′

n

]
b+ residuals, t = 1, 2, ...

where the Ω̂
−1/2
t

(
Ŵm

t − R̂m
t P̂

m
n

)
Ŝ
′

n may themselves be computed as the G × p

matrix residuals of the OLS multivariate regression

Ω̂
−1/2
t Ŵm

t Ŝ
′

n =
[
Ω̂
−1/2
t R̂m

t

]
P + residuals, t = 1, 2, ...

This way of computing Mmw

n is particularly convenient in the univariate case.

Its second step is however is less appealing in the multivariate case, unless Ω̂
−1/2
t

has a simple form.
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2.5.1. Testing against nested alternatives

The most popular way to perform specification testing is to embed the model of
interest in a more general auxiliary model in such a way that the former appears as
a special case of latter when some parameter restrictions hold. The adequacy of the
null model may then be assessed by checking through a Lagrange Multiplier (LM)
or score type test if these restrictions are congruent with the data. The classical LM
approach to misspecification testing is extensively treated in Godfrey (1988). The
general model is labelled ‘auxiliary’ in the sense that it is usually instrumental : it is
selected in the hope of obtaining reasonable power against departures from the null
which are in its ‘direction’ or ‘neighborhood’. It is only used as an auxiliary nested
alternative.

A convenient and useful form for such an auxiliary nested alternative to the null
conditional mean specification is

Hm′

1 : E (Yt|Xt) = ma
t (Xt, θ

o
1, α

o) for some (θo′1 , α
o′)

′ ∈ Θ1 ×Θα, t = 1, 2, ...

where α is a kα × 1 vector of auxiliary mean parameters, and for some constant
vector c ∈ Θα, we have

ma
t (Xt, θ1, c) = mt(Xt, θ1), t = 1, 2, ...

Testing the null Hm
0 against Hm

1 using the auxiliary alternative Hm′

1 now means
testing the null that αo = c. Based on the GRPML2 estimator – actually on any
RPML2 estimator –, a LM-type test of Hm

0 against the auxiliary alternative Hm′

1

yields the misspecification indicator

Φ̂n =
∂La

n(Y
n, Xn, θ̂1n, c, θ̂2n)

∂α

=
1

n

n∑
t=1

∂ma
t (Xt, θ̂1n, c)

′

∂α
Ωt(Xt, θ̂2n)

−1
(
Yt −ma

t (Xt, θ̂1n, c)
)

=
1

n

n∑
t=1

∂ma
t (Xt, θ̂1n, c)

′

∂α
Ωt(Xt, θ̂2n)

−1
(
Yt −mt(Xt, θ̂1n)

)
=

1

n

n∑
t=1

∂ma
t (Xt, θ̂1n, c)

′

∂α
Ωt(Xt, θ̂2n)

−1ut(Yt, Xt, θ̂1n)

where La
n(Y

n, Xn, θ1, α, θ2) =
1
n

∑n
t=1 ln f (Yt, m

a
t (Xt, θ1, α),Ωt (Xt, θ2)) .

Φ̂n may then be checked through the Mmw

n statistic (2.19) by setting Ŝn = Iq,

Ŵm
t = ∂ma

t
(Xt,θ̂1n ,c)

∂α′
and p = q = kα. The obtained test statistic is valid regardless

of distributional and/or conditional variance misspecification and may in addition
be implemented using any n-root consistent estimator of the parameters θ1 and θ2.
Thus, if we except standard regularity conditions, the validity of the test requires
no more than just the null hypothesis of interest Hm

0 . Using a plausible specification
for the second order conditional moments is just a way (or an attempt) to boost the
power of the test. Under correct specification of the conditional variance, the test
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is asymptotically equivalent to the (non-robust to second order misspecification)
Engle’s (1982,1984) classical LM testing procedures. Note finally that αo = c is
allowed to be on the boundary of its parameter space Θα.

2.5.2. Testing against non-nested alternatives

Rather than testing the null Hm
0 against an auxiliary nested alternative, we

may wish to test it against a non-nested auxiliary model. Let such an auxiliary
non-nested alternative to the null conditional mean specification be

Hm′

1 : E (Yt|Xt) = µt(Xt, β
o) for some βo ∈ Θβ, t = 1, 2, ...

where β is a kβ × 1 vector of parameters, and suppose that some n-root consis-

tent estimator β̂n of βo under Hm′

1 is available. It may be, but need not to be, a

GRPML2 estimator. Provided that usual regularity conditions hold, under Hm
0 , β̂n

will converge to some non-stochastic sequence of kβ×1 vectors of pseudo-true values
{β∗n : n = 1, 2, ...}.

Non-nested hypotheses testing may be performed along different lines (see for
example Gourieroux-Monfort (1989)). This simplest and most popular one is due to
Davidson-Mackinnon (1981). Its basic idea is to transform the non-nested hypothe-
ses testing problem into a nested one by resorting to an artificial compound model.
Consider the auxiliary artificially nested alternative

Hm′′

1 : E (Yt|Xt) = (1− λo)mt(Xt, θ
o
1) + λoµt(Xt, β

o) for some (θo′1 , λ
o, βo′)

′ ∈ Θa,

t = 1, 2, ..., where λ is a scalar parameter and Θa = Θ1 ×Θλ ×Θβ.

Now, similarly to the previous section, testing the null Hm
0 against Hm

1 using the
artificial auxiliary alternative Hm′′

1 means testing the null that λo = 0. We however
face a new problem : under Hm

0 , β
o is not identified. Following Davidson-Mackinnon

(1981), this may be overcome by using its consistent estimator β̂n under H
m′

1 . Putting
this trick into service, based on the GRPML2 estimator, a LM-like test of Hm

0 against
the artificial auxiliary alternative Hm′′

1 yields the scalar misspecification indicator

Φ̂n =
∂La

n(Y
n,Xn, θ̂1n, 0, β̂n, θ̂2n)

∂λ

=
1

n

n∑
t=1

∂ma
t (Xt, θ̂1n, 0, β̂n)

′

∂λ
Ωt(Xt, θ̂2n)

−1
(
Yt −ma

t (Xt, θ̂1n, 0, β̂n)
)

=
1

n

n∑
t=1

(
µt(Xt, β̂n)−mt(Xt, θ̂1n)

)
′

Ωt(Xt, θ̂2n)
−1
(
Yt −mt(Xt, θ̂1n)

)
=

1

n

n∑
t=1

(
µt(Xt, β̂n)−mt(Xt, θ̂1n)

)
′

Ωt(Xt, θ̂2n)
−1ut(Yt,Xt, θ̂1n)

where La
n(Y

n, Xn, θ1, λ, β, θ2) = 1
n

∑n
t=1 ln f (Yt, m

a
t (Xt, θ1, λ, β),Ωt (Xt, θ2)) with

ma
t (Xt, θ1, λ, β) = (1− λ)mt(Xt, θ1) + λµt(Xt, β).
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As above, Φ̂n may be checked through the Mmw

n statistic (2.19) by setting

Ŝn = 1, Ŵm
t = µt(Xt, β̂n) −mt(Xt, θ̂1n) and p = q = 1. Likewise, the test statistic

is robust to distributional and/or conditional variance misspecification and may be

implemented using any n-root consistent estimator of θ1, θ2 and β. Note that Φ̂n

is the misspecification indicator which naturally arises from the Cox (1961,1962)
procedure for testing gaussian models with non-nested mean and identical variance
(see White (1994)).

2.5.3. Testing without explicit alternatives : Hausman and

information matrix type tests

Relevant auxiliary alternatives to Hm
0 are not always obvious. On the other

hand, we might wish to test Hm
0 without resorting to such explicit alternatives, in

hope of getting power against a broader, less targeted, spectrum of departures from
the null. The standard way to do that is based on the Hausman (1978) approach to
specification testing. It may also be done by resorting to White (1982) information
matrix type tests.

2.5.3.1. Hausman type tests

If S is correctly specified for the conditional mean, two different consistent esti-
mators of θo1, say θ̂1n and an other n-root consistent estimator θ̂1n, should give about
the same results. If they do not, then misspecification is evident. This suggests that
a test of Hm

0 may be based on a misspecification indicator of the form

Φ̂n = S(θ̂1n − θ̂1n) (2.22)

where the p × kθ1 (p ≤ kθ1) non-stochastic selection matrix S allows to focus on

particular elements or linear combinations of elements of (θ̂1n − θ̂1n). A test based

on Φ̂n will have power against any alternative Hm
1 for which θ̂1n and θ̂1n converge to

different pseudo-true values.

A natural candidate for θ̂1n is the GRPML2 mean estimator – or equivalently
a QGPML1 estimator – of the model

S ≡
{

{mt(Xt, θ1) : θ1 ∈ Θ1}
{Σt(Xt, δ) : δ ∈ Θδ}

, t = 1, 2, ...

where the G × G (symmetric positive definite) matrix functions Σt are alternative
specifications for the conditional variances V (Yt|Xt) and δ is a kδ × 1 vector of
parameters which varies independently of θ1. Let {δ∗n : n = 1, 2, ...} denote the non-
stochastic sequence of vectors of pseudo-true values to which the GRPML2 – or the
auxiliary variance parameters estimator associated to QGPML1– n-root consistent
estimator δ̂n converges under Hm

0 .

The misspecification indicator (2.22) is not precisely of our standard form (2.17).
However, following White (1982,1994) (see also Ruud (1984)), a misspecification
indicator of the form (2.17) yielding a test asymptotically equivalent to the one
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which could directly be obtained from (2.22) may be derived.

According to (2.3), the score associated to θ̂1n is given by

1

n

n∑
t=1

s1t (θ̂1n, δ̂n) =
1

n

n∑
t=1

∂mt(Xt, θ̂1n)
′

∂θ1
Σt(Xt, δ̂n)

−1ut(Yt,Xt, θ̂1n) = 0 (2.23)

Now, consider evaluating the score (2.23) associated to θ̂1n at θ̂1n . Under Hm
0

and usual regularity conditions, using standard arguments, a mean value expansion

of n−1/2
∑n

t=1 s
1
t (θ̂1n, δ̂n) at

(
θ̂
′

1n, δ̂
′

n

)
′

gives

n−1/2
n∑
t=1

s1t (θ̂1n, δ̂n) = n−1/2
n∑
t=1

s1t (θ̂1n , δ̂n) + A∗

n11

√
n(θ̂1n − θ̂1n) + oPo(1)

where

A∗

n11
=

1

n

n∑
t=1

E

[
∂s1t (θ

o
1, δ

∗

n)

∂θ′1

]
= −1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Σ∗

−1

t

∂mo
t

∂θ′1

]
, Σ∗

t = Σt(Xt, δ
∗

n)

or, given (2.23),

√
n(θ̂1n − θ̂1n) = A∗

−1

n11
n−1/2

n∑
t=1

s1t (θ̂1n, δ̂n) + oPo(1)

and further,
√
n(θ̂1n − θ̂1n) = Â

−1

n11
n−1/2

n∑
t=1

s1t (θ̂1n, δ̂n) + oPo(1) (2.24)

where

Ân11 = −1

n

n∑
t=1

∂mt(Xt, θ̂1n)
′

∂θ1
Σt(Xt, δ̂n)

−1∂mt(Xt, θ̂1n)

∂θ′1

According to (2.22) and (2.24), we thus have

√
nΦ̂n = S

√
n(θ̂1n − θ̂1n) = SÂ

−1

n11
n−1/2

n∑
t=1

s1t (θ̂1n, δ̂n) + oPo(1)

In other words, a test based on Φ̂n may, from an asymptotic point of view,
equivalently be based on the misspecification indicator

Φ̂h
n = SÂ

−1

n11

1

n

n∑
t=1

∂mt(Xt, θ̂1n)
′

∂θ1
Σt(Xt, δ̂n)

−1ut(Yt, Xt, θ̂1n) (2.25)

= SÂ
−1

n11

1

n

n∑
t=1

∂mt(Xt, θ̂1n)
′

∂θ1
Σt(Xt, δ̂n)

−1Ωt(Xt, θ̂2n)Ωt(Xt, θ̂2n)
−1ut(Yt, Xt, θ̂1n)
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Φ̂h
n may here be checked through the Mmw

n statistic (2.19) by setting Ŝn =

S
(
1
n

∑n
t=1

∂mt(Xt,θ̂1n )
′

∂θ1
Σt(Xt, δ̂n)

−1 ∂mt(Xt,θ̂1n)
∂θ′

1

)
−1

and Ŵm
t = Ωt(Xt, θ̂2n)Σt(Xt, δ̂n)

−1

∂mt(Xt,θ̂1n )
∂θ′

1

. As all Mmw

n statistic, the validity of this Hausman type test requires no

more than just the null hypothesis of interest Hm
0 and, although quite paradoxical

for such a type of test, it may be implemented using any n-root consistent estimator
of the parameters θ1, θ2 and δ. The test statistic is asymptotically equivalent to
comparing (some linear combination S of) two multivariate weighted nonlinear least
squares (MWNLS) estimators of θo1, one with weights

{
Ωt(Xt, θ

∗

2n)
−1
}
and the other

with weights {Σt(Xt, δ
∗

n)
−1}. If the Σt(Xt, δ) are set equal to IG, θ̂1n is just the

standard (unweighted) multivariate nonlinear least squares estimator of θo1. In this
case, the implementation of the test requires no additional estimators than the ones
needed for estimating the null model. Note finally that if the selection matrix S is
set equal to Ikθ1 (or any other non-singular square matrix), then the entire term Ŝn

may be dropped from the statistic (where now p = q = kθ1) without affecting it.

2.5.3.2. Information matrix type tests

In Chapter 1 (Proposition 10), we saw that correct specification of the condi-
tional mean implies the block-diagonality between mean and variance parameters of
the expected hessian of RPML2 estimators, i.e., that

E

[
∂2Ln(Y

n, Xn, θ∗n)

∂θ1∂θ
′

2

]
= 0, θ∗n =

(
θo′1 , θ

∗′

2n

)
′

(2.26)

a feature which ensures that the asymptotic distribution of θ̂1n does not depend on
the fact that θ∗2n is estimated, and conversely.

This suggests that a test of Hm
0 might be based on checking that the empirical

counterpart of (2.26) is indeed close to zero. Let θr2 denote the r-th component of

θ2. Each of the kθ2 columns (r = 1, ..., kθ2) of
∂2

∂θ1∂θ
′

2

Ln(Y
n,Xn, θ) is given by

∂2Ln(Y
n, Xn, θ)

∂θ1∂θ
r
2

=
1

n

n∑
t=1

∂

∂θr2

[
∂mt(Xt, θ1)

′

∂θ1
Ωt(Xt, θ2)

−1ut(Yt,Xt, θ1)

]

=
1

n

n∑
t=1

∂mt(Xt, θ1)
′

∂θ1

∂Ωt(Xt, θ2)
−1

∂θr2
ut(Yt, Xt, θ1) (2.27)

= − 1

n

n∑
t=1

∂mt(Xt, θ1)
′

∂θ1
Ωt(Xt, θ2)

−1∂Ωt(Xt, θ2)

∂θr2
Ωt(Xt, θ2)

−1ut(Yt,Xt, θ1)
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Letting the G× kθ1kθ2 matrix functions Ft(Xt, θ1, θ2) be defined as

Ft(Xt, θ1, θ2)
′ =



∂mt(Xt,θ1)′

∂θ1
Ωt(Xt, θ2)

−1 ∂Ωt(Xt,θ2)

∂θ1
2

∂mt(Xt,θ1)′

∂θ1
Ωt(Xt, θ2)

−1 ∂Ωt(Xt,θ2)

∂θ2
2

...
∂mt(Xt,θ1)′

∂θ1
Ωt(Xt, θ2)

−1 ∂Ωt(Xt,θ2)

∂θ
kθ2

2

 , t = 1, 2, ...

a relevant misspecification indicator for checking (2.26) may be written

Φ̂n = S
1

n

n∑
t=1

Ft(Xt, θ̂1n, θ̂2n)
′Ωt(Xt, θ̂2n)

−1ut(Yt, Xt, θ̂1n)

where the p× kθ1kθ2 (p ≤ kθ1kθ2) non-stochastic selection matrix S allows to focus
on particular elements or linear combinations of elements of the second term which
is equal to vec(− ∂2

∂θ1∂θ
′

2

Ln(Y
n,Xn, θ̂n)).

Φ̂n may then be checked through theMmw

n statistic (2.19) by setting Ŝn = S and

Ŵm
t = Ft(Xt, θ̂1n , θ̂2n). As usual, only Hm

0 and n-root consistent estimators of the
parameters θ1 and θ2 are required for the test to be valid. The test statistic admits
a simple interpretation. Comparing (2.27) and (2.25), it is readily seen that for
S = I(kθ1×kθ2) it simply amounts to jointly performing kθ2 Hausman type tests, each

of which being asymptotically equivalent to comparing (with S = Ikθ1 ) the MWNLS

of θo1 with weights
{
Ωt(Xt, θ

∗

2n)
−1
}

and the MWNLS of θo1 with “endogeneously

determined” weights
{

∂
∂θr

2

[
Ωt(Xt, θ

∗

2n)
−1
]}

. The test statistic will thus have power

against any alternative Hm
1 for which at least one of these kθ2+1 estimators converge

to a pseudo-true value different from the one of the others. Note that such a test can
not always be undertaken. This is for example the case if the conditional variance
is specified as {Ωt(Xt, θ2) = σ2IG} .

2.5.4. Testing dynamic completeness

We saw in Chapter 1 (Proposition 12) that making inference about the mean pa-
rameters – which implies getting a consistent estimator of their asymptotic covari-
ance matrix – of a first order correctly specified semi-parametric model S estimated
by RPML2 is considerably simplified if the conditional mean is also dynamically
complete. Accordingly, we here concentrate on testing the null

Hmd
0 : Hm

0 holds and E (Yt|Xt) = E (Yt|Xt,Ψt−1) , t = 1, 2, ...

where, for the record, Ψt−1 ≡ (Yt−1, Xt−1, ..., Y1, X1) is the information available at
time t− 1.

As briefly discussed in Section 2.3 for the conditional variance, given the nested
nature of Hm

0 and Hmd
0 , according to Wooldridge’s (1991a) sequential “bottom-up”

model construction/specification testing strategy, it seems sensible to emphasize the
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construction of statistics that have power against the alternative

Hmd
1 : Hm

0 holds but Hmd
0 is false

Hmd
0 is equivalent to

Hmd
0 : E(Yt|Xt,Ψt−1) = mt(Xt, θ

o
1) for some θo1 ∈ Θ1, t = 1, 2, ...

From a testing point of view, Hmd
0 is not conceptually different from the Hm

0 :
it simply enlarges the information set with respect to which the conditional mean
{mt(Xt, θ1)} is assumed to be correctly specified. We may then proceed exactly
in the same way than above for testing Hm

0 . The only difference is that we may
now unambiguously – i.e., without relying on more assumptions than just the null
hypothesis of interest – take advantage of the fact that under Hmd

0 the simple
estimator (2.21) is consistent for the asymptotic covariance matrix Kmo∗

n .

The most general ways to check dynamic completeness of the conditional mean
are either to look at autocorrelation in the errors ut or to resort to aWhite (1987,1994)
dynamic information matrix type test.

Looking at a multivariate AR(κ) process for ut means using as an auxiliary
nested alternative to the null conditional mean specification

Hmd′
1 : E(Yt|Xt,Ψt−1) = mt(Xt, θ

o
1) +Do

1u
o
t−1 + ...+Do

κu
o
t−κ for some ao ∈ Θa,

t = 1, 2, ..., where κ ≥ 1 is a integer that determines the maximum autocorrelation
of ut to be examined, ao = (θo′1 , (vecD

o
1)
′, ..., (vecDo

κ)
′)
′

, Θa = Θ1 ×ΘD1
× ...×ΘDκ

and the Di, i = 1, ..., κ, are G ×G matrices of auxiliary mean parameters. Let for
now t = 1 denote the (κ+ 1)-th observation and define nκ = n− κ.

As in Section 2.5.1, testing the null Hmd
0 against Hmd

1 using the auxiliary alter-
native Hmd′

1 means testing the null that Do
1 = ... = Do

κ = 0. Based on the GRPML2
estimator, a LM-type test yields the misspecification indicator

Φ̂AR
nκ =

∂La
nκ(Y

n, Xn, θ̂1n, 0, ..., 0, θ̂2n)

∂ ((vecD1)′, ..., (vecDκ)′)
′

=
1

nκ

nκ∑
t=1

∂ma
t (Xt,Ψt−1, θ1, 0, ..., 0)

′

∂ ((vecD1)′, ..., (vecDκ)′)
′
Ωt(Xt, θ̂2n)

−1 (Yt −ma
t (Xt,Ψt−1, θ1, 0, ..., 0))

=
1

nκ

nκ∑
t=1

FAR
t (Xt,Ψt−1, θ̂1n)

′Ωt(Xt, θ̂2n)
−1
(
Yt −mt(Xt, θ̂1n)

)
=

1

nκ

nκ∑
t=1

FAR
t (Xt,Ψt−1, θ̂1n)

′Ωt(Xt, θ̂2n)
−1ut(Yt, Xt, θ̂1n)

where La
nκ(Y

n,Xn, θ1, D1, ...,Dκ, θ2) =
1
nκ

∑nκ
t=1 ln f(Yt, m

a
t (Xt,Ψt−1, θ1, D1, ..., Dκ),

Ωt(Xt, θ2)) with ma
t (Xt,Ψt−1, θ1,D1, ...,Dκ) = mt(Xt, θ1) + D1ut−1 + ... + Dκut−κ

and the G× κG2 matrix functions FAR
t (Xt,Ψt−1, θ1) are defined as

FAR
t (Xt,Ψt−1, θ1) =

(
u′t−1, ..., u

′

t−κ

)⊗ IG, t = 1, 2, ...
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with ut = ut(Yt,Xt, θ1).

As already outlined, under Hmd
0 , uot is a martingale difference sequence with

respect to {Ψt}, and thus so does the score s1∗t , so that s1∗t is uncorrelated with its
past values. Accordingly, for all κ ≥ 1, we must have

E
[
s1∗t

(
s1∗′t−1, ..., s

1∗′
t−κ

)]
= 0, t = 1, 2, ... (2.28)

Then, choosing some integer κ and vectorizing (2.28), a test of Hmd
0 may alter-

natively be based on the misspecification indicator

Φ̂IM
nκ =

1

nκ

nκ∑
t=1

F IM
t (Xt,Ψt−1, θ̂1n , θ̂2n)

′Ωt(Xt, θ̂2n)
−1ut(Yt,Xt, θ̂1n)

where the G× κk2θ1 matrix functions F IM
t (Xt,Ψt−1, θ1, θ2) are defined as

F IM
t (Xt,Ψt−1, θ1, θ2) =

∂mt(Xt, θ1)

∂θ′1

((
s1′t−1, ..., s

1′
t−κ

)⊗ Ikθ1

)
, t = 1, 2, ...

with s1t =
∂mt(Xt,θ1)′

∂θ1
Ωt(Xt, θ2)

−1ut(Yt,Xt, θ1).

Both Φ̂AR
nκ and Φ̂IM

nκ may be checked through the Mmw

n statistic (2.19) by set-

ting for Φ̂AR
nκ , Ŵ

m
t = FAR

t (Xt,Ψt−1, θ̂1n) and p = q = κG2, and for Φ̂IM
nκ , Ŵm

t =

F IM
t (Xt,Ψt−1, θ̂1n , θ̂2n) and p = q = κk2θ1. In both cases, Ŝn = Ip – if wished, a se-

lection matrix may straightforwardly be introduced –, n = nκ, t = 1 denotes the
(κ+1)-th observation and K̂m

n is the simple estimator (2.21). As usual, the test sta-
tistics are robust to distributional and/or conditional variance misspecification and
may be implemented using any n-root consistent estimator of θ1, θ2. The choice
between using Φ̂AR

nκ or Φ̂IM
nκ may be done on the grounds of computational conve-

nience but should also take into account their relative degree of freedom κG2 and
κk2θ1. When both are very large, it may be wise to resort to a selection matrix.

