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Abstract

INCE their advent in the 1940’s, gas turbines have been used in a wide range of land,
S sea and air applications due to their high power density and reliability. In today’s
competitive market, gas turbine operators need to optimise the dispatch availability
(i.e., minimise operational issues such as aborted take-offs or in-flight shutdowns) as
well as the direct operating costs of their assets. Besides improvements in the de-
sign and manufacture processes, proactive maintenance practices, based on the actual
condition of the turbine, enable the achievement of these objectives.

Generating dependable information about the health condition of the gas turbine is
a requisite for a successful implementation of condition-based maintenance. In this
thesis, we focus on the assessment of the performance of the thermodynamic cycle, also
known as Module Performance Analysis. The purpose of module performance analysis
is to detect, isolate and quantify changes in engine module performance, described by
so-called health parameters, on the basis of measurements collected along the gas-path
of the engine. Generally, the health parameters are correcting factors on the efficiency
and the flow capacity of the modules while the measurements are inter-component
temperatures, pressures, shaft speeds and fuel flow.

Module performance analysis can be cast as an estimation problem that is characterised
by a number of difficulties such as non-linearity of the system and noise and bias in the
measurements. Moreover the number of health parameters usually exceeds the number
of gas-path measurements, making the estimation problem underdetermined.

This thesis starts with a survey of the state-of-the-art in module performance analysis.
We then propose enhancements to a monitoring tool for steady-state data developed
by Dr. P. Dewallef during his thesis at the Turbomachinery Group. Specifically, the
improvements concern the fault detection and isolation tasks, respectively handled by
a hypothesis testing and a sparse estimator. As a complement, we define metrics for
the selection and analysis of sensor—health parameter suites based on the Information
Theory.

In a second step, we investigate the feasibility and the benefit that could be expected
from the processing of data collected during transient operation of a gas turbine. We
also discuss the impact of modelling errors on the estimation procedure and propose
a solution that makes the health assessment robust with respect to modelling errors.

The theoretical developments are evaluated on the basis of simulated test-cases through
a series of metrics that gauge the estimation accuracy and the performance of the fault
detection and isolation modules.



Keywords: module performance analysis, gas turbines, health monitoring, Kalman filter,
fault detection and isolation
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Nomenclature

Notations

bl

average value

nominal health condition

estimated value

time derivative

actual value

deviation with respect to reference value
scaled value

Vectors and matrices

=

-

< X C

bias

health parameters

residuals (difference between actual and predicted values)
control parameters

state variables

gas-path measurements

FIM Fisher information matrix

D0 TV o

Influence coefficient matrix
covariance matrix of estimated quantities
covariance matrix of prior information

covariance matrix of noise terms
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Engine parameters

ALT  flight altitude
CDP  (high pressure) compressor delivery pressure
DTisa offset with respect to the standard day temperature
EGT  exhaust gas temperature
NF fan speed
NC core speed
Pamb ambient pressure
PCNF  percent corrected fan speed
Pi total pressure at station i
Tamb ambient temperature
T2 total temperature at station ¢
SE: correcting factor on the efficiency
of the component whose inlet is located at station 7
SWi  correcting factor on the flow capacity
of the component whose inlet is located at station 7
VO true airspeed
WF fuel flow rate
Abbreviations
BCM bias compensation module
DKF  dual Kalman filter
EKF  extended Kalman filter
ISA international standard atmosphere
KF Kalman filter
map  maximum a posteriori
ml maximum likelihood
mmse minimum-mean-square error
pdf probability density function
SLS  sea level static
UKF  unscented Kalman Filter
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2 Chapter 1. Introduction

1.1 From time between overhaul to power by the
hour

INCE their advent in the 1940’s, gas turbines have been increasingly used in a wide
S range of land, sea and air applications. This document focuses on turbine engines for
aircraft propulsion, but the concepts developed can be applied to land-based and marine
gas turbines.

In the early days of the turbojet, the level of performance was modest and the operating
cost was not an important issue. Maintenance was scheduled at fixed intervals, specified
by the time between overhaul (TBO). An overhaul consisted in a removal of the engine
from the aircraft and a complete disassembly for individual inspection and repair of the
components. After an acceptance test, the engine was returned to service.

The growth in lift and range capability of aircrafts required more powerful and efficient
engines. This led to the development of more complex architectures [see Rolls-Royce,
1999] both at the engine level, such as two— or three— shafts turbofans (figure 1.1) and at
the module level, such as variable stator vanes (figure 1.2) and stability bleed valves on
the compressors. The manufacturers dealt with this higher complexity through a modular
design, which allowed the replacement of the TBO method by on-wing maintenance.

VARIABLE STATOR VANES

Figure 1.1: Cutaway of a General Electric Figure 1.2: Sketch of variable stator vanes
GENX turbofan engine

A drawback of the TBO method is that the maintenance interval for the whole engine is
set by the fastest deteriorating component — usually the high pressure turbine due to the
harsh environment in which it operates — while the other modules can remain operable
for longer periods of time. The combination of modular design and on-wing maintenance
allows a lifetime to be specified for each major component. A module is replaced by a
similar one when it reaches its time limit (figure 1.3) and the engine returns to service.
The worn module is shipped to the manufacturer for inspection and maintenance. The



1.1. From time between overhaul to power by the hour 3

on-wing maintenance practice is a first progress towards improved availability and reduced
costs as it decreases the engine downtime. This scheme still relies on fixed intervals which
may not be optimal. Indeed, the deterioration of an engine depends largely on its usage
(e.g., short vs. long haul, flight over water/continental/desert areas). Besides, a number
of unpredictable events such as a bird strike or a heavy landing may happen that call for
an unscheduled maintenance.

aircraft wing

handling rail

Figure 1.3: On-wing maintenance on a modular turbofan

In nowadays highly competitive market of commercial air transport, another leap in engine
maintenance practice is therefore warranted on the operator as well as on the manufac-
turer side. For airlines, the goal is essentially twofold. On one hand, they seek to improve
the dispatch reliability and safety of their fleet by reducing, among others, the in-flight
shutdown and the delayed and cancelled rates. This can be achieved by moving unsched-
uled events into planned engine removal. Reduction in life cycle costs is another driver
for enhancing the maintenance practice. According to Marinai et al. [2004], the part as-
sociated to the engines amounts to about 30% of the direct operating costs of an aircraft.
Of this contribution, roughly one third is for maintenance. As paradoxical as it can be,
manufacturers are also — if not more — interested in extending the “life on wing” of their
engines through a wiser maintenance planning. This is due to a relatively recent evolution
in the customer—supplier relationships named performance based logistics, aka. power-
by-the-hour at Rolls—Royce [Kim et al., 2007]. In this framework, the customer does not
buy an engine anymore, but only pays for it when it works 4.e., when it generates revenue.

Implementation of condition-based maintenance (CBM) [see Rajamani et al., 2004] is
an essential step towards the achievement of these goals. The maintenance actions are
planned on the basis of the actual health condition of the engine rather than simply based
on the number of cycles. Generating a reliable information about this health condition be-
comes therefore a requisite for an effective application of CBM. This explains the intensive
research carried out since several years in engine health monitoring.

Jaw [2005] proposes a detailed survey of the current status in the field. Engine health
monitoring basically relies on the recording and processing of engine data to detect and
isolate changes in the condition of the gas turbine. Given the numerous disciplines involved
in gas turbine design and operation, engine health monitoring is generally subdivided into
four functional areas:
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e 0il and debris monitoring detects abnormal size and number of particles repre-
senting excessive wear or fatigue failure of engine components such as gearboxes and
bearings [see Green, 2005, for a detailed presentation]. Somehow related, gas-path
debris monitoring is an emerging technology that scrutinises the inlet and exhaust
sections for the passage of debris,

e vibration monitoring is interested in identifying possible unbalance at all oper-
ating speeds resulting from failure of rotating parts or loss of a blade, [see de Smet,
2005, for a detailed presentation],

e life usage monitoring is concerned with the computation of the level of damage
and prediction of remaining life of critical components like disks and blades [see
Koehl, 2001, for more information],

e gas path performance monitoring, also known as gas path analysis or module
performance analysis, relies on measured air/gas flow properties to infer the prob-
lems in engine modules. Since the pioneering work of Urban [1972] almost forty years
ago, a tremendous amount of research on gas path analysis has been published.

It becomes widely acknowledged that an efficient implementation of a complete solution for
engine health monitoring shall combine the results of these functional analyses. Examples
of fusion of vibration and gas path monitoring are reported in [Turso and Litt, 2004,
Kyriasis et al., 2009]. Dempsey and Afjeh [2002] have combined vibration and oil analyses
for detection of faults in helicopter gearboxes. NASA initiated some time ago an ambitious
program on information fusion [see Volponi, 2005]. The scope was to fuse diagnosis
information available from the disparate data sources listed above. For some reasons,
the test campaign encountered several problems and preliminary work showed that the
informational overlap between the different available data streams was quite limited. As a
consequence, a fusion of two gas path analysis techniques is the only application reported.

The present document concentrates on the area of gas path performance monitoring as it
is the closest discipline to the domain of expertise of the Turbomachinery Group at the
University of Liege. Before introducing in more details the underlying principles of gas
path analysis, the following section gives an overview of the degradation mechanisms that
hurt the performance of engine modules.

1.2 Deterioration of engine components

Deterioration can be loosely defined as an increased level of losses in the engine com-
ponents. From an operational point of view, deterioration is reflected in overall system
performance through a loss of thrust and an increase in specific fuel consumption. Studies,
both at the experimental and theoretical levels, on the sources of degradation in engine
components have produced a very rich literature of which [AGARD, 1994] can be con-
sidered as a reference book. The brief description of the main deterioration mechanisms



1.2. Deterioration of engine components )

provided below is based on information compiled from [Zaita et al., 1998, Diakunchak,
1992, Kurz et al., 2009]:

e fouling is the accumulation of particles on the airfoils and annulus walls. It increases
surface roughness and changes the shape of the blades,

e erosion (fig. 1.4) is the removal of material from blades resulting from a collision
with solid particles suspended in the air/gas stream,

Bluntness of leading edge

Thinning of trailing edge

a Region of roughness

Dark region indicates
material removed

Figure 1.4: Alteration of blade profile caused by erosion

e rubbing-wear or abrasion is the removal of material from rotor blade tips and
seals caused by the contact between static and rotating parts. Rubbing-wear occurs
naturally during the running-in period, to establish proper clearances. Another part
is age related due to a loss of stiffness of the bearings,

e corrosion is the loss of material from flow-path components caused by chemical re-
actions between the component materials and contaminants such as salts or reactive
gases. It is mainly promoted by high temperatures,

e damage is a generic term for a severe alteration of the component. Causes are as
various as a foreign object damage, resulting for instance from a bird strike (fig.
1.5(a)), a domestic object damage, caused for instance by a piece of seal hitting
a downstream component (fig. 1.5(c)), a turbine overheating following a hot start
(fig. 1.5(b)), or a tip rub due to improper clearance control during fast transient
manoeuvres (fig. 1.5(d)).

Some of these deterioration processes are partly recoverable with on-site cleaning, such as
the fouling of compressors. Others are said non-recoverable as they imply the replacement
of hardware parts during an overhaul.

Deterioration is very often split up into progressive wear due to normal operation and
damages due to accidental events as exemplified in figure 1.6. While the former varies on
a long time-scale and affects all the components at the same time, the latter are short-
time-scale processes involving a brutal drift in performance of one or two component(s)
at a time.
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(¢) Domestic object damage (d) Tip rub

Figure 1.5: Examples of damaged blades

. A
= :
@ predicted wear
& scheduled
2 maintenance
© .
L alarm accidental event __»
/ threshold (e.g. FOD)
unscheduled ___»
maintenance

T T )
number of operating hours

Figure 1.6: Sample deterioration of fan efficiency over time
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Gradual deterioration of an engine during normal operation arises from a few sources
of which the main ones are fouling, erosion and corrosion. Ogaji et al. [2002] describe
the effects of these mechanisms on the major modules of an engine. For compressors, it
translates into increased tip clearances and changes in airfoil geometry and surface quality.
This causes a reduction in efficiency, flow capacity and work capability of the component.
The combustion system is not likely to be directly hit by deterioration. The combustion
efficiency usually does not decrease, except for extreme cases like plugged fuel injector.
Combustor deterioration can however lead to variation in the module exit temperature
profile and existence of temperature peaks that may subsequently damage the turbine
section. Turbines experience mostly the same issues as compressors do, causing here a
reduction in efficiency and an increase in flow capacity. These observations are supported
by the analysis of engine operational data [see Sallee, 1978, Wulf, 1980)].

In spite of their continuous character, the mechanisms involved in gradual deterioration
do not evolve in a purely deterministic way, but depend to some extent on factors like
usage, environment and time. Any engine will hence experience a unique degradation
profile.

Accidental events may be of many different types as previously noticed, but above all
they are unpredictable, which has a harmful effect on the maintenance planning. This
is illustrated in figure 1.6 where the evolution of the efficiency of the fan is plotted ver-
sus the number of operating hours. A maintenance is scheduled based on the wear of a
“mean” engine (dash-dot line). However, if an accidental event (e.g., FOD) occurs, the
efficiency drops (the actual engine performance is drawn in plain line) and the actual per-
formance curve crosses an alarm threshold level well before the planned service. When a
performance test is carried out on the ground, this results in an unscheduled maintenance,
generating additional costs and downtime of the engine.

1.3 Principles of module performance analysis

The modifications in component health described in the previous section are neither di-
rectly measurable (there is currently no sensor of fouling or erosion), nor detectable with-
out a deep inspection of the engine (e.g., borescope check). Quoting Volponi [2003], the
purpose of module performance analysis is to detect, isolate and quantify these changes in
engine module performance on the basis of measurements collected along the gas path of
the engine. Over time, the analysis has been extended to malfunctions of engine systems
(such as the variable bleed valves and the variable stator vanes) and to instrumentation
problems.

This approach to performance diagnostics can be described as relative, in the sense that
it assesses changes in the gas turbine performance rather than its absolute level. Gas
path analysis allows to track the evolution of a particular engine with respect to some
baseline performance which may be engine specific (e.g., at the time of installation) or
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fleet averaged. The gas path analysis framework is illustrated in figure 1.7, and is governed
by the following principles:

e the condition of the rotating components (fan, lpc, hpe, hpt, Ipt) can be represented
by a set of independent performance indicators called health parameters which are
typically correcting factors on their efficiency and flow capacity,

e physical problems (progressive or accidental) encountered by the engine components
induce a modification of their performance, which in turn produces discernible shifts
of some measurements collected along the gas path (temperatures, pressures, mass
flows, shaft speeds),

e a physical or mathematical model of the engine is available. It translates the aero-
thermodynamic relationships between the health parameters and the quantities mea-
sured along the gas path.

Physical problems Degraded performance Changes in sensed

result in produce

X erosion x flow capacities parameters

X corrosion |:> x efficiencies I:> x rotational spool speeds
X fouling <:’ X passage area <:I X temperatures

X worn seals x Mechanical losses X pressures

x foreign object damage permit allow x fuel flow and thrust

correction of isolation of

Figure 1.7: Founding principle of gas path analysis [Urban, 1972]

Gas path analysis relies on the physical meaning of the health parameters to locate the
underlying physical problem. The diagnosis can then be used to infer a corrective action.
This last step results from a complex trade-off between economic, technical, safety-related
and legal aspects which is beyond the scope of this document.

As underlined by Marinai et al. [2004], three major difficulties complicate module perfor-
mance analysis. First, the behaviour of a gas turbine is typically non-linear, with respect
to both the health parameters and the operating conditions. Second, the measurements
are corrupted by errors caused by noise, bias and uncertainties in the model. Third, the
number of sensors is usually smaller than the number of health parameters. Such a lack
of information is sometimes termed negative redundancy in the literature. The influence
of the last two points is discussed qualitatively below.

Consider the sample diagnosis problem illustrated in figure 1.8(a). The hypothetical diag-
nosis rule associates a discrete engine health condition of the kind “healthy-fault A-fault
B” to each couple of measurements (y;,y2) (e.g., exhaust gas temperature and core speed)
to determine whether a maintenance must be carried out and which corrective action
should be done. In an ideal, deterministic situation, reporting the measurement record-
ings (¥,,y,) in the diagram leads to diagnose fault A. In practice however, measurement
inaccuracies hide the relevant information about engine faults. The uncertainties make
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the decision rule fuzzy which is represented in figure 1.8(b) by a hatched area embedding
all the possible solutions associated to the measurement readings (¥;,y,).

(a) Without measurement noise (b) With measurement noise

Figure 1.8: Influence of the uncertainties on the diagnosis problem

The effect of negative redundancy is sketched in figure 1.9(a) where only one measurement
is now available (say ys) instead of the two previous ones. It is clear that even if no
uncertainty contaminates the measurement readings, the diagnosis rule has no unique
solution. From the point of view of an external observer having only access to y,, all the
situations located on the dashed line are equally probable. If, based on this information, it
is decided to take the corrective action corresponding to the fault A, there exist a number
of situations, located in the region ‘B’, where the engine needs the action B. Conversely,
if the fault B is considered, there exists a number of situations, located in the region
‘A’, where the engine needs the action A. The situation is even worse in the presence
of measurement uncertainties (fig. 1.9(b)) as the number of possible wrong decisions
increases (hatched areas ‘A’ and ‘B’).

k<
N

>

>

<1
)

(a) Without measurement noise (b) With measurement noise

Figure 1.9: Influence of the negative redundancy on the diagnosis problem
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It is worth noting that the areas ‘A’ and ‘B’ in figure 1.9(b) decrease when the magnitude
of the faults increases. This explains why it is generally easier to detect large faults (e.g.,
efficiency drops of 5%) than small faults (e.g., efficiency drops of 0.5%).

The rather high level of wrong decisions achieved by most of the existing methods is
recognised as the primary reason for a limited application of condition-based maintenance
so far [see Tumer and Bajwa, 1999].

1.4 State of the art in module performance analysis

As previously mentioned, the literature related to gas path analysis is abundant and it
seems illusory to provide an exhaustive survey of the discipline. The purpose of the
present section is to give a broad glimpse of the main trends that the research in engine
performance monitoring has followed. Some points, stated in the next section, will be
addressed more specifically later in the thesis; for the others the reader is directed to the
latest available reviews [Li, 2002, Marinai et al., 2004, Jaw, 2005].

Many criteria could be used to classify the methodologies that have been applied to solve
the gas path analysis problem. The division adopted here is based on the knowledge of
the system. The model-based family makes use of a model of the gas turbine and leads
to estimation/optimisation methods, the data-driven family extracts information solely
from field data and leads to machine learning/artificial intelligence techniques.

Model-based techniques

The early GPA techniques [Urban, 1972, Danielsson, 1977] consisted basically in a param-
eter sensitivity analysis, implying the solution of a set of linear equations. They allowed
isolation and quantification of the degradation of an engine and resulted from an idealised
formulation. Indeed, they assumed an accurate model, noise free data and a well-posed
problem i.e., the number of health parameters was smaller than or equal to the number of
sensed quantities. The basic GPA algorithm was extended to the non-linear case (through
a recursive application of the linear method) in order to cope with larger deterioration
magnitudes.

The issues of measurement uncertainty and negative redundancy were addressed by switch-
ing to so-called optimal estimation techniques such as weighted least-squares [Doel, 1994b)]
and Kalman filters [Provost, 1994, Volponi et al., 2003] and their non-linear counterparts
[Mathioudakis et al., 2002, Cordoba, 2005]. A comparative study of the effectiveness of
linear and nonlinear methods is proposed by Kamboukos and Mathioudakis [2005]. These
algorithms recognise the stochastic character of the measurements and allow the intro-
duction of a priori information in the problem. Due to their formulation, the optimal
estimation techniques are more suited to the assessment of progressive, distributed degra-
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dation but are known to spread localised faults over several components, which is termed
the “smearing” effect in the literature [see Provost, 1994].

Genetic algorithms have also been applied to solve the gas path analysis problem [Gulati
et al., 2001, Wallin and Gronstedt, 2004]. They have a number of distinctive features with
respect to the more traditional gradient-based techniques such as global search capability,
derivative-free computation and efficient handling of constraints. Their main drawbacks
are a horrific computational demand and the need for highly-skilled users for tuning.

