that share some common progenitors. Sox2 is required for hair and supporting cell formation, but its role in sensory neurons, which require Neurog1 for specification, is unknown. Sox2, like Neurog1, is transiently expressed in delaminating neuroblasts. In Neurog1 null mice Sox2 is normally expressed. When Sox2 is deficient, Neurog1 is expressed and sensory neurons develop and reach with their processes areas where sensory epithelia would normally develop but soon disappear due to lack of neurotrophic support. Our data implies specification and initiation of differentiation of otic sensory neurons does not require Sox2 and is independent of development of sensory epithelia. Sox2 is however essential for maintenance of innervation and may complement but acts independently of Neurog1. Sox2 may also have a dose-dependent role in regulating the pattern of neuronal fiber outgrowth in the inner ear.

108 Sox10 is Not Necessary for Auditory Neurons Survival
Ingrid Breuskin1, Morgan Bodson1, Nicolas Thelen1, Marc Thiry1, Philippe Lefebvre1, Brigitte Malgrange1
1CNRM - University of Liege - Belgium
Sox10 is a HMG domain transcription factor required for proper development of neural crest cell derivatives, including melanocytes and peripheral glia. Sox10-null mutations lead to a complete absence of these derivatives, and Sox10 haplosufficiency results in neural crest defects that causes Waardenburg-Shah syndrome in humans.

Although studies have shown the role of Sox10 in the development of the neural crest cells, its function in auditory system development is unclear. During inner ear development, Sox10 expression is first detected in the otic placode and persisted throughout its development. Sox10 is also expressed in the glial cells of the cochlea-vestibular ganglion and spiral ganglion. In Sox10-null mutant mice, spiral ganglion glial cells and melanocytes are missing. In the absence of these neural crest-derived cells, we have investigated the fate of the otocyst-derived inner ear sensory neurons. Loss of Sox10 function does not alter their morphology and does not cause reduction in their number. Our study demonstrates that as previously described in the peripheral nervous system, the neural crest-derived cells of the inner ear are missing in the Sox10-null mutant mice. But in contrast to the peripheral nervous system, our results also suggest that glial cells and Sox10 do not play a primary role in auditory neurons development and survival in the developing inner ear.

109 Functional Analysis of GATA-2 in Auditory and Neuronal System
Tomofumi Hoshino1, Keiji Tabuchi2, Ritsuko Shimizu2, Masayuki Yamanoto2, Akira Hara3
1University of Tsukuba, 2Tohoku University
Because inner ear arises from otic vesicle under the regulation of external signal from the neural tube, both otic vesicle and neural tube are important for the inner ear development. Because transcription factor GATA-2 is expressed in both tissues, elucidation of Gata2 gene regulation is important for the understanding of inner ear development. However, roles of GATA-2 is not clarified yet, because of the embryonic lethal phenotype of Gata2 gene knockout mice. Therefore, we used the conditional knockout (CKO) system to overcome embryonic lethality. We crossed the Gata2 flox mouse with the Nestin-Cre mouse, in which Cre recombinase is expressed specifically in neural tissues. The Gata2 CKO mice with both Gata2 flox allele and Nestin-Cre transgene were born normally and grew up to adult. We examined the ABR thresholds of 10 weeks old mice. ABR thresholds were significantly higher in Gata2 CKO mice than those of the control mice.

(Continued...)