2.6. Testing the conditional variance

We now turn our attention to testing the correct specification of the conditional
variance. According to the Wooldridge’s (1991a) sequential “bottom-up” model
construction/specification testing strategy, this entails testing the null

Hv
0 : H

m
0 holds and V (Yt|Xt) = Ωt(Xt, θ

o
2) for some θo2 ∈ Θ2, t = 1, 2, ...

against the alternative

Hv
1 : H

m
0 holds but Hv

0 is false

As for conditional mean testing, hereafter, we outline misspecification indicators
suitable for testing Hv

0 against auxiliary nested alternatives, auxiliary non-nested
alternatives, as well as for testing Hv

0 without resorting to explicit alternatives.
Misspecification indicators for testing the dynamic completeness of the conditional
variance specification are also discussed.
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All considered misspecification indicators are special cases – for various choices
of Ŝn and W v

t – of

Φ̂
v

n = ŜnΦ̂
v
n (2.29)

where

Φ̂v
n =

1

n

n∑
t=1

W v
t (Xt, θ̂1n, θ̂2n , γ̂n)

′Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n, θ̂2n) (2.30)

vt(Yt,Xt, θ̂1n , θ̂2n) = vec
(
ut(Yt,Xt, θ̂1n)ut(Yt, Xt, θ̂1n)

′ −Ωt(Xt, θ̂2n)
)
, Γt(Xt, θ̂2n) =

Ωt(Xt, θ̂2n)⊗Ωt(Xt, θ̂2n)–note that Γ−1t = Ω−1
t ⊗Ω−1

t –, theW v
t areG2×q indicator

matrix functions, θ̂1n and θ̂2n are the GRPML2 estimators of the null model S, γ̂n
is, under Hv

0, a n-root consistent estimator of some non-stochastic sequence of kγ×1

vectors of pseudo-true values {γ∗n : n = 1, 2, ...} and Ŝn is a stochastic p× q (p ≤ q)
selection matrix converging in probability under Hv

0 to some non-stochastic sequence
{S∗

n : n = 1, 2, ...} .
Φ̂v
n is obviously again a special case of (2.5) with r̂t = v̂t = vt(Yt, Xt, θ̂1n, θ̂2n),

Λ̂t = Γ̂t = Γt(Xt, θ̂2n), Ŵt = Ŵ v
t = W v

t (Xt, θ̂1n, θ̂2n, γ̂n), ϕ̂n =
(
θ̂
′

1n , θ̂
′

2n

)
′

, π̂n = γ̂n

and l = G2. The matrices Rt of conditional expectations (2.9) are here equal to

Rt(Xt, θ
o
1, θ

o
2) =

[
R1
t (Xt, θ

o
1, θ

o
2)

... R2
t (Xt, θ

o
1, θ

o
2)

]
where

R1
t (Xt, θ

o
1, θ

o
2) = E

[
∂vt (Yt, Xt, θ

o
1, θ

o
2)

∂θ′1

∣∣∣∣Xt

]
= 0 (2.31)

R2
t (Xt, θ

o
1, θ

o
2) = E

[
∂vt (Yt, Xt, θ

o
1, θ

o
2)

∂θ′2

∣∣∣∣Xt

]
= −∂ vecΩt(Xt, θ

o
2)

∂θ′2
(2.32)

(2.31) follows from

∂vt (Yt,Xt, θ1, θ2)

∂θ′1
= (ut(Yt, Xt, θ1)⊗ IG) + (IG ⊗ ut(Yt,Xt, θ1))

∂mt(Xt, θ1)

∂θ′1

and the fact that, under Hv
0, E(uot |Xt) = 0.

According to the reasoning underlying (2.6)-(2.10)-(2.11), (2.31) means that

although θ1 does appear in v̂t, the limiting distribution of
√
nΦ̂v

n under Hv
0 does

actually not depend on the one of θ̂1n . In other words, in terms of (2.5), we may

proceed as if θ̂1n were actually known and fixed at θo1, and consequently redefine

ϕ̂n = θ̂2n , π̂n =
(
θ̂
′

1n, γ̂
′

n

)
′

, i.e., consider θ̂1n as a nuisance parameters vector.

Now, keeping this in mind – which implies that Rt (Xt, θ
o
1, θ

o
2) is redefined as

equal to R2
t (Xt, θ

o
1, θ

o
2) alone –, in view of (2.2) and (2.4), it is easily seen that the

GRPML2 mean parameters estimator θ̂2n satisfies both the first order expansion
(2.12) and the first order conditions (2.13). As for conditional mean testing, an
Mw

n -like test statistic is thus the most appealing to look at. Collecting all this,
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applying the same trick than in Section 2.5 and using the general results of Section
2.4, it may be readily checked that the relevant Mw

n -like statistic for testing Hv
0

based on Φ̂
v

n is given by

Mvw

n = nΦ̂vw′
n Ŝ

′

n

[
ŜnK̂

v
nŜ

′

n

]
−1

ŜnΦ̂
vw

n
d→ χ2(p) (2.33)

where

Φ̂vw

n =
1

n

n∑
t=1

ξ̂
v

t =
1

n

n∑
t=1

(
Ŵ v

t − R̂v
t P̂

v
n

)
′

Γ̂−1t v̂t

with3

R̂v
t =

∂ vecΩt(Xt, θ̂2n)

∂θ′2
, P̂ v

n =

(
n∑
t=1

R̂v′
t Γ̂

−1
t R̂v

t

)
−1 n∑

t=1

R̂v′
t Γ̂

−1
t Ŵ v

t

and K̂v
n is a consistent estimator of

Kvo∗

n =
1

n

n∑
t=1

E
[
ξv

o∗

t ξv
o∗
′

t

]
+

1

n

n−1∑
τ=1

n∑
t=τ+1

(
E
[
ξv

o∗

t ξv
o∗
′

t−τ

]
+ E

[
ξv

o∗

t−τξ
vo∗′
t

])
where

ξv
o∗

t =
(
W vo∗

t −Rvo

t P vo∗

n

)
′

Γo
−1

t vot

Γot = Γt(Xt, θ
o
2), vot = vt(Yt, Xt, θ

o
1, θ

o
2)

W vo∗

t = W v
t (Xt, θ

o
1, θ

o
2, γ̂

∗

n) , Rvo

t =
∂ vecΩt(Xt, θ

o
2)

∂θ′2

P vo∗

n =

(
n∑
t=1

E
[
Rvo′
t Γo

−1

t Rvo

t

])−1 n∑
t=1

E
[
Rvo′
t Γo

−1

t W vo∗

t

]

Evaluated at θ̂2n (and any given π̂n = (θ̂
′

1n , γ̂
′

n)
′

), Mvw

n is identical to its stan-

dard Mn-like counterpart – obtained by replacing Φ̂vw

n by Φ̂v
n in (2.33) – and

remains valid and asymptotically locally equivalent to it whatever the n-root con-
sistent estimator used to estimate θo2 (and π̂o∗n = (θo1, γ̂

∗′

n )
′

).

Here, a sufficient auxiliary assumption for Kvo∗

n to collapse to

K
vo∗

n =
1

n

n∑
t=1

E
[
ξv

o∗

t ξv
o∗
′

t

]
such that, under usual regularity conditions, the simple estimator

1

n

n∑
t=1

ξ̂
v

t ξ̂
v′

t (2.34)

is a consistent estimator of it, is that model S be second order dynamically complete,

3
As in Section 2.5, changing the sign of ˆR

v

t does not affect the product ˆR
v

t
ˆP
v

n .
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i.e., that we have

E (Yt|Xt) = E (Yt|Xt,Ψt−1) and V (Yt|Xt) = V (Yt|Xt,Ψt−1), t = 1, 2, ... (2.35)

Indeed, when (2.35) holds – it trivially does if the observations are independent
across t as in cross-section or panel data –, under Hv

0, v
o
t is a martingale difference

sequence with respect to {Ψt}, and thus so does ξv
o∗

t , so that ξv
o∗

t is uncorrelated
with its past values. In this case, as above, Mvw

n may be computed as n minus the
residual sum of squares (= nR2

u, R
2
u being the uncentered R-squared) of the OLS

regression

1 =
[
v̂′tΓ̂

−1/2
t Γ̂

−1/2
t

(
Ŵ v

t − R̂v
t P̂

v
n

)
Ŝ
′

n

]
b+ residuals, t = 1, 2, ...

where the Γ̂
−1/2
t

(
Ŵ v

t − R̂v
t P̂

v
n

)
Ŝ
′

n =
(
Ω̂
−1/2
t ⊗ Ω̂

−1/2
t

)(
Ŵ v

t − R̂v
t P̂

v
n

)
Ŝ
′

n may them-

selves be computed as the G2×p matrix residuals of the OLS multivariate regression(
Ω̂
−1/2
t ⊗ Ω̂

−1/2
t

)
Ŵ v

t Ŝ
′

n =
[(

Ω̂
−1/2
t ⊗ Ω̂

−1/2
t

)
R̂v
t

]
P + residuals, t = 1, 2, ...

This way of computing Mvw

n is again particularly convenient in the univariate
case. Its second step is however quite useless in the multivariate case.

2.6.1. Testing against nested alternatives

As for conditional mean testing, a convenient and useful auxiliary nested alter-
native to the null conditional variance specification is

Hv′
1 : V (Yt|Xt) = Ωa

t (Xt, θ
o
2, α

o) for some (θo′2 , α
o′)

′ ∈ Θ2 ×Θα, t = 1, 2, ...

where α is a kα × 1 vector of auxiliary variance parameters, and for some constant
vector c ∈ Θα, we have

Ωa
t (Xt, θ2, c) = Ωt(Xt, θ2), t = 1, 2, ...

such that testing the null Hv
0 against Hv

1 using the auxiliary alternative Hv′
1 means

testing the null that αo = c. Based on the GRPML2 estimator– here, using an other
RPML2 estimator would yield an other misspecification indicator –, a LM-type test
of Hv

0 against the auxiliary alternative Hv′
1 yields the misspecification indicator

Φ̂n =
∂La

n(Y
n, Xn, θ̂1n, θ̂2n , c)

∂α

=
1

n

n∑
t=1

∂
(
vecΩa

t (Xt, θ̂2n , c)
)
′

∂α
Γat (Xt, θ̂2n , c)

−1 vec(ûtû
′

t − Ωa
t (Xt, θ̂2n, c))

=
1

n

n∑
t=1

∂
(
vecΩa

t (Xt, θ̂2n , c)
)
′

∂α
Γt(Xt, θ̂2n)

−1 vec(ûtû
′

t −Ωt(Xt, θ̂2n))
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=
1

n

n∑
t=1

∂
(
vecΩa

t (Xt, θ̂2n , c)
)
′

∂α
Γt(Xt, θ̂2n)

−1vt(Yt, Xt, θ̂1n, θ̂2n)

where La
n(Y

n, Xn, θ1, θ2, α) = 1
n

∑n
t=1 ln f (Yt, mt(Xt, θ1),Ω

a
t (Xt, θ2, α)) and

Γat (Xt, θ2, α) = Ωa
t (Xt, θ2, α)⊗Ωa

t (Xt, θ2, α).

Φ̂n may then be checked through the Mvw

n statistic (2.33) by setting Ŝn = Iq,

Ŵ v
t = ∂ vecΩa

t
(Xt,θ̂2n ,c)

∂α′
and p = q = kα. The obtained test statistic is valid regardless

of distributional misspecification and may in addition be implemented using any n-
root consistent estimator of the parameters θ1 and θ2. Thus, if we except standard
regularity conditions, the validity of the test again requires no more than just the null
hypothesis of interest Hv

0. Under normality, the test is asymptotically equivalent to
the (non-robust to non-normality, or more precisely non-robust to departures from
the third and fourth order moments of the normal distribution) Breush-Pagan’s
(1980) classical second order gaussian LM testing procedures. Note finally that, as
above, αo = c is allowed to be on the boundary of its parameter space Θα. This
is especially useful in the present case since conditional variances necessarily imply
non-negativity restrictions, so that testing a null which lies on the boundary of Θα

is not seldom. A classical example is testing for one-way error components in panel
data.

2.6.2. Testing against non-nested alternatives

Consider the following auxiliary non-nested alternative to the null conditional
variance specification

Hv′
1 : V (Yt|Xt) = Σt(Xt, δ

o) for some δo ∈ Θδ, t = 1, 2, ...

where δ is a kδ × 1 vector of parameters, and suppose that some n-root consistent
estimator δ̂n of δo under Hv′

1 is available. It may be, but need not to be, a GRPML2

estimator. Provided that standard regularity conditions hold, under Hv
0, δ̂n will

converge to some non-stochastic sequence of kδ × 1 vectors of pseudo-true values
{δ∗n : n = 1, 2, ...}.

As in Section 2.5.2, this non-nested hypotheses testing problem may be trans-
formed into a nested one by resorting to the auxiliary artificially nested alternative

Hv′′
1 : V (Yt|Xt) = (1− λo)Ωt(Xt, θ

o
2) + λoΣt(Xt, δ

o) for some (θo′2 , λ
o, δo′)

′ ∈ Θa,

t = 1, 2, ..., where λ is a scalar parameter and Θa = Θ2 × Θλ × Θδ, such that
testing the null Hv

0 against Hv
1 using the artificial auxiliary alternative Hv′′

1 now
means testing the null that λo = 0. Putting the Davidson-Mackinnon (1981) trick
intended to overcome the non-identifiability of δo under Hv

0 into service, based on the
GRPML2 estimator, a LM-like test of Hv

0 against the artificial auxiliary alternative
Hm′′

1 yields the scalar misspecification indicator

Φ̂n =
∂La

n(Y
n, Xn, θ̂1n, θ̂2n0, δ̂n)

∂λ
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=
1

n

n∑
t=1

∂
(
vecΩa

t (Xt, θ̂2n , 0, δ̂n)
)
′

∂λ
Γat (Xt, θ̂2n, 0, δ̂n)

−1 vec(ûtû
′

t − Ωa
t (Xt, θ̂2n, 0, δ̂n))

=
1

n

n∑
t=1

(
vec(Σt(Xt, δ̂n)− Ωt(Xt, θ̂2n))

)
′

Γt(Xt, θ̂2n)
−1 vec(ûtû

′

t − Ωt(Xt, θ̂2n))

=
1

n

n∑
t=1

(
vec(Σt(Xt, δ̂n)− Ωt(Xt, θ̂2n))

)
′

Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n , θ̂2n)

where La
n(Y

n, Xn, θ1, θ2, λ, δ) = 1
n

∑n
t=1 ln f (Yt, mt(Xt, θ1),Ω

a
t (Xt, θ2, λ, δ)) with

Ωa
t (Xt, θ2, λ, δ) = (1−λ)Ωt(Xt, θ2)+λΣt(Xt, δ)) and Γat (Xt, θ2, λ, δ) = Ωa

t (Xt, θ2, λ, δ)
⊗Ωa

t (Xt, θ2, λ, δ) .

Contrary to the non-nested mean testing case, the misspecification indicator Φ̂n

is not the one which arises from the Cox (1961,1962) procedure for testing gaussian
models with identical mean and non-nested variance. The scalar misspecification
indicator arising from the Cox (1961,1962) approach is (see White (1994) and recall
that vec (ABC) = (C ′ ⊗ A) vecB, so that for any symmetric non-singular matrix
A, vecA−1 = (A−1 ⊗A−1) vecA)

Φ̂c
n =

1

n

n∑
t=1

(
vec(Σt(Xt, δ̂n)

−1 − Ωt(Xt, θ̂2n)
−1)

)
′

vt(Yt, Xt, θ̂1n , θ̂2n)

=
1

n

n∑
t=1

(
Γt(Xt, θ̂2n) vecΣt(Xt, δ̂n)

−1 − vecΩt(Xt, θ̂2n)
)
′

Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n , θ̂2n)

=
1

n

n∑
t=1

(
vec(Ωt(Xt, θ̂2n)Σt(Xt, δ̂n)

−1Ωt(Xt, θ̂2n)− Ωt(Xt, θ̂2n))
)
′

Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n , θ̂2n)

Tests of Hv
0 against H

v′
1 may be based on either Φ̂n or Φ̂c

n and performed through

Mvw

n statistic (2.33) by setting for Φ̂n, Ŵ
v
t = vec(Σt(Xt, δ̂n)− Ωt(Xt, θ̂2n)), and for

Φ̂c
n, Ŵ

v
t = vec(Ωt(Xt, θ̂2n)Σt(Xt, δ̂n)

−1Ωt(Xt, θ̂2n)−Ωt(Xt, θ̂2n)). In both cases, Ŝn =
1 and p = q = 1. Both test statistics are robust to distributional misspecification
and may be implemented using any n-root consistent estimator of θ1, θ2 and δ. We
may quite naturally expect tests based Φ̂c

n to be generally more powerful than tests

based on Φ̂n.

2.6.3. Testing without alternatives : Hausman and

information matrix type tests

As for the conditional mean, conditional variance testing without resorting to
explicit alternatives may be performed through Hausman and information matrix
type tests.
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2.6.3.1. Hausman type tests

Following the arguments of Section 2.5.3.1, a Hausman type test of Hv
0 here

means checking a misspecification indicator of the form

Φ̂n = S(θ̂2n − θ̂2n) (2.36)

where θ̂2n is some n-root consistent estimator of θo2 alternative to θ̂2n and S is a p×kθ2
(p ≤ kθ2) non-stochastic selection matrix. Such a test will have power against any

alternative Hv
1 for which θ̂2n and θ̂2n converge to different pseudo-true values.

As suggested by the form of first order conditions (2.4), the GRPML2 vari-

ance parameters estimator θ̂2n may be shown to be asymptotically equivalent to the
MWNLS estimator – or any other QGPML1 estimator – with weights{
Γt(Xt, θ̌2n)

−1
}
of the G2-variate nonlinear regression

vec(ut(Yt,Xt, θ̌1n)ut(Yt, Xt, θ̌1n)
′) = vecΩt(Xt, θ2) + residuals, t = 1, 2, ... (2.37)

where θ̌1n and θ̌2n are arbitrary preliminary n-root consistent estimators of θo1 and
θo2.

This suggest as a natural generic choice for θ̂2n MWNLS estimators of (2.37) us-

ing alternative weights of the form
{
ΓΣt (Xt, δ̂n)

−1
}
, where ΓΣt (Xt, δ) = Σt (Xt, δ)⊗

Σt (Xt, δ), the Σt (Xt, δ) are alternative (necessarily misspecified) specifications for

V (Yt|Xt) and δ̂n is some n-root consistent estimator which converges, under Hv
0, to

some non-stochastic sequence of kδ×1 vectors of pseudo-true values {δ∗n : n = 1, 2, ...}.
The easiest alternative estimator θ̂2n is simply obtained by setting Σt (Xt, δ) = IG.

Now, deriving a misspecification indicator of the form (2.30) yielding a test
asymptotically equivalent to the one which could directly be obtained from (2.36)
may be done along the same lines than in Section 2.5.3.1. The score associated with
θ̂2n as defined above is given by (using θ̂1n as a preliminary estimator of θo1)

1

n

n∑
t=1

s2t (θ̂2n , θ̂1n, δ̂n)

=
1

n

n∑
t=1

∂
(
vecΩt(Xt, θ̂2n)

)
′

∂θ2
ΓΣt (Xt, δ̂n)

−1vt(Yt, Xt, θ̂1n , θ̂2n) = 0 (2.38)

Consider similarly evaluating (2.38) at θ̂2n . Under H
v
0 and usual regularity con-

ditions, using standard arguments, a mean value expansion of n−1/2
∑n

t=1 s
2
t (θ̂2n , θ̂1n ,

δ̂n) at
(
θ̂
′

2n , θ̂
′

1n , δ̂
′

n

)
′

gives

n−1/2
n∑
t=1

s2t (θ̂2n , θ̂1n, δ̂n) = n−1/2
n∑
t=1

s2t (θ̂2n , θ̂1n , δ̂n) + A∗

n22

√
n(θ̂2n − θ̂2n) + oPo(1)
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where

A∗

n22
=

1

n

n∑
t=1

E

[
∂s2t (θ

o
2, θ

o
1, δ

∗

n)

∂θ′2

]
= −1

n

n∑
t=1

E

[
∂ (vecΩo

t )
′

∂θ2
ΓΣt (Xt, δ

∗

n)
−1∂ vecΩ

o
t

∂θ′2

]
or, given (2.38),

√
n(θ̂2n − θ̂2n) = A∗

−1

n22
n−1/2

n∑
t=1

s2t (θ̂2n , θ̂1n, δ̂n) + oPo(1)

and further,

√
n(θ̂2n − θ̂2n) = Â

−1

n22
n−1/2

n∑
t=1

s2t (θ̂2n , θ̂1n, δ̂n) + oPo(1)

where

Ân22 = −1

n

n∑
t=1

∂
(
vecΩt(Xt, θ̂2n)

)
′

∂θ2
ΓΣt (Xt, δ̂n)

−1∂ vecΩt(Xt, θ̂2n)

∂θ′2

such that we have

√
nΦ̂n = S

√
n(θ̂2n − θ̂2n) = SÂ

−1

n22
n−1/2

n∑
t=1

s2t (θ̂2n, θ̂1n , δ̂n) + oPo(1)

Thus, a test based on Φ̂n may, from an asymptotic point of view, equivalently
be based on the misspecification indicator

Φ̂h
n = SÂ

−1

n22

1

n

n∑
t=1

∂
(
vecΩt(Xt, θ̂2n)

)
′

∂θ2
ΓΣt (Xt, δ̂n)

−1vt(Yt, Xt, θ̂1n , θ̂2n)

= SÂ
−1

n22

1

n

n∑
t=1

∂
(
vecΩt(Xt, θ̂2n)

)
′

∂θ2
ΓΣt (Xt, δ̂n)

−1Γt(Xt, θ̂2n)

Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n, θ̂2n)

Φ̂h
n may here be checked through the Mvw

n statistic (2.33) by setting Ŝn =

S

(
1
n

∑n
t=1

∂(vecΩt(Xt,θ̂2n ))
′

∂θ2
ΓΣt (Xt, δ̂n)

−1 ∂ vecΩt(Xt,θ̂2n )
∂θ′

2

)
−1

and Ŵ v
t = Γt(Xt, θ̂2n)

ΓΣt (Xt, δ̂n)
−1 ∂ vecΩt(Xt,θ̂2n )

∂θ′
2

. As usual, the validity of this Hausman type test requires

no more than just the null hypothesis of interest Hv
0 and may be implemented us-

ing any n-root consistent estimator of θ1, θ2 and δ. Regardless of the used esti-
mators, the test statistic is asymptotically equivalent to comparing (some linear
combination S of) two MWNLS estimators of the regression model vec(uotu

o′
t ) =

vecΩt(Xt, θ2)+ residuals, the first with weights {Γt(Xt, θ
o
2)

−1} and the second with
weights

{
ΓΣt (Xt, δ

∗

n)
−1
}
. When the Σt(Xt, δ) are set equal to IG, the implementa-

tion of the test requires no additional estimators than the ones needed for estimating
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the null model. Note finally that if the selection matrix S is set equal to Ikθ2 (or any

other non-singular square matrix), then the entire term Ŝn may as above be dropped
from the statistic (where now p = q = kθ2) without affecting it.

2.6.3.2. Information matrix type tests

Using the law of iterated expectations, it is readily seen that, under Hv
0, we must

have

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t uotu
o′
t Ω

o−1

t

∂mo
t

∂θ′1

]
=

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t

∂mo
t

∂θ′1

]
(2.39)

According to the results of Chapter 1 (Proposition 10 and 12), (2.39) is one of
the two sufficient conditions for the mean parameters information matrix equality
Bo
n11

= −Ao
n11

associated with RPML2 estimators to hold, the other one being that

E

[(
n−1/2

n∑
t=1

s1ot

)(
n−1/2

n∑
t=1

s1ot

)
′
]
=

1

n

n∑
t=1

E
[
s1ot s1o′t

]
a property which holds if S is further first order dynamically complete.