The underdetermined nature of the estimation problem resulting from the limited instru-
mentation fitted on production engines led the community to investigate three roads of
remedy. The first approach, already mentioned above, is to complement the definition
of the estimation problem by introducing prior knowledge on the parameters [see Doel,
1994a, Dewallef et al., 2004]. Basically, this drives the search for a solution in a particular
area of the solution space. The second approach consists in extending the analysis to a
multiple operating point formulation as in [Stamatis et al., 1991, Gronstedt, 2002]. The
rationale behind this idea is to take advantage of the non-linear behaviour of the engine
across its operating envelope which translates into different signatures of the degradation
with the operating conditions. The third approach is concerned with the optimal selection
of the parameter—measurement configuration in order to maximise the effectiveness of the
diagnostics [Stamatis et al., 1992, Ogaji et al., 2002].

Data-driven techniques

Application of artificial intelligence techniques to module performance analysis is a rather
young discipline with respect to the legacy GPA method. Artificial neural networks form a
first subfamily of which several flavours have been evaluated for fault detection and isola-
tion purpose. The multi-layer perceptron can be seen as a massively distributed processor
made up of simple processing units that maps input and output patterns in a non-linear
fashion, mimicking the brain’s structure. This type seems to be the most popular in the
community, see for instance [Ogaji and Singh, 2002, Barbosa et al., 2007, Fast et al.,
2008]. Probabilistic neural network [Romessis and Mathioudakis, 2003] is another type
that implements Bayesian statistics in a network form. Unlike the multi-layer perceptron,
it does not require a learning phase, as the whole learning database is contained in the
network itself. Its computational demand is on the other hand much higher at runtime.
Bayesian belief networks [Romessis and Mathioudakis, 2006] consist in a graphical rep-
resentation of a probability distribution describing cause-to—effect relationships between
symptoms — the measurement deviations here — and causes — the faults.

Expert systems [Doel, 1990, DePold and Gass, 1999] are a second category of artificial
intelligence methods. They transpose input patterns into fault classes on the basis of a
knowledge base. The interpretation of the input is achieved through a set of rules defining
a so—called inference engine. Expert systems actually automatise a pattern recognition
task that was earlier performed by maintenance staffs.
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Other feature extraction methods such as (nonlinear) principal component analysis have
also been applied with a reasonable degree of success to the problem of engine fault
detection and localisation [Menon et al., 2003, Mukkherjee et al., 2005, Borguet and
Léonard, 2009]. The underlying principle is to extract from a learning database reduced—
order features corresponding to gas turbine normal and faulty operations. Fault detection
and isolation then occur in the feature space where new operational data are projected.

From the results reported in the literature, it can be stated that artificial-intelligence-
based methods are immune to the smearing effect, essentially because of their classifica-
tion nature. They hence deliver better performance for the isolation of accidental events.
Indeed, the space of solutions is here limited to a finite number of cases. The main draw-
back of the data-driven techniques is that they require a massive amount of data, covering
all expected fault conditions, for a proper learning/set-up phase. This development step
can be quite long, but is traded-off with a very small execution time

The potential of information fusion

Marinai et al. [2004] summarise in a convenient tabular format the main features of each
method like linear /nonlinear approach, ability to deal with noise/uncertainties, ability to
cope with underdetermined problems, suitability for gradual or abrupt degradation. It
can be concluded from this table that each technique has its own advantages and that
none of them provides a satisfactory and comprehensive answer to the issues of MPA.

Similarly to the idea of coupling the diagnostics results from different functional areas
(e.g., oil, vibration, gas path), some research has been carried out on the fusion of gas
path analysis techniques. It is currently a developing field and reported applications
in the literature include in particular: the combination of neural networks and genetic
algorithms, used by Kobayashi and Simon [2001] to diagnose component and sensor faults;
the coupling of a Kalman filter with either a Bayesian belief network in Dewallef et al.
[2006], or a classifier based on principal component analysis in Borguet and Léonard [2009],
in order to improve the isolation of component faults; the application of the Dempster-
Schafer theory for fusing a probabilistic neural network and a bayesian belief network in
Romessis et al. [2007], leading to enhanced isolation of module faults too.

Towards a diagnosis in transient operation

The techniques described above were designed to process data recorded during a steady-
state operation of the engine. In some cases, it is however difficult to get stead-state data
of good quality, especially for military aircraft that may spend up to 70% of their mission
with their engine in transient operation. In the late 1980’s, Merrington [1989] showed that
alterations in the health condition are also reflected in measurements collected during
transient operation of the engine. His work triggered an endeavour to develop diagnosis
techniques based on transient data. Chapter 5 will provide a detailed survey of the topic.
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1.5 Main contributions of the thesis

The research activities of the Turbomachinery Group on module performance analysis
dates back to the late nineties. A first thesis by Dewallef [2005] reports the development
of a performance monitoring tool based on a Kalman filter that processes steady-state
data from the on-board instrumentation of a gas turbine. Our research work builds on this
initial effort and offers enhancements in a number of areas. More specifically, the main
contributions achieved in the course of this thesis cover the four topics briefly described
below.

Improved fault detection

The Kalman filter embeds a transition model that describes a slow and continuous vari-
ation of the health parameters. As a result, the Kalman filter is very capable at tracking
a gradual and distributed process like engine wear. On the other hand, any short-time-
scale (either rapid or abrupt) change in the engine condition is interpreted by the Kalman
filter as a disturbance since it does not fit the health parameter dynamics. The transition
model prevents a correct capture of this fast variation which translates into a sluggish
response of the filter.

In order to reduce the detection latency of faults, we propose to use a modified transition
model that accounts for possible “jumps” in the health parameters. The resulting adaptive
algorithm combines a Kalman filter, which relies on the assumption of a smooth variation
of the health parameters, and a secondary system that monitors the residuals. This
auxiliary component implements a hypothesis test based on the generalised likelihood ratio
in order to detect short-time-scale events. In that way, the performance of the Kalman
filter is maintained under normal operation (long-time-scale deterioration) whereas the
event detector provides a timely detection of sudden variations in the engine health.

Improved fault isolation

Least-squares-based methods have relatively poor isolation capability due to the very
nature of the estimation problem. In fact, the number of health parameters exceeds of-
tentimes the number of measurements, making the estimation problem underdetermined.
The regularisation technique addresses this issue by adding a penalty term, traditionally
a quadratic form, on the deviations of the health parameters. Such a function favours
solutions involving small variations of numerous health parameters and penalises heav-
ily solutions characterised by large deviations in a few health parameters. This causes
the adverse effect known as smearing i.e., the estimate of a fault is spread over several
components instead of being clearly concentrated.
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In order to improve the isolation capability of the least-squares technique, we propose
to modify the regularisation term so that it better matches the expected pattern of a
fault 7.e., a solution vector with many nought components as accidental events impact
one (maybe two) component(s) at a time. This translates mathematically into the search
for a sparse solution that is achieved by penalising the absolute value of the health pa-
rameter deviations instead of their square. Such a regularisation term is much more
large-deviation-friendly and reduces drastically the smearing effect. The sparse estima-
tion problem is advantageously formulated as a quadratic programming problem for which
efficient solvers are available.

Tools for sensor set selection and analysis

Current sensors remain intrusive and their integration on an engine is limited by con-
straints such as cost, weight and a harsh working environment. On production engines,
the number of sensors is therefore kept to a minimum mainly driven by the requirements
of the control system. On the other hand, with the growing interest in condition monitor-
ing, some manufacturers offer optional kits to complement the sensor suite. This raises
the question of the selection of the sensor suite (or part of it) that maximises the perfor-
mance of the diagnosis algorithm, generally defined in terms of estimation accuracy, true
positive rate and false alarm rate.

We propose to revisit the problem of sensor selection for turbine engine performance
monitoring within the scope of information theory. From the Fisher information matrix,
we define a set of metrics that relate to the aforementioned qualities. Loosely speaking,
this matrix measures the amount of information conveyed by a given instrumentation
about the health condition of the engine. To further increase the understanding about
the sensor—parameter layout, we propose metrics to quantify the observability of a health
parameter as well as the utility of a given sensor in the estimation process.

Diagnosis from transient data and
robustness with respect to modelling errors

Most of the existing techniques for module performance analysis evaluate the health con-
dition of the gas turbine from data collected at a single steady-state operating point, which
leads generally to an underdetermined estimation problem. The concept of multi-point
estimation was proposed as a palliative. Data are collected at several steady-state operat-
ing points to take advantage of the non-linear response of the engine. The main drawback
of this technique is its practical feasibility in terms of time required to stabilise the engine
at several operating points. Part of our research consisted in extending the multi-point
framework to transient operation of the engine to remove the need for steady-state condi-
tion to be achieved prior to collecting the data. In transient operation, we obviously have
to estimate the health parameters, but also the state variables associated to the dynamic
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behaviour of the engine (such as spool speeds and metal temperatures). We solve this
double estimation problem by means of two Kalman filters running concurrently.

In a second step, we investigate the impact of model-plant mismatch on the accuracy of
the transient estimation procedure. When an imperfect, biased model of the gas turbine
is used in the Kalman filter, the health parameters lose their physical meaning and be-
come mere tuners that capture both the actual degradation and the modelling errors. It
is therefore essential to take into account the model-plant mismatch in the estimation
procedure. To this end, we propose the concept of hybrid model to improve the fidelity of
the predicted measurements. The hybrid model combines the biased physics-based model
and a black-box component that specifically handles the modelling errors. The empirical
component is identified from data collected on a new and clean engine.

1.6 Thesis outline

Chapter 2 provides the root material for the subsequent developments. It introduces the
concept of model-based diagnosis and its components. Then it formulates
module performance analysis as an estimation problem. The chapter ends
with the development of metrics to perform the selection and analysis of
sensor/health parameter set-ups.

Chapter 3 reports the development of a performance monitoring tool for steady-state
data. The main components of the tool consist in a Kalman filter that tracks
gradual deterioration and specific modules for the detection and isolation of
accidental events.

Chapter 4 evaluates the monitoring tool designed in chapter 3 on the basis of scenarios
simulated with a computer model of a commercial turbofan. A set of metrics
gauge the performance in terms of estimation accuracy and fault detection
and isolation capability.

Chapter 5 extends the monitoring tool to the processing of transient data. In a second
step, the robustness of the methodology with respect to model-plant mis-
match is addressed. The proposed solution involves a so-called hybrid model.
The potential benefit of diagnosis based on transient data are evaluated from
a series of simulated test-cases.

Chapter 6 wraps up the main findings and proposes directions for future research.
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2.1 Model-based diagnostics

2.1.1 Principle

HE purpose of model-based diagnostics consists in detecting, localising and possi-
bly quantifying the faults that may occur on the monitored process. This can be
achieved through analytical redundancy, that is by using the functional dependencies ex-
isting among the different measured signals [see Isermann, 1997]. These relationships are
expressed by a model of the process, hence the model-based term.

Figure 2.1 illustrates the generic structure of a model-based diagnostics which can be
divided into two major tasks [Venkatasubramanian et al., 2003]. First, generate discrep-
ancies between the actual and the expected behaviour of the system. These residuals
! are built as the difference between the real outputs observed on the process y; and
the outputs simulated with a healthy model of the engine ¥, k being a discrete time
index. In a second step, process the residuals, that reflect the potential deterioration of

the system, with a fault detection and isolation (FDI) logic to create the diagnosis report.

observed .
measurements residuals
Yk
Uy
measured
operating engine to monitor
point simulated resulting

measurements diagnosis

healthy turbine engine W yi
performance model j

Figure 2.1: Generic scheme of model-based diagnostics including residual generation and
fault detection and isolation (FDI) logic

A key component of the model-based approach is clearly the model of the process, that
should be able to reproduce the healthy behaviour of the system in terms of the measured
quantities. A large majority of processes, including turbine engines, respond not only to
changes in their health condition, but also to input signals uy that drive the system to a
given performance and/or come from an interaction of the system with its surroundings.

In the case of aero-engines, the input signals gather the power setting parameter and the
flight conditions as shown in figure 2.2. The power setting parameter is a measurable
quantity such as fan speed or engine pressure ratio that serves as an indicator of the
amount of thrust generated by the engine. It is adjusted directly by the pilot or the aircraft
flight computer. The flight conditions depend on a number of factors such as aircraft
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motion, flight velocity and meteorological conditions that define the thermodynamical
state of the air.

thrust demand
(power setting)

true airspeed V

&~

ambient temperature T,

ambient pressure Pamb

Figure 2.2: Turbine engine in its working environment

Disregarding the effect of humidity, which is negligible at least at high altitude, the flight
conditions are completely defined from the knowledge of three measurable parameters:
the engine inlet total pressure P1 and temperature T1 and the ambient pressure P,mp.
The triplet presented in figure 2.2, formed by the ambient pressure P, and temperature
T.mb and the true airspeed Vg can be derived from the previous three.

2.1.2 Modelling a turbine engine
Physical considerations

Turbine engines can be modelled at various levels of detail, ranging from simple algebraic
relations to a full 3-D description of the gas path. In this spectrum, aero-thermodynamic
models (aka. 0-D models) are massively used by the manufacturers throughout an engine
program: for preliminary design and performance prediction, for the synthesis of the
control laws, for the engine-airframe integration as well as for condition monitoring. Their
popularity is due to a moderate computational load and to some degree of flexibility
in the modelling that allows numerous effects to be taken into account. These models
are able to predict gas path measurements (e.g., temperatures, pressures, air mass flow
rates, rotational speeds) as well as global engine performance (e.g., thrust, specific fuel
consumption), but do not include measurements related to the lubrication system or
vibrational data. For this reason, they are usually named cycle-match models. A number
of reference textbooks exist on this topic, see for instance [Walsh and Fletcher, 1998,
RTO, 2002].

In a 0-D approach, the engine is subdivided into its major components shown in figure
2.3, such as intake, compressors, combustor, turbines and nozzles. The behaviour of each
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Figure 2.3: Main components of a turbofan engine

component is described with empirical information derived from rig tests or advanced
CFED calculations (e.g., compressor and turbine maps) and/or with equations for mass,
momentum and energy balances. The components are then linked together through the
same conservation equations to lead to the model of the whole engine. The time-dependent
behaviour of an engine is governed by three main groups of dynamics [Horobin, 1999]:

e heat transfer between the working fluid and the walls (disks, blades and casings),
e mechanical inertia of rotating parts,

e gas dynamics.

The associated time constants range, for a current commercial turbofan, from several
minutes for the heat soakage down to a couple hundredths of a second for the gas dynam-
ics. The early models were aimed at general studies of engine operability and took into
account only the spool inertia because it is the dominant effect in the acceleration charac-
teristic. Shaft dynamics is indeed responsible for the excursion of the operating point of
the compressor outside of the equilibrium working line during acceleration/deceleration.

With the growing computational power and the better understanding of their physics,
heat transfers were gradually included in the performance models. The heat released
during the combustion process contributes to the useful power of the turbine and to a
warming of the engine parts. It is appreciated that as much as 30% of the fuel flow during
an idle-max acceleration is lost for this warming. Heat soakage impact directly the tip
clearances, modifying the component efficiency and the stall line.

Gas dynamics models the storage of mass, momentum and energy in the gas flow within
a component. It is generally implemented as a trim on the quasi-steady state modelling
of that component. Although essential for a representative simulation of high-frequency
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events such as compressor stall and fuel spiking, it is oftentimes neglected in cycle-match
models as it implies a small integration step (on the order of a millisecond).

Mathematical considerations

The structure of an aero-thermodynamic model can be expressed from a mathematical
point of view as a system of non-linear, differential-algebraic equations (DAE):

x(t) = fa(x(t),%a(t),u(t), ) (2.1)
0 = fa (X(t), xa(t)7 U(t), t)
y(t) = fy (X(t>7 xa(t)v u(t)v t)

where x are the dynamic state variables associated to the transient phenomena (e.g., spool
speeds for the shaft inertia, metal temperatures for the heat soakage), x stands for the
time derivatives of the dynamic state variables, x, are the algebraic state variables, or
iteration variables, u are the input signals and y are the gas path measurements.

The mapping f; in equation (2.1) describes the dynamic behaviour of the engine, the
mapping f, in equation (2.2) represents the algebraic loops inside the model. Some of these
algebraic constraints may result from a truncated dynamic modelling. For instance, if the
gas dynamics is disregarded, conservation of the mass flow throughout the engine generates
such algebraic relations. It should be noted that the number of elements in vector zero
(denoted by 0) in equation (2.2) is equal to the number of algebraic states. Finally, the
time-varying static mapping f,, in equation (2.3) relates the gas-path measurements y
to the states and the inputs. The time varying nature of the three mappings accounts
implicitly for possible internal changes occurring in the engine.

In practice, the solution of the algebraic constraints, by means of a root finding method
like the Newton-Raphson one, is handled internally so that from a user’s perspective, the
model can be summarised with the following system of two vector equations:

x(t) = fe(x(t),u(t),?)
y(t) = g(x(t),u(t),?)

where subscript ¢ of the mapping f. in equation (2.4) underlines the continuous-time
character of the model.

Introduction of health parameters

The model defined by equations (2.4-2.5) reproduces the behaviour of the engine in some
reference health conditions. As a consequence, discrepancies could be observed between
the simulated and the actual measurements, due for instance to manufacturing tolerances
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or deterioration. The physical nature of the model offers the opportunity to incorporate
adaptive factors intended to take the actual condition of the engine into account [Stama-
tis et al., 1990]. In the particular scope of condition monitoring, these adaptive factors
are called the health parameters h. Their definition is to some extent engine-type and
manufacturer dependent. As was explained in section 1.2, the deterioration affects mainly
the performance of the turbomachinery components i.e., the compressors and turbines.
Consequently, the health parameters are usually defined as corrections, either of multi-
plicative or additive type, on the flow capacity and on the efficiency of these modules.
With the inclusion of the health parameters, the model becomes:

x(t) = fe(x(t),u(t),h(t)) (2.6)
y(t) = g(x(t),u(t),h(t)) (2.7)

For performance prediction studies, the temporal evolution of the health parameters h(t)
should be specified similarly to that of the control inputs u(¢) and the initial state x(t = 0).
The possible internal changes in the engine are now parameterised through vector h(t),
therefore the functions f. and g lose their explicit dependence on the time variable.

Steady-state model

The steady-state performance of the engine is obtained from the stationary solutions of
the system of equations (2.6-2.7) i.e., the set of solutions satisfying the condition x(¢) = 0.
From a computational standpoint, the dynamic state variables degenerate into additional
algebraic state variables which are added to the root finding method. From a user’s
perspective, the steady-state model writes:

Yi = G(ug, hy) (2.8)

where the time variable can be of continuous or discrete nature due to the static character
of the mapping G.

Complementary remarks

A number of remarks should be made about the transient and steady-state models. First
of all, the models as described above are limited to the gas turbine itself and do not
include any sensor or actuator dynamics. While irrelevant for steady-state simulations,
these subsystems should be accounted for in the case of transient computations.

The complexity of the model depends to some degree on the type of engine and obviously
on the required level accuracy. Typical dimensions for the control and state vectors are
respectively between one and five and from two to thirty for a two-spool mixed flow
military engine [Harefors, 1999]. The number of algebraic states is about ten. Real-time
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simulation can be achieved on computers representative of on-board hardware (e.g., Intel
Pentium 100 MHz).

The steady-state and transient models are also supposed to be perfectly faithful i.e., they
provide an accurate description of the behaviour of the gas turbine. This implicitly implies
that all physics phenomena are perfectly modelled and that the value of all parameters of
the gas turbine (e.g., cooling flows, fuel heating values) are known without any uncertainty.

The models provide a plane-average value of the circumferential and radial profiles of
temperatures and pressures. However, in most production engines, pressures and temper-
atures are sensed from single-element probes [Doel, 2003]. We assume that a correction
for probe position is built in the model.

For simplicity reasons, the rest of the chapter focuses on steady-state operation in which
a commercial engine spends up to 90% of its time. Engine health monitoring during
transient operation will be addressed in chapter 5.

2.1.3 Taking uncertainty into account: the statistical model

The user of a gas turbine interacts with the system through the input-output data se-
quences {u}Y and {y}Y, where N is the number of samples. These signals are measured
on the turbine engine and even if the data collection were repeated a number of times in
exactly the same operating and health conditions, the sequences {u}? and {y}¥ would
differ due to the presence of various disturbances. In such cases, it is meaningful to
consider these sequences as a collection of random vectors of which different realisations
are observed. A complete model of the system will then include the description of the
statistical properties of the data streams [Ljung, 1999].