Rearranging (2.39), we get

1

n

n∑
t=1

E

[
∂mo′

t

∂θ1
Ωo−1

t (uotu
o′
t − Ωo

t ) Ω
o−1

t

∂mo
t

∂θ′1

]
= 0 (2.40)

or, by vectorizing,

1

n

n∑
t=1

E

[(
∂mo′

t

∂θ1
⊗ ∂mo′

t

∂θ1

)(
Ωo−1

t ⊗ Ωo−1

t

)
vec(uotu

o′
t − Ωo

t )

]
= 0

A test of conditional variance correct specification may then be based on a
misspecification indicator of the form

Φ̂n = S
1

n

n∑
t=1

(
∂mt(Xt, θ̂1n)

∂θ′1
⊗ ∂mt(Xt, θ̂1n)

∂θ′1

)
′

Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n, θ̂2n)

where the p×k2θ1 (p ≤ (k2θ1+kθ1)/2) non-stochastic selection matrix S allows to focus
on some of the non-redundant elements or linear combinations of the non-redundant
elements of the second term.

Φ̂n may then again be checked through the Mvw

n statistic (2.33) by setting

Ŝn = S and Ŵ v
t = ∂mt(Xt,θ̂1n)

∂θ′
1

⊗ ∂mt(Xt,θ̂1n )
∂θ′

1

. As usual, only Hv
0 and n-root consistent

estimators of the parameters θ1 and θ2 are required for the test to be valid. Because
of the presence by construction of redundant elements in the second term of Φ̂n,
it is worth emphasizing that S can never be set equal to an identity matrix. Note
that, as the information matrix type test of the conditional mean, the present test
statistic admits a Hausman type test interpretation. It indeed essentially amounts to
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comparing two consistent estimators, under Hv
0, of −Ao

n11
, the two estimators simply

being the empirical counterparts of respectively the left-hand side and the right-hand
side of (2.39). The test statistic will thus have power against any alternative Hv

1 for
which these two estimators converge to different pseudo-true values.

2.6.4. Testing dynamic completeness

It follows from Chapter 1 (Proposition 12) that when in addition to be second
order correctly specified and first order dynamically complete, S is also dynami-
cally complete for the conditional variance, then the entire asymptotic covariance
matrix of RPML2 estimators may always be readily estimated. So, following again
the Wooldridge’s (1991a) sequential “bottom-up” model construction/specification
testing strategy, we finally concentrate on testing the null

Hvd
0 : Hmd

0 and Hv
0 hold, and V (Yt|Xt) = V (Yt|Xt,Ψt−1) , t = 1, 2, ...

against the alternative

Hvd
1 : Hmd

0 and Hv
0 hold but Hvd

0 is false

Hvd
0 is equivalent to

Hvd
0 : Hmd

0 holds and V (Yt|Xt,Ψt−1) = Ωt(Xt, θ
o
2) for some θo2 ∈ Θ2, t = 1, 2, ...

As in Section 2.6.1, for testing Hvd
0 , we may proceed in the same way than above

for testing Hv
0 and likewise now unambiguously take advantage of the fact that under

Hvd
0 the simple estimator (2.34) is consistent for the asymptotic covariance matrix

Kvo∗

n .

As for the conditional mean, the most general ways to check dynamic com-
pleteness of the conditional variance are either to look at autocorrelation in the
non-redundant terms of the errors vt or to resort to a White (1987,1994) dynamic
information matrix type test.

Looking at a multivariate AR (κ) process for the non-redundant terms of vt –
i.e., at an multivariate ARCH (κ) type process – means using as an auxiliary nested
alternative to the null conditional variance specification

Hvd′
1 : V (Yt|Xt,Ψt−1) = Ωa

t (Xt,Ψt−1, θ
o
2, D1, ...,Dκ, θ

o
1) for some ao ∈ Θa, t = 1, 2, ...

with

vechΩa
t (Xt,Ψt−1, θ

o
2,D

o
1, ..., D

o
κ, θ

o
1) = vechΩt(Xt, θ

o
2) +Do

1v
o
t−1 + ...+Do

κv
o
t−κ

vot = vech(ut(Yt, Xt, θ
o
1)ut(Yt,Xt, θ

o
1)

′ −Ωt(Xt, θ
o
2))

where κ ≥ 1 is a integer that determines the maximum autocorrelation of vt to be
examined, ao = (θo′2 , (vecD

o
1)

′, ..., (vecDo
κ)

′, θo′1 )
′

, Θa = Θ2 × ΘD1
× ... × ΘDκ

× Θ1,
θo1 is the true value ensuring first order correct specification and the Di, i = 1, ..., κ,
are (G2 +G)/2× (G2 +G)/2 matrices of auxiliary variance parameters. Note that
this alternative specification contains links between mean and variance parameters.
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Let for now t = 1 denote the (κ + 1)-th observation and define nκ = n− κ.

Now, testing the null Hvd
0 against Hvd

1 using the auxiliary alternative Hvd′
1 means

testing the null that Do
1 = ... = Do

κ = 0. Based on the GRPML2 estimator, a
LM-type test yields the misspecification indicator

Φ̂AR
nκ =

∂La
nκ(Y

n, Xn, θ̂1n, θ̂2n , 0, ..., 0)

∂ ((vecD1)′, ..., (vecDκ)′)
′

=
1

nκ

nκ∑
t=1

∂
(
vecΩa

t (Xt,Ψt−1, θ̂2n , 0, ..., 0, θ̂1n)
)
′

∂ ((vecD1)′, ..., (vecDκ)′)
′

Γat (Xt,Ψt−1, θ̂2n , 0, ..., 0, θ̂1n)
−1

vec(ûtû
′

t −Ωa
t (Xt,Ψt−1, θ̂2n , 0, ..., 0, θ̂1n))

=
1

nκ

nκ∑
t=1

∂
(
vecΩa

t (Xt,Ψt−1, θ̂2n , 0, ..., 0, θ̂1n)
)
′

∂ ((vecD1)′, ..., (vecDκ)′)
′

Γt(Xt, θ̂2n)
−1

vec(ûtû
′

t −Ωt(Xt, θ̂2n))

=
1

nκ

nκ∑
t=1

FAR
t (Xt,Ψt−1, θ̂2n , θ̂1n)

′Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n , θ̂2n)

where La
nκ(Y

n,Xn, θ1, θ2,D1, ...,Dκ) = 1
nκ

∑nκ
t=1 ln f(Yt, mt(Xt, θ1),Ω

a
t (Xt,Ψt−1, θ2,

D1, ..., Dκ, θ1)) with vechΩa
t (Xt,Ψt−1, θ2, D1, ..., Dκ, θ1) = vechΩt(Xt, θ2)+D1vt−1+

...+Dκvt−κ and vt = vech(ut(Yt, Xt, θ1)ut(Yt,Xt, θ1)
′−Ωt(Xt, θ2)), Γ

a
t (Xt,Ψt−1, θ2,D1,

..., Dκ, θ1) = Ωa
t (Xt,Ψt−1, θ2, D1, ...,Dκ, θ1)⊗ Ωa

t (Xt,Ψt−1, θ2,D1, ...,Dκ, θ1) and the
G2 × κ(G2 +G)2/4 matrix functions FAR

t (Xt,Ψt−1, θ2, θ1) are defined as

FAR
t (Xt,Ψt−1, θ2, θ1) = DuG

((
v′t−1, ..., v

′

t−κ

)⊗ I(G2+G)/2

)
, t = 1, 2, ...

where DuG denotes the G2 × (G2 + G)/2 duplication matrix, i.e., for the record, a
matrix such that, for any symmetric G×G matrix A, DuG vechA = vecA.

As outlined above, under Hvd
0 , vot is a martingale difference sequence with respect

to {Ψt}, and thus so does the score s2ot , so that s2ot is uncorrelated with its past values.
Accordingly, for all κ ≥ 1, we must have

E
[
s2ot

(
s2o′t−1, ..., s

2o′
t−κ

)]
= 0, t = 1, 2, ... (2.41)

Then, choosing some integer κ and vectorizing (2.41), a test of Hvd
0 may alter-

natively be based on the misspecification indicator

Φ̂IM
nκ =

1

nκ

nκ∑
t=1

F IM
t (Xt,Ψt−1, θ̂1n , θ̂2n)

′Γt(Xt, θ̂2n)
−1vt(Yt, Xt, θ̂1n , θ̂2n)

where the G2 × κk2θ2 matrix functions F IM
t (Xt,Ψt−1, θ1, θ2) are defined as

F IM
t (Xt,Ψt−1, θ1, θ2) =

∂ vecΩt(Xt, θ2)

∂θ′2

((
s2′t−1, ..., s

2′
t−κ

)⊗ Ikθ2

)
, t = 1, 2, ...
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with s2t =
∂(vecΩt(Xt,θ2))

′

∂θ2
Γt(Xt, θ2)

−1vt(Yt, Xt, θ1, θ2).

Both Φ̂AR
nκ and Φ̂IM

nκ may again be checked through the Mvw

n statistic (2.33)

by setting for Φ̂AR
nκ , Ŵ v

t = FAR
t (Xt,Ψt−1, θ̂2n, θ̂1n) and p = q = κ(G2 + G)2/4,

and for Φ̂IM
nκ , Ŵ v

t = F IM
t (Xt,Ψt−1, θ̂1n , θ̂2n) and p = q = κk2θ2. In both cases,

Ŝn = Ip – if wished, a selection matrix may again straightforwardly be introduced

–, n = nκ, t = 1 denotes the (κ+1)-th observation and K̂v
n is the simple estimator

(2.34). As usual, the test statistics are robust to distributional misspecification
and may be implemented using any n-root consistent estimator of θ1, θ2. As for the
conditional mean, the choice between using Φ̂AR

nκ or Φ̂IM
nκ may be done on the grounds

of computational convenience but should also take into account their relative degree
of freedom κ(G2 + G)2/4 and κk2θ2. When both are very large, it may be wise to
resort to a selection matrix.

2.7. Concluding comments

This chapter concentrated on the question of how to check, after having esti-
mated it by some method known to be robust to conditional misspecification, the
extent to which a tentative second order semi-parametric model S is actually cor-
rectly specified . We surveyed a large spectrum of m-type diagnostic tests, primar-
ily built on the GRPML2 estimator but yielding valid and asymptotically locally
equivalent tests if implemented using any alternative n-root consistent estimator.
Because of the nested nature the null hypotheses and the fact that the validity of all
test statistics requires no more than the nulls of interest, they provide ways to quite
comprehensively check – and hopefully unambiguously identify eventual departures
from – the prominent aspects of the model specification.

The choice of which aspects – i.e., the conditional mean, the conditional vari-
ance, as well as their dynamic completeness – of the model specification to look at
is up to the researcher and depends on the problem at hand, so does the choice of
the misspecification indicators for checking the retained aspects. In most cases, all
aspects are likely to be of interest and, at least for conditional mean and conditional
variance testing (there are less possibilities when testing dynamic completeness), it
seems sensible to resort to more than one misspecification indicator. Typically, an
extensive investigation of the conditional mean and the conditional variance should
be based on both Hausman or information matrix type misspecification indicator(s)
and misspecification indicator(s) designed to check the null against plausible auxil-
iary (nested or non-nested) alternatives.

Once the misspecification indicators are chosen, we may proceed by performing
individual and/or joint tests. For both conditional mean and conditional variance
testing, joint tests may readily be constructed by appropriately stacking the ‘indi-
vidual’ misspecification indicators. In both cases, it simply means forming ‘joint’Wt

indicator matrices by horizontally concatenating the indicator matrices associated
to the ‘individual’ misspecification indicators. This for example allows to jointly
perform a test against several nested and/or non-nested auxiliary alternatives along
with Hausman and/or information matrix type diagnostic(s). Note that this simi-
larly allows to perform joint tests of first (resp. second) order correct specification
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and first (resp. second) order dynamic completeness. In this latter case however we
will no longer be able to distinguish the source – misspecification of the conditional
moment or dynamic incompleteness – of departure from the joint null. The same
problem obviously arises if, following the lines of Bollerslev-Wooldridge (1992), joint
tests of the conditional mean and the conditional variance are undertaken. Accord-
ingly, and this is the essence of the Wooldridge’s (1991a) “bottom-up” model con-
struction/specification testing strategy, we suspect that most empirical researchers
will prefer to test the prominent aspects of the model specification separately. Like-
wise, because it may provide useful, although possibly misleading, information about
the source(s) of departure from the null, we believe that they will also prefer check-
ing individually the chosen misspecification indicators associated to the different
aspects of the model specification. From a formal point of view, a joint induced test
with bounded asymptotic size of the overall null of interest may then be carried out
by using a Bonferroni approach : the joint induced test consists in accepting the
overall null underlying the, say q, separate tests if and only if all the separate tests
are accepted, and in rejecting it if one or more of the q separate tests is rejected.
If each separate test has asymptotic size αr, the Bonferroni inequality ensures that
the joint induced test will have true asymptotic size at most equal to α =

∑q

r=1 αr

(see Savin (1980,1984)), so that choosing for example αr = α/q will yield a joint
induced test with true asymptotic size at most equal to α. If such a approach is fol-
lowed, from a empirical point of view, according to Wooldridge (1991a), we believe
that a good practice is to report the computed individual – or “partially joint”
– test statistics along with their usual p-value and let the readers draw their own
conclusions. Note that the above Bonferroni approach may also be used in the re-
verse manner for gaining insights about the direction(s) in which misspecification
detected by a genuine joint test may lie.

The above diagnostic tests essentially deals with checking if the model is not
in some way “underparametrized”. An other question of interest is to see if it is
not “overparametrized”, if it may not be simplified. Provided that a consistent
estimator of the asymptotic covariance matrix of the GRPML2 estimator may be
obtained, this may of course readily be checked through classical Wald tests, and
so do the eventual cross-constraints between mean and variance parameters, which
have been discarded for robustness, contained in the structural model S̃.

To conclude, some important considerations closely related to a remark already
made in Chapter 1. We outlined in Chapter 1, and recalled in Section 2.2 of this
chapter, that the set of conditioning variables Xt underlying model S must be de-
fined as comprising all the variables which appear either in the conditional mean
or in the conditional variance. So, for example, if the conditional mean specifica-
tion depends on say variables X1

t and the conditional variance specification depends
on say variables X2

t , then Xt must be defined as Xt ≡ (X1

t , X
2

t ). This means that
testing for example the conditional mean through a Hausman4 or information ma-
trix type test actually entails testing the null hypothesis Hm

0
that there exists some

θo
1
such that E(Yt|X1

t , X
2

t ) = mt(X
1

t , θ
o
1
), and not simply that for some θo

1
we have

E(Yt|X1

t ) = mt(X
1

t , θ
o
1
) . It is worth further emphasizing that whenever an auxiliary

4Where the alternative conditional variance specification {Σt} underlying the estimator θ̂
1n

only de-

pends on variables Xt ≡ (X1

t , X
2

t ). If it is not the case – but there is a priori no good reason to do that
– , then the actual null Hm

0 will be different.
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(nested or non-nested) alternative model is involved, the set of conditioning vari-
ablesXt must be defined as comprising not only all the variables which appear either
in the conditional mean or in the conditional variance, but also the variables which
appear in the auxiliary alternative model. Continuing the above example, when
checking the conditional mean against some auxiliary (nested or non-nested) alter-
native specified as function of say the extended set of variables (X1

t ,X
3

t ), Xt must be
defined as Xt ≡ (X1

t , X
2

t , X
3

t ). In such a test, the actual null hypothesis Hm
0
is thus

no longer that there exists some θo
1
such that E(Yt|X1

t , X
2

t ) = mt(X
1

t , θ
o
1
), but that

for some θo
1
we have E(Yt|X1

t , X
2

t , X
3

t ) = mt(X
1

t , θ
o
1
). In other words, in conditional

mean testing, specifying the conditional variance, or, when resorting to an explicit
alternative, the auxiliary alternative model, as function of variables which do not
appear in the conditional mean modifies the content of the null hypothesis of first
order correct specification. The same reasoning obviously applies when considering
conditional variance testing. To be aware of that is crucial for suitably designing
and correctly interpreting the test statistics. So, in the examples just given, reject-
ing the null hypotheses Hm

0
does not signify that the conditional mean is misspecified

with respect to its own set of conditioning variables X1

t : we might well have that
E(Yt|X1

t ) = mt(Xt, θ
o
1
) for some θo

1
holds while neither E(Yt|X1

t , X
2

t ) = mt(Xt, θ
o
1
)

nor E(Yt|X1

t ,X
2

t ,X
3

t ) = mt(Xt, θ
o
1
) do. Likewise, to give another example of pos-

sible misinterpretation, when testing two non-nested models (in mean or variance)
specified as function of different variables, rejecting each model against the other
does not mean that the models are misspecified with respect to their own set of con-
ditioning variables. When considered with respect to their own set of conditioning
variables, both might actually be correctly specified.
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Chapter 3

A full heteroscedastic one-way error

components model allowing for incomplete

panels : second order pseudo-maximum

likelihood estimation and specification

testing

3.1. Introduction

As pointed out in our general introduction, heteroscedasticity seems to be en-
demic in work with microeconomic cross-section data. Basically, heteroscedasticity
may be viewed as a symptom arising from the fact that the degree to which an eco-
nomic relationship may explain actual individual observations is likely to depend on
their specific characteristics. Put in other words, it may be viewed as a symptom of
variable heterogeneity across individuals. A primary and well known source of het-
eroscedasticity stems from differences in the “size characteristic” (the level of the
variables in the relationship) of the observations. This kind of heteroscedasticity is
purely mechanical. It is simply a consequence of the assumed additive disturbance
structure of the classical regression model. It is generally tackled by performing a
logarithmic transformation of the dependent variable. However, even after account-
ing in such a way for differences in size, numerous cases remain where we can not
expect the error variance to be constant. First, there is no a priori reason to believe
that the logarithmic specification postulating similar percentage variation across ob-
servations is relevant. In the production field for example, observations for lower
outputs firms seem likely to evoke larger variances (see Batalgi-Griffin (1988)). On
the other hand, the error variance may also systematically vary across observations
of similar size. For example, the variance of firms profits might depend upon product
diversification or research and development expenditures. Likewise, the variance of
firms outputs might depend upon their capitalistic intensity and so on. Note that in
practice, these different sources of heteroscedasticity may be simultaneously present.

Obviously, there is no reason to expect the heteroscedasticity problems associ-
ated with microeconomic panel data to be markedly different from those encountered
in work with cross-section data. Although innocuous in terms of consistency, when
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not taken into account, the violation of the standard second order assumptions of the
classical one-way error components regression model implies inefficient estimation
and, undoubtedly more alarming, makes the usual textbook inferential procedures,
including popular specification tests such as the Hausman test, invalid. Further, it
at least casts doubt on the heuristic interpretation of the model. Nonetheless, except
for a few papers mentioned below, the issue of heteroscedasticity seems somewhat to
have been ignored in the literature related to panel data error components models.

Seemingly, the first authors who dealt with the problem were Mazodier-Trognon
(1978). Subsequent contributions1 in the area include Verbon (1980), Rao-Kaplan-
Cochran (1981), Magnus (1982), Arellano (1987), Baltagi-Griffin (1988), Baltagi
(1988) -Wansbeek (1989), Randolf (1988a), Li-Stengos (1994) and Muus-Wansbeek
(1994). Into the framework of the classical one-way error components regression
model2, the issues considered by these papers can be summarized as follows3. Both
Mazodier-Trognon (1978) and Baltagi-Griffin (1988) are concerned with estima-
tion of a model allowing for changing variances of the individual-specific error term
across individuals, i.e., assume that, if we write the error components εit = µi + νit,
νit ∼ IID(0, σ2ν) while µi ∼ ID(0, σ2µi). Rao-Kaplan-Cochran (1981), Magnus (1982)
and Baltagi (1988) -Wansbeek (1989) adopt a symmetrical opposite specification,
allowing for changing variances of the general error term across individuals, i.e.,
assume that νit ∼ ID(0, σ2νi) while µi ∼ IID(0, σ2µ). This specification is a particu-
lar case of the Swamy’s (1970) random coefficient model where only the intercept
parameter is assumed to be random. Verbon (1980) is interested in Lagrange Mul-
tiplier testing of the standard normally distributed homoscedastic model against
the heteroscedastic alternative νit ∼ NID(0, σ2νi) and µi ∼ NID(0, σ2µi), where σ2νi
and σ2µi are, up to a multiplicative constant, identical parametric functions of a

(row) vector of time-invariant explanatory variables Zi, i.e., σ
2

νi
= σ2νφ(Ziγ) and

σ2µi = σ2µφ(Ziγ). Randolf (1988a) concentrates on supplying an observation-by-
observation data transformation for a full heteroscedastic error components model
assuming that νit ∼ ID(0, σ2νit) and µi ∼ ID(0, σ2µi). Provided that the variances σ2νit
and σ2µi are known, this transformation allows generalized least squares estimates to
be obtained from ordinary least squares. Li-Stengos (1994) deals with adaptive esti-
mation of an error components model supposing heteroscedasticity of unknown form
for the general error term, i.e., assumes that µi ∼ IID(0, σ2µ) while νit ∼ ID(0, σ2νit),
where σ2νit is a nonparametric function φ(Zit) of a vector of explanatory variables
Zit

4. Finally, in the context of the fixed effects model (within estimator), Arellano
(1987) and Muus-Wansbeek (1994) outline heteroscedasticity-consistent (allowing
for a rich variety of heteroscedasticity and serial correlation patterns) covariance

1We do not include Graag (1993) in this list since he works with a quite unusual bilinear model.
2Mazodier-Trognon (1978), Verbon (1980) and Magnus (1982) deal with the problem of heteroscedas-

ticity in a more general framework than the simple one-way error components model : the former treats
the problem in the context of the two-way error components model while the latters consider it (in the
case of Magnus, anecdotally) in the context of a multivariate (SURE) error components model.

3Below, ID means “independently distributed”, IID “identically independently distributed”, and NID
“normally independently distributed”.

4Close to this specification is the statistical model underlying the Randolf’s (1988b) empirical study
of housing depreciation. In this paper, it is assumed that µi ∼ IID(0, σ2µ) while νit ∼ ID(0, σ2νit), where
σ2νit is a linear function of a vector of explanatory variables, this linear variance function arising from a
special random coefficient assumption a la Hildreth-Houck (1968). The model is estimated (and tested)
by standard gaussian ML methods.
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matrix estimators. Except Randolf (1988a) and Rao-Kaplan-Cochran (1981), all
the mentioned papers assume data arising from balanced (complete) panels.

In this chapter, we are concerned with estimation and specification testing of
a full heteroscedastic one-way error components linear regression model specified
in the spirit of Randolf (1988a). In short, we assume that the (conditional) vari-
ances σ2νit and σ2µi are distinct parametric functions of, respectively, (row) vectors

of explanatory variables Z1

it and Z2

i , i.e., σ
2

νit
= φν(Z

1

itγ1) and σ2µi = φµ(Z
2

i γ2). Fur-
ther, we treat the model in the context of incomplete (or unbalanced) panels. This
specification differs from the previously proposed formulations of heteroscedastic
error components models as it simultaneously embodies three basic characteristics.
First, heteroscedasticity distinctly applies to both individual-specific and general er-
ror components. Second, (nonlinear) variance functions are parametrically specified.
Finally, the model allows for incomplete panels .

Explicitly allowing for incomplete panels is an obviously desirable feature. In-
deed, at least for micro-data, incompleteness is rather the rule than the exception.
Further, as noted by Wansbeek-Kapteyn (1989), an unbalanced panel dataset makes
most of the results obtained in the error components literature inapplicable. A com-
mon procedure to overcome this problem is to drop from the original panel the
individuals for which the observations are not complete and carry out the estima-
tion on a complete sub-panel. However, as discussed in Mátyás-Lovrics (1991) and
Baltagi-Chang (1994), when the sample size is moderate, this procedure may incur
considerable loss of efficiency.

Specifying parametric variance functions also presents some attractive features.
First, this strategy avoids incidental parameter (and thus consistency) problems
arising from any attempt to model changing variances by grouped heteroscedastic-
ity when the number of individual units is large but the number of observations per
individual is small, i.e., in typical microeconomic panel datasets. This is particu-
larly obvious if we want heteroscedasticity to apply to both the individual-specific
and general error components of the model. Of course, following this strategy re-
quires that we are able (or willing) to pick up the variables which enter into the
variance functions as well as the variance functions themselves. Second, provided
that the functional forms of the variance functions are judiciously chosen, it prevents
problems due to estimated variances being negative or zero. As a matter of fact,
Baltagi-Griffin (1988) reports negative variance estimates and numerical problems
are mentioned in Randolf’s (1988b) empirical study. Finally, since the conditional
variance estimates may have intrinsic values of their own as indicators of the be-
tween and within individual heterogeneity, parametric forms are convenient for ease
of interpretation.

The heuristic background for allowing heteroscedasticity to distinctly apply to
both individual-specific and general error components is the following. Just as the
composite error term in panel data, in cross-section data the error term reflects both
variations between individuals and variations between repeated observations of an
individual (within variations). The only difference is that in the latter case, there is
no way to disentangle the two effects. Thus, all we said about the possible sources
of heteroscedasticity in cross-section may be roughly applied to the panel data com-
posite error term. Then, the remaining question is to determine the most plausible
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within and between scedastic patterns underlying a given overall (cross-section like)
heteroscedastic structure, i.e. to assess the origin – within and/or between – of
the composite disturbance variance heterogeneity. Clearly, the answer depends upon
the situation at hand. Consider heteroscedasticity arising from differences in size.
In this case, both error terms may be expected heteroscedastic, presumably (but not
necessarily) according to parallel patterns. Indeed, assuming homoscedasticity for
one of the two error terms would amount to considering that the unobservable effects
associated with this term are all of the same (absolute) magnitude whatever the size
of the individual units. This is very unrealistic5. As a matter of fact, this argument
is implicitly acknowledged whenever a transformation of the dependent variable is
used for solving heteroscedasticity problems (the transformation alters the distrib-
ution of both error terms). Likewise, if size-related heteroscedasticity still prevails
after having transformed the dependent variable, the same reasoning should apply,
although in this situation the two scedastic patterns might be substantially diver-
gent. When heteroscedasticity may not be directly associated with size, it seems
much more difficult to say anything general. Hanging on the nature of the relation-
ship under investigation, either only one of the two or both error terms might be
expected heteroscedastic. Note that in the latter case, their variances might further
depend upon different sets of variables. Collecting all these considerations, as a gen-
eral setting it thus appears sensible to allow heteroscedasticity to distinctly apply to
both individual-specific and general error components. Doing this means adopting
an a priori quite flexible parametrization allowing for variable heterogeneity both in
the between and within dimensions.

Such a full heteroscedastic one-way error components model is nothing more
than a static multivariate second order semi-parametric model. The general results
obtained in Chapter 1 and 2 may thus be exploited for its estimation and specifi-
cation testing. On the grounds of its ability to straightforwardly handle incomplete
(unbalanced) panels, its robustness to distributional misspecification and possible
misspecification of the heterogeneity, its computational convenience and its potential
efficiency, we argue for estimating this model by gaussian pseudo-maximum likeli-
hood of order two. Consequently, we provide all the required ingredients needed
for its practical implementation, and review its limiting properties and asymptotic
covariance matrix estimation under the major assumptions of practical interest re-
garding the degree of misspecification present in the model.

Then, as an adapted handy synthesis of the general results obtained in Chapter
2, we review the different ways in which the correct specification of the prominent
aspects of the assumed full heteroscedastic one-way error components model may be
tested. So, are succinctly surveyed potentially useful nested, non-nested, Hausman
and information matrix type diagnostic tests of both the mean and the variance
specification.

Since the estimation of the model, although quite straightforward, is computa-
tionally expensive6, it seems wise to check its potential relevance before undertaking

5Graag (1993) argues from the same reasoning to justify its bilinear heteroscedastic panel data model.
6Actually, it is mainly expensive in programming time. At this respect, easy-to-use procedures for

Gauss including gaussian pseudo-maximum likelihood estimation and comprehensive specification testing
of the model are available (free of charge) upon request from the author. To run properly, they require
Gauss for Windows v.3.2 and the Gauss Optimization Application Module v.3.1.
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the estimation procedure. In order to meet this prerequisite, using the general
results obtained in Chapter 2, we finally derive a simple pseudo Lagrange Mul-
tiplier (LM) test statistic (based on OLS residuals) for jointly testing the null of
no individual effects and homoscedasticity against the alternative of (possibly het-
eroscedastic) random individual effects and general form of heteroscedasticity (a set
of locally equivalent alternatives) in the usual white noise error term. If indepen-
dence of the errors is assumed under the null, the joint test statistic turns out to be
simply the sum of two asymptotically independent pseudo LM statistics, allowing
for easily gaining insights about the direction(s) in which misspecification detected
by the joint statistic may lie.

The chapter proceeds as follows. Section 3.2 describes the model under consid-
eration. Section 3.3 provides all the required ingredients for performing gaussian
pseudo-maximum likelihood of order 2 estimation and discusses practical ways for
obtaining the estimator as well as its limiting properties and asymptotic covariance
matrix estimation. In this section, special attention is given to provide matrix ex-
pressions such that they only include matrices of moderate size and that they can
be straightforwardly implemented with a matrix-oriented programming language.
Section 3.4 deals with specification testing of the model. Preliminary pseudo La-
grange multiplier testing is developed in section 3.5. Finally, concluding comments
are offered in Section 3.6. As in the previous chapters, matrix calculus notational
conventions are in accordance with those of Magnus-Neudecker (1986,1988).

3.2. The model

We consider the following one-way error components linear regression model

Yit = Xitβ + εit, εit = µi + νit, i = 1, 2, ..., n ; t = 1, 2, ..., Ti (3.1)

where Yit, εit, µi and νit are scalars, Xit is a 1× kβ vector of explanatory variables
(the first element being a constant) and β ∈ Θβ is a kβ × 1 vector of parameters.
The index i refers to the n individuals and the index t to the (repeated) observations
(over time) of each individual i. The total number of observations is N =

∑n

i=1 Ti.
The observations are assumed to be independently distributed across individuals.

Stacking the Ti observations of each individual i, (3.1) yields the multivariate
linear regression model

Yi = Xiβ + εi, εi = eTiµi + νi, i = 1, 2, ..., n (3.2)

where eTi is a Ti × 1 vector of ones, Yi, νi and εi are Ti × 1 vectors, and Xi is a
Ti × kβ matrix of explanatory variables.

Let Z1

i denote a Ti×kγ
1
matrix of explanatory variables (the first column being a

constant), Z1
it stand for the t-th row of Z1

i , and Z2
i be a 1×kγ2 vector of explanatory

variables (the first element being a constant). For all i, t and t′, the error terms νit
and µi are tentatively assumed to satisfy the assumptions

E(νit|Xi, Z
1

i , Z
2

i ) = 0, E(µi|Xi, Z
1

i , Z
2

i ) = 0 (3.3)
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E
(
νitνit′ |Xi, Z

1

i , Z
2

i

)
= 0 (t′ �= t), E

(
µiνit|Xi, Z

1

i , Z
2

i

)
= 0 (3.4)

V
(
νit|Xi, Z

1

i , Z
2

i

)
= σ2νit = φν(Z

1

itγ1), V
(
µi|Xi, Z

1

i , Z
2

i

)
= σ2µi = φµ(Z

2

i γ2) (3.5)

where φµ(.) and φν(.) are arbitrary non-indexed (strictly) positive twice continuously
differentiable functions while γ1 ∈ Θγ

1
and γ2 ∈ Θγ

2
are, respectively, kγ

1
× 1 and

kγ2 × 1 vectors of parameters which vary independently of each other and indepen-

dently of β. Hereafter, we will denote by γ =
(
γ

′

1
, γ

′

2

)′
the vector of variance-specific

parameters and θ = (β ′, γ′)
′

will stand for the entire set of parameters.

The regressors appearing in the conditional variances (3.5) may (and usually
will) be related to the Xi. Different choices are possible for the variance func-
tions φν(.) and φµ(.), see for example Breush-Pagan (1979) and Harvey (1976).
Among them, the multiplicative heteroscedasticity formulation investigated in Har-
vey (1976) appears particularly attractive. It simply means taking φν(.) = φµ(.) =
exp(.).

Under (3.3)-(3.5), εi is easily seen to satisfy

E(εi|Xi, Z
1

i , Z
2

i ) = 0, i = 1, 2, ..., n

V (εi|Xi, Z
1

i , Z
2

i ) = Ωi = diag (φν(Z
1

i γ1)) + JTi φµ(Z
2

i γ2)
(3.6)

where JTi = eTie
′

Ti
and, for a Ti×1 vector x , the non-indexed function φ(x) denotes

a Ti×1 vector containing the element-by-element transformation φ(.) of the elements
of x.

The model may thus be written as

E(Yi|Xi, Z
1

i , Z
2

i ) = Xiβ, i = 1, 2, ..., n

V (Yi|Xi, Z
1

i , Z
2

i ) = Ωi = diag (φν(Z
1

i γ1)) + JTi φµ(Z
2

i
γ2)

(3.7)

This (possibly unbalanced) second order semi-parametric model obviously con-
tains the standard (homoscedastic) one-way error components linear regression model
as a special case. Following the definitions of Chapter 1, it will be said cor-
rectly specified for the conditional mean if, for some true-value βo ∈ Θβ, we have
E(Yi|Xi, Z

1
i , Z

2
i ) = Xiβ

o, i = 1, 2, ..., n. Likewise, it will be said correctly specified
for the conditional variance if, for some true-value γo = (γo′

1
, γo′

2
)′ ∈ Θγ1

× Θγ2
, we

have V (Yi|Xi, Z
1

i , Z
2

i ) = Ωo
i = diag (φν(Z

1

i γ
o
1
)) + JTi φµ(Z

2

i
γo
2
), i = 1, 2, ..., n.

Note that these definitions of correct specification implicitly embody the ignor-
ability of the selection mechanism (or missing data generating mechanism) giving
rise to the eventual incompleteness of the panel dataset : if, to use Verbeek-Nijmans’
(1996) terminology, the selection mechanism is not ignorable, model (3.7) will usually
be misspecified. For a formal account of the concept of ignorability, see Verbeek-
Nijmans (1996). Note also that, both conditional mean and conditional variance
correct specification are defined with respect to the entire set of conditioning vari-
ables CVi ≡ (Xi, Z

1
i , Z

2
i ), and not only with respect to the variables which actually

enter in the mean or the variance specification. In other words, specifying the vari-
ances as functions of variables which do not enter in the mean may dismantle an
original conditional mean correct specification, and vice versa.
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3.3. Pseudo-maximum likelihood of order two

estimation

The most popular estimator of the standard one-way error components model
is undoubtedly the feasible generalized least squares (FGLS) estimator. In the
present context where the disturbances are fully heteroscedastic, this gaussian quasi-
generalized pseudo-maximum likelihood of order one estimator is no longer so at-
tractive. Indeed, such an estimator requires a preliminary consistent (n → ∞, Ti
bounded ) estimator of the conditional variance parameters appearing in the Ωi.
Given the general functional forms adopted for the variance functions – the prob-
lem would be different if the variance functions were assumed linear –, no simple,
i.e., avoiding nonlinear optimization, two-step procedure for obtaining such a con-
sistent estimator seems conceivable. In contrast, the gaussian pseudo-maximum
likelihood of order two (GPML2) estimator also requires nonlinear optimization but
simultaneously provides mean and variance parameters estimates. On the other
hand, according to Chapter 1, because the normal density belongs to restricted
quadratic exponential families and the model contains no functional links between
mean and variance parameters, as FGLS, GPML2 is not only robust to distribu-
tional misspecification but also to conditional variance misspecification. So, from
a statistical point of view, GPML2 has essentially the same properties than FGLS
regarding the mean parameters – in this linear case, the GPML2 mean parame-
ters estimator is actually just an FGLS estimator where the variance parameters are
“endogenously” determined – while it offers additional by-product properties re-
garding the variance parameters. Among them, under favorable circumstances, the
variance estimator may be asymptotically efficient. This is appreciable as far as the
conditional variance estimates have intrinsic values of their own as indicators of the
heterogeneity. Finally adding to these characteristics that it readily allows to han-
dle incomplete panels, GPML2 thus appears as a very attractive – both from a
computational and statistical point of view – estimation procedure.

Gaussian maximum likelihood estimation of the standard (homoscedastic) com-
plete and incomplete panel one-way error components models are, among others,
respectively discussed in Breush (1987) and in Baltagi-Chang (1994). In the fol-
lowing sub-section, we provide the basic ingredients needed for performing GPML2
estimation of model (3.7), namely the pseudo log-likelihood function and its deriv-
atives. Subsequently, we discuss practical ways for obtaining the GPML2 estimates
and detail the limiting properties and asymptotic covariance matrix estimation of
the estimator.

3.3.1. The pseudo log-likelihood function and its derivatives

The GPML2 estimator θ̂n =
(
β′n, γ

′

1n
, γ′2n

)
′

of model (3.7) is defined is a solution
of

Maxθ∈Θ Ln(β, γ1, γ2) ≡
1

n

n∑
i=1

Li(Yi|Xi, Z
1

i , Z
2

i ; β, γ1, γ2) (3.8)

where Θ = Θβ × Θγ
1
× Θγ

2
and the (conditional) pseudo log-likelihood functions
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Li(Yi|Xi, Z
1

i , Z
2

i ; β, γ1, γ2) are

Li(Yi|Xi, Z
1

i , Z
2

i ; β, γ1, γ2) = −Ti

2
ln 2π − 1

2
ln |Ωi| − 1

2
u′iΩ

−1

i ui

with ui = Yi −Xiβ.

Analytical expressions are available for |Ωi| and Ω−1

i . These are given by

|Ωi| = (bi)
Ti |Ci|

(
1 + trC−1

i

)
=

(
Ti∏
t=1

ait

)(
1 + e′Ti c̄i

)
Ω−1

i =
1

bi

(
C−1

i − 1

1 + trC−1

i

(
C−1

i JTiC
−1

i

))
= diag (āi)− 1

bi
(
1 + e′Ti c̄i

) c̄ic̄′i
where

bi = φµ(Z
2

i γ2) Ci = diag (ci)

ci =
1

bi
φν(Z

1
i γ1) ci = eTi ÷ ci

ai = φν(Z
1

i γ1) ai = eTi ÷ ai

ait being the t-th element of ai and ÷ indicating an element-by-element division.
Note that according to this notation, Ωi = bi (Ci + JTi).

Following Magnus (1978,1988), we obtain for the first derivatives of Ln

∂Ln

∂θ
=

1

n

n∑
i=1

sθi , sθi =

 sβi
s
γ
1

i

s
γ2
i


with

sβi = X ′

iΩ
−1

i ui (3.9)

s
γp
i = −1

2

(
∂ vecΩ−1

i

∂γ′p

)′

vec(uiu
′

i − Ωi) (p = 1, 2) (3.10)

=
1

2

(
∂ vecΩi

∂γ′p

)
′ (
Ω−1

i ⊗Ω−1

i

)
vec(uiu

′

i − Ωi)

=
1

2

(
∂ vecΩi

∂γ′p

)
′

vec
(
Ω−1

i (uiu
′

i − Ωi)Ω
−1

i

)
= −1

2

kγp∑
r=1

tr

(
∂Ω−1

i

∂γrp
(uiu

′

i − Ωi)

)
erkγp

=
1

2

kγp∑
r=1

tr

(
Ω−1

i

∂Ωi

∂γrp
Ω−1

i (uiu
′

i − Ωi)

)
erkγp
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where erkγp is a kγp × 1 vector with a one in the r-th place and zeros elsewhere, i.e.,

the r-th column of a kγp × kγp identity matrix, and γrp is the r-th component of γp.

Some useful identities for decoding (3.10) as well as subsequent expressions are
given by

∂ vecΩ−1

i

∂γ′p
= − (

Ω−1

i ⊗ Ω−1

i

) ∂ vecΩi

∂γ′p

∂Ω−1

i

∂γrp
= −Ω−1

i

∂Ωi

∂γrp
Ω−1

i

vecΩ−1

i =
(
Ω−1

i ⊗Ω−1

i

)
vecΩi vec (ABC) = (C ′ ⊗A) vecB

∂ vecΩ−1

i

∂γ′p
=

kγp∑
r=1

vec

(
∂Ω−1

i

∂γrp

)
er′kγp tr (A′B) = (vecA)′ vecB

(3.11)

where A, B, C are conformable matrices.

The derivatives of vecΩi with respect to γ′
1
and γ′

2
are

∂ vecΩi

∂γ′
1

= diag
(
vec

(
diag

(
φ′ν(Z

1

i γ1)
))) (

Z1

i ⊗ eTi
)

(3.12)

∂ vecΩi

∂γ′2
= φ′µ(Z

2

i γ2) vec (Jni)Z
2

i = φ′µ(Z
2

i γ2) (eTi ⊗ eTi)Z
2

i (3.13)

and the derivatives of Ωi with respect to γr
1
and γr

2
are

∂Ωi

∂γr1
= diag

(
φ′ν(Z

1

i γ1)� Z1r

i

)
(3.14)

∂Ωi

∂γr2
= φ′µ(Z

2

i γ2)Z
2r

i JTi (3.15)

where φ′ν(x) and φ′µ(x) denote the first derivatives of φν(x) and φµ(x) with respect

to x, Z1r

i is the r-th column of the matrix of explanatory variables Z1

i , � stands for
the Hadamard product, i.e., an element-by-element multiplication, and Z2r

i is the
r-th column of the row vector of explanatory variables Z2

i .

Note that if the multiplicative heteroscedasticity formulation is adopted for both
φν(.) and φµ(.), then, in (3.12)-(3.15), φ′ν(.) and φ′µ(.) are simply equal to exp(.).

On the other hand, following again Magnus (1978,1988), we obtain for the
hessian matrix of Ln

∂2Ln

∂θ∂θ′
=

1

n

n∑
i=1

hθθi , hθθi =

 hββi h
βγ1
i h

βγ2
i

h
γ
1
β

i h
γ
1
γ
1

i h
γ
1
γ
2

i

h
γ2β

i h
γ2γ1
i h

γ2γ2
i


with

hββi =
∂sβi
∂β ′

= −X ′

iΩ
−1

i Xi (3.16)

h
βγp
i =

∂sβi
∂γ′p

=

(
∂s

γp
i

∂β ′

)′

= h
γpβ′

i (p = 1, 2) (3.17)
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= (u′i ⊗X ′

i)
∂ vecΩ−1

i

∂γ′p
= −(u′i ⊗X ′

i)
(
Ω−1

i ⊗ Ω−1

i

) ∂ vecΩi

∂γ′p

= − (
u′iΩ

−1

i ⊗X ′

iΩ
−1

i

) ∂ vecΩi

∂γ′p

=

kγp∑
r=1

(
X ′

i

∂Ω−1

i

∂γrp
ui

)
er′kγp = −

kγp∑
r=1

(
X ′

iΩ
−1

i

∂Ωi

∂γrp
Ω−1

i ui

)
er′kγp

h
γpγq
i =

∂s
γp
i

∂γ′q
=

(
∂s

γq
i

∂γ′p

)′

= h
γqγp′

i (p = 1, 2 ; q = 1, 2) (3.18)

=
1

2

(
∂ vecΩ−1

i

∂γ′p

)′

∂ vecΩi

∂γ′q
− 1

2

(
(vec(uiu

′

i −Ωi))
′ ⊗ Ikγp

)
Υ

γpγq
i

= −1

2

(
∂ vecΩi

∂γ′p

)
′ (
Ω−1

i ⊗ Ω−1

i

) ∂ vecΩi

∂γ′q
− 1

2

(
(vec(uiu

′

i − Ωi))
′ ⊗ Ikγp

)
Υ

γpγq
i

=
1

2

kγp∑
r=1

kγq∑
s=1

(
tr

(
∂Ω−1

i

∂γrp

∂Ωi

∂γsq

)
− tr

(
(uiu

′

i − Ωi)
∂2Ω−1

i

∂γrp∂γ
s
q

))
erkγpe

s′
kγq

= −1

2

kγp∑
r=1

kγq∑
s=1

(
tr

(
Ω−1

i

∂Ωi

∂γrp
Ω−1

i

∂Ωi

∂γsq

)
+ tr

(
(uiu

′

i − Ωi)
∂2Ω−1

i

∂γrp∂γ
s
q

))
erkγpe

s′
kγq

where Ikγp is a kγp × kγp identity matrix,

Υ
γpγq
i =

∂ vec
(
∂ vecΩ−1

i

∂γ′p

)
′

∂γ′q
=

kγp∑
r=1

kγq∑
s=1

vec

(
∂2Ω−1

i

∂γrp∂γ
s
q

)
⊗
(
erkγpe

s′
kγq

)
(3.19)

i.e., a T 2
i kγp × kγq matrix,

∂2Ω−1

i

∂γrp∂γ
s
q

= Ω−1

i

(
2
∂Ωi

∂γrp
Ω−1

i

∂Ωi

∂γsq
− ∂2Ωi

∂γrp∂γ
s
q

)
Ω−1

i (3.20)

and the needed derivatives not yet given are7

∂2Ωi

∂γr
1
∂γs

1

= diag
(
φ′′ν

(
Z1

i γ1
)� Z1r

i � Z1s

i

)
∂2Ωi

∂γr1∂γ
s
2

= 0 =
∂2Ωi

∂γr2∂γ
s
1

∂2Ωi

∂γr2∂γ
s
2

= φ′′µ
(
Z2

i γ2
)
Z2r

i Z2s

i JTi

where φ′′ν(x) and φ′′µ (x) denote the second derivatives of φν(x) and φµ(x) with respect

7Note that (3.20) relies on the symmetry of the matrices at hand. Notice also that an expression
similar to the first one given in (3.11) may be derived for the second derivatives. However, this relation is
only of theoretical interest since it implies very large and thus untractable go-between matrices.
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to x. If the multiplicative heteroscedasticity formulation is adopted for both φν(.)
and φµ(.), φ

′′

ν(.) and φ′′µ(.) are again simply equal to exp(.).

In addition to the relations given by (3.11) and (3.19), for verifying the equality
of the alternative forms of (3.17) and (3.18), it is worth noting that

(vec(uiu
′

i −Ωi))
′ ⊗ Ikγp =

kγp∑
r=1

(vec(uiu
′

i − Ωi))
′ ⊗

(
erkγpe

r′
kγp

)
and

(A⊗B) (C ⊗D) = (AC)⊗ (BD)

where A, B, C and D are conformable matrices.

3.3.2. Numerical optimization and starting values

For obtaining the GPML2 estimates, we need two more ingredients : a numerical
algorithm for maximizing (3.8) and a set of starting values.

In the context of the standard complete panel one-way error components model,
Breush (1987) discusses an iterated GLS procedure. Although applicable in very
general situations (see Magnus (1978)), in the present case it is not very attractive
since it implies at each step the (numerical) resolution of the highly nonlinear set of
equations defined by the first-order conditions ∂Ln

∂γp
= 0 (p = 1, 2).