Systematic versus random errors

With the assumption previously stated concerning the model, the only source of distur-
bances is the measurement chain through which the signals are observed. FEven if it is
stimulated by the actual value y; of a thermodynamic property, the acquisition hardware
provides the user with a raw measurement yy.

The measurement error, defined as the difference between the raw measurement and its
actual value, comes from imperfections and external disturbances in the measurement
chain that corrupt the signal during the measurement process. A typical measurement
chain is sketched in figure 2.4 where the quantity to measure (e.g., a pressure) is led by
a probe (e.g., a Pitot tube) into a sensing element (e.g., a membrane) responding to the
stimulus by producing a secondary signal. A transducer (e.g., a strain gage) with its
associated electronics transforms this signal into a conditioned signal compatible with a
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digital processing unit. The output of the digital processing unit is usually considered as
the measurement reading y,. A distinction is made between the systematic errors b and
the random errors n:

Ye =Y + b+ (2.9)

sensor \

* i/ sensing associated digital
Yk \ \ i\ element \\ \ electronic \ processing \ Yk
raw primary secondary electric conditioned measured
signal signal signal signal signal signal

Figure 2.4: Generic structure of a measurement chain

A systematic error is either constant or exhibits a slow drift with respect to the duration
of the experiment. It introduces a bias between the measurement reading y, and the
actual value y;. A significant amount of documentation describes measurement techniques
intended to maintain systematic errors as low as possible, see [Saravanamuttoo, 1993,
Dudgeon, 1994].

By nature, neither the magnitude nor the sign of random errors 7; are predictable. They
are therefore conveniently described by means of a probability density function (pdf)
p(ny) that gives the probability of the random error to fall in a certain interval. Random
errors are generally modelled as a Gaussian, white noise i.e., a sequence of real numbers
generated by independent, identically distributed Gaussian random variables. This choice
is justified by both its simplicity, a scalar Gaussian variable being thoroughly defined by
only two parameters, and its practical effectiveness'. The mean value of the random error
is equal to zero (otherwise it should be accounted for in the systematic error term) and
the standard deviation o, is an image of the scatter of the values around the mean.

The effects of the systematic and random errors on data generated by a measurement
chain are illustrated with the following example. Let us try and determine the actual, but
unknown value of the quantity y* from a series of recordings yx, K = 1,..., N. Taking
into account both systematic and random errors, the model relating the observations to
the unknown writes:

yr =y +b+m with € N(0,0,) (2.10)

The sample mean is given by:

V= %Zyk (2.11)

IThis is also a consequence of the “central limit theorem” mentioned in appendix A.1
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and converges towards the true value plus the systematic error as the number of samples
N tends to infinity:

y - y"+b as N — o0 (2.12)
Pv) . Piv) .
A Y A Yy
/:\ > L >
y Yk y Yk
(a) Both systematic and random errors (b) Random errors are low but systematic
are large: the sensor is not exact and un- errors are important: the sensor is reliable
reliable but not exact
Py) . . Piv)
A e A Yy
/i\ > :_ >
y Yk y Yk
(¢) Low systematic errors but important (d) Low systematic and random errors:
random errors: the sensor is exact but un- the sensor is accurate (exact and reliable)

reliable

Figure 2.5: Different repartitions of measurement results

A measurement chain is commonly characterised by its levels of systematic and random
errors as sketched in figure 2.5:

e reliability is the property associated with a low level of random errors (o, <<).
The readings are distributed closely to the mean value y (figures 2.5(b) and 2.5(d)),

e exactness is the property associated with a low level of systematic errors (b =~ 0).
The mean value ¥ is close to the actual value y* (figures 2.5(c) and 2.5(d)),
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e accuracy combines exactness and reliability. Each reading is close to the actual
value y* (fig. 2.5(d)).

Installations for which systematic errors are not negligible (fig. 2.5(a) and 2.5(b)) lead
to biased results: irrespective of the number of data samples, the sample mean does not
give a faithful estimation of the actual value.

The measurement model (2.9) can be extended to a vector form and applied to the
quantities sensed in the engine gas path:

Yi =Yi + 15 (2.13)

where y; are the true values generated with the deterministic steady-state model (2.8)
and 7, is a vector of Gaussian random variables with mean zero and covariance matrix
Ry ;. Given the assumption of a perfectly faithful model and of an adequate installation
of the sensors, the bias term vanishes (b = 0).

The probability density function of the observations then writes:

1 1 * T —1 * >
= ex —— - R - 2.14
p(Yr) @)™ Ry 4| p < 5 (Yk Yk;) v,k <Yk Yk) ( )

with

E(yy) = ¥; (2.15)
E((ye—y)y; —=¥)") =E (n.m]) Ry .k Ok, (2.16)

The covariance matrix of the measurement noise Ry j; is a diagonal matrix built up by the
collection of the variances O’Z of all the sensors as the measurement noises are assumed
to be uncorrelated. The variance of each sensor is given by the manufacturer or results
from an in-house calibration.

Accounting for the uncertainties in the operating conditions

The noise affecting the quantities defining the operating point of the engine should not
be overlooked as pointed out by Pinelli and Spina [2002]. The measurement model for
the input variables writes:

u, = u; + G, (2.17)

where uy are the true input variables and ¢, is a vector of Gaussian random variables
with mean zero and a diagonal covariance matrix R, ; made of the variances 0'3 of the
sensors. The measurements of the inputs are also assumed to be unbiased (b = 0).
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Combining equations (2.8) and (2.13), the gas path measurements are generated according
to:

yr = G(ug, hy) +my, (2.18)

Introducing the measurement model of the inputs and considering a Taylor series expan-
sion of the mapping G limited to the first-order, we have:

Ye = G(ur— ¢y, he) +my (2.19)
~ G(ug, ) — Gy i + 1y,
~ Yin — Guk i + M
=€, =Y —Yrn = —Gur ¢+ 1y (2.20)

where G, ; and S(\k‘h are respectively the Jacobian matrix defined below and the values
predicted by the model based on the sensed inputs u; and arbitrary values of the health
parameters hy,.

G, = 3Q(Uk, hk)

2.21
i= (221)

ug s hy

The statistical properties of the random error €, are given by:

E<€k) = E("?k) - Gu,k E(Ck)
- 0 (2.22)
T _ T
E(ey, fj) = E [(m — Gui i) (M), — Guy Cj) }
= E(m,mn))—Em,¢)GL,
~ Gur B(¢y €]) + Guy E (¢, ¢T) GE,
= (Rys + Gux Ruy Gii) 0k = Rey Ok (2.23)

as the noises on the inputs and on the gas-path measurements are both zero mean and
independent.

Basically, the covariance matrix R, ; lumps the uncertainties in the operating point and
in the gas-path measurements. In general, this matrix is not diagonal. The off-diagonal
terms translate the fact that the residuals between the observed and simulated gas-path
measurements are correlated. These correlations originates from the use of noisy input
measurements in the simulation model. Focusing on the diagonal terms of the matrix
R: ;, the uncertainties in the input signals contributes to a reduction in the accuracy of
each gas-path sensors with respect to its nominal value:

0',7].3(7;) =4/ Rr,k(i> Z) > O'ng(Z') (224)
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The statistical model

The statistical model combines the deterministic model (2.8) that describes the response
of the gas turbine and the statistical properties of the data streams:

Yi = G(ug, hy) + €, with €, € N(0,R, ;) (2.25)

where the lumped noise term €, is assumed additive and generated by a Gaussian random
vector with zero mean and covariance matrix R, .

An equivalent formulation of the statistical model is given directly as a probability density
function for the gas-path measurements:

1 1
shigug) = exp | —=(ye — Yun)" R} (yr — ¥, > 2.26
p(Yk: k k) (%)ny !Rr,k\ p < 2(Yk ymh) r.k (Yk Yk:\h) ( )

where the notation p(yg; hg; ux) emphasises the fact that the probability density is para-
metrised with the health parameters hy and depends on the control inputs ug. In relation
(2.26), yi|n are values generated with the deterministic model (2.8) fed with the measured
operating conditions u, and arbitrary values of the health parameters:

Yiin = G(ug, ) (2.27)

A transformation to whiten the noise

We have established above that the residuals for the different gas-path sensors are cor-
related due to the noise on the measured input signals, which mathematically takes the
form of a full covariance matrix R, ;. We report here the so-called whitening transforma-
tion [Kay, 1993, chap. 4, p. 94] that converts the covariance matrix to the identity one.
After this transformation, the residuals are white, independent and identically distributed
gaussian random variables, which might be a convenient form in some occasions.

The whitening process is based on an eigenvalue decomposition [see Golub and van Loan,
1996] of the covariance matrix. The matrix being positive definite, all eigenvalues are
strictly positive:

R, = E, N, E} (2.28)
where Ay is a diagonal matrix made of the eigenvalues and E; is an orthonormal matrix

whose columns are the eigenvectors.

The random vector then undergoes a linear transformation through the matrix Scy:

€ € N(O, Rr,k) — €, =Sc, €, € N(O, |)
with Sc, = A2 EL (2.29)
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where I\,;l/ ’isa diagonal matrix made of the inverse of the square root of the eigenvalues.

Geometrically, the whitening transformation can be interpreted as a rotation+norming
operation to express the random vectors in the principal axis of the original covariance
matrix R, , see appendix A.1 for further details.

2.2 Formulating GPA as an estimation problem

2.2.1 Motivation

At the beginning of this chapter, the residual ™! was defined as the difference between
the measurement readings y; and an estimation of these measurements yi! for a healthy
engine. The inclusion of health parameters in the model allows to broaden this notion of
residual. Indeed, as underlined by the subscript k| in equation (2.27), the measurements
predicted with the model are now a function of the health parameters. As a consequence,
the residuals built as the difference between the actual measurements y; and the predicted
values S(\k‘ n are also a function of the health parameters hy:

?k\h £ Yi — /y\k\h = f(hy) (2.30)

This functional dependency of the residuals with respect to the health parameters natu-
rally leads to a formulation of the gas-path analysis as an estimation problem. Basically
this estimation problem can be thought of as the inverse problem to performance predic-
tion, as sketched in figure 2.6.

prediction

7\

health parameters residuals ?k|h

gas path analysis
(health parameter estimation)

Figure 2.6: Gas path analysis as the inverse problem of performance prediction

The tenet behind this estimation approach is that the health parameters are assessed by
finding the value h; that minimises the residuals i.e., the distance between the actual
measurements yj, and the model predictions yg,. Mathematically, it comes down to the
solution of a minimisation problem of the type:

i’l\k = arg Hﬁln {pk<yk — /y\k|h)} = arg HélIl {pk(?k‘h)} (231)
k k
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where the form of the loss function pi(-) should be specified so as to accomplish these
two objectives: first, measure the user’s satisfaction adequately and second, result in a
computationally tractable problem.

2.2.2 The ingredients of an estimation problem

From a general outlook, an estimation problem is composed of the following four compo-
nents illustrated in figure 2.7 [van Trees, 1968|:

1. a parameter space of dimension ny that defines the range of values that the health
parameters may take. Any health condition h is therefore represented by a vector
in this space,

2. a probabilistic mapping p(y;h;u) from parameter space to observation space.
This mapping is in fact a probability law that governs the effects of the parameters
on the observations such as equation (2.26),

3. an observation space of dimension n, that defines the range of values that the
observations may take. Any observation y is represented by a vector in this space,

~

4. an estimation rule h(y) that assigns a value to the unknown parameters for each
realisation of the observation. The estimator is a function of the data, which are ran-
dom variables, so it is a random variable too. As a result, an estimator is completely
described by means of its probability density function or equivalent information.

Probabilistic
mapping
p(y;h;u)
Parameter space
nh—dimensional
Estimation
rule
n,-dimensional Observation space
estimate ny-dimensional

h(y)

Figure 2.7: The components of an estimation problem
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In the following, two celebrated estimation rules are presented. Next to their derivation
and implementation, issues such as measure of errors and bounds on the estimator per-
formance are addressed. For a complete discussion, the reader is directed to reference
textbooks such as [Kay, 1993].

2.2.3 Working hypotheses

A number of working assumptions, beside the steady-state operation, are made before
proceeding to the derivation of the estimators. These assumptions will progressively be
waived in the course of the document.

Batch data processing: It means that the operating point and gas-path measurements
are collected and stored into databases respectively denoted {u } and {y }?' during a
given period of time represented here by the number of samples N:

{uld = [uwu - uy]

{y} [y1Y2 -y ]

The health parameters are estimated afterwards from the whole databases. This implies a
certain delay in the assessment of the engine condition as the databases must be available
before carrying out the diagnosis.

Constant health parameters: It is supposed that the health parameters do not show
significant variations during the time required to generate the databases. The health
parameters associated to the whole batch of data are simply denoted by h as they do not
depend on time.

Linear model: The steady-state behaviour of the engine with respect to the health
parameters is approximated with a first-order Taylor expansion around the healthy con-
ditions h®:

Yi = Yi +Gni (h—h") + ¢

where

0Q(uk, h)

~nl hl
= h d Ghi =
Y, = G(ug, h™) an hk h Y

(2.33)

are respectively the model prediction at the current operating point, for a healthy engine
and the so-called influence coefficient matrix that relates the measurement drifts to any
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change in the health parameters for the current operating point ug. In equation (2.32),
dyy is nothing else but the residual with respect to the healthy conditions.

With this linear approximation, the probability density function for the gas-path mea-
surements writes:

1 1
p(yr; i) = R exp (—5(5% — Gni 6h)" Ry (3yx — Gy 5h)> (2.34)
v r.k

In certain upcoming sections of the document, it will be more convenient to consider the
whitened version of the linear model which is obtained by left-multiplying the statistical
model (2.32) with the whitening operator Sc;, defined by relation (2.29):

SCk {5yk = Gth oh + Gk}
o¥r = Gpy 0h+ & (2.35)

where the so-called scaled model is given by éh,k = Sci Gpy and the noise vector is
obviously distributed as €, € N(0,1).

2.3 Maximum likelihood estimation

2.3.1 Principle

As previously stated, gas path analysis is an inverse problem that consists in determining
the health parameters h (i.e., the causes) from the observations yy (i.e., the effects). The
maximum likelihood estimate Eml is the value of the health parameters that maximises
the so-called likelihood function, here noted L(hlyy). As its name suggests, this func-
tion reflects the likelihood that the observations should indeed take place, it basically is
the probability density of the measurements to be observed as a function of the health
parameters.

With this definition, the likelihood function coincides mathematically with the probability
density of the measurements (2.34): L(h|yx) = p(yx; hx). However, a major difference
between the likelihood and the probability density of the measurements lies in what is
fixed and what may vary. In the likelihood perspective, the observations are fixed and
the health parameters are the unknowns. The maximum likelihood estimator therefore
inverts the role of the observations (the effects) and the parameters (the causes).
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2.3.2 Derivation of the estimator

For a batch of data { y }Y, the maximum likelihood estimate is the solution of the following
optimisation problem:

ha = arg max {L(h[{y }}')} (236)

The likelihood function for one of the samples in the database is, under our working
hypotheses, given by:

L(hlyr) = plys;hy)

1 1
= L e (v~ Gus )T R} (Bys — Gug 5h)) (2.37)
(2m)"™ [Re] ( 2 a

Since the measurement noise is generated by a white and Gaussian random variable, each
sample in the batch is statistically independent of the others. The likelihood for the N
samples in the database becomes:

N

L(h[{y}) =] £thlyn) (2.38)

k=1
The maximisation problem defined in (2.36) is converted into a minimisation one:

Jum(h) = —log ] £(hlyx)

k=1

= — ) logL(hly) (2.39)

as the opposite of the natural logarithm is a monotonically decreasing function.

The maximum likelihood estimate is the value that cancels the derivatives of the objective
function with respect to the parameters, which gives after substituting (2.37) into (2.39):

0Jmi(h)

N
S =2 ~Gii Ry (Oyc— Gnidh) =0 @ h=hy, (2.40)

k=1

Aggregating the data samples column-wise into global vectors and matrices defined as:

oy1 Gh 1 R, 1 0
oy=| : ; Gh=| and R, = (2.41)
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equation (2.40) can be written as:

G} R!' 6y =G} R’' G, dh (2.42)

which leads to the following expression of the maximum likelihood estimate:

h. = h" + (Gl R G,) ' G] R;! dy (2.43)

The likelihood function achieves a minimum value at the maximum likelihood estimate.
Indeed, the Hessian of the objective function is given by:

82\7m1(h)

TeRa G. R ' G, (2.44)

which is a positive semidefinite matrix as R, is built from the covariance matrices Ry k.

2.3.3 Complementary remarks

Equation (2.43) requires that the Hessian of the objective function be invertible. This
means that the rank of matrix Gy, must be equal to its number of columns i.e., to the
number of health parameters. If the samples in the database are related to a single
operating point ug, this condition can only be fulfilled if the number of gas-path sensors
n, is at least equal to the number of health parameters ny,.

Otherwise, the estimation problem is underdetermined which leads to a continuum of
solutions that spans the null-space of the influence coefficient matrix Gp. Indeed, linear
algebra tells us that the projection of any solution vector onto the null-space is not
reflected in the measurements. This point will be addressed in more details in section 2.5.

Another possibility to guarantee a full-rank influence coefficient matrix is to collect data
at different operating conditions, thereby taking advantage of the non-linearity of the
engine response, this is the multi-point estimation mentioned in the review of methods.
However, this multi-point framework turns out to be a rather long and therefore costly
procedure on a test bed as it requires the stabilisation of the engine at several regimes.
On the other hand, it is very seldom to achieve steady-state conditions outside the cruise
part of a commercial flight.

The batch treatment of data acts as a basic filter of the measurement noise. For a single-
point estimation, it can be shown that the maximum likelihood estimator (2.43) applied
to the batch or to its sample average leads to the same results. In the next section, some
performance metrics of the maximum likelihood estimator are presented.
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2.3.4 Measure of performance

The quality of an estimator can be assessed through a number of metrics, the two most
popular being the bias and the covariance matrix respectively defined as:

b 2 E{ﬂml—h} (2.45)

B (R = £ (R }) (s~ £ {0} | (2.46)

where the expectation is taken over the measurements, the only random variables in the
problem. Simply put, the bias is the mean value of the estimation error and the covariance
matrix is a measure of the spread of the estimation error.

lI>

P

It can be shown that, for a well-posed problem, the maximum likelihood estimator is
unbiased (b = 0) i.e., on average, the estimator yields the true value of the parameters.
It also minimises the variance in the estimates, which means that the estimation error is
as much as possible concentrated around zero.

However, the variance of the estimates cannot be decreased to any arbitrary level, as
stated by the Cramer-Rao inequality [Rao, 1973]:

~

o2(i) 2 var {hmle(i)} > FIM;} (2.47)

where FIM is the Fisher Information Matrix (FIM). The inequality expresses the physical
impossibility to find an unbiased estimate whose variance is lower than the Cramer-Rao
bound.

The FIM quantifies the extent to which the observations reduce the uncertainty regarding
the unknown parameters. Loosely speaking, it is intimately linked to the sensitivity of
the measurements with respect to the parameters. Mathematically, the FIM is defined as
the variance of the gradient of the natural logarithm of the probabilistic model relating
the observations to the parameters [Kay, 1993], leading to the following expression for the
element (i, 7):

0
FIM, ; £ FE {_ IOgP(Yk; h)

0
o log p(yx; h)} (2.48)

In the case of the linear Gaussian model (2.34), the FIM writes:

FIM =G/ R,' G, (2.49)

The maximum likelihood estimator is hence asymptotically unbiased and of minimum
variance. The combination of these two properties makes it an asymptotically efficient
estimator distributed according to:
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ot — NhFIM™Y) as N — oo (2.50)

The required number of data samples N for the asymptotic results to hold depends on
the signal to noise ratio.

2.3.5 Connection with the least-squares method

The famous least-squares method introduced by Gauss at the end of the eighteenth cen-
tury has been widely applied to data fitting problems in a myriad of scientific fields. The
criterion for goodness of fit consists in minimising the sum of squares between the obser-
vations and the prediction of a model, without any probabilistic assumption about the
data. Using the aggregated system description, the objective function of the least-squares
approach writes:

Jis = (0y — Gy, 6h)" (6y — Gy, Jh) (2.51)
The least-squares estimate is the value that minimises the above objective function:

h, = amg min {Ji:}
— "+ (G} G,) ' G dy (2.52)

The least-squares estimate can be interpreted in a geometric way. Let e, = dy — Gy, dh
be the prediction error. Then the least-squares estimate is solution of:

e, Gy =0" (2.53)

This equation means that the prediction error must be perpendicular to the columns of
the influence coefficient matrix. The error therefore represents the part of the observations
that cannot be explained by the signal model. This is known as the orthogonality principle.

A modified version of the least-squares method applies a weighting factor to each obser-
vations leading to the so-called weighted least-squares solution:

hu, = h" 4+ (G W G,) ' GF W dy (2.54)

where W is the matrix of weighting factors.

It can be seen that if the weighting matrix W is chosen equal to R i.e., the inverse of
the covariance matrix of the residuals, the weighted least-squares estimator has exactly
the same expression as the maximum likelihood estimator. This is a consequence of the
combination of a linear model for the observation—parameter relationships and a Gaussian
distribution of the measurement noise.
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2.4 Maximum a posteriori estimation

2.4.1 A Bayesian view to estimation

In the maximum likelihood approach, the health parameters are considered as determinis-
tic whereas the observations are random variables, they are hence not of the same nature.
Moreover, only asymptotic results are available concerning the uncertainty in the esti-
mated parameters. The Bayesian philosophy tries to address these issues by recognising
the parameters a random character too. As a result, the health parameters are described
with a probability density p(h) and the estimation problem is to assess a particular real-
isation of these random parameters.

The main motivation behind Bayesian estimation is that if some prior knowledge about the
parameters is available (from previous experience or engineering judgement for instance),
it should be incorporated into the estimation process. As explained by Rao [1973], the use
of prior knowledge leads to a more accurate estimator in certain regions of the parameter
space around the a priori value, provided the prior knowledge is relevant of course. By
more accurate, it is meant an estimator achieving a lower mean square error than the
unbiased, minimum variance estimator.

The observations and the health parameters being both random variables, they are de-
scribed through the joint probability density p(yg, h), which can be decomposed as:

p(ye, h) = p(hlys) - plyr)
= p(yx|h) - p(h) (2.55)

where

e p(yg|h) is the conditional probability density of the measurements when the health
parameters take the specific value h. It expresses the dependance of the measure-
ments with respect to the health parameters, as given by the statistical model (2.34),

e p(h) is the so-called a priori knowledge about the health parameters namely, the
information available before the measurements y, are observed,

e p(h|yg) is the so-called posterior distribution, that summarises the knowledge about
the parameters after using the information contained in the observations,

e p(yx) is here a simple normalising factor since the measurements yj, are observed.

In the Bayesian framework, the posterior distribution appears to be the relevant quantity
to determine. Rearranging the right-hand sides of (2.55) gives the so-called Bayes’ rule
expressing the posterior in terms of the others densities:

p(yk[h) - p(h)

p(¥r) (2:50)

p(hlyg) =
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An optimal estimator can be defined as the one that minimises the Bayesian mean square
error (bmse), leading to the minimum mean square estimator:

ﬂmmse £ arg min {bmse(ﬂmmse)}

— arg min {E{ (Emmse . h)T (ﬁmmse - h) }} (2.57)

note that in the computation of the bmse, the expectation is taken with respect to the
observations and the parameters as they are all random variables.

It can be shown that ﬁmmse corresponds to the mean of the posterior distribution [see e.g.,
van Trees, 1968]. The computation of the mmse estimator involves many integrations,
that’s why the maximum a posteriori estimate is sometimes preferred as it comes down
to a maximisation problem, generally easier to solve. The maximum a posteriori estimate
is defined as the mode of the posterior i.e., the location of the maximum:

Py £ arg max {p(h| y,)} (2.58)

As already mentioned, the choice of the prior distribution for the parameters happens to be
a key element of the Bayesian approach. A wrong choice would result in a poor estimation
quality. The prior p(h) should reflect the prior knowledge in a faithful manner. However,
in the specific case of performance monitoring, the prior knowledge is often rather coarse
and it is difficult to find a density that renders this information. Therefore, it might
be more valuable to choose a prior density that models only approximately the a priori
knowledge, but that leads to a posterior density for which a closed-form solution exists.

In the present case, it is convenient to select a Gaussian prior. Indeed, combined with
the conditional density p(yx|h), that is also Gaussian, it leads to a Gaussian posterior

p(h|yg). In this particular case, the mode coincides with the mean: hyap = himee.

2.4.2 Derivation of the estimator

For a batch of data {y }&¥, Bayes’ rule (2.56) becomes:
p({y }1'[h) - p(h)

p(h[{y}) = (2.59)
' p({y}")
and the map estimate is the solution of the following maximisation problem:
huap = argmax {p(h|{y}}))}
= argmax {p({y}{'[h)-p(h)} (2.60)

as p({y }¥) does not depend on the health parameters.
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Since the measurement noise is assumed to be independent and identically-distributed,
the probability density of the whole batch of observations conditioned on the parameters
can be decomposed as:

p({y}1'[h) = Hp yx| h) (2.61)

As stated previously, the probability density of a data sample conditioned on the param-
eters p(yg|h) has the same functional expression as the probability density (2.34) of the
statistical model. Note that both distributions have the same form, but have a different
statistical interpretation. In the Bayesian framework, it is a conditional distribution, com-
puted for a particular realisation of the random parameters, whereas the statistical model
is simply the probability density for the measurements, parameterised by a deterministic
vector h of real numbers.

As indicated above, the prior knowledge is chosen as a Gaussian distribution of mean hy
and covariance matrix Qq:

1 L oo
) = e e - 3h )"y (h— R (2.62)

The maximisation problem defined in (2.60) is converted into a minimisation one by
considering the following objective function:

N
jmap(h> = H yk’ h

= —logp(h) — Z log p(yx|h) (2.63)

as the opposite of the natural logarithm is a monotonically decreasing function.

Substituting the expressions (2.34) and (2.62) for the conditional and prior densities and
using the stacked database quantities defined in (2.41), the objective function becomes:

Tnap(h) = st By — Gy )" R, (5y — G o) + = (h— ) Q' (h—hy) (264

The second term in the cost function (2.64) is the same as in the maximum likelihood
approach. It provides a quadratic penalisation of the residuals similar to the weighted
least-squares criterion. The last term can be interpreted as a “constraint” that penalises
(also in a quadratic manner) solutions far from the reference value hg. The maximum
a posteriori estimation is equivalent from an optimisation standpoint to ridge regres-
sion/regularisation.
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The mean /I;o and covariance matrix Qo of the prior can be regarded as tuning parameters
of the estimator. The mean is usually taken equal to the nominal conditions (i.e., hy = h™)
as sensible information is rarely available. On the contrary, guidelines with a rather
physical interpretation may help in building the covariance matrix Qg. The diagonal
terms are set as (0h,,4./3)? where Jh,,,, reflects the expected maximum deviation for
each health parameter. Limiting Qg to a pure diagonal matrix supposes that the health
parameters vary independently. However, it is highly likely that the degradation of a given
component will involve a modification of both its flow capacity and its efficiency which
means that these parameters are, in some way, correlated. As explained by Doel [2003],
such correlations can be introduced into the covariance matrix by setting the adequate
off-diagonal terms of the matrix Qg according to:

Qo(, ) = Qo(j, i) = picj V/Qol(i,4) - Qo(4, j) (2.65)
where p;.,; is the correlation factor.

Figure 2.8 shows the effect of the correlation factor on the contours of the prior for a 2-D
example. A negative correlation factor is used in the case where the parameters evolve
in opposite directions (i.e., one increases, the other one decreases). A nought correlation
factor leads to independent parameters. In figure 2.8(b), it is assumed that parameter
dh(1) might vary twice as much as parameter dh(2). Finally, a positive correlation factor
reflects the fact that both parameters vary in the same direction (i.e., both increase or
decrease). The correlation factor satisfies |p;;| < 1, the equality meaning a total corre-
lation. In any case, the resulting covariance matrix Qg should be positive definite which
translates geometrically by closed-contours as shown in figure 2.8. Coupling between
different modules could be introduced with the same technique if appropriate.
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Figure 2.8: Effect of the correlation factor on the contours of the prior

The maximum a posteriori estimate is the value that cancels the derivatives of the objec-
tive function (2.64) with respect to the parameters:

0T map(h - ~ h
af;—( ) —Gy R,'(0y —Gh 6h) + Q' 6h=0 @ h=hy,, (2.66)
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which leads to the following expression of the maximum a posteriori estimate:

oy = W + (Q;" + G R Gy) ' GI R, ! oy (2.67)

The objective function achieves a minimum value at the maximum a posteriori estimate.
Indeed, its Hessian is given by:

0” FTmap(h)
oh?

which is positive definite as R, and Q are too.

=G} R' G, + Q! (2.68)

2.4.3 Complementary remarks

From a mathematical standpoint, the major difference between relations (2.43) and (2.67)
lies in the presence of the matrix Q, in the Hessian. As mentioned in section 2.3, a reliable
diagnosis is obtained provided the inner product G{ R, G, is invertible (i.e., full ranked)
which can be obtained if the lines of Gy, are linearly independent. The main effect of the
additive term Qp' is to artificially increase the rank of the matrix Qy' + GI' R/ Gy, to
improve its conditionning. In the case of underdetermined problems, ridge regression can
therefore be seen as a mathematical trick that drives the estimator towards one of the
many solutions.

The implementation of the maximum a posteriori estimator (2.67) involves three matrix
inversions. A more efficient formulation is obtained by using the following matrix inversion
lemma:

1

(A-BD'C) 'BD'=A"'B(D-CA'B)” (2.69)

and identifying A = Q;*, B = G!, C = —G}' and D = R,, the maximum a posteriori
estimator becomes:

i.|\rnap = hhl + QO G}? (Rr + Gh QO GI?)_1 5y (270)

which involves only one matrix inversion.

Introducing the covariance matrix of the data P,, and the cross-covariance matrix between
the health parameters and the data Pp,:

P, = E{0ydy"} =E{(Ghoh+e€) (Ghoh+e)'} =R, +G,Qy G} (2.71)
P, = E{éhdéy’} = E{éh (G, sh+¢)"} =Q, G} (2.72)

the maximum a posteriori estimator can be compactly rewritten as:

Ry = ' 4+ Py, P L Gy (2.73)
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The estimator (2.73) is linear in the data. This structure results from two assumptions:
first, the measurement noise and the prior knowledge are jointly Gaussian random vari-
ables. Second, the measurements are related linearly to the parameters. This leads to an
objective function (2.64) that is quadratic in the unknown health parameters.

As previously noticed, the hypothesis of jointly Gaussian data and parameters makes the
map estimator coincide with the mmse estimator. We now review three properties of the
mmse estimator that will be useful for the derivation of the Kalman filter in chapter 3.

Property 1. The mmse estimator commutes over linear transformation. Let h* =
A h + b, with A and b a known matrix and vector, then the mmse estimate of h* is:

~

h* = E{h"|dy}
= E{Ah+bloy}
= E{Ah|éy} + E{b|oy}
Ah+b (2.74)

because of the linearity of the expectation operator.

Property 2. The mmse estimator has an additivity property with respect to indepen-
dent data sets. Assume that oh, dy; and dy, are zero mean, jointly Gaussian and that
the data vectors are independent. The mmse estimator is:

A~

E {5h|dy,} + E {oh|dys} (2.75)

Let 0y = [0yl dyl]", the estimate is given by relation (2.73). Since dy; and dy, are
independent, the covariance matrix of the data (and its inverse) are block-diagonal:

-1
P -1 _ [ Py1y1 0 ]
v 0 Py2y2
_ [Py O
o P

Y2y2

So that the estimator finally writes:

sh =P, Pl 5y, + Py, P, 0y (2.76)

Yiy1
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Property 3. The mmse estimator admits a similar geometrical interpretation as the
least-squares estimator, the major difference being that the vectors are now random ones.
We can think of the random vectors dh, dy;, ..., dyy lying in a vector space as illustrated
on the left side of figure 2.9. Due to measurement inaccuracies (noise), dh cannot be
perfectly expressed as a linear combination of the data samples which translates geomet-
rically by the fact that vector dh has some component outside the subspace spanned by
the data samples.

oh oh

z ey, S

Figure 2.9: Illustration of the orthogonality principle

In such a space made of random vectors, it can be shown that an appropriate definition
for the inner product between two vectors a and b is given by:

(a,by=E{a" b} =Tr(E{ab"}) (2.77)

With that definition, the squared length of a zero-mean, random vector is hence equal to
the trace of its covariance matrix:

|a||* = (a,a) = Tr(E {aa"}) (2.78)

and two vectors are said orthogonal if (a,b) = 0.

The minimum mean square criterion (2.57) can be interpreted from a geometrical stand-
point as minimising the squared length of the estimation error e, = dh — sh. From the
right side of figure 2.9, the minimum length is achieved when the estimation error is
orthogonal to every data sample of the batch.

Using relations (2.73) and (2.41), the estimation error e, for a given realisation of the
parameters is given by:

e, =oh—oh=(1-Py, P, Gy) oh—P;, P,le (2.79)
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We now evaluate the covariance between the estimation error and the data samples:

E{e,doy"} = E{[(1=Py, P, Gn) oh—Py, P, €] (Gnoh+e)}
= E{(1-Py, P, Gu) 6hoh" G} +
E{(1-Py, P, Gp) dhe"} —
E{Py, P, eh"G]'} —
E{Py, P;yl € eT}

In the previous sum, the second and third terms are nought because of the independence
between the parameters and the measurement noise. As a result, the projection of the
estimation error onto the subspace spanned by the observation vectors is:

E{e,0y"} = (1-Pyp P, Gy) Qo Gy — Py, P,/ R,
= Py — Py, P, (Gn Qo Gy +R,)
= Py, —Py P, P,
=0 (2.80)

This last result demonstrates that the estimation error is indeed orthogonal to the data
samples. This is the orthogonality principle, aka. the projection theorem.

2.4.4 Measure of performance

In the Bayesian framework, the randomness of the parameters results in a different prob-
ability density for each realisation of the parameters. A well-performing estimator should
therefore have a small estimation error e, for any realisation of the parameters. As a
consequence, the performance is assessed by determining the probability density of the
error which should ideally be concentrated about zero.

The mean of the error is zero on the average:

E{eh} = F {(l — Phy P;yl Gh) oh — Phy P;yl 6}
=0 (2.81)

as 0h and € are assumed zero-mean.

The variance of the error is given by:

var{e;,} = E{e e}
= (GIR'Gy+Q,")"" (2.82)



2.4. Maximum a posteriori estimation 45

For a finite set of data samples, the Cramer-Rao bound sets a lower bound on the minimum
mean square error:

o2 (i) £ var {e,(i)} > FIM;} (2.83)

where the FIM (2.48) is now computed using the joint probability density (2.55) and the
expectation is taken over the measurements and the parameters:

FIM =G} R' G, + Q" (2.84)

2.4.5 Connection with the maximum likelihood estimation

The 1-D example sketched in figure 2.10 compares the maximum likelihood approach to
the maximum a posteriori one. The prior p(h) is drawn in light grey together with its most
likely value hg (i.e., the value of h for which p(h) is maximum). When the measurements
yr are observed, the likelihood function p(yg|h) can be drawn together with the most
likely value Pote (black line). In a Bayesian perspective, the posterior p(h|y;) can be
found through relation (2.56) which results in the orange line. The map estimate /l;map is
the value that maximises this function.

= likelihood

e

Probability density functions

0 map ml

Figure 2.10: Effect of the prior knowledge on the posterior distribution

The two estimates ﬁmle and ﬁmap do not coincide since the map estimate is “attracted”
by the prior knowledge showing that, if chosen improperly, the prior can completely spoil
the estimation. It is worth mentioning the limiting case of a flat (or non-informing) prior
p(h) = constant. In that case, the posterior confounds with the likelihood function:

arg max {p(yx[h)} = argmax {p(hys)}

= hmap = i1\ml (285)
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2.5 Tools for the selection and analysis of sensor-
parameter suites

2.5.1 Context

Next to an efficient formulation and solution method, the selection of a relevant configu-
ration of the sensors is an important factor towards an accurate estimation of the health
parameters.

Current sensors remain intrusive and their integration on the engine is limited by several
constraints like cost, weight or harsh environment. As a consequence, the number of sen-
sors is usually kept to a minimum dictated by the control system and hence outweighed by
the number of health parameters. This makes the estimation problem underdetermined.
Moreover, the measurements are corrupted with noise. The efficiency of the diagnosis
algorithm depends on the sensor configuration which should therefore be selected so as
to optimise the amount of information that is carried about the engine condition.

Optimal sensor selection has been investigated only sparsely in the engine health moni-
toring community, few contributions indeed address this issue. Most of the work so far
is based on linear approaches. In Kamboukos et al. [2001], a metric based on the sensi-
tivity of the sensors with respect to the parameters is defined. The use of the condition
number of the influence coeflicient matrix that relates measurements and parameters is
also investigated in order to perform the sensor selection in the case of a square problem
(i.e., as many sensors as parameters). In Mushini and Simon [2005], a figure of merit
based on the steady-state error covariance matrix of a Kalman filter is used to perform
the optimisation of the sensor set, again in the case of a square problem. This study also
takes into account the cost of the various sensors. In Bechini et al. [2005] the strong link
between sensor selection and observability is underlined. A sensor configuration is consid-
ered as informative if it avoids both redundancy between measurements and correlation
between fault directions. The solution of the sensor selection problem relies on a method
for observability analysis developed by Provost [1994]. In Sowers et al. [2008, 2009], sensor
selection is based on a metric defined to maximise the detectability and discriminability
of user-specified fault types. Sensor cost and fault criticality are complimentary metrics
considered in this approach.

A closely related problem, investigated in [Litt, 2008, Simon and Garg, 2009] consists in
selecting the best subset of health parameters (or linear combinations thereof) in order
to minimise the estimation error of non-measurable, yet key engine performance factors
such as the net thrust, the turbine inlet temperature or the stall margins for use as virtual
sensors in advanced control laws [Kreiner and Lietzau, 2003].

The topic of sensor selection has received much more attention in other fields such as
chemical or structural engineering. As a general trend [see for instance Kirkegaard and
Brincker, 1994, van den Berg et al., 2000, Vande Wouwer et al., 2000, Papadimitriou,
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2004], the sensor selection problem is addressed in the framework of information theory.
Metrics based on the Observability Grammian or on the Fisher Information Matrix are
defined in order to optimise the configuration of the experiment.

In the light of these considerations, we have revisited the problem of sensor selection
for turbine engine performance monitoring within that scope of information theory [see
Borguet and Léonard, 2008]. A metric that handles the aforementioned particularities
is proposed. As complementary tools to increase the understanding about the sensor—
parameter layout, we propose metrics to assess the observability of a parameter as well
as the utility of a given sensor in the estimation process.

2.5.2 Theoretical foundation

The rationale behind sensor selection is to optimise the amount of information conveyed
by the measurements about the parameters to be estimated. Optimal information can
be defined in various ways, such as the maximum response of the measurements to a
change in the health condition, the minimum uncertainty in the estimated parameters or
the maximum orthogonality between the measurements to name a few. It is therefore
desirable to base the optimisation on a quantity that captures these properties and that
is convenient to compare different configurations.

The Fisher information matrix (FIM) introduced earlier in this chapter is a relevant
mathematical entity to perform sensor selection. Indeed, the FIM quantifies the amount
of information that an observation vector carries about an unknown parameter vector,
which underlines the strong coupling between information, observability and estimation.
We gave the definition of a generic element of the FIM in equation (2.48), but an equivalent
definition for this element is the expectation of the Hessian of the natural logarithm of
the probabilistic model:

82

A .
FIM,; = -FE {—8h,- o, log p(yx; h)} (2.86)

Geometrically, the Hessian is associated to the curvature of the vector field. As such, a
high curvature of the probabilistic model with respect to one parameter means that the
estimate lies in a narrow valley, that is the variance of the estimate is low, which can be
interpreted as having an important amount of information about this parameter.

For sake of completeness, let us recall the expression of the FIM for the scaled probabilistic
model (2.35), in the case where the parameters are seen as deterministic variables (FIMgey)
and Gaussian random variables (FIMy,,) respectively:

FIMe: = G/ Gy
FIM,,, = G! G,+Qg’
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Engine performance monitoring is often characterised in practice by negative redundancy,
which means that the number of parameters exceeds the number of sensors (n, > n,). In
this case, the maximum likelihood formulation leads to an underdetermined estimation
problem that has no unique solution. Bayesian estimation, by allowing the introduction
of prior knowledge on the parameters, can be applied as a palliative. Comparing FIM g
and FIM,,,, we see that both include a common part, that effectively depends on the
sensor-parameter configuration. As a conclusion, the sensor selection problem will be
solved by using this common part, that is by using FIMge.