As alternatives, we can use either a Newton or quasi-Newton (secant meth-
ods) algorithm. While the former requires the computation of the first and sec-
ond derivatives, the latter (for example, the so-called Davidson-Fletcher-Powell and
Broyden-Fletcher-Goldfard-Shanno methods) requires only the computation of the
first derivatives (see Quandt (1983) or Harvey (1981)). In the present case, a variant
of the Newton method appears particularly appealing, namely the scoring method.
This variant simply means substituting the hessian used in the Newton algorithm
by the empirical counterpart of its expectation Ao

nθθ
under conditional mean and

conditional variance correct specification.

Using the law of iterated expectation and the fact that under conditional mean
and conditional variance correct specification we have E(uoi |Xi, Z

1

i , Z
2

i ) = 0 and
E ((uoiu

o′
i − Ωo

i )|Xi, Z
1

i , Z
2

i ), it is easily checked that

Ao
nθθ

=
1

n

n∑
i=1

E
[
hθθoi

]
, E

[
hθθoi

]
= E

[
hθθoi

]
= E

 hββoi 0 0

0 h
γ
1
γ
1
o

i h
γ
1
γ
2
o

i

0 h
γ2γ1o

i h
γ2γ2o

i


where

hββi = hββi = −X ′

iΩ
−1

i Xi

h
γpγq
i = h

γqγp′

i (p = 1, 2 ; q = 1, 2) (3.21)
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= −1

2

(
∂ vecΩi

∂γ′p

)
′ (
Ω−1

i ⊗Ω−1

i

) ∂ vecΩi

∂γ′q

= −1

2

kγp∑
r=1

kγq∑
s=1

tr

(
Ω−1

i

∂Ωi

∂γrp
Ω−1

i

∂Ωi

∂γsq

)
erkγpe

s′
kγq

and the superscript ‘o’ denotes quantities evaluated at θo = (βo′, γo′)
′

.

The scoring method thus means replacing in the Newton algorithm ∂2Ln

∂θ∂θ′
=

1

n

∑n

i=1 h
θθ
i by 1

n

∑n

i=1 h
θθ
i . The latter is considerably simpler : it is block-diagonal and

only involves first derivatives. It will be a good approximation of the hessian if the
model is correctly specified and θ is not too far from θo. According to our experience,
even under quite severe misspecification, provided that all quantities are analytically
computed, the scoring method generally converges in less time (more computation
time per iteration but fewer iterations) than the secant methods. Further, since the
empirical expected hessian is always negative semidefinite, it is numerically stable.

Note that from a computational point of view the “vec” and the “trace” for-
mulations of all the above expressions are not at all equivalent. Indeed, hanging on
the number of observations per individual and on the number of variables entering
into the variance functions, they may entail quite substantially different computa-
tion times to complete. For example, using Gauss, if Ti = 2 (∀ i) and kγ1 = kγ2 = 10,
the computational times ratios between the “trace” and the “vec” formulations (i.e.,
“trace”over “vec”) are about equal to 6.8 for the gradient and 30.7 for the empirical
expected hessian. On the contrary, if Ti = 10 (∀ i) and kγ1 = kγ2 = 2, the same ra-
tio are respectively about equal to 0.52 and 0.47. Not taking this fact into account
when practically implementing the estimation procedure would be very inefficient.

A sensible set of starting values for the above algorithms may be computed by
proceeding as follows.

(1) Obtain the β̂ and α̂ = (α̂1, ..., α̂i, ..., α̂n) OLS estimates of the dummy variables
model Yi = αi + Xiβ + υi (i = 1, 2, ..., n), where X i is the same as Xi except

its dropped first column8. At this stage, β̂ and the mean of the α̂i, i.e., α =
1

n

∑n

i=1 α̂i, provide initial values for β.

(2) Run the OLS regression φ−1ν (û2it) = Z1
itγ1 + υit (i = 1, 2, ..., n; t = 1, 2, ..., Ti),

where ûit = Yit − α̂i − X itβ̂ and φ−1ν (.) is the (supposed well-defined) inverse
function of φν(.). The non-intercept parameters of γ̂1 and the intercept para-
meter of γ̂1 minus γ1c , where γ1c is an intercept correction term9, give initial
values for γ1. The “optimal” value of the intercept correction term γ1c depends

of course upon the functional form φ−1ν (.) and the actual distribution of the νit.
In the case of the multiplicative heteroscedasticity formulation where φ−1ν (.) is
simply equal to ln(.), a sensible choice is10 γ1c = −1.2704.

8As usual, ˆβ may be computed as ˆβ = (
∑

n

i=1
X ′

i
MTi

X
i
)−1

∑
n

i=1
X′

i
MTi

Yi (WOLS estimator) and

α̂i =
1

Ti
e′Ti(Yi−X

i
β̂), where M

Ti
= I

Ti
−

1

Ti
JTi , i.e., a within transformation matrix. See Balestra (1996)

for details.
9The “desirability” of an intercept correction of γ̂

1
arises from the fact that in the regression φ−1

ν
(û2it) =

Z1

itγ1+υit, even if we supposed that ûit is equal to the true disturbance νit, the (conditional) expectation
of the error term υit is not necessarily zero, not even necessarily a constant.



124

(3) Finally, run the OLS regression φ−1µ ((α̂i−α)2) = Z2

i γ2+υi (i = 1, 2, ..., n), where

φ−1µ (.) is the (supposed well-defined) inverse function of φµ(.). According to the
same reasoning than above, the non-intercept parameters of γ̂

2
and the intercept

parameter of γ̂
2
minus γ

2c
, where γ

2c
is an intercept correction term, give initial

values for γ
2
. In the case of the multiplicative heteroscedasticity formulation

where φ−1µ is again equal to ln(.), γ
2c

should also be set to -1.2704.

Note that a simpler alternative to the step 2 and 3 is workable. It merely
consists in computing the “mean variance components” σ̂2ν = 1

N

∑n

i=1

∑Ti
t=1 û

2

it and

σ̂2µ = 1

n

∑n

i=1(α̂i − α)2. The inverse function values φ−1ν (σ̂2ν) and φ−1µ (σ̂2µ) may then
be used for the first elements (intercepts) of γ

1
and γ

2
, their remaining elements

being set to zero.

To conclude this section, two final remarks. First, as shown by Maddala (1971)
and further discussed in Breush (1987) for the standard one-way error components
model, (3.8) may allow multiple local maxima. Therefore, in practice, it is wise to
check for this potential problem by starting the optimization from different sets of
initial values. Second, we want to stress the fact that GPML2 estimation of the
model is not as cumbersome as it may appear at first sight. Actually, although
expensive in programming time, it does not at all entail impractical computational
time.

3.3.3. Limiting properties of the estimator and asymptotic

covariance matrix estimation

As already pointed out, since the model contains no functional links between
mean and variance parameters and the normal density belongs to restricted quadratic
exponential families, the GPML2 estimator defined by (3.8) is actually a robust
pseudo-maximum likelihood of order two estimator (RPML2, or more precisely
GRPML2). In the balanced case, the general results of Chapter 1 thus directly ap-
ply. Provided that suitable regularity conditions hold, they may likewise be shown
to hold in the unbalanced case.

So, following Proposition 9 and 13, whatever the misspecification of the model,
we have that

θ̂n − θ∗n
a.s.−→ 0, as n → ∞ (Ti bounded)

and √
n(θ̂n − θ∗n) ≈ N(0, C∗

n)

where θ∗n =
(
β∗′

n , γ
∗′

1n
, γ∗′

2n

)
′

and

C∗

n = A∗
−1

n B̈∗

nA
∗
−1

n

10This follows from the fact that E[ln(ν2it)− ln(σ2νit)] = E[ln(ν2it/σ
2

νit
)] = −1.2704 if νit ∼ N(0, σ2νit).

See Harvey (1976).
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with

A∗

n =
1

n

n∑
i=1

E
[
hθθ∗i

]
, B̈∗

n =
1

n

n∑
i=1

E
[
sθ∗i sθ∗′i

]− U ∗

n, U ∗

n =
1

n

n∑
i=1

E
(
sθ∗i

)
E
(
sθ∗i

)
′

the superscript ‘∗’ denoting quantities evaluated at θ∗n.

In other words, regardless of arbitrary misspecification, θ̂n is consistent for some
pseudo-true value θ∗n and asymptotically normally distributed with asymptotic co-
variance matrix C∗

n. Note that the relatively simple form of B̈∗

n follows from the
assumption that the observations are independent across individuals.

According to Proposition 7 and 12, depending on the extent of the correct spec-
ification of our tentative model, GPML2 will yield a consistent estimator of either
the mean or the mean and variance parameters true values, and the form of its as-
ymptotic covariance matrix – and consequently, the way it may be estimated –
will accordingly change. Three cases are of practical interest. They are reviewed
hereafter.

The easiest – and unfortunately less likely – situation is when not only both
the conditional mean and the conditional variance are correctly specified, but in
addition normality also holds. In this case, GPML2 is just a standard maximum
likelihood estimator and we have the standard results that

θ̂n
a.s.−→ θo, as n → ∞ (Ti bounded)

and √
n(θ̂n − θo) ≈ N(0, C̄o

n)

with

C̄o
n =

[
C̄o
nββ

0

0 C̄o
nγγ

]
=

[ −Ao−1

nββ
0

0 −Ao−1

nγγ

]
where

Ao
nββ

=
1

n

n∑
i=1

E
[
hββoi

]
, Ao

nγγ
=

1

n

n∑
i=1

E [hγγoi ] and hγγi =

[
h
γ
1
γ
1

i h
γ
1
γ
2

i

h
γ
2
γ
1

i h
γ
2
γ
2

i

]

The asymptotic covariance matrix C̄o
n may then simply be estimated by re-

placing Ao
nββ

and Ao
nγγ

by their empirical counterpart Ânββ = 1
n

∑n

i=1 ĥ
ββ

i and

Ânγγ = 1
n

∑n

i=1 ĥ
γγ

i , where the superscript ‘ˆ’ denotes quantities evaluated at θ̂n.
Note that normality is actually not required for the above result to hold : it is suf-
ficient that the third and the fourth order conditional moments of the observations
correspond to those of the gaussian distribution.

Distributional misspecification does not affect the consistency of the estimator.
It however complicates the form of its asymptotic covariance matrix. So, if the model
is only correctly specified for the conditional mean and the conditional variance, we
still have that

θ̂n
a.s.−→ θo, as n → ∞ (Ti bounded)
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but now √
n(θ̂n − θo) ≈ N(0, Co

n)

with

Co
n =

[
Co
nββ

Co
nβγ

Co′
nβγ

Co
nγγ

]
=

 −Ao−1

nββ
Ao−1

nββ
Bo
nβγ

Ao−1

nγγ

Ao−1

nγγ
Bo
nγβ

Ao−1

nββ
Ao−1

nγγ
Bo
nγγ

Ao−1

nγγ


where

Bo
nβγ

=
1

n

n∑
i=1

E
[
sβoi sγo′i

]
= Bo′

nγβ
, Bo

nγγ
=

1

n

n∑
i=1

E
[
sγoi sγo′i

]
and sγi =

(
s
γ1′

i , s
γ2′

i

)
′

If nothing changes for the mean parameters, getting consistent estimators of Co
nβγ

and Co
nγγ

now requires using heteroscedasticity-consistent like estimators which may

be computed by replacing Bo
nβγ

and Bo
nγγ

by their empirical counterpart B̂nβγ =
1
n

∑n

i=1 ŝ
β
i ŝ

γ′
i and B̂nγγ = 1

n

∑n

i=1 ŝ
γ
i ŝ

γ′
i , and Ao

nββ
and Ao

nγγ
by the quantities outlined

above.

According to the robustness property of RPML2, the consistency of the mean
parameters estimator β̂n is not dismantled by possible misspecification of the as-
sumed scedastic pattern of the data. But the whole asymptotic covariance matrix
is seriously affected. So, if the model is correctly specified for the conditional mean
but misspecified for the conditional variance, we then have that

β̂n
a.s.−→ βo and γ̂n − γ∗

n

a.s.−→ 0, as n → ∞ (Ti bounded)

where γ∗
n
=
(
γ∗′1n , γ

∗′

2n

)
′

, while

√
n(θ̂n − θo∗n ) ≈ N(0, Co∗

n )

with θo∗n =
(
βo′, γ∗′

n

)
′

and

Co∗
n =

[
Co∗
nββ

Co∗
nβγ

Co∗′
nβγ

Co∗
nγγ

]
=

 Ao∗−1

nββ
Bo∗
nββ

Ao∗−1

nββ
Ao∗−1

nββ
Bo∗
nβγ

Ao∗−1

nγγ

Ao∗−1

nγγ
Bo∗
nγβ

Ao∗−1

nββ
Ao∗−1

nγγ
B̈o∗
nγγ

Ao∗−1

nγγ


where

Ao∗
nββ

=
1

n

n∑
i=1

E
[
hββo∗i

]
, Ao∗

nγγ
=

1

n

n∑
i=1

E [hγγo∗i ] , hγγi =

[
h
γ
1
γ
1

i h
γ
1
γ
2

i

h
γ2γ1
i h

γ2γ2
i

]

Bo∗
nββ

=
1

n

n∑
i=1

E
[
sβo∗i sβo∗′i

]
, Bo∗

nβγ
=

1

n

n∑
i=1

E
[
sβo∗i sγo∗′i

]
= Bo∗′

nγβ

B̈o∗
nγγ

=
1

n

n∑
i=1

E
[
sγo∗i sγo∗′i

]− U o∗
nγγ

, Uo∗
nγγ

=
1

n

n∑
i=1

E (sγo∗i )E (sγo∗i )
′

the superscript ‘o∗’ denoting quantities evaluated at θo∗n .
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Now, consistent estimation of both Co∗
nββ

and Co∗
nβγ

requires heteroscedasticity-
consistent like estimators. A consistent estimator of Co∗

nββ
is obtained by replac-

ing Ao∗
nββ

by Ânββ given above (this is because hββi = hββi ) and Bo∗
nββ

by B̂nββ =
1
n

∑n

i=1 ŝ
β
i ŝ

β′
i . Likewise, a consistent estimator of Co∗

nβγ
is obtained by replacing Ao∗

nββ

by Ânββ , B
o∗
nβγ

by B̂nβγ given above, and Ao∗−1

nγγ
by its empirical counterpart Ǎnγγ =

1
n

∑n

i=1 ĥ
γγ
i . Remark that Ǎnγγ and Ânγγ are quite different : if the latter only in-

volves first derivatives, the former contains both first and second derivatives, and
is thus significantly more burdensome to compute. Unless the observations are
IID and the panel dataset is balanced, a consistent estimator of Co∗

nγγ
may usu-

ally not be obtained. However, a consistent estimator of its upper bound Qo∗
nγγ

=

Ao∗−1

nγγ
(B̈o∗

nγγ
+U o∗

nγγ
)Ao∗−1

nγγ
(Qo∗

nγγ
� Co∗

nγγ
) may simply be computed as Ǎ−1

nγγ
B̂nγγ Ǎ

−1
nγγ

,

where B̂nγγ is as given above. This for example allows to perform a valid under
conditional variance misspecification conservative – i.e., with asymptotic true size
necessarily inferior to its specified nominal size – (joint) Wald test of the nullity of
the non-intercept parameter of γ1 and γ2, that is to say, to readily – but not un-
ambiguously – check if, as tentatively assumed, the observations actually exhibit
some heteroscedasticity-like pattern related to the Z1

i and Z2
i explanatory variables.

Note that the possibility to easily compute a consistent estimator of an upper bound
of C∗

n also holds under arbitrary misspecification.

Following the logic underlying robust to conditional variance misspecification
estimation, in empirical practice, although somewhat computationally more bur-
densome, it seems wise, at least in first investigations, to routinely compute the
asymptotic covariance matrix according to the latter outlined scheme, i.e., as

Čn =

 Â−1
nββ

B̂nββÂ
−1
nββ

Â−1
nββ

B̂nβγ Ǎ
−1
nγγ

Ǎ−1
nγγ

B̂nγβ Â
−1
nββ

Ǎ−1
nγγ

B̂nγγ Ǎ
−1
nγγ

 (3.22)

Čn obviously yielding a consistent estimator of the asymptotic covariance matrix
of all parameters if the model is actually correctly specified to a larger extent than
just the conditional mean. A more precise estimator may subsequently be used if,
according to specification testing, the model actually proves to be correctly specified
to a larger extent than just the conditional mean.

3.4. Specification testing

The GPML2 estimator of model (3.7) thus delivers a consistent estimator of
either the mean or the mean and variance parameters depending on the extent of
the correct specification of our tentative model. The question is then : to which
extent is our tentative model actually correctly specified?

Quite obviously, as for the consistency and limiting distribution properties out-
lined above, the general results regarding specification testing derived in Chapter 2
directly apply in the balanced case. Provided that suitable regularity conditions
hold, they may likewise be shown to hold in the unbalanced case (n → ∞, Ti
bounded ).
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Hereafter, as an adapted handy synthesis, we succinctly review how to perform
potentially useful conditional mean and conditional variance diagnostic tests of the
model.

3.4.1. Conditional mean diagnostic tests

Testing the null hypothesis that the conditional mean is correctly specified means
testing

Hm
0 : E(Yi|Xi, Z

1
i , Z

2
i ) = Xiβ

o, for some βo ∈ Θβ, i = 1, 2, ..., n

Following the lines of Chapter 2, Hm
0 may be tested using auxiliary nested al-

ternatives, auxiliary non-nested alternatives, or without resorting to explicit alter-
natives, through Hausman and information matrix type tests.

In all cases, such conditional mean diagnostic tests basically amount to checking,
for given choices of Ti × q indicator matrices Ŵm

i , that misspecification indicators
of the form

Φ̂m
n =

1

n

n∑
i=1

Ŵm′

i Ω̂−1
i ûi

are not significantly different from zero.

In the present context, given the assumed independence of the observations
across individuals and the linearity of the null model, an Mw

n -type test statistic –

i.e., Wooldridge’s modified m-test – for checking Φ̂m
n is given by the asymptotic

chi-squared statistic

Mmw

n =

(
n∑
i=1

(
Ŵm

i −XiP̂
m
n

)
′

Ω̂−1
i ûi

)
′

(
n∑
i=1

(
Ŵm

i −XiP̂
m
n

)
′

Ω̂−1
i ûiû

′

iΩ̂
−1
i

(
Ŵm

i −XiP̂
m
n

))−1

(
n∑
i=1

(
Ŵm

i −XiP̂
m
n

)
′

Ω̂−1
i ûi

)
d→ χ2(q)

which is equal to n minus the residual sum of squares (= nR2
u, R

2
u being the uncen-

tered R-squared) of the OLS regression

1 =
[
û′iΩ̂

−1
i

(
Ŵm

i −XiP̂
m
n

)]
b+ residuals, i = 1, 2, ..., n

the number of degrees of freedom q being equal to the size of the indicator Φ̂m
n and

P̂m
n =

(
n∑
i=1

X ′

iΩ̂
−1
i Xi

)
−1 n∑

i=1

X ′

iΩ̂
−1
i Ŵm

i
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The prominent characteristics of conditional mean diagnostic tests implemented
through Mmw

n are twofold. First, they yield valid tests of Hm
0 regardless distribu-

tional and conditional variance misspecification. In other words, since they do not
rely on other assumptions than the null itself, a rejection may effectively be at-
tributed to a failure of Hm

0 to hold. Second, they may be implemented using any
consistent estimator of βo, γ∗n and, when involved, additional nuisance parameters δ,

under Hm
0 .We know that the GPML2 estimator θ̂n =

(
β̂
′

n, γ
′

n

)
′

satisfies these consis-

tency requirements. But others estimators, e.g., FGLS, satisfying these consistency
requirements may thus also alternatively be used.

Following Section 2.5.1, conditional mean diagnostic tests of Hm
0 against auxil-

iary nested alternatives of the form

Hm
1 : E(Yi|Xi, Z

1
i , Z

2
i ) = ma

i (Xi, Z
1
i , Z

2
i , β

o, αo), for some (βo′, αo′)
′ ∈ Θa,

i = 1, 2, ..., n, where Θa = Θβ × Θα, α is a kα × 1 vector of additional parameters,
and for some constant vector c ∈ Θα

ma
i (Xi, Z

1
i , Z

2
i , β, c) = Xiβ, i = 1, 2, ..., n

i.e., pseudo Lagrange multiplier tests that, under Hm
1 , αo = c, are obtained by

setting Ŵm
t =

∂ma
i (Xi,Z

1

i ,Z
2

i ,β̂n,c)

∂α′
. When, as quite natural here, the auxiliary nested

alternative specification takes the linear form

ma
i (Xi, Z

1
i , Z

2
i , β, α) = Xiβ +Giα, i = 1, 2, ..., n

where the Ti × kα matrices Gi are functions of the set of conditioning variables

CVi ≡ (Xi, Z
1
i , Z

2
i ),

∂ma
i (Xi,Z

1

i ,Z
2

i ,β̂n,c)

∂α′
is simply equal to Gi and the test is a usual

variable addition test. A common relevant choice of Gi is then (some of) the squares
and/or the cross-products of (some of ) the CVi variables. Note by the way that the
above general formulation includes the well-known Ramsey’s (1969) RESET test for
nonlinearity (see also Mackinnon-Magee (1990)). In its most popular form, it simply

means setting Ŵm
t = Xiβ̂n �Xiβ̂n.

According to Section 2.5.2, Davidson-Mackinnon (1981) type tests of Hm
0 against

auxiliary non-nested alternatives like

Hm
1 : E(Yi|Xi, Z

1
i , Z

2
i , X

a
i ) = gi(Xi, Z

1
i , Z

2
i , δ

o), for some δo ∈ Θδ, i = 1, 2, ..., n

where δ is a kδ×1 vector of parameters, are, on the other hand, obtained by setting
Ŵm

t = gi(Xi, Z
1
i , Z

2
i , δ̂n) − Xiβ̂n, where δ̂n is any consistent estimator of δo under

Hm
1 , e.g., the nonlinear least squares (NLS) estimator or, in the linear case, the OLS

estimator. Because obvious appealing choices of gi(.) are rarely available, this kind
of test of Hm

0 is unlikely to be performed routinely.

One of the equivalent forms of the popular Hausman specification test of the
standard homoscedastic model is based on comparing the (non-intercept) FGLS
and OLS estimators of βo (see for example Baltagi (1995)). This strongly suggests
considering a generalized – allowing for any choice of S and robust to conditional
variance misspecification – Hausman type test of Hm

0 based on checking, for some
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chosen selection matrix S, the misspecification indicator

Φ̂m
n = S(β̂n − β̂

OLS

n )

Following Section 2.5.3.1, a test asymptotically equivalent to checking the above
misspecification indicator is procured by setting Ŵm

t = Ω̂iXiQ̂
−1
n S ′, where Q̂n =∑n

i=1X
′

iXi. For the suitable choice of S and under standard conditions – i.e., ho-
moscedasticity and conditional variance correct specification –, this test, which

will have power against any alternative Hm
1 for which β̂n and β̂

OLS

n converge to
different pseudo-true values, is asymptotically equivalent to its standard textbook
counterpart11. Note that, contrary to the standard case, heteroscedasticity (and in-
completeness) usually allows to include all β parameters as part of the Hausman
test without yielding a singular statistic.

Finally, according to Section 2.5.3.2, an information matrix type test of Hm
0 based

on checking, for some chosen selection matrix S, the misspecification indicator

Φ̂m
n = S

1

n

n∑
i=1

vec ĥβγi , hβγi =
[
h
βγ1
i h

βγ2
i

]
i.e., essentially based on checking the block diagonality between mean and variance
parameters of the hessian, is obtained by setting Ŵm

t = F̂iS
′, where

F̂ ′

i =



X ′

iΩ̂
−1
i

∂Ω̂i
∂γ1

1

...

X ′

iΩ̂
−1
i

∂Ω̂i

∂γ
kγ1
1

X ′

iΩ̂
−1
i

∂Ω̂i
∂γ1

2

...