2.5.3 Metrics for sensor selection

Practically, two main objectives govern the design of a diagnosis tool. On one hand,
high sensitivity is desirable in order to provide an early detection of a fault. On the
other hand, the user’s confidence in the diagnosis system is conditioned to a minimum
false alarm rate. These objectives can be achieved by determining the configuration that
maximises both the orthogonality between the sensors and the orthogonality between the
parameters. The former means that two sensors should not react in the same way to any
engine fault. The latter means that two parameters should have a distinct signature on
the observations. Various scalar figures of merit based on the FIM can describe these
objectives:

1. the condition number CN of the FIM is defined as the ratio of the largest to the
smallest singular value. The condition number is linked to the rank of a matrix
and to the difficulty in performing its inversion. In the case n, < ny, the rank of
the FIM is at best equal to n, which can be ensured by minimising the condition
number. In that way, no sensor is redundant with another,

2. the trace Tr of the FIM is defined as the sum of the singular values. In the case
ny < np, the sum is limited to the first n, singular values. The trace is a measure
of the global sensitivity of the sensors with respect to the parameters and hence has
to be maximised. It is linked to some extent to the sensitivity measure defined by
Kamboukos et al. [2001],

3. the determinant Det of the FIM is defined as the product of the singular values.
Again, the product is restricted to the first n, singular values. Indeed, as stated in
point 1, at most n, singular values are non-zero. This quantity has to be maximised
too as the inverse of the determinant is a measure of the overall uncertainty on the
estimated parameters. Furthermore, this criterion tends to standardise the singular
values and hence the contribution of each sensor. This criterion is similar to the one
used by Bechini et al. [2005].

The figures of merit are expressed mathematically through relations (2.87), where o;,i =
1,...,n, are the singular values of the FIM traditionally sorted in descending order.
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On,

Ny Ty
ciN="2 =0, Det=][]o (2.87)
=1 i=1

Each of these metrics puts emphasis on a particular aspect of the problem. To perform
the sensor selection, it is proposed to combine them in an aggregated figure of merit:

FOM = —1¥; log(CN) + W log(Tr) + Wi log(Det) (2.88)

where W; are factors that allow both normalisation of the magnitude of the various com-
ponents and variable weighting between the objectives. The figure of merit FOM has to
be maximised with respect to the sensor configuration under the constraint of a fixed
number of sensors.

2.5.4 Metrics for observability analysis

The purpose of an observability analysis as defined here is twofold: firstly assess the
contribution of each sensor to the estimation problem and secondly quantify the observ-
ability level of each health parameter. In simple words, the observability level measures
the possibility to estimate correctly a given parameter.

As pointed out by Brown [1966], the classical test for observability of static systems
i.e., checking the invertibility (or full-rankedness) of the scaled system matrix Gn gives
merely a boolean answer. In the case of underdetermined problems, the system is always
classified as non-observable. Practically, it is however partially observable and it is worth
determining the observability level of the different parameters as well as the unobservable
fault directions. Inspired by the work of Provost [1994], a method for generating this
information is proposed in the following.

Reinterpretation of the singular value decomposition

Our intent is to derive metrics for both the sensors and the parameters, therefore we
base the computation on the scaled influence coefficient matrix rather than on the FIM.
Singular value decomposition (SVD) [see Golub and van Loan, 1996] of Gy, serves as the
central mathematical tool to carry out the observability analysis:

T
G.=UxXVi=uU {}:1 | 22} {vl | vg] (2.89)
where

e U is an orthogonal n, x n, matrix whose columns define an orthonormal basis for
the output (measurement) space,
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e V is an orthogonal n;, x nj; matrix whose columns define an orthonormal basis for
the input (parameter) space,

e X is an n, X n, matrix whose main diagonal terms are the singular values o, which
can be seen as stretching factors along the directions defined in U and V.

We propose a geometrical interpretation of the SVD hereafter. The influence coefficient
matrix Gy can be seen as an operator that maps the space of the health parameters
(input space) to the space of the measurements (output space). In this representation,
each health parameter (resp. measurement) is one orthogonal base vector of the input
(resp. output) space. Application of the SVD to the matrix Gy consists essentially in
a change of reference frame in both the input and output spaces as sketched in figure
2.11. The position of any health condition of the engine is now measured according to the
columns of matrix V and the corresponding measurement coordinates are expressed in
terms of the columns of matrix U. The major difference between the two representations
(original and SVD) lies in the mapping from the input space to the output space. In the
SVD representation, the mapping is given by the diagonal matrix £ which simplifies the
description of the input-output relation.

y(f) h(2) U(2)

Figure 2.11: Graphical interpretation of the singular value decomposition

A sensitivity index for the sensors

Given the meaning of the columns of U and the diagonal terms of X, a sensitivity index
Sl is defined for each sensor as a weighted norm of each row of U:

A Ty
. U, = X7V

= L =1,... 2.
' trace{U X ZTUT} PE ey (2.90)

The sensitivity index is an image of the relative change in a given sensor reading due to a
modification in the health condition. The higher the Sl, the more important the influence
of the associated sensor in the estimation of the health parameters. The denominator in
the right-hand-side of equation (2.90) serves as a normalisation factor such that the SI's
sum to one.
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An observability index for the parameters

An observability index for the parameters, and to a larger extent for any degradation (i.e.,
combination of several parameters) could be defined in a similar way as the sensitivity
index is. Nonetheless, in the case of negative redundancy, a loss of information is intro-
duced due to the fact that the number of parameters outweighs the number of sensors.
It can be stated from linear algebra theory that the rank of the Jacobian matrix Gy is
at best equal to n,. Hence, n, — n, singular values are equal to zero. As highlighted in
the second part of equation (2.89), matrix X is partioned in two blocks where X; gathers
the n, non-zero singular values and X, is a sub-matrix containing the n;, — n, nought
singular values. Matrix V is accordingly split column-wise into the observable subspace
V,; — aka. the range — and its unobservable counterpart Vo — aka. the null space — which
does not carry any information about the state of the system [Castillo et al., 2005]. The
observability index proposed here quantifies this loss of information. For some arbitrary
deterioration dh, the observability index Ol is computed according to:

_ v onl;

Olsy = —— =
"IV h| 2

(2.91)

where the numerator is a measure of the magnitude of fault dh in the observable subspace
and the denominator represents the total magnitude of fault dh.

Following this definition, the observability index is bounded by zero and one. An observ-
ability index equal to unity means that the considered degradation has no component
located in the null space and can therefore be estimated with a great accuracy. On
the contrary, a small observabillity index characterises a large loss of information. The
estimation of the associated degradation is hence less accurate.

The fault directions defined by the columns of matrix Vy are unobservable in the sense
that they produce no shift in the measurements. Any degradation that is a linear com-
bination of these vectors has obviously the same detrimental property. The examination
of the unobservable fault directions gives clues about possible confusions between weakly
observable faults.
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3.1 Introduction

N this chapter, we report the development of a tool for engine health monitoring. As
depicted in figure 3.1, such a tool is a key component of a fleet-wide engine health
management process. Snapshot data are gathered and archived on-board at each flight
for each engine in the fleet. The data are then transferred to a ground-based station that
monitors the health condition of each engine. This enables operators to make informed
decisions about maintenance and overhaul of their fleet [Simon, 2010].

A

Snapshot data Fleet-wide monitoring Reporting to
acquisition & transmission maintenance operator

Figure 3.1: Fleet-wide engine health management

As previously mentioned, the monitoring tool shall process noisy data collected from the
parsimonious on-board instrumentation. Alterations in the health condition of the flow-
path components combine gradual deterioration as well as accidental events as sketched
in figure 1.6. Even if running on ground-based facilities, the monitoring tool shall have
reasonable computational and memory requirements, for it shall handle a whole fleet of
engines that may amount to several dozens (or even hundreds) of units.

Our work relies on the experience gained during previous research on the same topic at
the University of Liege [Dewallef, 2005]. The root material was presented in chapter 2
and the various limiting assumptions that were made are progressively removed in the
course of this chapter in order to match the specifications of the monitoring tool.

In section 3.2, we move from batch to sequential data processing. We end up with the
recursive minimum-mean-square-error estimator that can be efficiently implemented as a
Kalman filter. This recursive formulation does not require to store the whole history of
measurements and allows to track smoothly evolving health conditions. In section 3.3,
we present extensions of the Kalman filter able to deal with nonlinear models. We then
compliment our nonlinear Kalman filter design with two additional modules that improve
the handling of accidental events. Section 3.4 focuses on the issue of fault detection. The
implemented solution relies on a modified transition model for the health parameters that
leads to a generalised likelihood ratio test to recognise accidental events. The subsequent
fault isolation and quantification tasks are addressed in section 3.5. We propose an original
approach to fault isolation based on the concept of sparse estimation which is implemented
in the form of a Quadratic Programming problem for which efficient off-the-shelf solvers
are avaible.
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3.2 Tracking of gradual deterioration

3.2.1 Modelling the evolution of the health parameters

In order to formulate the estimation problem in a sequential fashion, we have to specify the
temporal evolution of the health parameters, the time being represented by the discrete
index k. The case of constant health parameters (i.e., no variation in the engine condition)
can be modelled by means of this simple equation:

Shy = dhy_, (3.1)

Note that throughout section 3.2, we still make the assumption of a linear response of
the engine to a change in its health condition (this assumption will be released in section
3.3). Therefore, we work with the variations of the health parameters (and the gas-path
measurements) with respect to their values for a healthy engine: §(-), = (-)s — (™.

The trending of engine performance during a large number of cycles cannot be based on
the assumption of a constant health condition since the engine deteriorates with usage.
The deterioration trajectory is a gradual and smooth process that depends nonetheless on
many factors such as operating environment or type of missions as seen in the introductory
chapter. It is therefore very difficult to develop a generic ageing model. The solution is
to consider an extremely simple transition model that yet captures the continuous nature
of the wear profile. Such a model is the random walk:

Sticking to the Bayesian approach, the health parameters are still seen as a vector of
random variables, following a Gaussian distribution in the present case. The vector wy, is
called the process noise and is composed of independent, identically distributed Gaussian
random variables. Moreover, the initial health parameter vector dhgy is assumed to be
zero-mean and independent of the process noise sequence:
{ ohy € N(0,Pho) { E{dhowi} =0 Vk (3.3)
wy, € N(0,Qp) E{wywl} =0 ifk#/¢

The evolution of the health parameters is hence interpreted as the realisation of the
random process (3.2) that introduces some correlation between the health condition at
different times. This constraint prevents the estimate from fluctuating too widely in time.

As will appear more clearly in section 3.2.2, Py corresponds to the prior covariance Qg
used in section 2.4 and represents our knowledge on the possible interval of variation of
the health parameters around the baseline value before any data has been collected. On
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the other hand, the covariance matrix of the process noise, Qy, provides some capability to
track a time-changing health condition by controlling the stochastic character of the time
series formed by the health parameters: low values mean slow variations while large values
suppose rapid variations. The magnitude of the diagonal elements of matrices Py and
Q;. as well as possible cross-correlation terms can be set following a similar rule-of-thumb
as given for matrix Qg in section 2.4.

The health parameters being modelled as Gaussian random variables, their distribution
is completely specified through their mean and covariance matrix. Applied to the random
walk equation (3.2), the propagation of the mean and covariance matrix writes:

— E{sh,_1} (3.4)

since the process noise wy, is zero-mean.

Phr = E{6h,oh]}
= F {((Shk,l -+ wk) ((Shk,l -+ wk)T}

= E{6h_1 6hi_} + E{wy ohi_} + E{0h;_; wi } + E{w;, w }
= Ppr_1+ Qs (3.5)

where the second and third terms on the third line are nought since the health parameters
0h,_; are a function of the initial state dhy and of the noises wi,...,wy,_1 which are all
independent of the noise wj by assumption.

3.2.2 Sequential minimum-mean-squared-error estimation

The goal is to derive a sequential minimum-mean-squared-error (mmse) estimator that
allows the estimation of dh; based on the sequence of observations {dy }* as the time
index k increases. This operation is known as filtering and should ideally be of recursive
nature i.e., the computation of dh; should be based on dhy_;.

Before proceeding to the derivation of the recursive estimation rule, it is worth restating
the modelling assumptions for the problem of engine performance trending that we are
addressing. We consider the following state-space model composed of the state transition
equation (3.2), that describes the evolution of the health parameters over time, and of the
measurement equation (2.32) that relates variations in the gas-path measurements with
changes in the health parameters.

OYx Gth ohy + € (37)
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The following assumptions are made about the different variables of the state-space model:

e the health parameters dhy are considered as Gaussian random variables with initial

condition dhg € N(0, Phyp),

e the process noise is a zero-mean, Gaussian random vector wy, € N(0,Qy). It is
assumed to be independent of dhy,

e the measurement noise is a zero-mean random vector €, € N'(0, R, ;). It is assumed
to be uncorrelated with w; and dhg.

Our criterion of optimality for the estimate is the minimum Bayesian mean square error:
~\T —~
min B { <5hk - 5hk> <5hk - 5hk> } Vi >1 (3.8)

We showed that the mmse estimate identifies with the mean of the posterior density:

Shy, = E {shy|{ 5y }}} (3.9)

Vector dhy depends linearly on the set of vectors {dhg, w1, ..., wy} and vector dy;, depends
linearly on dhy and €;. By assumption, all the vectors in the set

Ské{(5h0,w1,...,wk,el,...,ek} (310)

are Gaussian and independent of each other. As a result, any linear combination of them
also produces a jointly Gaussian vector. In a batch framework, the estimate would write:

Shy = Py, P,1 {0y} (3.11)

To obtain a sequential estimator, we could split the estimation rule according to:

Shy, = E {ohy|{ 0y Y51} + E {0hy|oy,} (3.12)

where the first term represents the estimate at time index k£ based on the k — 1 pre-
vious data points and the second term represents the contribution of the most recent
measurements to the estimate.

However, the additivity property (2.75) is valid only for independent data samples. Un-
fortunately, dyy is correlated with previous data samples due to their dependence on the
health condition, which is correlated in time through the transition model (3.6).

Let us consider the vector defined as the difference between the measurements obtained
at time index k£ and the predicted measurements at time step k£ based on the estimate at
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the previous time step, denoted dy, . This error is also known as the innovation or the
residual ry:
e 2 bye — 09 (3.13)

We now show that the residual is independent of the previous data i.e., the residual is
the part of the latest data sample that is uncorrelated with the previous ones. Inserting
the measurement and transition equations into the expression of the residual, we obtain:

r. = (Gng ohg+ €r) — Gng 5i1\k—1
= Ghyp (Shy_y +wi) + € — Gh (5ﬁk,1
= Gy (Ohy_y — 5Hk—1) + Ghyp wi + €
= Ghieni1+ Ghi wi + € (3.14)

First, the orthogonality principle tells us that the estimation error at the previous time
index e ;1 is orthogonal to the sequence { dy }’f‘l. Second, this sequence of past data
is made of linear combinations of the set of vectors Sy_; which are all independent of
wy and €, by assumption. As a result, the residual rj is uncorrelated with the previous
data samples and the additivity property of the mmse estimator now applies to the whole
sequence partitioned into ({dy }{ "5 ry):

Shy, = E {ohy|{ 0y Y51} + E {0hy|ry} (3.15)

The first term in equation (3.15) represents the estimate of the health at time index k
based on the the k — 1 previous data points. For this reason, it is also called the a
priori/prior estimate at time k and will be denoted dh, . The prior estimate is related to
the estimate at time k£ — 1 through the transition equation:

ohy 2 E{oh{oy}i"}
— E{0h i +wi{oy}i "}
= E{oh[{oy}i '} + E{wil{dy }i '}
— hy1+0 (3.16)

where the second term on the third line is nought as the previous data are linear combi-
nation of vectors of the set S,_; which are all independent of wy by assumption.

The second term in equation (3.15) is the mmse estimate of dhy based on the innovation
and has therefore the following generic expression:

E{éhk|rk} = Phr Pi1 e = Kk r (317)

rr

As a reminder, the cross covariance matrix of the health parameters and the data is
defined as:
P = E {0h; v} (3.18)
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Before elaborating on the computation of the cross-covariance matrix, we note that the
innovation is uncorrelated with the a priori estimate:

E {5ﬁ,; rg} ~0 (3.19)

indeed, the a priori estimate is a linear combination of the past data and the innovation
has been shown to be uncorrelated with these past data. Hence, the cross-covariance
matrix can be computed as:

Ph,« = F {((5hk — 5?‘;;) I’%}
= E{(he — 0hy) (dyi — G oh)" }
- E {(5hk — 6h;,) (G Shy + €, — G 56,;)T}
_ Py, Gl (3.20)

where we use the fact that 5hk—5/l;,; is a linear combination of {dhg, w1, ..., Wk, €1,...,€x_1}
which are all independent of € to step from line 3 to 4.

The covariance matrix of the residuals is readily computed as:
P, = F {rk r;‘f}
- B {[Gh,k@hk — 6h;) + €] [Gh(0hy, — GhT) + ek}T}
= Gni P, Ghj + R (3.21)

The gain matrix is defined as the product of the cross-covariance matrix and the inverse
of the covariance of the residuals:

Ky 2 Py, Pl =Py, GL, (Gni Poy G+ Rey) (3.22)

The gain matrix can be interpreted schematically as follows:

prior uncertainty

Kalman gain = — - :
prior uncertainty + measurement uncertainty

The matrix Gn Py, k:GhT,k represents the projection of the prior covariance of the health
parameters onto the measurement space which allows its comparison to the measurement
uncertainty represented by the noise covariance matrix R, ;. The gain matrix can therefore
be seen as a weighting factor which trades off the information contained in the most recent
measurements with that of the previous data, summarised by the prior knowledge.

If we have a great confidence in the prior belief (P, , — 0), the gain becomes tiny so as
to avoid any update by the most recent measurements. On the other hand, if no prior is
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available, (P ,)~" — 0 and the gain matrix tends to (G, Rr_k1 Gh7k)*1Gﬂer_7k1: the latest
measurement sample is totally trusted since no other information is available (this comes
down to a maximum likelihood estimate). The reference which determines if the prior is
“high” or “low” is the measurement uncertainty represented by the measurement noise
covariance matrix Ry .

To complete the description of the recursive mmse estimator, we shall provide relations
for the computation of the covariance matrix of the estimated health parameters. The a
priori covariance matrix is given by:

Po. = E{(0hy—oh;) (dhy — o))" |
= F {((5hk_1 + wg — (Si’l\k_l) (5hk_1 + wg — (5/|’;k_1)T}
= Pnip1+ Qs (3.23)

where we use the fact that dh,_; — 5ﬁk_1 is a linear combination of vectors in the set S;_{
which are all independent of wy, to step from line 2 to 3.

Noting that the (a posteriori) estimation error at time k can be written as:

eny = Ohy —dhy
Shy — 6h, — Ky, 1y
= ohy, — 6h; — Ky [Gny (Shy — 0hy) + €]
= (1=K Gpy) (6hy — 6h;) — Ky, € (3.24)

the a posteriori covariance matrix is given by:

Poy = E {(6hk — 5hy) (ohy, — 5ﬁk)T}

= (1— Kk Ghi) Phy (| — K Ghp)' + K R, KE (3.25)
= (1= Ky Gny) Py — (1= Ki Ghy) Py Gy K+ Ky R K

(1 — Ki, G ) P,;k P Giy Ki + Ki (Ghi Gy + Rep) K

(1 = Ki Gni) P — Py Go i Ki + Py Gy K
= (1- Ky Gny) Py, (3.26)

Relation (3.25) is known as Joseph’s form of covariance update and has the following
advantage over the traditional form (3.26): the matrix subtraction is squared so that
Joseph’s form is better conditioned to guarantee positive definiteness and symmetry of
Ph . in the presence of round-off errors. It is therefore preferred in actual software imple-
mentation of the filter.
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3.2.3 Implementation as a Kalman filter

The sequential mmse estimator derived above can be conveniently implemented in the
form of a Kalman filter [Kalman, 1960]. Its architecture is summarised in pseudo-code
style in algorithm 3.1.

Algorithm 3.1 Linear Kalman filter for health parameter estimation

Require: ho = h" and Pro = Qo
1: for k=1to N do
2: /I;,; = /I;k,1
3 Prp=Pni1+Qy
4 r=y — (ygl + Gh (ﬁ,; — hh‘)>
5: Py7k = GhJﬂpl:,kGE,k + Rr,k
6: Ky =P, Gl P;}g
7 i‘l\k = i‘l\,; + Ky rg,
8: Ph,k = (l — K, Gh,k) P;’k (l — K Gh’k)T + Ky Rr,k K{

9: end for

The Kalman filter involves only basic linear algebra operation, the most demanding one
being a matrix inversion, and has a predictor-corrector structure. The block diagram in
figure 3.2 completes the description of the algorithm.

1. Prediction step :

e the estimated distribution of the health parameters at time & — 1 is fed into
the transition model (3.6) which gives a prior value h, and a prior covariance
matrix P, , (lines 2 and 3),

e the a priori value of the health parameters is used in the engine model which

delivers an estimation of the measurements y, ; these predicted measurements
are compared to the actual values measured on the engine to form the residual

r. =Y — /y\]; (line 4),

2. Correction step :

e the Kalman gain Kj is computed using equation (3.22) (line 6),

e the a priori values of the health parameters are corrected with the residuals,
weighted by the Kalman gain matrix Ky, (line 7),

e the covariance matrix is also updated, completing the description of the pos-
terior distribution (line 8).
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Figure 3.2: Health parameter update mechanism using a Kalman filter

For linear systems and white Gaussian noises, the Kalman filter is an optimal estimator
in the sense that it minimises the bayesian mean square error. If the health parameters
are moreover constant over time, the Kalman filter converges to the same estimate as the
maximum a posteriori estimator (2.67), yet after a sequential processing of the data.

Due to its recursive structure, the Kalman filter has limited memory requirements. Indeed,
the estimate at time k is computed on the basis of the estimate at time k& — 1 and the
newest measurement sample. As the health parameters are assumed Gaussian, only the
mean and the covariance matrix of the most recent estimate have to be stored. The
sequential processing allows not only the tracking of a time-varying health condition, but
also provides the user with an on-line health status, which leads to a more timely decision
making than in the batch approach where the user would have to wait for the database
to be built and processed.

The prediction step is an essential part of the algorithm. The more accurate the prediction
model, the better the a priori estimate. The Kalman filter is driven by the innovation
sequence, which is uncorrelated with previous data by construction.

The Kalman filter provides its own performance measure. The bayesian mean square error
is computed as an integral part of the estimator through the covariance matrix Py . It
can be noticed that the computation of the prior and posterior covariance matrices (lines
3 and 7) do not involve the measurements. Therefore these matrices can be computed
beforehand if the sequence of matrices Gpx, Rrx and Qy is known. From the analysis of
algorithm 3.1, the mean square error increases at the prediction step (line 3) to take into
account the uncertainty associated with the transition model. At the correction stage,
this error is decreased proportionally to the Kalman gain as shown by equation (3.26),
which translates the fact that some information has been extracted from the most recent
data sample.
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3.3 Extensions to non-linear models

3.3.1 Context

The Kalman filter is the mmse recursive estimator for stochastic linear models with Gaus-
sian random variables. However, in our application, the engine performance model (2.25)
relating the health parameters and the gas-path measurements is actually non-linear.

The particle filter [see e.g., Arulampalam et al., 2002] was developed not so long ago as a
means for solving non-linear and/or non-Gaussian estimation problems. This algorithm
implements a sequential Monte-Carlo method in order to provide an estimate of the
complete posterior distribution. However, the non-linearity of the engine performance
model is mild enough so that non-linear (sub-optimal) extensions of the Kalman filter
produce quite satisfactory results as we will see in chapter 4. For this reason, we do not
investigate the use of the particle filter for module performance analysis in this document.

Taking a look back at algorithm 3.1, we see that the Kalman filter updates the first two
moments (i.e., mean and covariance) of the health parameter distribution. Such a practice
has two advantages: first, it requires the maintenance of a constant and relatively small
amount of information that is moreover generally sufficient for most kind of operational
activities (e.g., control, decision making). Second, the mean and covariance are linearly
transformable quantities.

Obviously, we would like to replicate this simplicity in the non-linear case. If only the
first two moments of a random variable are known, the most conservative assumption is
to consider this variable as a Gaussian one. This is our first approximation: the health
parameters are still considered as Gaussian random variables, even if gaussianity is lost
through a non-linear mapping.

The second approximation is that we restrict to the class of linear estimators, for sake
of convenience. In the Kalman filter, the update rule for the mean value of the health
parameters writes conceptually:

ﬁk = prediction of h; + Gain matrix x (y; — prediction of yy) (3.27)

Under the assumptions we used to derive the Kalman filter, an exact, closed form ex-
pression for each of the three terms in the right-hand side of equation (3.27) is available.
In the non-linear case, they have to be approximated. As a result, the central problem
in applying the Kalman filter technique to non-linear systems is basically the problem of
propagating the mean and covariance estimates through non-linear transformations. We
present below two popular approximation schemes: the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) [Haykin, 2001].
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3.3.2 The extended Kalman filter

The basic tenet behind the extended Kalman filter [see Jazwinski, 1970], summarised in
algorithm 3.2, is to linearise the model at each time step around the most recent estimate
h, and then apply the standard Kalman update mechanism. The mean is propagated
through the non-linear model while the covariance is propagated through the linearised
model. For the trend monitoring problem, only the measurement equation is non-linear
and the Jacobian matrix (aka. influence coefficient matrix) is assessed as:

(3.28)

Algorithm 3.2 Extended Kalman filter for health parameter estimation

Require: hy = h" and Pro = Qo

1: for k=1to N do

2 ho =hy,

30 Ppy=Pni1+Qy

41 :yk—g(uk,ﬂ;)

5. Compute Jacobian matrix G as per equation (3.28)

6:  Pyx=GniPp Gy + Rek

7 Kip=P, Gl P,

s h,=h+K.r,

9: Pnr=(1-Ky Gng) Py (1 - Kg Ghi)' + Ky R KY
10: end for

The gain and covariance matrices have now to be computed on-line for they depend on
the estimates via the influence coefficient matrix. Note also that the covariance matrix is
only an approximation to the mean square error.

The evaluation of the influence coefficient matrix Gy j involves at each time step ny,
additional calls to the non-linear model in the case of computation by forward or backward
differences and up to 2ny for a central difference scheme. This increases substantially
the computational load with respect to the linear Kalman filter. However, when small
variations of the health parameters are considered, the Jacobian matrix Gpj does not
change significantly from time step to time step and can therefore be updated after a
certain number of cycles, either predefined or depending on the estimated deterioration.

In addition, the Jacobian matrix Gy depends on the operating conditions u; and should
therefore still be evaluated at each time step. However, when processing data recorded in
a neighbourhood of some average flight conditions, the variation of the matrix Gy, is low
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and the influence matrix can be computed for those average flight conditions as proposed
by Qiu et al. [2007].

If this procedure obviously decreases the computational load of the EKF, it is also prefer-
able for stability purposes. Indeed, the operating conditions uy are also sensed and hence
noisy. The assessment of the matrix Gy based on data corrupted by random errors can
lead to results worse than with average flight conditions.

The EKF has no optimality properties and its performance is highly conditioned on the
accuracy of the linearisation. Nonetheless, it has been widely used in many practical
applications owing to its simplicity and suitability for real-time implementation. On the
other hand, it has been recognised difficult to tune and proves reliable only for systems
which are almost linear on the time scale of the update interval (sufficiently smooth non-
linear mappings).

To try and address this issue, variations of the EKF have been devised. The well-named
iterated extended Kalman filter [Gelb, 1974] iterates the EKF at each time step by re-
defining the reference estimate and relinearising the model. The quadratic extended
Kalman filter [Wang et al., 2006] considers a second-order representation (i.e., accounts
for quadratic terms) of the non-linear model. Both variations are reported to perform
better than the basic EKF for highly non-linear systems, however at the price of a further
increase in computational complexity which explains their limited practical usage.

Another drawback of the different versions of the EKF lies in the computation of the
Jacobian matrix, a procedure that is often tedious and error prone, be it analytically or
numerically. This was a major driver to come up with derivative-free approaches, such as
the unscented Kalman filter presented below.

3.3.3 The unscented Kalman filter

The unscented Kalman filter addresses both the linear approximation and Jacobian com-
putation issues of the EKF. In accordance with our simplifications, the health parameters
are again represented by gaussian random variables. The technique is rooted in the
so-called unscented transformation that is used to propagate the mean and covariance
information through the non-linear model.

The unscented transformation

The unscented transformation, introduced by Julier and Uhlmann [1996], is a method for
calculating the statistics of a random variable that undergoes a non-linear transformation.
It relies on the bright intuition that “with a fixred number of parameters, it should be easier
to approximate a gaussian distribution than it is to approxzimate an arbitrary non-linear
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function”. As a consequence, the unscented transformation does not approximate the
non-linear function, but well the continuous probability density with a discrete one.

Basically, a minimal number of sample points are purposely chosen so as to capture the
mean and covariance of the distribution. These points are then transformed through
the non-linear mapping. The sample images capture the mean and covariance of the
transformed distribution at least to the second order for any non-linearity, as proved
in [Julier and Uhlmann, 1996] by a Taylor series expansion. This performance should
be compared to the first-order accuracy achieved with a linearisation technique like the
EKF. Figure 3.3 illustrates the concept for a hypothetical 2-D system. The left plot shows
the true mean and covariance propagation using Monte-Carlo sampling, the centre plot
shows the results using a linearisation approach, the right plot shows the behaviour of the
unscented transform.

Actual (sampling) Linearized (EKF) UKF
sigma points
covariance \'Q
\ ®
(]
mean ®
| |
y =f£(x) Yy =f(X)
P, = A"P,A '
weighted sample mean
l and covariance
f(x)

transformed

, 5|gma points
™ ~ ‘
i, true covariance

UKF mean
/

ATP X
UKF covariance

Figure 3.3: Comparison of the propagation of mean and covariance through a non-linear
function. Left: actual, center: first-order linearisation, right: unscented transformation
[Julier and Uhlmann, 1996]

Consider a parameter vector x of dimension n, that is the realisation of a random variable
with mean X and covariance P, and a non-linear vector function defined by y = f(x). The
unscented transformation provides the statistics of the variable y at the end of a three-
stage process:
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1. Generate the set of 2n, + 1 sigma points (vectors):

x)

X =

X, = §—|—<7\/P$> fori=1,...,n,

i

= 52—(')/\/Px> fori=n,+1,...,2n,

i—Ny

<.

where (\/P_x)z is the i"" row or column of the matrix square root of P,. The sigma
points capture the same mean and covariance irrespective of the choice of the matrix
square root. The Cholesky decomposition is therefore preferred due to its numerical
efficiency and stability.

2. Propagate the sigma points through the non-linear function:
Vi=f(X;) fori=0,...,2n, (3.29)

3. Compute the mean and covariance for y; as a weighted sample mean and covariance
of the image vectors );:

2Ny

yo= > WMy,
1=0

2Ny

P, = > W2V-9)-9)"
=0

with the weighting coefficients VVi(') given by:

A
W(m) —
0 Ny + N\
W(C) = )\ —|—1—062+ﬁ
0 Ny + A ’
() (m) 1 :
7 7 2(nz+/\)’ ? P y 4Tl

In the above equations, v = v/n, + X and X\ = o?(n, + K) — n, are scaling parameters.
The constant « determines the spread of the sigma points around X and is usually set to
107* < a < 1. The constant  is a secondary scaling parameter which is heuristically set
to 3 — n,. Finally, § is used to incorporate prior knowledge about the distribution of x.
For gaussian distributions, # = 2 is an optimal choice.

If the unscented transformation may at first resemble a Monte-Carlo type method, there
is however a fundamental difference between the techniques. Indeed, the unscented trans-
form does not draw the sample points randomly, but according to a deterministic rule
such that they exhibit certain specific properties (e.g., given mean and covariance).
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The unscented Kalman filter

The unscented Kalman filter, detailed in algorithm 3.3, results from the integration of
the unscented transformation in the recursive estimation procedure of algorithm 3.2. The
UKF achieves an equal or better level of performance than the EKF at a comparable level
of complexity. Next to the calls to the non-linear model, the most demanding task in the
UKF is the computation of a matrix square root. Note that even if the number of calls
to the non-linear model is the same, the UKF should not be interpreted as an EKF with
central-difference computation of the Jacobian, as both filters handle the non-linearity
totally differently.

Algorithm 3.3 Unscented Kalman filter for health parameter estimation

Require: hy = h" and Pro = Qo
1: for k=1to N do
2 ho =h,,
30 Prp=Pni1+Q
t M= [y Ry /Po B9 /P
5 Vir=GC(up Hix) i=0,1,....2n,

2TLh

6y, = Z I/Vi(m)yi,k
=0

T N=Yr— Y,
2np

8 Py = Z VVZ'(C) ik = ¥.)Vik —¥:)" + Rex
i=0
2np

9:  Puyi = Z VVZ»(C) (Hig1 — b)) (Vi — /yI;)T
i=0

10: Kk = Phy,kp;i

11:  hy=h; + K, r,

12: Ph,k = PlT,k — K, Py,k K%‘

13: end for

In contrast to the EKF, no explicit Jacobian calculations are required for the UKF. This is
a substantial advantage in the case of non-analytic models such as an engine performance
deck. If needed, the influence coefficient matrix between the health parameters and the
gas-path measurements can be approximately assessed by noting that:

~ — T
Pyt = Ppy Ghy

= Gy =~ [P Phyi] (3.30)
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3.4 Fault detection module

3.4.1 Context

The Kalman filter presented in the previous section embeds a transition model that as-
sumes a slow and continuous variation of the health parameters. As a result, the Kalman
filter is very capable at tracking a gradual and distributed process like engine wear with a
good accuracy. On the other hand, any short-time-scale (either rapid or abrupt) change in
the engine condition (e.g., a foreign object damage) is interpreted by the Kalman filter as
a disturbance since it does not fit the health parameter dynamics. The transition model
prevents a correct capture of this fast variation which translates into a sluggish response
of the filter. The recognition of a faulty condition suffers therefore from a rather long
delay that is incompatible with a proactive maintenance practice.

To overcome these deficiencies, Volponi [2003] proposed a strategy that combines a so-
called single-fault isolator with a Kalman filter. The single-fault isolator consists in a bank
of possible events that is examined whenever a residual is suspected to be representative
of an abrupt fault. While very efficient, this solution implies the interaction between
two different diagnosis tools. Moreover, the set-up of the fault library requires significant
knowledge and experience.

A broader way to tackle this issue is to view it in the realm of adaptive estimation [Mehra,
1972]. The basic idea consists in increasing the mobility of the health parameters mo-
mentarily in order to recognise a rapid degradation. Mathematically, it comes down to
an on-line tuning of the variance of the health parameters on the basis of a statistical
processing of the residuals. Several techniques have been explored in the literature such
as auto-correlation [Mehra, 1970, Odelson et al., 2006] or covariance matching [Jazwin-
ski, 1969]. For that matter, Léonard et al. [2008] report the development of an adaptive
monitoring tool that integrates such a covariance matching scheme.

Another attractive solution was proposed by Willsky and Jones [1974]. They acknowledge
that short-time-scale events may occur, but they do occur infrequently. Moreover, the
time of occurrence of the event, as well as its type (i.e., the impacted component and the
magnitude of the fault in our case) are typically unknown. The proposed technique rests
on a modified transition model that account for possible “jumps” in the parameters and
has been successfully applied, among others, in visual tracking [Bensalah and Chaumette,
1994].

In [Borguet and Léonard, 2009], we have transposed this framework to the particular
case of engine performance monitoring. The resulting adaptive filter combines a Kalman
filter, which relies on the assumption of a smooth variation of the health parameters, and
a secondary system that monitors the residuals. This auxiliary component implements
a generalised likelihood ratio (GLR) test in order to detect and estimate a rapid fault.
In that way, the performance of the Kalman filter is maintained under normal operation
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(long-time-scale deterioration) whereas the event detector provides a timely detection
of sudden variations in the engine health. We showed the enhancement in terms of
reactivity brought by this technique in [Borguet and Léonard, 2011] and compared it
to the covariance matching approach in [Borguet and Léonard, 2010b].

3.4.2 An improved model for adaptive estimation

The key element of the adaptive filter is an enhanced transition model of the health
parameters that accounts for possible abrupt events (also called “jumps” below). In the
state-space model, equation (3.2) is replaced with equation (3.31):

hk = hk,1 + wg + Ah 57-’]6 (331)

where

e A, is a vector modelling the jump,
® 0. is the Kronecker delta operator,

e 7 is a positive integer that represents the time of occurrence of the jump.

Note that in the present framework, both A} and 7 are regarded as unknown, determin-
istic parameters and not as random variables, which means that no prior distribution is
attached to them.

The strategy of adaptive estimation comes from viewing the modified state-space model
according to two different hypotheses:

e Hy: no jump up to now (7 > k)

e Hi: a jump has occurred (7 < k)

Under assumption Hy (no jump), the Kalman filter provides an optimal estimation of
the health parameters in the least-square sense. Under assumption Hj, the residuals ry,
and the estimated parameters h;, become a function of the jump characteristics 7 and
Ay,. Considering a first-order approximation of the measurement equation, the residuals
r, can be written as a sum of two terms:

e = rko + Hk’q— Ah (332)

where ry o are the residuals in the no-jump case, distributed as AV (0, Py ;) and the second
term represents the contribution of a jump Ay that occurred at time 7 on the residuals
at time k.
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Similarly, we can split the estimated health parameters into a sum of two terms:
h, = hyo + Fp, A, (3.33)

where ﬂk,o are the estimated values in the no-jump case and the second term represents
the influence of a jump Ay that occurred at time 7 on the estimated values at time k.

As will be shown in the next section, the detection of the jump and the estimation of
its characteristics largely rely on the matrices Fj, and Hj,. Explicit expressions for
these matrices are obtained from algebraic manipulations of the state-space model and
the equations of the Kalman filter. The final results are given below:

1. No jump has occurred yet (7 > k)

2. A jump has just occurred (1 = k)

Frr = KiGng
Hier = Ghp

3. A jump occurred in the past (7 < k)

k
Frr = Y 04; K; Gy,

j=r

Hk,T = Gh,k (I - Fk*l,T)

with @ ; = (I — Ki Ghy) ©p-1; and Oy = 1.

3.4.3 The generalised likelihood ratio test

In order to determine which hypothesis between H, and H; is true, we perform the
celebrated likelihood ratio test (LRT). In short, it is a statistical test in which a ratio is
computed between the maximum probability of a result under two different hypotheses,
so that a decision can be made between them based on the value of this ratio [see van

Trees, 1968].

In the present case, the likelihood ratio is equal to the ratio of the probabilities of observing
the history of residuals under hypotheses H; and H, respectively:

ry,...,r|Hy, By, 7)
p(rl, RN rk|H0)

A (D, 7) = l (3.34)
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The numerator in equation (3.34) depends on the unknown Ay and 7. As a workaround,
van Trees [1968] proposes to use the generalised likelihood ratio (GLR). This procedure
essentially consists in computing the maximum likelihood estimates 7 and Ah assuming
H, is true and then substituting these values into the usual likelihood ratio to finally
decide whether a jump occurred.

The maximum likelihood estimates of the jump features are defined as the solutions of
the following optimisation problem:

(B, 7) = arg max {p(ry,..., | Hy, B, 7)} (3.35)
h,T

According to equation (3.32) and our hypotheses, the residuals are a sequence of inde-
pendent and normally distributed random variables:

k
pr, v Hi, Bw,7) = [] p(elHi, By, 7) (3.36)
i=1

p(ri‘Hly Ah7 7-) == N(Hiﬂ' Ah; Py,i) (337)

We are obviously facing an estimation problem governed by similar equations as the
one described in section 2.3. Applying the same solution technique, we first convert the
maximisation problem into a minimisation one by taking the opposite of the natural
logarithm of the right hand side of equation (3.35), which leads to the following objective
function:

k
Tor(Bn, 7)== (= Hi D) PJ! (r—Hi Ay) (3.38)

=1

The maximum likelihood estimate of the jump is the value that cancels the derivatives
with respect to Ay of the objective function Jg, and can be written as:

A, =C;l dy, (3.39)

where matrix Cj . is deterministic and does not depend on the data, whereas vector dy, ,
is a linear combination of the residuals:

k

Crr = » HI _P/IH;, (3.40)
j=1
k

dir = Y HI P/l (3.41)
j=1

Equation (3.39) shows that the estimate of the jump A, is a function of the unknown T,
whose maximum likelihood estimate is now determined as the value that maximises the
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numerator of (3.34) — actually its natural logarithm for sake of simplicity. Its denominator
is indeed independent of 7.