X ′

iΩ̂
−1
i

∂Ω̂i

∂γ
kγ2
2


This kind of test, which may also be interpreted as simultaneously performing several
Hausman type tests and which will have power against any alternative Hm

1 for which
the block diagonality of the hessian fails, is a quite natural complement to the above
Hausman test for testing Hm

0 without resorting to explicit alternatives. Note that if
the multiplicative heteroscedasticity formulation is adopted for both φν(.) and φµ(.),

one of the two matrix elements X ′

iΩ̂
−1
i

∂Ω̂i
∂γ1

1

and X ′

iΩ̂
−1
i

∂Ω̂i
∂γ1

2

of F̂i is redundant, yielding

for S set to an identity matrix a singular statistic, and must thus be discarded.

To conclude this succinct review, a remark. In empirical practice, it is quite
usual to test the null model by specifying an explicit auxiliary alternative which
includes variables which are not functions of the original set of conditioning vari-
ables CVi. This does not modify the way in which testing against explicit alter-
natives is implemented. It is however important to be aware that, in such a case,
we are no longer only testing the null Hm

0 but instead the null Hma

0 : Hm
0 holds and

11For another robust to conditional variance misspecification version of the standard textbook Hausman
test, see Arellano (1993).
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E(Yi|Xi, Z
1
i , Z

2
i ) = E(Yi|Xi, Z

1
i , Z

2
i , G

a
i ), i = 1, 2, ..., n, where Ga

i denotes the vari-
ables which are not functions of CVi. In other words, we are jointly testing that Hm

0

holds and that the additional Ga
i variables are irrelevant as conditioning variables for

the expectation of Yi. We thus must be careful in interpreting such a specification
test : Hm

0 might well hold while Hma

0 does not.

3.4.2. Conditional variance diagnostic tests

Testing the null hypothesis that the conditional variance is correctly specified
entails testing the null

Hv
0 :

{
Hm
0 holds and, for some γo ∈ Θγ1

×Θγ2
,

V (Yi|Xi, Z
1
i , Z

2
i ) = diag (φν(Z

1
i γ

o
1)) + JTi φµ(Z

2
i
γo2), i = 1, 2, ..., n

Following again the lines of Chapter 2, as for the conditional mean, Hv
0 may

be tested using auxiliary nested alternatives, auxiliary non-nested alternatives, or
without resorting to explicit alternatives, through Hausman and information matrix
type tests, and in all cases, it basically amounts to checking, for given choices of
T 2
i × q indicator matrices Ŵ v

i , misspecification indicators which are similarly of the
form

Φ̂v
n =

1

n

n∑
i=1

Ŵ v′
i Γ̂−1

i v̂i

where
Γ−1
i =

(
Ω̂−1
i ⊗ Ω̂−1

i

)
and v̂i = vec(ûiû

′

i − Ω̂i)

Given the assumed independence across i, anMw
n -type test statistic for checking

Φ̂v
n is likewise given by the asymptotic chi-squared statistic

Mvw

n =

(
n∑
i=1

(
Ŵ v

i − ∂ vec Ω̂i
∂γ

′ P̂ v
n

)
′

Γ̂−1
i v̂i

)
′

(
n∑
i=1

(
Ŵ v

i − ∂ vec Ω̂i
∂γ

′ P̂ v
n

)
′

Γ̂−1
i v̂iv̂

′

iΓ̂
−1
i

(
Ŵ v

i − ∂ vec Ω̂i
∂γ

′ P̂ v
n

))−1

(3.23)

(
n∑
i=1

(
Ŵ v

i − ∂ vec Ω̂i
∂γ

′ P̂ v
n

)
′

Γ̂−1
i v̂i

)
d→ χ2(q)

which is equal to n minus the residual sum of squares (= nR2
u) of the OLS regression

1 =
[
v̂′iΓ̂

−1
i

(
Ŵ v

i − ∂ vec Ω̂i
∂γ

′ P̂ v
n

)]
b+ residuals, i = 1, 2, ..., n

the number of degrees of freedom q being again equal the size of the indicator Φ̂v
n

and
∂ vec Ω̂i

∂γ′
=

[
∂ vec Ω̂i

∂γ
′

1

∂ vec Ω̂i

∂γ
′

2

]
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P̂ v
n =

(
n∑
i=1

(
∂ vec Ω̂i

∂γ′

)
′

Γ̂−1
i

∂ vec Ω̂i

∂γ′

)−1
n∑
i=1

(
∂ vec Ω̂i

∂γ′

)
′

Γ̂−1
i Ŵ v

i

In short, we have the same general structure than for conditional mean testing
but, unfortunately, it involves more complicated expressions. In this respect, it is
worth noting that cleverly using the simplifying tricks outlined in Section 3.3.1 –
in particular the identities (3.11) – may significantly alleviate the computational
burden of the test statistics reviewed below.

Similarly to conditional mean diagnostic tests, conditional variance diagnostic
tests performed through Mvw

n may be implemented using any consistent estimator
of βo, γo and, when involved, additional nuisance parameters δ, under Hv

0, i.e., the
GPML2 estimator is not required. Likewise, they do not rely on other assumptions
than Hv

0 itself, i.e., they are robust to distributional misspecification. A rejection
may thus effectively be attributed to a failure of Hv

0 to hold. Given the nested
nature of Hm

0 and Hv
0, the robustness to conditional variance misspecification of the

diagnostic tests of Hm
0 and the fact that following diagnostic tests of Hv

0 concentrates
on detecting departures in the second order moments, if no misspecification has
been detected by conditional mean diagnostic tests, a rejection of Hv

0 may sensibly
be attributed to conditional variance misspecification : situations where conditional
variance diagnostic tests detect a misspecification in the mean which has not been
detected by conditional mean diagnostic tests are likely to be rare in practice.

Now, according to Section 2.6.1, conditional variance diagnostic tests of Hv
0

against auxiliary nested alternatives of the form

Hv
1 :

{
Hm
0 holds and, for some (γo′, αo′)′ ∈ Θγ1

×Θγ2
×Θ

α
,

V (Yi|Xi, Z
1
i , Z

2
i ) = Ωa

i (Xi, Z
1
i , Z

2
i , γ

o, αo), i = 1, 2, ..., n

where α is a kα × 1 vector of additional parameters, and for some constant vector
c ∈ Θα

Ωa
i (Xi, Z

1
i , Z

2
i , γ, c) = diag

(
φν(Z

1
i γ1)

)
+ JTi φµ(Z

2
i
γ2), i = 1, 2, ..., n

i.e., pseudo Lagrange multiplier tests that, under Hv
1, α

o = c, are obtained by setting

Ŵ v
i =

∂ vecΩai (Xi,Z
1

i ,Z
2

i ,γ̂n,c)

∂α′
. If the auxiliary nested alternative takes, as natural in the

present context, the semi-linear form

Ωa
i (Xi, Z

1
i , Z

2
i , γ, α) = diag

(
φν(Z

1
i γ1 +G1

iα1)
)
+ JTi φµ(Z

2
i
γ2 +G2

iα2)

where α = (α′

1, α
′

2)
′ and the Ti × kα1 matrices G1

i and the 1 × kα2 matrices G2
i are

functions of the set of conditioning variables CVi, the appropriate indicator matrices
Ŵ v

i are given by

Ŵ v
i =

[
Ŵ v1

i Ŵ v2
i

]
with

Ŵ v1
i = diag

(
vec

(
diag

(
φ′ν(Z

1
i γ̂1n)

))) (
G1
i ⊗ eTi

)
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=

kα1∑
r=1

vec

(
∂Ω̂a

t

∂αr
1

)
er′
kα1

,
∂Ω̂a

t

∂αr
1

= diag
(
φ′ν(Z

1
i γ̂1n)�G1r

i

)
Ŵ v2

i = φ′µ(Z
2
i γ̂2n) vec (Jni)G

2
i

=

kα2∑
r=1

vec

(
∂Ω̂a

t

∂αr
2

)
er′
kα2

,
∂Ω̂a

t

∂αr
2

= φ′µ(Z
2
i γ̂2n)G

2r

i JTi

where G1r

i and G2r

i denote the r-th column of respectively G1
i and G2

i . As for the
conditional mean, common relevant choices of G1

i and G2
i are then (some of) the

squares and/or the cross-products of (some of) the CVi variables.

On the other hand, following Section 2.6.2, Davidson-Mackinnon (1981) and Cox
(1961,1962) type tests of Hv

0 against auxiliary non-nested alternatives like

Hv
1 :

{
Hm
0 holds and, for some δo ∈ Θδ

V (Yi|Xi, Z
1
i , Z

2
i ) = Σi(Xi, Z

1
i , Z

2
i , δ

o), i = 1, 2, ..., n

where δ is a kδ × 1 vector of parameters, are obtained by respectively setting
Ŵ v

i = vec(Σ̂i− Ω̂i) and Ŵ v
i = vec(Ω̂iΣ̂

−1
i Ω̂i− Ω̂i), where Σ̂i = Σi(Xi, Z

1
i , Z

2
i , δ̂n) and

δ̂n is any consistent estimator of δo under Hm
1 , e.g., the multivariate NLS (MNLS)

estimator of the T 2
i -variate nonlinear regression vec(ûiû

′

i) = vecΣi(Xi, Z
1
i , Z

2
i , δ)+

residuals, i = 1, 2, ..., n. The Cox form of the test is probably generally more power-
ful. Be that as it may, such tests may for example be used for checking the chosen
variance functions φν(.) and φµ(.) against some alternative choices, or more radically
the assumed form of the heterogeneity against some other non-nested specification
allowing for variable heterogeneity.

As for conditional mean testing, in both the nested and non-nested case, the
way to perform the tests is unchanged if the auxiliary alternative includes vari-
ables which are not functions of the original set of conditioning variables CVi. But
likewise the tested null hypothesis is modified. It here takes the form Hva

0 : Hv
0

holds and, both E(Yi|Xi, Z
1
i , Z

2
i ) = E(Yi|Xi, Z

1
i , Z

2
i , G

a
i ) and V (Yi|Xi, Z

1
i , Z

2
i ) =

V (Yi|Xi, Z
1
i , Z

2
i , G

a
i ), i = 1, 2, ..., n, where Ga

i denotes the variables which are not
functions of CVi. In other words, besides Hv

0, it further assumes that the additional
variables Ga

i are irrelevant as conditioning variables for the variance but also the
expectation of Yi.

Testing Hv
0 through a Hausman type test requires to choose a consistent estima-

tor of γo alternative to γ̂n. The GPML2 estimator γ̂n may be shown to be asymptoti-
cally equivalent to the multivariate weighted NLS (MWNLS) estimator with weigths{
Γ̈−1
i

}
of the T 2

i -variate nonlinear regression vec(üiü
′

i) = vec(diag(φν(Z
1
i γ1)) +

JTi φµ(Z
2
i
γ2))+ residuals, i = 1, 2, ..., n, where the superscript ‘..’ denoting quan-

tities evaluated at any preliminary consistent estimator of βo and γo. A simple and
natural alternative to it is thus the standard (unweighted) MNLS estimator, say γ̂

n
,

of the same regression. According to Section 2.6.3.1, a test asymptotically equivalent
to checking, for some chosen selection matrix S, the misspecification indicator

Φ̂v
n = S(γ̂n − γ̂

n
)
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is procured by setting Ŵ v
i = Γ̂i

∂ vec Ω̂i
∂γ

′ Q̂−1
n S ′, where Q̂n =

∑n

i=1

(
∂ vec Ω̂i
∂γ

′

)
′

∂ vec Ω̂i
∂γ

′ .

As all Hausman type tests, this test will have power against any alternative Hv
1 for

which γ̂n and γ̂
n
converge to different pseudo-true values.

Finally, following Section 2.5.3.2, an information matrix type test of Hv
0 based

on checking, for some chosen selection matrix S which at least removes its otherwise
obvious redundant elements, the misspecification indicator

Φ̂v
n = S

1

n

n∑
i=1

vec
(
X ′

iΩ̂
−1
i ûiû

′

iΩ̂
−1
i Xi −X ′

iΩ̂
−1
i Xi

)
i.e., essentially based on checking the information matrix equality Bo

nββ
= −Ao

nββ

of the mean parameters, is obtained by setting Ŵ v
t = (Xi ⊗Xi)S

′. This latter way
of testing Hv

0 without resorting to explicit alternatives, which seems generally more
powerful than the above Hausman type test, will clearly have power against any
alternative Hv

1 for which the mean parameters information matrix equality fails.
Contrary to the information matrix type test of the conditional mean for which it
does not seem to be a fruitful strategy, in our experience, setting S such that Φ̂v

n

is simply the sum of all non-redundant elements of the information matrix equality
appears quite appealing.

3.5. A preliminary joint pseudo Lagrange

multiplier test

In the framework of the one-way error components model, several test statistics
are available for testing the presence of individual effects. A comprehensive survey
of these tests may be found in Mouton-Randolf (1989) and Baltagi-Chang-Li (1992).
Almost all these tests are derived under normality and one-directional in the sense
that they are designed to test against only one departure from the null12. Notable
exceptions are the joint gaussian LM test for serial correlation and random individual
effects of Baltagi-Li (1991) and the distribution-free test statistic recently derived by
Li-Stengos (1994) for testing the presence of random individual effects while allowing
for arbitrary pattern of heteroscedasticity under the null.

As outlined in the introduction, we are here interested in deriving a simple OLS
residuals based distribution-free test statistic for checking the potential relevance
of our general model before undertaking the estimation procedure, i.e., in jointly
testing the null hypothesis of no individual effects and homoscedasticity against the
alternative of random individual effects and heteroscedasticity.

Such a test may be expressed as testing the null

H0 :

{
E(Yi|Xi, Zi) = Xiβ

o

V (Yi|Xi, Zi) = σo2ν ITi
, for some

(
βo′, σo2ν

)
′ ∈ Θβ ×Θσ2ν

, i = 1, 2, ..., n

12 In the context of the gaussian two-way error components model, two-directional tests are available for
jointly testing the presence of both individual and time effects. See Breush-Pagan (1980) and Baltagi-Li
(1990). Test statistics are also available for testing the presence of individual effects while assuming time
effects under the null, and vice versa. See Baltagi-Chang-Li (1992).
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against the auxiliary nested alternative

H1 :

{
E(Yi|Xi, Zi) = Xiβ

o

V (Yi|Xi, Zi) = σo2ν diag
(
φ(Ziγ

o)
)
+ σo2µ JTi

, for some
(
βo′, σo2ν , σo2µ , γo′

)
′ ∈ Θa,

i = 1, 2, ..., n, where Θa = Θβ × Θσ2ν
× Θσ2µ

× Θγ, Zi denotes a Ti × kγ matrix of

explanatory variables (without intercept), γ is a kγ×1 vector of parameters, σ2ν and

σ2µ are scalar variance parameters and φ(.) is an arbitrary non-indexed (strictly)

positive twice continuously differentiable function satisfying φ(0) = 1 and φ
′

(0) �=
0, φ′(x) denoting the first derivative of φ(x) with respect to x. Notice that the
multiplicative heteroscedasticity link function exp(.) satisfies these assumptions.

The formulation of the test deserves some comments. First note that it maintains
the hypothesis that the conditional mean is correctly specified with respect to the set
of conditioning variables CVi ≡ (Xi, Zi) . Note further that the alternative H1 is less
general than model (3.7) : contrary to it, it does not allow for heteroscedasticity in
the individual-specific error term. This would be irrelevant for the present purpose
of the test statistic13. We want however to stress that this does not mean that the
joint test statistic will be insensitive to heteroscedasticity in the individual-specific
dimension. Indeed, such a heteroscedasticy pattern implies non-constant diagonal
elements in the conditional variance, a feature which may be captured through
the general error term variance function. So, by suitably picking up Zi, the joint
test statistic could actually be specifically designed for testing against a true data
generating process exhibiting heteroscedasticy only in the individual-specific error
term. Be that as it may, further observe that, regarding the general error term, the
alternative allows for a quite broad class of heteroscedastic models. In particular, it
includes some versions of the random coefficient model (see Breush-Pagan (1979)).

Letting Ωa
i stand for the alternative specification σ2ν diag

(
φ(Ziγ)

)
+ σ2µJTi , ac-

cording to the previous section, a pseudo LM test of the joint null that14 σo2µ = 0
and γo = 0 is for the case at hand based on the (1+kγ)×1 misspecification indicator

Φ̃n =
1

n

n∑
i=1

W̃ ′

i Γ̃
−1

i ṽi

with

W̃i =
∂ vec Ω̃a

i

∂
(
σ2µ, γ

′

) , Γ̃i = σ̃2νITi ⊗ σ̃2νITi , ṽi = vec(ũiũ
′

i − σ̃2νITi) (3.24)

13A joint test of σo2µ = 0 and γ
o
= 0 allowing for heteroscedasticity in the individual-specific error term

under the alternative could be derived by using the Davidson-Mackinnon (1981) trick outlined in Chapter 2
to overcome the non-identifiability of the individual-specific variance parameters under the null. The test
statistic would however then require a consistent estimator of these parameters under the alternative. In
other words, checking the potential relevance of our general model before estimating it would actually
entail first estimating it in some way.

14Note that, as outlined in Chapter 2, the fact that σo2µ is on the border of its parameter space does
not entail any problem.
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where the superscript ‘˜’ denotes quantities evaluated under H0 and

W̃i =

[
∂ vec Ω̃a

i

∂σ2µ

∂ vec Ω̃a
i

∂γ′

]
=

[
vecJTi σ̃2νφ

′(0) diag (vec ITi) (Zi ⊗ eTi)
]

An m-test – either standard or Wooldridge’s modified – that Φ̃n is not too far
from zero is equivalent to an m-test that S̃nΦ̃n, where S̃n is a (1 + kγ) × (1 + kγ)

non-singular matrix, is not too far from zero. By adequately defining S̃n, we may

thus get rid of the multiplicative constant σ̃2νφ
′(0) appearing in

∂ vec Ω̃ai
∂γ′

. In other

words, the precise form of φ(.) is irrelevant for deriving the present test statistic :
provided of course that it satisfies the assumptions we made about it, any choice of
φ(.) leads to the same statistic. They are locally equivalent alternatives.

So, the relevant misspecification indicator to consider is actually

Φ̃IrH
n =

1

n

n∑
i=1

W IrH′

i Γ̃−1

i ṽi

with
W IrH

i =
[
vecJTi diag (vec ITi) (Zi ⊗ eTi)

]
(3.25)

From this point, we might proceed by roughly computing the test statistic (3.23)
with the relevant quantities. This however does not yield a simple statistic, as we
are looking for.

Considerable simplification may be obtained if, on one hand, we restrict our
attention to an Mn-type test , i.e., a standard m-test, of Φ̃IrH

n , and, on the other
hand and much more importantly, we are willing to further assume that, under H0,
the errors uoit = νit are conditionally independently – but not necessarily identically
– distributed across t with fourth order conditional moments E(ν4it|Xi, Zi) = δoit,
i = 1, ..., n.

According to Section 2.4 and 2.6, for the case at hand, the Mn-type test of Φ̃
IrH
n

is given by the asymptotic chi-square statistic

PLMIrH
n = nΦ̃IrH ′

n K̃−1

n Φ̃IrH
n

d→ χ2(1 + kγ) (3.26)

where K̃n is a consistent estimator of

Ko
n =

1

nσo8ν

n∑
i=1

E
[(
W IrH

i −RiPn

)
′

voi v
o′
i

(
W IrH

i −RiPn

)]
with

Ri = vec ITi (3.27)

Pn =

(
n∑
i=1

E [R′

iRi]

)
−1 n∑

i=1

E
[
R′

iW
IrH
i

]
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Restricting our attention to this Mn-type test means that we have to use the
GPML2 estimator of the variance parameters15 – and not another consistent esti-
mator unless it has the same limiting distribution – of the null model for the test
statistic to be valid. This is here perfectly innocuous since the GPML2 estimators
of the null model are simply the OLS estimator β̃n and the standard ML variance
estimator σ̃2ν =

1

N

∑n

i=1

∑Ti
t=1 ũ

2

it, i.e., the simplest estimators of the null model. Let
for now the superscript ‘˜’ denotes quantities evaluated at these estimators.

Using (3.24) and (3.25), it may be verified that Φ̃IrH
n is equal to

Φ̃IrH
n =


1

nσ̃4ν

n∑
i=1

(
(ũ′ieTi)

2 − σ̃2νTi
)

1

nσ̃4ν

n∑
i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

)
 (3.28)

where ũˆ2i = ũi � ũi.

Following Magnus-Neudecker (1986), the additional auxiliary assumption that,
under H0, the errors uoit = νit are conditionally independently distributed across t
with fourth order conditional moments E(ν4it|Xi, Zi) = δoit, implies that we have

E [voi v
o′
i |Xi, Zi] = σo4ν IT 2

i
+ σo4ν KTiTi + diag

(
vec (diag(δoi ))− 3σo4ν vec ITi

)
(3.29)

where δoi =
(
δoi1, ..., δ

o
iTi

)
′

and KTiTi is the T 2

i × T 2

i commutation matrix, i.e., a
matrix such that, for any Ti × Ti matrix A, KTiTi vecA = vecA′. Under conditional
normality, δoit = 3σo4ν and the last term of (3.29) is zero.

Noting that KTiTiW
IrH
i = W IrH

i and KTiTiRi = Ri, under (3.29), Ko
n then

collapses to

K̄o
n

=
1

nσo8ν

n∑
i=1

E
[(
W IrH

i −RiPn

)
′

E [voi v
o′
i |Xi, Zi]

(
W IrH

i −RiPn

)]
=

2

nσo4ν

n∑
i=1

E
[(
W IrH

i −RiPn

)
′
(
W IrH

i −RiPn

)]
+

1

nσo8ν

n∑
i=1

E
[(
W IrH

i −RiPn

)
′

diag
(
vec (diag(δoi ))− 3σo4ν vec ITi

) (
W IrH

i −RiPn

)]

Now, consider the matrix ˜̄Ko
n defined as

˜̄Ko
n =

1

nσo8ν

n∑
i=1

E
[
2σo4ν M̃i1 + M̃o

i2 − 3σo4ν M̃i3

]

15For the mean parameters, it does not matter. See Section 2.6.
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where

M̃i1 =
(
W IrH

i −RiP̃n

)
′
(
W IrH

i −RiP̃n

)
M̃o

i2 =
(
W IrH

i −RiP̃n

)
′

diag (vec (diag(δoi )))
(
W IrH

i −RiP̃n

)
M̃i3 =

(
W IrH

i −RiP̃n

)
′

diag (vec ITi)
(
W IrH

i −RiP̃n

)
and

P̃n =

(
n∑
i=1

R′

iRi

)
−1 n∑

i=1

R′

iW
IrH
i , (3.30)

˜̄Ko
n is the same than K̄o

n except that Pn has been replaced by its consistent

estimator P̃n, so that ˜̄Ko
n converges to K̄o

n. Using (3.25), (3.27) and (3.30), it may
be seen that(

W IrH
i −RiP̃n

)
=
[
vec (JTi − ITi) diag (vec ITi)

(
Z̈i ⊗ eTi

) ]
(3.31)

where Z̈i = Zi − 1

N

∑n

i=1 e
′

Ti
Zi, thus variables expressed in deviations from their

(entire) sample mean.

Then, using (3.31), it may be checked that

M̃i1 =

[
(T 2

i − Ti) 0

0 Z̈
′

iZ̈i

]

M̃o
i2 =

[
0 0

0 Z̈
′

i diag(δ
o
i )Z̈i

]

M̃i3 =

[
0 0

0 Z̈
′

iZ̈i

]
such that

˜̄Ko
n =

1

nσo8ν

n∑
i=1

E

[
2σo4ν (T 2

i − Ti) 0

0 Z̈
′

i (diag(δ
o
i )− σo4ν ITi) Z̈i

]

In other words, under the null and the auxiliary assumption (3.29), the two
components of Φ̃IrH

n are asymptotically independently distributed. A consistent

estimator of ˜̄Ko
n, and thus also of K̄o

n, may be computed as

K̃n =


2

nσ̃4ν

n∑
i=1

(T 2

i − Ti) 0

0
1

nσ̃8ν

n∑
i=1

Z̈
′

i

(
diag(ũˆ4i )− σ̃4νITi

)
Z̈i

 (3.32)
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where ũˆ4i = ũi � ũi � ũi � ũi.