Acknowledging that both conditional probability densities in the likelihood ratio are gaus-

sian, and replacing the jump structure with its maximum likelihood estimate (3.39), the
log-likelihood ratio writes:

lk,T £ 210gAk(3h,ka7-)

k R T R k
= — Z (I’Z' — Hz‘ﬂ—Ah,k) P;ZI <ri - Hi,TAh,kJ> + Z rzT P;,zl r;
=1 =1
= di. C.ldy, (3.42)

Equations (3.40) and (3.41) show that the likelihood ratio (3.42) actually implements
a matched filter i.e., a correlation test between the variations in the residuals and the
signature of a jump, represented by Hy ..

The value 7 that maximises [y , represents the most likely time at which a jump occurred

since we began to monitor the system:

7T = arg max {l.} (3.43)

The decision rule to choose between Hy and H; simply compares the maximum value of
the generalised likelihood ratio to a threshold 7, chosen to provide a reasonable trade-off
between false alarms and detection delay:

Iz z n (3.44)

If hypothesis H; is verified at time step k, a detection flag is raised and a jump is declared
to have occurred at the estimated time 7. The estimated jump structure is given by:

Ani =Cildy» (3.45)

The latter relation provides a maximum likelihood estimate of the jump Ay based on
a guessed value 7 of its time of occurrence and assuming that no prior information is
available about the value of the jump. In that case, C,:l? can be interpreted as the
covariance matrix of the jump estimate (3.45). ’
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3.4.4 Compensation of the jump

Besides an optimal decision rule for event detection, the framework provides useful infor-
mation about the jump. The maximum likelihood estimates 7 and Apy can in fact be
used to compensate the jump by a direct increment of the Kalman filter estimates:

~ ~

hy =hyxp+ (1 —Fiz) Bh,kj (3.46)

(.

-~

Ahy,

where ﬁk Kk F are the estimates provided by the Kalman filter before compensation, | Eh,k
is the effect on the parameters at time k of a jump that occured at 7 (the identity matrix
should be seen here as the state transition matrix) and Fj > Eh,k represents the response
of the Kalman filter to the jump prior to its detection.

In some cases, the estimate of the jump may be quite inaccurate. To reflect this additional
uncertainty in the estimate, caused by the jump, it is advised in Willsky and Jones [1976]
to increase the covariance matrix of the health parameters accordingly. This rise in
parameter covariance results in an increased Kalman gain i.e., an increased bandwidth.
The ﬁltAer can improve its response to the jump and hence compensate for inaccuracies in
7 and Ap . The covariance is adapted according to:

Phi = Phjxr + (1= Frz)" Coh(1—Frz) (3.47)

J/

-

AP

where Py, ik is the covariance matrix of the health parameters before compensation and
APy, . is the aforementioned compensation term for the covariance.

3.4.5 Practical implementation

The detection procedure as presented above implies that, at each time step k, the likeli-
hood ratio [ ; is computed for 7 = 1,..., k. We readily realise that such an implementa-
tion of the generalised likelihood ratio test requires a linear growth of storage and com-
puting resources with time. To keep the problem tractable, the scrutinising is restricted
to a sliding window that encompasses the latest N4+ 1 residuals. This approximation is
valid provided the window is sufficiently large to ensure detection of all faults of interest.

Practically, at time step k, the search for an event is constrained to the interval k — N4 <
7 < k. In a sense, this turns the generalised likelihood ratio into a finite memory filter. It is
worth noting that recursive relations are available for the update of the quantities involved
in the likelihood ratio [, ; which is rather beneficial from a computational standpoint. The
buffer is composed of a series of 3N,,4 + 3 matrices whose maximal size is n;, X n;, and
Nwa + 1 vectors of dimension ny, too. The recursive relations are provided below:
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for 7 € [k — Nya, k| for v =k
Ck,‘l’ == Ckfl,T + H%—:T P;/i' Hk,T Ckvk = Grj;»k P;'I}: Gh’k
dk:,T = dk—l,T + HCIQT P;]i, r. dk,k = Gg;k P;,llﬁ rg
Fr. = Fk—l,T + Ky Hi, Fir = KiGng
Hir = Gni(1-F,_,,) Hip = 0

We have already mentioned several times that most practical cases of engine performance
monitoring are characterised by a number of health parameters greater than the number
of measurements. As a consequence, the system is only partially observable and each
np, X nj, matrix Cy , is rank-deficient. The pseudo-inverse [see Golub and van Loan, 1996]
advisedly replaces the common inverse in the computation of the likelihood ratio. To
make a connexion with the observability notions introduced in section 2.5, the detection
capability is therefore limited to events that lie — at least partially — in the observable
subspace. In other words, any event totally located in the unobservable subspace is not
detectable for it does not produce any signature on the residuals.

For the very same reason of ill-posedness, the jump estimate (3.45) should be computed
either with the pseudo-inverse or with the map estimator (2.70). However, Akkaram et al.
[2006] underline that both approaches lead to minimum f»-norm solutions which means
that a localised fault is spread by the algorithm on several components. As a consequence,
the compensation capability of the GLR technique is discarded in the implemented tool
in favour of a dedicated module for fault isolation and quantification. This module is
presented in section 3.5.

Figure 3.4 depicts the integration of the detection module, which comprises all the el-
ements in the dashed box, with the Kalman filter. The performance model, actually

uy engine to monitor

performance model

[ Kalman filter

Figure 3.4: Integration of the detection module with the Kalman filter
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embedded in the Kalman filter, is represented outside of it in order to underline its im-
portance in this model-based algorithm. For sake of clarity, only the most relevant data
streams are sketched in the diagram. Briefly explained, the adaptive component works as
follows.

e The GLR box performs the following operations:

1. update the quantities in the N,4-sized buffer according to the relations given
above,

2. compute the likelihood ratio over the window by means of equation (3.42),

3. search for the maximum value of the likelihood ratio.

The outputs of the GLR box are the estimated time of occurrence of the jump 7
(not represented in figure 3.4) and the maximum value of the likelihood ratio [}, 7.

e This value is compared to the threshold 7 in order to determine whether a jump has
occurred.

e In case hypothesis H; is true, a detection flag is issued. This will serve as a trigger
for the fault isolation module.

Once a jump is detected and subsequently identified, the buffer of residuals dj . is reset
in order to avoid possible multiple detections of the same jump. With this modification,
the detection module is moreover able to detect several successive jumps.

Two tuning parameters are available in the detection module, namely the width N, of
the sliding window and the threshold 7 in the hypothesis testing (3.44). The selection
of Ny,q is dictated by a trade-off between accurate and fast detection of the events. The
former implies to choose N4 large enough while the latter advocates a small-sized buffer.
On the other hand, the threshold 7 is directly related to the probability of false alarms
Pr in jump detection through:

Py — / p(li=|Ho) (3.48)
n

where p(l; 7| Hp) is the probability density of the likelihood ratio conditioned on H, which
is a central Chi-squared density with n, degrees of freedom, see van Trees [1968] for a
proof. In practice, relation (3.48) is inverted numerically to obtain the threshold n for a
prescribed false alarm rate Pp.

In terms of numerical operations, the once-per-time-step call to the detection module is
roughly equivalent to N,,;+1 runs of a linear Kalman filter. The increase in computational
burden is hence directly proportional to the length of the sliding window.
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3.5 Fault isolation module

3.5.1 Context

Once the occurrence of an event is established, the next task is to localise it and to quantify
its magnitude. Typically, accidental events impact at most one (or two) component(s) at
a time so that a limited number of health parameters do actually participate in the fault.
Isolation is therefore closely tied to the problem of subset selection.

In section 1.4, the review of methods for gas path analysis showed that artificial-intelligence
based techniques deliver better performance for the isolation of accidental events essen-
tially because of their classification nature that approximates the solution space with a
limited number of cases. On the contrary, optimal estimation techniques are more suited
to the assessment of distributed degradation, but tend to spread localised faults over
several components.

This side-effect, sometimes termed smearing in the literature [see Provost, 1994], is due to
the way the estimation problem is generally defined as we will see below. Briefly put, this
usual formulation penalises more heavily large variations in a few parameters, which are
typical of abrupt faults, than smaller variations in many parameters. This explains why
we have discarded the compensation feature of the GLR detector presented in section 3.4
as it is rooted in the same framework.

The literature reports a few attempts aimed at reducing the smearing effect of optimal
estimation techniques. Aretakis et al. [2003] performed the subset selection through a
combinatorial approach. A least-square estimate is computed for each possible combi-
nation of n, < n, health parameters. This solution suffers obviously from the curse of
dimensionality when applied to real-world problems. Kobayashi and Simon [2003] ap-
plied a bank of estimators to isolate faults, each estimator being tailored to one particular
fault type. Grodent and Navez [2003] tackled the deficiency of traditional least-square
techniques at a deeper level by using a regularisation term that lowers the penalty on
large deviations of the health parameters, hence improving fault isolation. Their elegant
solution did not require to preset a library of possible faults.

We can take a further step to enhanced fault isolation by recognising that abrupt events
involve only a reduced number of health parameters, which translates mathematically into
the search for a sparse solution. Basically, the estimation problem is tweaked in order
to favour a solution with many nought terms. Problems characterised by sparsity are
encountered in various fields such as compressed sensing [Donoho, 2006], linear regression
[Larsson and Selen, 2007] or source localisation [Malioutov et al., 2005] to name a few.
Jokar and Pfetsch [2007] provide a good review of various algorithms looking for sparse
solutions. Interestingly, Fuchs [2004b] shows that one flavour of the sparse estimation
problem can be cast as a Quadratic Programming (QP) problem for which efficient solvers
are available.



78 Chapter 3. A tool for engine health management

In [Borguet and Léonard, 2010a], we adopted this QP formulation to derive a fault isola-
tion tool that promotes sparse solutions. The results indicated that the sparse estimator
performs indeed better than the traditional regularised least-squares.

3.5.2 The cause of smearing in least-square estimation

As a first step towards improving the isolation capability of least-square-based estima-
tors, let us try to figure out where its current deficiency comes from. For the task of fault
isolation, we consider the statistical model (2.35) with its whitened noise distribution.
Without loss of generality, we further assume that the columns of the matrix Gy, are nor-
malised to one in Euclidian norm. This comes down to express the health parameters on
a new scale. Moreover for sake of simplicity, we turn to the vocabulary from Optimisation
Theory, instead of the vocabulary from Statistics used so far.

As presented in section 2.3, the least-squares estimates of the health parameters are
obtained by minimising the squared Euclidian norm of the residuals:

Shyg = arg min {% (6y — Gp 6h)T (6y — Gy, 5h)} (3.49)

The stationarity conditions are obtained by equating the first-order derivatives of the
least-square criterion to zero, which gives the following system of n; normal equations:

(GI'Gy) 6his = GT 6y < FIM Shyg = rhs (3.50)

As the number of health parameters n; outweighs the number of measurements n,, the
rank of the n, x nj, Fisher information matrix FIM is at best equal to n, and consequently
the matrix cannot be inverted. The problem is underdetermined and has an infinite
number of solutions which can be written as:

5i1\LS = (ﬁ]\range =+ 5i]\null space (351)

where 6Hrange is unique as it lies in the range (observable subspace) of the matrix FIM
whereas 5Hnull space Tepresents the undetermined part that lies in the null-space (unobserv-
able subpsace) of the matrix FIM and therefore has no influence on the measurements as
explained in section 2.5.

We can compute the minimum ¢>-norm solution of the underdetermined set of equations by
means of the pseudo- (aka. Moore-Penrose) inverse. This strategy is applied by Akkaram
et al. [2006] to the tuning of simulation models. The pseudo-inverse is a generalisation of

the notion of inverse to the case of rectangular and/or singular matrices and is based on
the SVD. Let us apply an SVD to the matrix FIM:
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)X ‘ Onyx(nhfny)
222

FIM=U

v’ (3.52)

(np—ny)Xny

where X, is a diagonal matrix containing the n, non-zero singular values and X, is
a diagonal matrix containing the remaining n; — n, null singular values. U and V are
ny, X np, orthonormal matrices.

The pseudo-inverse is defined according to [see Golub and van Loan, 1996]:

Ei | ] .
z22

FIM' &2 v (3.53)

(np—ny)Xny

where X! is a diagonal matrix containing the inverse of the non-zero singular values.
Loosely speaking, the pseudo-inverse inverts the “invertible part” of the matrix and dis-
cards the contribution of the null space. Therefore it leads to the minimum #y-norm
solution:

Shis = FIM' rhs

-1
= [ V1 ‘ V2 } ' T rhs
!
= V; X' U rhs+V, ;1 U” rhs (3.54)
5H1;:1g9 5Hnu;,;pace

as 5Hnull space = 0 by construction of the pseudo-inverse.

Another possibility to solve the underdetermined set of equations is to make use of regu-
larisation. We add a set of soft constraints on the health parameters, which was termed a
priori knowledge in the probabilistic framework of section 2.4. The most common regular-
isation scheme for underdetermined least-squares problems consists in adding a quadratic
penalisation on the deviations of the health parameters. As a result, the algorithm is
driven towards a solution that has the minimum weighted (by matrix Qg) ¢>-norm as we
can realise from the mathematical expression of the problem:

Shprs = arg min {% (65 — Gy, 6h)T (0y — Gy, oh) + % oh” Q! (5h} (3.55)

The choice of a quadratic function for the regularisation term allows an analytic relation
to be worked out which is the major reason of its popularity.

These developments explain the smearing effect that is observed with the usual least-
square techniques. Indeed, due to the quadratic penalisation on the parameter deviations,
be it either implicit or explicit, solutions involving small variations in numerous health
parameters have a lower cost than solutions characterised by large deviations in a few
health parameters. As a result, the algorithm has the tendency to spread the effect of
localised faults over several components.
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3.5.3 Favouring sparsity in the estimation process

As underlined in section 2.4, regularisation helps solving underdetermined problems by
artificially improving their mathematical conditioning. An adequate selection of the reg-
ularisation term is hence of paramount importance and should be made in accordance
with the structure of the expected solution.

Short timescale faults impact only a limited number of health parameters, which means
that many elements in the vector of health parameter deviations are equal to zero. Such
a pattern is termed sparse. It should therefore be possible to enhance the concentration
capability of a least-square-based algorithm by introducing a regularisation term that
favours sparsity.

A first possible formulation of the sparse estimation problem is to look for the solution
having the smallest number of non-zero components [Fuchs, 2004a], which can be thought
of as an ideal measure of sparsity, this writes:

1 . N
min {5(59 — Gy 6h)7 (65 — Gy, 5h) + A |y<5h||o} with A >0 (3.56)

where ||dhl|o is the fo-quasi-norm, defined as the number of non-zero elements in vector
0h. The scalar parameter A sets the trade-off between least-square fit of the data and
sparsity in the solution.

Note that other definitions of sparse estimation are conceivable. For instance we could
look for the solution of a given sparsity p that minimises the data misfit. This formu-
lation would also involve the fy-quasi-norm, but now as an equality constraint, in the
optimisation problem:

1 . .
n%in {5((59 — Gy, 6h)” (0y — Gy, 5h)} subject to [[dh|lo = p (3.57)

While their mathematical expression looks incredibly simple, the sparse estimation prob-
lems (3.56-3.57) are quite burdensome to solve in practice. Indeed, the term ||0h||o makes
them of combinatorial nature. The optimal solution can only be obtained by means of an
exhaustive search, which rapidly becomes unmanageable in industrial applications.

3.5.4 A convex approximation to sparse estimation

Different strategies have been developed in order to approximate the optimisation prob-
lem (3.56), see for instance [Tropp, 2004] for a short review, and make its computation
tractable. Among them, the so-called relaxation approach has enjoyed a reasonable level
of success and is elected here. Basically, the idea is to replace the {y-quasi-norm with a
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suitable £,-norm'. Any ¢,-(pseudo-)norm promotes sparsity provided p < 1 essentially

because the slope of the penalisation function decreases as the parameter deviation in-
creases. Among this subfamily, the /;-norm has the considerable advantage to turn the
resulting optimisation problem into a convex one, which admits a global optimum.

Figure 3.5 shows the penalty induced by three different norms for a positive deviation of
a scalar parameter. For the ¢, quasi-norm, the penalty has a unit value as soon as the
parameter deviation differs from zero. In that way, large deviations have no higher cost
than tiny ones. It can be seen that the ¢;-norm is the convex function of lowest order that
places a unit penalty on unit coefficients and sets the cost to zero for nought coefficients.
The /y-norm used in the classical regularised least-squares provides the same costs as
the ¢;-norm for zero and unit deviations, but penalises much more large deviations and
somewhat less small deviations. This sketch shows clearly that the ¢;-norm provides the
natural convex relaxation of the {y-quasi-norm. On the contrary, the f>-norm is totally
inappropriate for favouring sparsity.

Penalisation
N}

0-Norm

0 1 1 1 ‘ 1 1 1
-2 -1 0 1 2

Parameter deviation
Figure 3.5: Comparison of the penalty induced by different norms

Thus, the convex relaxation to (3.56) is:

1 . N
min {5(59 — Gy 6h)” (55 — Gy, h) + A ||5h||1} with A > 0 (3.58)

where the ¢1-norm of the parameter deviations replaces the sparsity measure [|dh||o.

We can translate the convex approximation to sparse estimation into Bayesian language
as done by Granai and Vandergheynst [2005] for a closely-related problem. Leaving the
derivation to the interested reader, we state that the optimisation problem (3.58) has the
same mathematical expression as the search for the maximum a posteriori estimate where
each health parameter is considered as an independent random variable that follows a
Laplace distribution. Roughly speaking, we have moved from a Gaussian to a Laplace
prior with respect to the developments of section 2.4. The Laplace distribution has a
fatter tail than the Gaussian one, therefore large deviations in the health parameters

the family of £,-norms is defined in appendix A.2
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are more likely. The assumption of independence between the parameters might be a
downside of the present approach because we cannot easily induce some coupling between
health parameters of a same component as we did when using a Gaussian prior.

The scalar A in the convex relaxation (3.58) plays a similar role as in (3.56) in the sense
that it balances the least-square data fit and the relaxed-sparsity term. There are three
remarkable values for this parameter [see Fuchs, 2004al:

e if A = 0, the optimisation problem (3.58) boils down to the classical underdetermined
least-squares and the set of solutions is convex,

e if A\ =0T, that is A positive and arbitrarily close to zero, the solution is attained at
the point(s) in the previous set having least ¢;-norm,

o if \ > HG;{ (59” , the optimum is 6h = 0 (see the dual formulation below).

As )X increases, the quality of the least-squares fit degrades whereas the solution becomes
sparser. We shall consequently tune this parameter to reach the best performance. To
better understand the influence of A on the solution, it is worth taking a look at the dual
formulation of (3.58) [Fuchs, 2001].

First, we convert the optimisation problem (3.58) into a QP problem [see appendix A.3 or
Fletcher, 2000] by replacing the vectors dh and |dh| with their positive h™ and negative
dh™ parts as shown by Fuchs [2004b]:

dh = sh* — sh~ . dh™ £ max(dh, 0)
i ~ with A
|0h| = 6h™ + 6h dh™ = max(—dh,0)

(3.59)

where the operator max(v, 0) is applied element-wise.

This rather simple change of variables doubles the number of optimisation variables, but
on the other hand it leads to the following quasi-unconstrained quadratic program:

2 dh*t >0
‘ + A1 (5h++5h_)} subject to { _ . (3.60)
2

. ]- ~ — + —
min {5 H(Sy—Gh (6h* — oh™) =0

Sht,6h—

where 1,,, is a column vector of length n;, with each element equal to one.

Let us stack the unknowns into one single vector dhl = [fh*T §h~T], the quadratic
program (3.60) becomes:

1 . 2
%m{§ Hay ~Guo | + 217, 6hs} subject to dh, > 0 (3.61)
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with matrix ch75 = [éh | — ch]

We form the Lagrangian function associated to the constrained estimation problem (3.61):

1 . 2
L(ohy, 1) = Hay ~Gu. b, + A1

2?’Lh

shy — pu” 6h, (3.62)

where p is the vector of the Lagrangian multipliers.