Collecting (3.26), (3.28) and (3.32), the PLMIrH
n statistic thus turns out to

simply be

PLMIrH
n = PLMIr

n + PLMH
n

d→ χ2(1 + kγ) (3.33)

where

PLMIr
n =

1

2

((
1

σ̃2ν

n∑
i=1

(ũ′ieTi)
2

)
−N

)2

(
n∑
i=1

Ti

)2

−N

d→ χ2(1)

PLMH
n =

(
n∑
i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

))′
(

n∑
i=1

Z̈
′

i

(
diag(ũˆ4i )− σ̃4νITi

)
Z̈i

)
−1

(
n∑
i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

)) d→ χ2(kγ)

i.e., the sum of two asymptotically independent pseudo-LM statistics asymptotically
distributed as, respectively, χ2(1) and χ2(kγ).

PLMIr
n is nothing else than the incomplete panel version of the Breush-Pagan

(1980) standard LM test for one-way error components derived in Baltagi-Li (1990).
The balanced version of this standard LM test was shown to be robust to non-
normality by Honda (1985). For deriving its result, Honda (1985) assumed IID errors
under the null. The present result shows that robustness to non-normality also holds
both in the unbalanced case and under the weaker assumption of independently but
not necessarily identically distributed errors under H0.

PLMH
n contains as special cases well-known tests for heteroscedasticity. So, if

the fourth order conditional moments of νit are further assumed constant under H0,
i.e., for all i and t, E(ν4it|Xi, Zi) = δo, PLMH

n collapses to the Koenker’s (1981)
statistic

PLMHK

n =
1

δ̃ − σ̃4ν

(
n∑
i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

))′
(

n∑
i=1

Z̈
′

iZ̈i

)
−1( n∑

i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

))

where δ̃ is a consistent estimator of δo. Likewise, if the νit are further assumed
conditionally normal under H0, i.e., for all i and t, E(ν4it|Xi, Zi) = 3σo4ν , we obtain
the standard Breush-Pagan’s (1979) statistic

PLMHBP

n =
1

2σ̃4ν

(
n∑
i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

))′
(

n∑
i=1

Z̈
′

iZ̈i

)
−1( n∑

i=1

Z ′

i

(
ũˆ2i − σ̃2νeTi

))

For practical purpose, it is worth noting that a statistic asymptotically equiva-
lent to PLMH

n may be computed as N minus the residual sum of squares (= NR2

u)
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of the OLS regression

1 =
[(
ũ2it − σ̃2ν

)
Z̈it

]
b+ residuals, i = 1, 2, ..., n ; t = 1, 2, ..., Ti

where Z̈it denotes t-th row of Z̈i. This statistic – which is a genuine Wooldridge’s
(1990) modified m-test – was outlined in Wooldridge (1990). Using this latter
regression-based form of PLMH

n , provided that PLMIr
n is available from some

standard software16, PLMIrH
n is quite easy to implement.

A nice by-product of the additive structure of PLMIrH
n is that, although not

unambiguously, it readily allows for gaining insights about the direction(s) in which
misspecification detected by the joint statistic may lie by looking at the one-directio-
nal statistics PLMIr

n and PLMH
n . From a formal point of view, this may be done

by using a Bonferroni approach in the reverse manner : the direction(s) in which
misspecification detected by the joint test at asymptotic size α lies may tentatively
be identified as given by the one-directional test statistic(s) rejected at asymptotic
size α/2 (on this approach, see Savin (1980,1984) and Bera-Jarque (1982))17.

Being specifically designed for this purpose, we may expect PLMIrH
n to have

good power for detecting heteroscedasticity and one-way error components like pat-
terns in the second order moments of the data. On the contrary, we may not really
expect it to exhibit good power against misspecification of the conditional mean,
which is also part of the null hypothesis H0. So, although also possibly due to size
distortion arising from a lack of independence of the errors as assumed under the
null, a rejection of the joint test along with some evidence that the rejection stems
from its two components may be viewed as providing some support for tentatively
looking at the general model (3.7). It is however worth stressing that it is very ten-
tative : rejection of the joint statistic might well actually arise from misspecification
of the mean and/or size distortion while, under the alternative, each one-directional
statistic may be “contaminated” by a departure from the null in the other direction.

3.6. Concluding comments

This chapter proposed an extension of the standard one-way error components
linear regression model allowing for heteroscedasticity in both the individual-specific
and general error terms and, using the general results of the previous chapters, pro-
vided a comprehensive robust to distributional and conditional variance misspecifi-
cation integrated inferential framework for its estimation and specification testing.

We believe that this model and its accompanying robust inferential methods
should be useful for analyzing short, possibly unbalanced, microeconomic panel
datasets. On the one hand, from an economic point of view, it offers an intuitively
appealing way for modelling variable heterogeneity in both the between and within

16 It is for example computed by LIMDEP.
17Note that asymptotic independence implies that a joint induced test based on the separate statistic

PLM
Ir
n and PLMH

n which consists in rejecting the joint null H0 if one or more of the separate statistics
PLM

Ir
n and PLMH

n are rejected at asymptotic significance levels αIr and αH , has an exact asymptotic
size equal to α = αIr + αH − αIrαH . At the usual significance levels (e.g., 0.05), taking the standard
Bonferroni solution αIr = αH = α/2 is thus meaningful.
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dimensions, so that if it actually proves to be correctly specified, it may provide
very interesting information about the heterogeneity of the economic relationship
under consideration. On the other hand, from a more statistical point of view,
this specification embodies the scedastic characteristics which are the most likely
to be observed when dealing with microeconomic panel data : autocorrelation in
the time-series dimension and heteroscedasticity in the cross-section dimension. So,
even if it actually proves to be second order misspecified, besides also providing
some (possibly misleading) insights about the heterogeneity of the observations,
it nevertheless allows to (eventually) get efficiency gains – both for estimation
and testing of the conditional mean – from approximately taking into account the
scedastic structure of the data. At this level, the robustness to conditional variance
property of the outlined estimation and testing procedures is of course essential.

In this latter perspective, the fact that the proposed preliminary joint pseudo
Lagrange multiplier test might not be very reliable in identifying heteroscedasticity
is not crucial : its purpose is just to give some insights about the potential relevance
of right away considering a heteroscedastic model. If it is not the case, we may more
simply first look at the standard homoscedastic model. The estimation of the model
may then be undertaken either by GPML2 or FGLS (for the unbalanced case, see for
example Baltagi (1985,1994)). Whatever the choice – as outlined, to be valid, the
diagnostic tests do not require the GMPL2 estimator but only consistent estimators
under the null18 –, the homoscedastic model may likewise be tested in mean and
variance through the outlined diagnostic tests, and in particular tested against our
general heteroscedastic model as an auxiliary nested alternative.

To conclude, let us point out that we considered a linear specification in the mean
and a semi-linear specification in the variance mainly for simplicity and because it
is the most likely to be used in practice. Using the results of Chapters 1 and 2, and
following the lines of this chapter, it is straightforward to extend the present results
to fully nonlinear specifications. Finally, regarding the implementation of the diag-
nostic tests, it worth recalling what we said at the end of Chapter 2. An extensive
investigation of the conditional mean and conditional variance of the model should
be based on both Hausman or information matrix type misspecification indicator(s)
and misspecification indicator(s) designed to check the null against plausible aux-
iliary (nested or non-nested) alternatives. Further, because it may provide useful,
although possibly misleading, information about the source(s) of departure from the
null, it is probably a good strategy to check individually the chosen misspecification
indicators associated to the different aspects of the model specification, keeping in
mind that, from a formal point of view, joint induced tests with bounded asymptotic
size of the null of interest may be carried out by using a Bonferroni approach.

18Although probably not commendable in small samples, note that mean and variance diagnostic tests
of the standard model could actually be implemented by roughly resorting to the OLS estimator of β along
with the simplest OLS residuals based estimators of the variance components.
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Chapter 4

An empirical illustration : production

functions estimation and testing

4.1. Introduction

When proposing an extension of a well-established model and statistical tools
to deal with as in Chapter 3, some questions naturally come out : what is its em-
pirical significance ? how does its estimation and testing work in practice ? The
purpose of this chapter is to exemplify the potential usefulness of the proposed full
heteroscedastic one-way error components model and its accompanying robust infer-
ential methods through an empirical illustration consisting in production functions
estimation and specification testing. This illustration is based on a strongly unbal-
anced panel dataset of 824 french firms observed over the period 1979 - 1988.

Since the seminal work of Cobb and Douglas (1928), considerable progress has
been made by production theory and econometric methods, and data availability has
rapidly grown, both in quantity and quality, shifting in particular from the macro
level to the more relevant micro level. But the question raised by Douglas (1948) in
its presidential address at the American Economic Association is still on the agenda :
are there laws of production? Put in other words, is it possible to get a satisfactory,
i.e., correctly specified, empirical counterpart to the indisputably fruitful theoretical
concept of production function.

Our goal here is certainly not to discuss the numerous issues associated to
this vast question. For an up-to-date discussion and references, see for example
Mairesse (1988) and Griliches-Mairesse (1990,1995). More modestly, we concen-
trate on estimating and testing at an inter-sectorial level the correctness of the
specification of two simple – commonly used in empirical practice – transcenden-
tal logarithmic (translog) production models, one taking into account differences
in the “quality” of labor and the other not. This empirical illustration suggests
(a) that heteroscedasticity-related problems are likely to be present when estimat-
ing this kind of production models using (cross-section or) panel data, (b) that the
proposed full heteroscedastic one-way error components model and its accompany-
ing robust inferential methods may offer a sensible, although imperfect, way to deal
with it, and finally (c) that the set of proposed specification tests allows to get in-
teresting insights about the empirical correctness of these simple models. In this
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latter respect, we will see that the more detailed model does not turn out to be the
most appropriate.

This chapter is organized as follows. Section 4.2 describes the data and the
tested production models. Section 4.3 reports and discusses the obtained empirical
results. Finally, Section 4.4 proposes some concluding comments.

4.2. Data and tested models

The data originally come from a panel dataset constituted by the “Marchés
et Stratégie d’Entreprises” division of INSEE1. The present dataset is actually a
cleaned subset of this original dataset2. It contains 5 201 observations and, as already
outlined, consists in a strongly unbalanced panel dataset of 824 french firms observed
over the period 1979-1988. About one third only of the firms are observed over the
entire period. The mean number of observations per firm is about 6.31.

Nine out of the fourteen sectors which compose the NAP15 Classification are
represented in the sample (sectorial code in parentheses) : agricultural and food
industries (02), energy production and distribution (03), intermediate goods in-
dustries (04), equipment goods industries (05), consumption goods industries (06),
construction and civil engineering industries (07), trade (08), transport and telecom-
munications (09), market services (10). The sectors not represented in the sample
are : agriculture, real estate renting and leasing, insurance, financial institutions,
non-market services.

The number of firms and the number of observations per represented sector
in the sample are reported in Table 1. As shown in this table, the bulk of the
observations (about 76%) actually belongs to the four sectors 04, 05, 06 and 08.

Table 1 : Sectorial composition of the dataset (1979 - 1988)

Sector Nb. of firms Nb. of obs. Nb. of obs. / firms.
02 52 377 7.25
03 14 84 6.00
04 144 843 5.85
05 184 1 240 6.74
06 162 990 6.11
07 48 329 6.85
08 157 885 5.64
09 20 137 6.85
10 67 316 4.72

The definition of the variables used hereafter in the production models are the
following :

1For a precise description of this panel dataset, which is actually built upon different data sources, see
Blanchard P. and al. (1996).

2 I wish to thank Patrick Sevestre for kindly providing the dataset and Pierre Blanchard for furnishing
it to me in a convenient format.
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- va : value added deflated by an NAP 40 sector-specific price index (base : 1980).
- k : stock of capital.
- l : total number of workers (l = ls + lus).
- ls : number of skilled workers.
- lus: number of unskilled workers.

The stock of capital variable has been constructed by INSEE.

Table 2 reports some descriptive statistics for the entire sample. As it may be
seen, the observations are extremely dispersed : the largest firm employs almost
32 000 workers while the smallest only 19, the capitalistic intensity varies from 10
to more than 3200, while the proportion of skilled workers in the labor force ranges
from 3% to almost 85%. Clearly, large firms are over-represented. As usual in this
kind of dataset, the observation variability essentially lies in the between (across
individuals) dimension. Note that the same extreme dispersion is observed at the
sectorial level.

Table 2 : Descriptive statistics (5201 obs., 1979-1988)

Variable Mean Std. dev. Min. Max.
va 160233 303 652 1 451 4 506 209
k 343105 874 939 602 10 441 233
l 1117 1 870 19 31 762
ls 313 703 4 11 076
lus 803 1 290 8 23 375
k/l 260.9 291.3 10.3 3217.6
ls/l 0.283 0.157 0.030 0.844

We are thus interested in estimating and testing two simple translog production
function models, one taking into account differences in the “quality” – skilled ver-
sus unskilled workers– of labor and the other not. These two models are defined
hereafter. The notation is the same than in Section 3.2. The same statistical as-
sumptions – equations (3.3)-(3.5) – are tentatively assumed to hold. Both models
are thus second order semi-parametric models like (3.7).

• Model I :

Vit = β(sc×t) + βkKit + βlLit + βkkK2
it + βllL2

it + βklKitLit + µi + νit

with

σ2
νit

= exp
(
γ + γkKit + γlLit

)
σ2
µ
i

= exp
(
α + αkK̄i + αlL̄i

)
where

Vit = ln vait, Kit = (ln kit − ln k∗), Lit = (ln lit − ln l∗),
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K̄i =
1

Ti

Ti∑
t=1

Kit, L̄i =
1

Ti

Ti∑
t=1

Lit

• Model II :

Vit = β(sc×t) + βkKit + βlsLsit + βlusLusit + βkkK2
it + βlslsL2

sit
+ βluslusL2

usit

+βklsKitLsit + βklusKitLusit + βlslusLsitLusit + µi + νit

with

σ2
νit

= exp
(
γ + γkKit + γlsLsit + γlusLusit

)
σ2
µ
i

= exp
(
α + αkK̄i + αlsL̄si + αlusL̄usi

)
where, similarly,

Lsit = (ln lsit − ln l∗s), Lusit = (ln lusit − ln l∗us)

L̄si =
1

Ti

Ti∑
t=1

Lsit , L̄usi =
1

Ti

Ti∑
t=1

Lusit

In both models the subscript ‘(sc×t)’ attached to the intercept parameter β(sc×t)

means that we actually let the intercept be sectorial and time-period specific. Each
model thus contains 90 dummies (9 sectors × 10 periods). This allows for sector-
specific productivity growth patterns. Our primary interest is to see whether a
common parametrization holds for the non-intercept parameters.

The explanatory variables are centered so that the estimated values of βk and βl

(resp. βk, βls and βlus) reported below may directly be interpreted as the elasticities
of the value added with respect to capital and labor (resp. capital, skilled labor and
unskilled labor) at k = k∗ and l = l∗ (resp. k = k∗, ls = l∗s and lus = l∗us). We set k∗

and l∗ (resp. k∗, l∗s and l∗us) at their entire sample means as given in Table 2.

For both the individual-specific and general error variance functions, and for
both models, we adopt the Harvey’s (1976) multiplicative heteroscedasticity formu-
lation. In the general error variance functions, the explanatory variables are simply
taken as the (log of the) different inputs. Taking the individual mean values of
the (log of the) different inputs as explanatory variables in the individual-specific
variance functions is mainly a pragmatic choice. It appears sensible as far as the ob-
servation variability prominently lies in the between dimension. Be that as it may,
these choices allow the variances to change according to both size and input ratios.

Model I and model II clearly consider different sets of conditioning variables
as explanatory variables for the two first conditional moments of (the log of) the
value added. The set of conditioning variables of model I is CVI ≡ (Dsc, Dt, k, l) ≡
(Dsc, Dt, k, (ls + lus)) while the one of model II is CVII ≡ (Dsc, Dt, k, ls, lus), where
Dsc and Dt denote respectively sectorial (sc = 1, ..., 9) and time (t = 1, ..., 10)
dummies. The latter is obviously larger than the former. Generally speaking, con-
sidering different sets of conditioning variables yields different models, so that it is
always possible, at least in principle, that all considered models turn out to be si-
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multaneously correctly specified. In the present case however, given the maintained
functional forms, they are essentially incompatible. In other words, we may expect
to find out misspecified at least one of the two models. Note finally that in both
models the conditional variance is specified as functions of variables which do appear
in the conditional mean, so that it does not alter the conditioning set with respect
to which the conditional mean is tentatively assumed to be correctly specified. The
converse is nevertheless not true.

4.3. Empirical results

We proceed in three steps. We first report preliminary estimation and testing of
the models. We then outline the results obtained from GPML2 estimation. Finally,
we deal with specification testing.

4.3.1. Preliminary estimation end testing

As yardstick, we first provide the obtained results from OLS and within OLS
(WOLS) estimation of model I and II. They are given in Table 3 and 4. The reported
standard errors are heteroscedasticity-robust3.

Table 3 : OLS and within OLS estimation of model I

OLS WOLS
Variable Coefficient Std. error t-ratio Coefficient Std. error t-ratio
K 0.2222 0.0155 14.34 0.2637 0.0460 5.73
L 0.7780 0.0219 35.62 0.7097 0.0377 18.84
K2 0.0422 0.0075 5.64 0.0625 0.0119 5.26
L2 0.0308 0.0141 2.18 0.0723 0.0180 4.01
KL -0.0748 0.0190 -3.89 -0.1372 0.0261 -5.26

Heteroscedasticity-robust standard errors

Table 4 : OLS and within OLS estimation of model II

OLS WOLS
Variable Coefficient Std. error t-ratio Coefficient Std. error t-ratio
K 0.2039 0.0138 14.73 0.2462 0.0457 5.38
Ls 0.4244 0.0142 29.98 0.2083 0.0159 13.07
Lus 0.3759 0.0176 21.35 0.5136 0.0271 18.97
K2 0.0375 0.0068 5.49 0.0494 0.0118 4.19
L2

s 0.1071 0.0079 13.64 0.0637 0.0068 9.33
L2

us 0.0814 0.0119 6.87 0.1100 0.0102 10.77
KLs -0.0210 0.0119 -1.76 -0.0134 0.0109 -1.23
KLus -0.0452 0.0146 -3.09 -0.0827 0.0189 -4.38
LsLus -0.1671 0.0138 -12.14 -0.1299 0.0132 -9.83

Heteroscedasticity-robust standard errors

3Actually, since we are in a multivariate framework, we should say heteroscedasticity and autocorrela-
tion robust.
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The R-squared the OLS regressions of model I and II are respectively equal to
0.952 and 0.961. Thus, considering the “quality” – skilled versus unskilled – of
the labor force does not really add a lot in terms of explanatory power.

Under correct specification of the conditional mean, the coefficients obtained
from OLS and WOLS should not be too different. At first sight, taking into account
the reported standard errors, they do not seem too dramatically different for model
I. This does not appear to be the case for model II, in particular regarding the
coefficients of Ls and Lus. All this already suggests that model I, although coarser,
might be more appropriate than model II. We shall return to this point below when
considering the specification tests.

Is it worth considering full heteroscedastic models like model I and II ? As sug-
gested in Section 3.5, the preliminary pseudo-LM statistic PLMIrH

n along with its
one-directional components PLMIr

n and PLMH
n may provide some interesting in-

sights about this question. Table 5 reports the results of their computation for
model I and II. The retained variables for their PLMH

n components are logically
the variables appearing in their general error variance functions.

Table 5 : Preliminary pseudo-LM tests of model I and II

PLMIrH
n PLMIr

n PLMH
n

Stat. 11 016.6 10 981.0 35.6
Model I D.f. 3 1 2

p-value 0.0000 0.0000 0.0000
Stat. 8 194.3 8 118.9 75.4

Model II D.f. 4 1 3
p-value 0.0000 0.0000 0.0000

The pseudo-LM statistic PLMIrH
n turns out to drastically reject the joint null

of no individual effects and homoscedasticity in both models. Looking at their one-
directional components reveals that, although the values of the joint statistics are
mainly explained by their individual effects components, homoscedasticity is also
strongly rejected in both models. This provides support for indeed looking at the
full heteroscedastic models.

4.3.2. GPML2 estimation

The results of GPML2 estimation of model I and II are reported in Table 6
and 7. In both cases, the standard errors of the parameters are computed as it was
suggested to routinely compute them in Section 3.3.3, i.e., as given in (3.22). For the
record, this yields correct standard errors for the conditional mean parameters and
an upper bound of the true standard errors for the conditional variance parameters
if the models are correctly specified for the conditional mean but misspecified for
the conditional variance. On the other hand, this yields correct standard errors of
all parameters if the models are correctly specified for both the conditional mean
and the conditional variance.

Based on these computed covariance matrix of the parameters – and thus on
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the hypothesis which underlies their validity –, Table 8 further reports some Wald
tests : a test of the appropriateness of the nested Cobb-Douglas formulation for
the conditional mean, a test of the joint significance of the dummies introduced in
the models, and a test of heteroscedasticity (checking the significance of the non-
intercept parameters of both individual-specific and general variance functions).

Table 6 : GPML2 estimation of model I

Variable Coefficient Std. error t-ratio p-value
K 0.2487 0.0188 13.26 0.0000
L 0.7367 0.0244 30.21 0.0000
K2 0.0547 0.0072 7.58 0.0000
L2 0.0572 0.0132 4.35 0.0000
KL -0.1137 0.0176 -6.48 0.0000
σ2

νit
= exp(.)

const. -4.1997 0.0541 -77.65 0.0000
K 0.1870 0.0582 3.21 0.0013
L -0.2482 0.0849 -2.92 0.0035

σ2

µ
i

= exp(.)
const. -2.5213 0.0732 -34.43 0.0000
K̄ 0.1676 0.0610 2.74 0.0060
L̄ -0.1709 0.0799 -2.14 0.0325

Standard errors computed according to (3.22)

Table 7 : GPML2 estimation of model II

Variable Coefficient Std. error t-ratio p-value
K 0.2414 0.0182 13.27 0.0000
Ls 0.2351 0.0131 17.98 0.0000
Lus 0.5034 0.0176 28.62 0.0000
K2 0.0488 0.0071 6.89 0.0000
L2

s 0.0694 0.0063 10.99 0.0000
L2

us 0.1057 0.0088 11.97 0.0000
KLs -0.0194 0.0089 -2.19 0.0284
KLus -0.0747 0.0134 -5.56 0.0000
LsLus -0.1340 0.0102 -13.15 0.0000
σ2

νit
= exp(.)

const. -4.1923 0.0558 -75.14 0.0000
K 0.1868 0.0555 3.37 0.0008
Ls 0.0132 0.0641 0.21 0.8370
Lus -0.2607 0.0736 -3.54 0.0004

σ2

µ
i

= exp(.)
const. -2.5171 0.0717 -35.12 0.0000
K̄ 0.1773 0.0618 2.87 0.0041
L̄s 0.3415 0.0694 4.92 0.0000
L̄us -0.4823 0.0792 -6.09 0.0000

Standard errors computed according to (3.22)
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Table 8 : Wald tests of model I and II (GPML2 estimation)

Model I Model II
Stat. D.f. p-value stat. D.f. p-value

H0: Cobb-Douglas 57.8 3 0.0000 384.3 6 0.0000
H0: no sector × time effects 2 307.9 89 0.0000 1 796.7 89 0.0000
H0: no heteroscedasticity 18.9 4 0.0008 65.8 6 0.0000

Regarding the mean parameters, first note that, for model I, the GMPL2 esti-
mates are roughly at “equal distance” between the OLS and WOLS estimates –
and thus not very different of them –, while in the case of model II, they are much
more similar to WOLS than to OLS. This reinforces the idea that model I seems
more appropriate than model II.

Further, again regarding the mean parameters, according to Table 8, both the
simple Cobb-Douglas formulation and the hypothesis of no ‘sector × time’ effects
are strongly rejected in the two models. With respect to the ‘sector × time’ effects,
note that separate tests suggest that sector-specific, time-specific and sector-time
interactions are all responsible of the rejection of the joint ‘sector × time’ effects
tests, and that in both models.

Turning our attention to the variance parameters, according again to Table 8 –
recall however that they are not valid (conservative) tests of the variance parame-
ters if the mean is misspecified –, it appears that heteroscedasticity-like patterns
are effectively present in both the individual-specific and general error second or-
der moments of the two models. In all cases, heteroscedasticity seems related to
input ratios : more capitalistic and/or skilled labor intensive firms appear more het-
erogeneous both in the between and within dimensions than more laboristic and/or
unskilled labor intensive firms.

The captured heteroscedasticity however does not seem to be notably related to
size. Figures 1 and 2 portray this latter point. In these figures, estimated general
error and individual error variances are graphed against the observations sorted in
ascending order according to individual means of the fitted dependent variable and,
within each individual, according to the values of the fitted dependent variable itself.

Figure 1 : Estimated variances versus size in Model I

General error term variances : σ̂2

νit
Individual error term variances : σ̂2

µ
i
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Figure 2 : Estimated variances versus size in Model II

General error term variances : σ̂2

νit
Individual error term variances : σ̂2

µ
i

None of these figures reveals notable links between variances and size. They
however outline two other points. First, variations in the observed inputs ratios
imply variations in the estimated variances – identified by the difference between
the lower and upper levels of the estimated variances – of more than a factor 2.
Second, the estimated individual-specific variances are roughly 5 - 6 times higher
than the estimated general error variances.

4.3.3. Specification testing

Following Section 3.4, we check the conditional mean and the conditional vari-
ance specifications of model I and II through Hausman type tests, information ma-
trix type tests and tests against auxiliary nested alternatives. The performed tests
are described hereafter. They are all implemented as outlined in Section 3.4.1 and
3.4.2.

• Conditional mean diagnostic tests :

— Test (1) : Hausman type test based on comparing the GPML2 and OLS
estimators of all mean parameters (including the dummies).

— Test (2) : idem than (1) except that it concentrates on the non-intercept
mean parameters (thus excluding the dummies).

— Test (3) : information matrix type test based on checking the nullity of the
sub-block of the hessian corresponding to the cross-derivatives between the
non-intercept mean parameters and all variance parameters (excepted the
intercept of the individual-specific variance function4).

— Test (4) : test against an auxiliary nested alternative including as addi-
tional variables the interactions between a trend and the first order terms
of the tranlog function. This tests for non-neutral technical progress5.

— Test (5) : test against an auxiliary nested alternative including as addi-
tional variables to the null translog specification terms of third power6.

4To avoid singularity (see Section 3.4.1).
5Non-neutral technical progress is typically modelled by considering a trend as an additional input.

The trend and trend-squared terms being already captured by the set of dummies, it thus remains to test
for the interaction terms between the trend and the first order terms of the translog function.



151

This tests the functional form.
— Test (6) : test against an auxiliary nested alternative allowing for the non-
intercept mean parameters to be time-period specific. This tests for time
heterogeneity.

— Test (7) : test against an auxiliary nested alternative allowing for the non-
intercept mean parameters to be sector-specific. This tests for sectorial
heterogeneity.

• Conditional variance diagnostic tests :

— Test (8) : Hausman type test based on comparing the GPML2 and (un-
weighted) MNLS7 estimators of all variance parameters.

— Test (9) : information matrix type test based on checking the non-redun-
dant elements of the sub-block of the information matrix equality associ-
ated with the non-intercept mean parameters.

— Test (10) : idem than (9) except that it considers the sum of the indicators
on which (9) is based.

— Test (11) : test against an auxiliary nested alternative specifying both
the individual-specific and general error variances as (the exponential of)
translog functions instead of Cobb-Douglas like functions. This tests the
functional forms.

— Test (12) : test against an auxiliary nested alternative allowing for all vari-
ance parameters to be sector-specific. This tests for sectorial heterogeneity.

For the record, all conditional mean tests are robust to distributional and con-
ditional variance misspecification while all conditional variance tests are robust to
distributional misspecification. Note further that none of the above diagnostic tests
against auxiliary alternatives resort to variables which are not functions of the orig-
inal sets of conditioning variables (CVI for model I and CVII for model II). The null
hypothesis of these tests is thus never more than the null models themselves.

Table 9 reports the results obtained from the computation of the above diag-
nostic tests of model I and II.

Let us first consider the conditional mean specification tests.

As it may be seen, the conditional mean tests confirm what was already felt from
simply comparing the OLS and WOLS estimators of the models : model II appears
seriously misspecified while model I does not appear to exhibit patent misspecifica-
tion, the observed differences between the alternative estimators of model I seeming
to be well and truly attributable to randomness. Regarding in particular the very
large sample size, model I appears very surprisingly well specified : it does not seem
to patently suffer of endogeneity of the inputs, functional misspecification, sectorial
heterogeneity or temporal instability, to mention some of the “best-sellers” of the
misspecification catalogue. The only statistic which indicates some possible devia-
tion from the null is the test (4). Its p-value is however not really worrying : from
a formal point of view, according a standard Bonferroni approach, for rejecting at
5% the null hypothesis that the conditional mean is correctly specified, we “need”

6 i.e., for model I, K3, L3, KL2 and K2L, and for model II, K3, L3

s, L
3

us, KL
2

s, KL
2

us, K
2Ls, K

2Lus,
LsL

2

us, L
2

sLus, KLsLus. This corresponds to the third order terms of a (multivariate) Taylor expansion,
the translog function being itself a second order Taylor expansion.

7See Section 3.4.2.
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that at least one of the 7 separate tests rejects the null at 0.71% (0.05/7 � 0.0071).
Viewed in a less formal way, it is normal to find out some statistics which (moder-
ately) deviate when multiplying the number of diagnostic tests.

Table 9 : Specification tests of model I and II (GPML2 estimation)

Model I Model II
Stat. D.f. p-value Stat. D.f. p-value

Conditional mean tests
(1) Hm (all ind.) 85.0 95 0.7602 190.1 99 0.0000
(2) Hm (all select. ind.) 5.9 5 0.3180 114.8 9 0.0000
(3) Im (all select. ind.) 33.7 25 0.1141 192.0 63 0.0000
(4) H1: non-neutral TP 8.4 2 0.0146 10.4 3 0.0151
(5) H1: third power 2.8 4 0.5961 36.7 10 0.0001
(6) H1: time heterogeneity 57.1 45 0.1064 100.58 81 0.0693
(7) H1: sectorial heterogeneity 41.0 40 0.4249 104.2 72 0.0078
Conditional variance tests
(8) Hm (all ind.) 18.4 6 0.0052 27.6 8 0.0006
(9) Im (all select. ind.) 45.6 15 0.0001 79.8 45 0.0011
(10) Im (sum of all select. ind.) 5.66 1 0.0173 9.1 1 0.0025
(11) H1: second power 2.2 6 0.9015 11.3 12 0.5003
(12) H1: sectorial heterogeneity 98.6 48 0.0000 98.6 64 0.0036

Identifying the plausible source(s) of a detected misspecification as in model
II is in essence a perilous task. In this respect, diagnostic tests without explicit
alternatives are not really helpful. Diagnostic tests against explicit alternatives are
more informative. In the present case, they suggest that sectorial heterogeneity and
misspecified functional form – possibly for the same kind of underlying reasons –
are involved. On the other hand, time heterogeneity does not appear to be a major
issue.

Table 10 and 11 provide further evidence of the absence of patent misspecifica-
tion of model I and more information about the possible source(s) of misspecification
of model II. These tables report the same set of conditional mean diagnostic tests
than above, but computed at the sectorial level, based on separate GPML2 estima-
tion of model I and II sector by sector8. For conciseness, we only report the p-values
of the test statistics.

Before looking at the obtained results, note that the intercept of all estimated
sector-specific version of model I and II is time-specific : each model thus contains
10 dummies (= 10 periods). Note further that whenever the dimension of the mis-
specification indicator underlying a test is larger than the number of firms in the
sector, a nonsingular estimates of its covariance matrix cannot be obtained, so that
the test statistic is not computed. The abbreviation ‘sing.’ appearing in Table 10
and 11 refers to these situations.

8Note that given the very small number of observations available in sector 03 and 09, in these sectors,
the conditional variance specification has been confined to the standard homoscedastic one-way error
components structure.
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Table 10 : P -values of sector-specific conditional mean specification
tests of model I (sector-specific GPML2 estimation)

Sector
Test 02 03 04 05 06 07 08 09 10
(1) 0.7831 sing. 0.4878 0.0830 0.0422 0.3660 0.4776 0.3351 0.3255
(2) 0.8764 0.2966 0.2105 0.2076 0.0182 0.1986 0.6013 0.5653 0.0098
(3) 0.2944 0.2851 0.0371 0.0937 0.4959 0.3684 0.5544 0.5125 0.0698
(4) 0.2401 0.1825 0.0134 0.6231 0.0493 0.7778 0.1284 0.1222 0.7402
(5) 0.3932 0.2232 0.6022 0.4298 0.4168 0.0507 0.2996 0.1095 0.0611
(6) 0.3185 sing. 0.3487 0.1279 0.8169 0.7221 0.2372 sing. 0.5743

Table 11 : P -values of sector-specific conditional mean specification
tests of model II (sector-specific GPML2 estimation)

Sector
Test 02 03 04 05 06 07 08 09 10
(1) 0.5102 sing. 0.1400 0.0030 0.0002 0.3960 0.0047 0.4353 0.1136
(2) 0.2955 0.4939 0.0569 0.0013 0.0000 0.1538 0.0007 0.1837 0.0053
(3) sing. 0.5089 0.1378 0.1503 0.1601 sing. 0.0287 0.3895 0.4583
(4) 0.4441 0.3668 0.0338 0.4740 0.0403 0.8857 0.1834 0.1031 0.5626
(5) 0.3514 0.2511 0.1293 0.0330 0.3258 0.2733 0.0079 0.1112 0.1913
(6) sing. sing. 0.5076 0.2409 0.7238 sing. 0.6144 sing. sing.

As it may be seen, added to the absence of detected sectorial heterogeneity, Table
10 leads us to come to the same conclusion than above : model I does not appear
to exhibit patent misspecification. It may be viewed as a satisfactory statistical
representation of the available data.

The picture drawn by Table 11 is more ambiguous : only three sectors (05, 06
and 08) – to a smaller extent also sector 10 – exhibit imprecise but quite firm
misspecification. It is however worth recalling that these three sectors are precisely
three out of the four main sectors represented in the sample, i.e., three out of the
four sectors for which a (very) large number of observations is available. In other
words, the test statistics might lack power in the smaller sectors. Be that as it
may, it appears that sectorial heterogeneity is certainly not the only source of the
model II misspecification detected at the inter-sectorial level. Something deeper
seems involved. Note by the way that this is congruent with the outlined fact that
model I and II are essentially incompatible. On the other hand, it turns out that
the conditional mean diagnostic tests prove to be unable to discriminate between
model I and II in the smallest sectors. Finally, it seems that time heterogeneity is
not a major issue9.

Taking correct conditional mean specification of model I for granted, we may
examine the results of the diagnostic tests of its conditional variance. This of course

9To complete Table 11, note in this respect that time heterogeneity tests of model II against an auxiliary
nested alternative allowing for the non-intercept mean parameters to be specific in the periods 78-81, 82-85
and 86-88 (considering only three periods reduces the size of the indicator) yield for sector 02, 07 and 10
p-values respectively equal to 0.6801, 0.8091 and 0.2756.
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does not really make sense for model II since the null of correct conditional vari-
ance specification embodies the null of correct conditional mean specification, which
proved to be violated. Note by the way that this implies that the (conservative)
Wald test for heteroscedasticity in model II reported in Table 8 is not valid. It is
nevertheless quite likely that a heteroscedasticity-like pattern is indeed both present
in the data and, as suggested in Table 9, misspecified.

The test for heteroscedasticity in model I reported in Table 8 is well and truly
valid, and it clearly indicates the actual presence of a heteroscedasticity-like pattern
in the second order conditional moments of the observations. According to Table 9,
the assumed specification however turns out to be seriously misspecified. Test (11)
suggests that relaxing the functional form would not really help. On the other hand,
test (12) points out that a problem of sectorial heterogeneity might be involved.

To shed light on the latter point as well as to gauge the sensibility of the con-
ditional mean estimates and diagnostic tests to the specification of the conditional
variance, Table 12, 13 and 14 respectively report GPML2 estimation, Wald test-
ing and diagnostic testing – the same tests than above – of a variant of model
I (entitled model Ib) letting both the individual-specific and general error variance
parameters to be sector-specific10.

Table 12 : GPML2 estimation of model Ib

Variable Coefficient Std. error t-ratio p-value
K 0.2455 0.0169 14.54 0.0000
L 0.7519 0.0210 35.77 0.0000
K2 0.0557 0.0062 9.03 0.0000
L2 0.0639 0.0101 6.29 0.0000
KL -0.1165 0.0148 -7.87 0.0000

Standard errors computed according to (3.22)

Table 13 : Wald tests of model Ib (GPML2 estimation)

Stat. D.f. p-value
H0: Cobb-Douglas 82.9 3 0.0000
H0: no sector × time effects 3 027.2 89 0.0000
H0: no heteroscedasticity 309.3 48 0.0000
H0: no sector-specific heteroscedasticity 244.7 44 0.0000

For conciseness, Table 12 only reports the mean parameter estimates. Compared
to GPML2 estimation of model I, the mean parameters estimates does not sensibly
change. On the other hand, Table 13 confirms that both the simple Cobb-Douglas
formulation and the hypothesis of no ‘sector × time’ effects are strongly rejected11.

The conservative Wald tests reported in Table 13 also confirm the presence
of a heteroscedasticity-like pattern in the second order conditional moments of the

10Again because of the very small number of observations available in sector 03 and 09, note that the
non-intercept parameters of, on the one hand, the individual-specific variance function, and on the other
hand, the general error variance function, have been constrained to be equal across these two sectors.

11As for model I, note that separate tests show that sector-specific, time-specific and sector-time inter-
actions are all responsible of the rejection of the joint ‘sector × time’ effects test.
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observations and the fact that the heteroscedasticity-like patterns are sector-specific.
Note however that, although somewhat constrasted across sectors, the estimated
sector-specific variances still mainly vary with input ratios, and that in the way
outlined above.

Table 14 : Specification tests of model Ib (GPML2 estimation)

Stat. D.f. p-value
Conditional mean tests
(1) Hm (all ind.) 93.7 95 0.5175
(2) Hm (all select. ind.) 6.5 5 0.2579
(3) Im (all select. ind.)12 38.7 25 0.0396
(5) H1: non-neutral TP 3.9 2 0.1446
(6) H1: third power 3.3 4 0.5061
(7) H1: time heterogeneity 55.6 45 0.1341
(8) H1: sectorial heterogeneity 36.0 40 0.6505
Conditional variance tests
(9) Hm (all ind.) 72.1 50 0.0221
(10) Im (all select. ind.) 52.8 15 0.0000
(11) Im (sum of all select. ind.) 4.5 1 0.0348

Finally, Table 14 further corroborates our finding that the conditional mean
specification of model I does not exhibitit patent misspecification. Further, it shows
that allowing for sector-specific variance functions does not solve our misspecifica-
tion problem in the conditional variance. It is nevertheless not useless. Comparing
the standard errors of the mean parameters reported in Table 6 and 12, it may in-
deed be seen that allowing for a more flexible conditional variance specification has
entailed (moderate) efficiency gains : the reduction of the standard errors ranges
from -10.1% to -23.4%. This shows that, as argued, besides providing some (possi-
bly misleading) insights about the within and between heterogeneity, a misspecified
conditional variance may also get efficiency benefits – for estimation but also test-
ing of the conditional mean – from approximately taking into account the actual
scedastic structure of the data.

4.4. Concluding comments

The primary purpose of this chapter was to exemplify the potential usefulness
of the proposed full heteroscedastic one-way error components model and its accom-
panying robust inferential methods.

This illustration provides some support to the key points which motivated the
theoretical developments undertaken in this dissertation : the need for some exten-
sion of the standard model which allows, in an intuitively appealing way and at least
approximately, to take into account and to account for phenomenons of variable het-

12Test (3) is here based on checking the nullity of the sub-block of the hessian corresponding to the
cross-derivatives between the non-intercept mean parameters and the variance parameters (excepted the
intercept of the individual-specific variance) of the ‘sector of reference’ (taken as the largest sector : sector
05) by reference to which the other sector variance functions are defined (through sets of dummies).
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erogeneity, i.e., heteroscedasticity, and the desirability to have at one’s disposal a
reasonably computationally convenient integrated inferential framework for both es-
timation and testing, explicitly taking into account the possibility of second order
misspecification and allowing to easily handle incomplete panels. In this latter re-
spect, note that in the present case, dropping from the original panel the individuals
for which the observations are not complete (observed over the ten years 1979-1988)
would have meant discarding almost one half of the available observations.

Regarding the obtained empirical results, the absence of detected misspecifica-
tion in model I is a good news but also a surprising one, in particular given the very
large sample size. On the other hand, the fact that model I appears more appro-
priate than model II is not really surprising. Considering a model with an enlarged
set of conditioning variables may indeed be viewed as to go through the data into
more details. But, going into details, the actual production activities – ranging
from car manufacturing to hosiery – of the individual firms contained in the sam-
ple have almost nothing in common. It is thus not really surprising that, in this kind
of modelling problem, going through the data into more details reveals additional
heterogeneity which proves to be difficult to capture through a simple common para-
metrization. This of course does not discard other explanations but seems to us to
be one of the relevant ones.
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Conclusion

Starting from the acknowledgment that there is some need for generalized ver-
sions of the standard one-way error components model which take into account and
account for phenomenons of variable heterogeneity, this dissertation pursued two
main objectives : on the one hand, to propose and discuss such an extension of the
standard model, and on the other hand, to provide an as comprehensive as possible
statistical tool-box for its estimation and specification testing.

Chapter 3 exposed both the proposed extension of the standard model and a rel-
evant statistical tool-box – following from the general results derived in Chapters
1 and 2 – to deal with.

The basic idea underlying the proposed extension is very simple. It amounts
to letting both the individual-specific and the general error terms variances change
by parametrically specifying these variances as functions of some set of explanatory
variables. Doing this means adopting an economically and statistically appealing
quite flexible parametrization allowing for variable heterogeneity both in the between
and within dimensions.

For the estimation of the model, we argued for using second order pseudo-
maximum likelihood methods. Chapter 1 provided the theoretical developments
propping up this assertion. In a much more comprehensive framework than actually
needed, in this chapter we outlined sufficient and necessary conditions for a second
order pseudo-maximum likelihood estimator to be robust to conditional variance
misspecification, and described the limiting distribution properties of such a nicely
behaved estimator. It provided us with a potentially efficient and computationally
convenient estimator of the model of interest, explicitly managing a possible mis-
specification of the assumed form of heterogeneity and further allowing to easily
handle incomplete panels.

On the other hand, for specification testing of the model, we argued for tak-
ing advantage of the very powerful and flexible m-testing / Wooldridge’s modified
m-testing framework. Chapter 2 underpinned this claim. Remaining in the same
comprehensive framework than in Chapter 1, it described how to check the spec-
ification of second order semi-parametric models. It put at our’s disposal a large
spectrum of m-type diagnostic tests for the model under scrutiny, whose prominent
characteristic is that their validity requires no more than just the null hypothesis
of interest. Combined with the nested nature of the null hypotheses of correct con-
ditional mean and correct conditional variance specification, this provides ways to
hopefully unambiguously identify eventual departures from the prominent aspects
– mean and variance – of the proposed model specification.

Finally, Chapter 4 was intended to exemplifying through an empirical illus-
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tration the potential usefulness of the proposed full heteroscedastic one-way error
components model and its accompanying robust inferential methods.

As suggested by Chapter 4, we believe that the proposed full heteroscedastic
model and its accompanying robust inferential methods should be useful for ana-
lyzing short, possibly unbalanced, microeconomic panel datasets. On the one hand,
from an economic point of view, it offers an intuitively appealing way for modelling
variable heterogeneity in both the between and within dimensions, so that if it ac-
tually proves to be correctly specified, it may provide very interesting information
about the heterogeneity of the economic relationship under consideration. On the
other hand, from a more statistical point of view, this specification embodies the
scedastic characteristics which are the most likely to be observed when dealing with
microeconomic panel data : autocorrelation in the time-series dimension and het-
eroscedasticity in the cross-section dimension. So, even if it actually proves to be
second order misspecified, besides also providing some (possibly misleading) insights
about the heterogeneity of the observations, it nevertheless allows to (eventually)
get efficiency gains – both for estimation and testing of the conditional mean –
from approximately taking into account the scedastic structure of the data. At this
level, the robustness to conditional variance property of the outlined estimation and
testing procedures is of course essential.

Treating estimation and specification testing in a much more comprehensive
framework than actually needed for the model under scrutiny, if somewhat more
cumbersome, has the obvious by-product advantage that the obtained results may be
used in a large spectrum of situations. From the panel data point of view, virtually
all models, linear or nonlinear, assuming strictly exogenous explanatory variables
and letting mean and variance parameters to vary independently, may actually be
treated along the same lines than in Chapter 3. This includes numerous extensions
of the standard one-way error components model : models with autocorrelation in
the general error term, random coefficient models, seemingly unrelated regressions
(SUR) models or any other similar extensions. In all cases, if computationally
convenient, the model may be estimated by gaussian pseudo-maximum likelihood
of order 2 without worrying about possible misspecification of the second order
moments and may likewise be extensively tested through m-type diagnostic tests,
including tests for competing non-nested specifications of the second order moments.

Although the generalized method of moments (GMM) offers a much more flexi-
ble framework to deal with, the same methodology may also be used when it is felt
that the lack of strict exogeneity of the explanatory variables is only due to corre-
lation between the individual effects and the regressors. In this case, we may put
the observations in (first) differences and, taking into account the (possibly het-
eroscedastic) moving average process induced by this transformation, then proceed
in the same way.

Throughout this work, we tried to stress the crucial role, regarding both esti-
mation and specification testing, of the choice of the set of conditioning variables
in an econometric modelling exercise. We emphasized the facts that this choice is
ultimately up to the researcher, depending on what is of interest to him, and that
different choices of conditioning variables actually yield different models. Obviously,
we will usually not be able to get correctly specified models for any set of condi-
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tioning variables. Sometimes, as it happened in our empirical illustration, correctly
specified models will prove to be easier to obtain for limited sets of conditioning
variables, while in other cases, it may turn out to be the opposite. This kind of con-
siderations seems to be overlooked by virtually all authors. We hope that this work
will encourage to consider this issue more deeply.

To conclude, it is worth pointing out that all the results derived in this dis-
sertation are asymptotic results. Whether or not they yield accurate and reliable
approximations for finite samples remains an open question, in particular regard-
ing the test statistics. Because the outlined tests take advantage of the generalized
residuals structure of the problem at hand, we may hopefully expect that it does
not too much suffer from the sometimes very poor finite sample properties exhibited
by the standard Newey’s (1985) outer-product gradient implementation of m-tests,
as argued by Wooldridge (1990).
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