The stationarity conditions of the Lagrangian with respect to dh, writes:

_Glj:,s (59 - Gh,s 5hs) + A 12nh — K= 0 (363)

Left-multiplying the above relation with dh7 and rearranging the terms gives:

A0hI 15, — 6h! p = —6h! Gy, (0¥ — Gn, 0h,) (3.64)

Introducing (3.64) into (3.62), the Lagrangian function writes:

L(oh,, p) % H(sy — Gp, Oh, z +6h” GL, (5 — G, 0h,)

1 ~ 2 9
o T (3.65)

The dual optimisation problem consists in maximising the Lagrangian function with re-
spect to g under the constraint that each component in g is positive. An equivalent
formulation is the following one:

2 nw>0
} subject to § ~.. < (3.66)
2 Gy, (0y — Ghs 6hy) = A1y, — p

11~
in{ — oh
mind 5 6. on

As the Lagrangian multipliers do not appear explicitly anymore in the objective function
of (3.66), the set of constraints can be alternately rewritten as:

Gr, (5 — Gns ohy) < A1y, (3.67)

Finally, we revert back to the original unknowns .e., the deviations in the health param-
eters dh. The dual problem (3.66) is then expressed as:

min {H(;., 5hy|§} subject to |G (6§ — Gp 0h)[lec < A (3.68)
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In the dual formulation, the scalar inequality constraint states that, at the solution, the
vector of residuals e, = Jy — Gn 0h is such that its correlation with any of the columns
of Gy, never exceeds \. As a matter of fact, A allows to tune the maximum magnitude of
these correlations. When processing noisy data, it is advised in [Fuchs, 2004a] to set A to
the standard deviation of the noise, which is equal to one for the scaled system.

We can interpret geometrically this constraint and further put it in perspective with
the orthogonality principle (2.53) that characterises the traditional least-square solution.
This least-square solution, depicted in subfigure 3.6(a), is obtained through an orthogonal
projection of the measurement vector dy onto the subspace (a plane in our 2-D sketch)
spanned by the columns of the matrix Gy, each column giving the contribution of one
particular parameter. Consequently, the residual vector e, is perpendicular to the plane.
On the other hand, the constraint associated with the dual formulation of the sparse esti-
mation framework (subfigure 3.6(b)) can be seen as a relaxed version of the orthogonality
condition. The sparse solution is obtained here through an oblique projection whose
deviation from orthogonality is controlled via parameter \. The Euclidian norm of the
residual vector e, is larger than in the traditional least-square case, but the reconstructed
measurement vector 0y uses a smaller number of health parameters.

oy oy
e
e y
y
S 5y
oy y
(a) Traditional least-squares (b) Sparse estimation

Figure 3.6: Geometric interpretation of the solutions

3.5.5 Practical implementation

The optimisation problem (3.61) is solved by means of the package MINQ by Neumaier
[1998]. A specificity of this solver is that it can handle quadratic programs with semi-
positive-definite Hessian. It consists of a combination of coordinate searches and subspace
minimisation steps and uses rank 1 updates to keep the computation cheap. In every
computation dedicated to fault isolation and quantification, we use an updated influence
coefficient matrix Gy, evaluated at the latest estimate of the health parameters.
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One of the main objectives of the isolation module is to provide the maintenance staff
with an automated assessment of the faulty component(s). The vector of health parameter
deviations obtained after solving the optimisation problem (3.60) is however in a not so
convenient form for that purpose. Therefore, we apply a relatively simple isolation logic,
inspired by the one devised by Aretakis et al. [2003] in order to determine the faulty
component. This isolation logic assumes that only one component is faulty at a time.
First, we compute the magnitude of each fault type as the fy-norm of the parameter
deviations — typically one or two — associated to the said component fault. The component
with the largest fault magnitude is then deemed as the faulty one.

Due to the presence of noise in the data, the best we can expect is that the sparse
solution has its non-zero elements at the right locations and with the right signs [Fuchs,
2006]. We have however no guarantee that the amplitudes are accurately assessed. The
deviations in the health parameters of the suspected faulty component are then evaluated
via a maximum likelihood approach limited to the subset of parameters associated to the
faulty components. To sum up, the isolation and quantification tasks are carried out in
a two-pass process. Firstly we perform a subset selection with the sparse estimation tool
and secondly we evaluate the magnitude of the fault with the traditional least-square
criterion.

uy Detection

Detection flag

Isolation

Fault code

Quantification

[ Kalman filter :

Figure 3.7: Sketch of the proposed EHM solution

Figure 3.7 shows the integration of the isolation and quantification modules with the
adaptive Kalman filter discussed in section 3.4. We restrict the presentation to the main
data stream for sake of clarity. The outputs of the detection and isolation modules,
respectively a detection flag and a fault code together with their timestamps, could be
archived in a file associated to the engine. In order to improve the signal-to-noise ratio
for the isolation and quantification tasks, the actual implementation follows the flowchart
below:
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1. once a detection flag is raised by the detection module, both the Kalman filter and
the GLR detector are put at rest and residuals based on the latest estimate of the
health parameters are gathered for the N,,; next cycles. N,; should be chosen small
enough in order to minimise the delay between detection and isolation while at the
same time providing some reduction in the noise level,

2. the sparse estimation problem is solved for the V,,; vectors of residuals in the buffer.

The fault isolation logic determines the faulty component and passes its associated
code to the quantification unit,

3. the fault magnitude is assessed as previously explained. The latest Kalman filter

estimate is then compensated with the estimated fault. The buffers of the detection
and isolation modules are emptied and the adaptive Kalman filter is relaunched
until the next detection.
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4.1 Foreword

HIS chapter is dedicated to the evaluation of the engine health monitoring tool devel-
T oped in the previous chapter. The assessment is carried out on the basis of simulated
test-cases, also called scenarios in the sequel. It is indeed almost impossible to have access
to real operational data and to a performance deck of a real engine given the highly pro-
prietary nature of such elements. Although simulated data will ever be only a more or less
faithful image of actual field recordings, it has some advantages for developers of health
management solutions such as: i) the ability to simulate a large range of fault conditions,
ii) a low cost to generate these data and iii) the knowledge of the true solution, thereby
allowing the quantification of the performance of the monitoring tool.

The chapter is organised as follows: in section 4.2, we take a look at the engine perfor-
mance model that is used to generate the scenarios as well as in the diagnosis tool. Section
4.3 describes the main features of the scenarios and their generation process. In section
4.4, we select a number of relevant metrics to assess quantitatively the performance of the
diagnosis tool. The results obtained on the batch of scenarios are presented and discussed
in section 4.5. Finally, section 4.6 comes back to the topic of sensor—parameter suites
selection and analysis and proposes an application of the tools developed in section 2.5.

4.2 'The engine performance model

The engine model was developed in the frame of the OBIDICOTE project! and is detailed
in [Stamatis et al., 2001, Ruiz, 2001]. It simulates a two-spool, high bypass ratio, mixed
flow turbofan engine in the 25 klbf (~ 110 kN) thrust class. While not derived from an
existing engine, it is representative of the power plants of single—aisle airliners such as the
Boeing 737 and Airbus A320. Such aircrafts are part of the short—haul fleet of virtually
all legacy airlines and are the workhorses of the low—cost carriers which may fly them
as much as a dozen times a day. Figure 4.1 depicts a schematic of the engine where the
location of the health parameters and the numbering of major inter-component stations
are also indicated.

As seen in section 2.1.1, the operating point of an engine is defined through the control
and environmental variables. The OBIDICOTE model features three control variables,
of which the main one is the fuel low WF injected in the combustor. In a real engine,
this fuel flow is set by the control system in order to reach the thrust setting parameter
ordered by the pilot or the flight management computer. Without loss of generality, we
simply impose the fuel flow directly thereby disregarding the effect of any deterioration on
thrust. The other two control parameters drive the variable geometry devices on the low—
and high—pressure compressors to improve operability at part speed and during transients.

LA Brite/Euram project concerned with On-Board Identification Diagnosis and Control in Turbine
Engines.
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Figure 4.1: Turbofan layout with station numbering and health parameters location

Multivariable control having not yet made its way to commercial engines, these actuators
are open-loop scheduled with respect to a regime indicator such as the corrected spool
speeds [Spang and Brown, 1999, Linke-Diesinger, 2008].

The environmental variables define the thermodynamical state of the air surrounding the
engine. As shown in figure 2.2, the triplet made of ambient pressure, ambient temperature
and flight velocity (true air speed) is a possible choice. At the scenario generation stage,
we prefer the alternate triplet formed by pressure altitude ALT, flight Mach number MN
and the offset in temperature with respect to the International Standard Atmosphere
DTisa. This is motivated by the fact that the first two quantities are effectively input by
the pilot into the aircraft autopilot and the third one is quite convenient to define cold
or hot days. These variables are however not readily available on board so yet another
triplet of environmental variables is fed into the diagnosis tool. These are the inlet (ram)
total pressure P2 and temperature T2 and the ambient pressure Pamb.

The health condition of the gas—path components of the engine is modelled by means
of twelve parameters. Ten of them are traditional correction factors that modify the
efficiency (SEi) and the flow capacity (SWi) of each turbomachinery component with
respect to a reference condition as described in Mathioudakis et al. [2002]. In accordance
with the discussion of section 1.2, no health parameter is attached to the combustor. The
last two health parameters represent deviations relative to the nominal schedule of the
variable geometry devices, namely variable stator vanes (VSV) and blow—off valves (VBV).
They model either a fault on the sensed actuator position or a fault on the actuator itself
(e.g., mechanical failure).

The model generates a large number of outputs that are either measurable or not on a
flying engine. On the measurable side, we have total temperatures and pressures at various
inter-component planes and the spool speeds. The non—measurable family includes air
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mass flows and performance indicators such as thrust, stall margins and efficiencies. The
specific instrumentation used to perform the diagnosis will be presented later on.

4.3 The scenario generator

To generate the so—called scenarios, we have developed a tool inspired from the Engine
Fleet Simulator reported in [Simon et al., 2008]. As sketched in figure 4.2, each scenario
represents the operational life of an engine in a given fleet and is defined by a unique
operating history and a unique health degradation profile. These inputs are processed
with the engine performance model to generate a database of sensed parameters as if
collected once per flight on a real operating engine. The length of a scenario is arbitrarily
set to 3000 flights. More details about the input and output files are provided below.

L . Gaussian noise
Mission histories

'{"g#l—:

& sensor faults

/7 Usim ~
— i
- _F Engine performance
L gine p

3 [e 71
model P '
el Y, ® y

Sensed parameters

\/— hiruth histories
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Figure 4.2: Schematic of the scenario generator

4.3.1 Mission histories

We assume that the virtual data collection is performed only during cruise given that it is
the most likely part of the flight at which (almost perfect) steady—state operation can be
expected. As a result, each operating point ug, of each scenario is randomly selected in
the envelope defined in table 4.1 which is representative of the spread observed in actual
cruise conditions.

Name Units Lower bound Upper bound

WF  kg/s 0.380 0.400
ALT  m 10058 11278
MN  — 0.78 0.82
DTisa K ~10 +10

Table 4.1: Operating envelope
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4.3.2 Health histories

The degradation profile hy,, combines gradual wear of the engine modules and a single,
abrupt fault picked from a predefined library. The abrupt event is superimposed to the
gradual deterioration profile at a random flight in the window between flight 1000 and
flight 2000. Complementary details about each category are given below.

Gradual deterioration

Progressive deterioration, representing engine wear, is modelled by altering the efficiency
and flow correcting factors of the modules (fan, Ipc, hpc, hpt, Ipt). Despite the decrease
in performance it causes, we do not regard gradual deterioration as a faulty condition in
this work, but rather as a normal mechanism induced by engine usage. This point of view
is shared by several authors e.g., Jaw [2005] or Simon et al. [2008].

In the late seventies/early eighties, a number of studies, luckily published in the open
literature [Sallee, 1978, Wulf, 1980, Sasahara, 1985], established typical performance de-
terioration profiles from historical data collected on first—generation large commercial
turbofans. As stated by Simon [2008], a linear+exponential law captures the essential of
these deterioration profiles. The four main parameters of this wear model are depicted
in figure 4.3. The out—of-factory (i.e., at flight 0) health condition hy is assumed to be
normally distributed with a mean value of one for each health parameter and a variance
quoted in the third column of table 4.2, as per Roth et al. [2005]. The deterioration after
3000 flights hy, is uniformly distributed in an interval ranging between 70% and 130% of
the mean value quoted in the fourth column of table 4.2. Note that this fleet—average final
deterioration is expressed in percent change with respect to the initial health condition.

Health parameter

0 500 1000 1500 2000 2500 3000
Flight

Figure 4.3: Main parameters of the wear model
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As sketched in figure 4.3, the deterioration profile is mostly exponential for the first flights,
this is representative of the usual running—in period of the engine, and mostly linear later
on. The scalars s; and s, control the slope of the exponential and linear part respectively.
Both parameters are uniformly distributed in an interval whose mean value and width
are given respectively in the second and third columns of table 4.3, as per Simon [2008].
The randomness in all these four parameters of the wear model accounts for various
effects such as engine-to—engine manufacturing variations and more/less rapid and severe
deterioration of each module.

Flight 0: hg Flight 3000: Ah
Parameter Mean  Std Mean Range
SW12 1.0 0.4% —1.82%  +30%
SE12 1.0 1.0% —1.50%  +30%
SW2 1.0 1.0% —1.00%  +30%
SE2 1.0 0.5% —0.65%  +30%
SW26 1.0 1.0% —3.22%  +30%
SE26 1.0 1.0% —2.711%  +30%
SW41 1.0 0.7% 2.28%  +30%
SE41 1.0 1.0% —2.30%  +30%
SW49 1.0 0.2% 0.25%  £30%
SE49 1.0 0.6% —0.47%  +30%

Table 4.2: Distribution of initial health and deterioration after 3000 flights

Parameter Mean Range
S1 1/600 +10%
So 1/150 +10%

Table 4.3: Distribution of the shape parameters of the linear+exponential fit

Abrupt faults

The abrupt faults are picked up from the library summarised in table 4.4. Each fault type
impacts only one entity which can be a component (FC’s 1-5), a system (FC’s 6-7) or a
sensor (FC’s 8-18). The no—fault case (FC 0) completes the list.

Turbomachinery module faults involve alterations in both the efficiency and flow cor-
recting factors. During the generation of a scenario, two related quantities, namely the
magnitude f,, and the coupling factor f., are used. They are uniformly distributed in the
intervals quoted in table 4.4. The fault magnitude f,, is defined as the Euclidian norm of
the efficiency and flow variations. The coupling factor f. is defined as the ratio between
the change in flow capacity and the change in efficiency, see equations (4.1).
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FC Description Magnitude f,,  Coupling f.
0 no fault n/a n/a

1 fan fault 1to5 % + (0.5 to 2.0)
2 Ipc fault 1to5 % + (0.5 to 2.0)
3 hpc fault 1tob % + (0.5 to 2.0)
4 hpt fault 1tob % — (0.5 to 2.0)
5 Ipt fault 1tob % — (0.5 to 2.0)
6  vbv fault 1toh n/a

7 vsv fault 1tob n/a

8 P13 bias +1tobo n/a

9  T26 bias t1ltobo n/a

10  P3 bias t1ltobo n/a

11 T3 bias t1tobo n/a

12 NF bias +1tobo n/a

13 NC bias +t1tobo n/a

14 T49 bias t1ltobo n/a

15  WEF bias t1tobo n/a

16  Pamb bias +t1tobo n/a

17 P2 bias +t1ltobo n/a

18 T2 bias t1ltobo n/a

Table 4.4: Library of abrupt faults — FC stands for fault code

For 2 V/ASER + ASWi2 ASEj — _dm
» ASWi = Vit 2 (4.1)
¢~ "ASEi ASWi = f. - ASEi

Once randomly drawn, f,, and f. are converted back to deviations in the health parameters
according to equations (4.1). For compressors ASWi and ASEi have the same sign, while
for turbines they are of opposite sign. This point of view is shared by several authors see
e.g., [Ogaji et al., 2002] and [Volponi et al., 2003].

The vbv and vsv system faults are implemented as true off-schedule deviations. The
uniformly distributed magnitude for these fault types is reported here as some kind of
severity index, for sake of simplicity. A unit value corresponds to a small modification
with respect to the nominal setting (e.g., only a slight mistuning of the vsv), while a value
of 5 hints at a deep malfunction (e.g., fully open vbv).

Instrumentation faults are modelled as biased readings from one sensor, either in the flow
path or for the operating conditions. The magnitude, expressed in table 4.4 in units of
sensor standard deviation o, and the sign of the bias are both randomly selected.
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4.3.3 Sensed parameter histories

The database of sensed parameters, processed by the diagnosis tool, contains engine data
collected once per flight at cruise conditions. Data acquisition and management comes at
a certain cost and the historical trend has been to record a snapshot of sensor readings
i.e., one single, instantaneous view of these quantities. With the continuous improvement
in computing power, data transmission and storage capability, more advanced algorithms
are used to identify steady-state operation and to extract averaged values over a window
of time from the continuous data stream [Simon and Litt, 2010]. This greatly enhances
the quality of the archived data. In an attempt to mimic such a system, we generate the
snapshots in the following way:

1. select a random operating condition from the distribution specified in table 4.1 and
read the deterioration relative to the current flight,

2. run the engine model to generate 30 data samples for these inputs, this number
corresponds to a recording window of 3 seconds at a sample frequency of 10 Hz,
which are common values [see Simon and Simon, 2003,

3. add Gaussian noise, whose magnitude is specified in table 4.5, to the noise—free
simulated measurements. In case of a sensor fault, also add the bias to the faulty
sensor (see figure 4.2),

4. average the readings and store them in the database. This last step provides a first
reduction in the noise level of the measurements.

The sensor suite y selected to perform the diagnosis is similar to the instrumentation
installed on contemporary turbofan engines and is detailed in table 4.5 where the nominal
accuracy of each sensor is also quoted. These values are adapted from [Curnock, 2000]
and [Roth et al., 2005]. The table is complemented with the on-board sensors ug, that
define the operating conditions of the engine.

Label  Description Uncertainty
P13 fan outlet total pressure +150 Pa
T26 Ipc outlet total temperature  £2 K

P3 hpc outlet total pressure +5000 Pa
T3 hpc outlet total temperature +4 K

NF fan speed +3 rpm
NC core speed +6 rpm
T49 Ipt inlet total temperature +8 K

WF fuel flow 45 g/s
Pamb ambient pressure +100 Pa
P2 fan inlet total pressure 4100 Pa
T2 fan inlet total temperature +2 K

Table 4.5: Gas-path and operating point instrumentation
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4.4 Selected metrics for evaluation

Implementation of a condition—-based maintenance strategy depends on the expected sav-
ings that it will generate. The quantification of these savings, preferably expressed in
terms of currency units, goes through the definition of metrics that can be broadly di-
vided into two groups [Orsagh et al., 2002]: performance metrics and effectiveness metrics.
On one hand, effectiveness metrics assess the complexity of the algorithm (e.g., number
of tuning parameters, length of the code) and the cost to deploy and maintain it [Sam-
basivan et al., 2007]. Such metrics are to a large extent operator specific. On the other
hand, performance metrics quantify mainly the detection and isolation capability, as well
as their sensitivity with respect to signal-to-noise ratio and tuning parameters [Depold
et al., 2006, Butler et al., 2006]. The mapping between these metrics, such as false alarm
rate or misclassifications, and their financial impact is again quite application dependent
[DePold et al., 2004]. Following the review by Davison and Bird [2008] we focus here on
a few performance metrics that are relevant to gauge our diagnosis tool.

4.4.1 Metrics for estimation

In addition to performing fault detection and isolation, our diagnosis tool provides also
an estimate of the engine health. To assess the accuracy of this estimate, we rely on the
well-known Root Mean Square (estimation) Error as defined in equation (4.2) for the ith
health parameter. This scalar is an image of the average distance between the estimated
and true health condition and captures both the bias and the variance components of the
estimation error.

Nsen Npi

RMSE; = m S5 (W) - hi(i))Q (4.2)

7j=1 k=1

where

N, 18 the number of scenarios over which the RMSE is evaluated,

Ny is the length of a scenario i.e., Ny = 3000 here,

ﬂfv(z) is the estimated value of the ith parameter at flight £ of scenario j,

hfv(z) is the true value of the ith parameter at flight &k of scenario j.

We use the RMSE metric to gauge the tracking performance of the diagnosis tool. We
evaluate it only on no—fault scenarios (FC 0), since possible detection delays, missed
detections or misclassifications that might occur in faulty scenarios are likely to blur the
picture.
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4.4.2 Metrics for detection

We have selected two metrics to assess the detection capability of the diagnosis tool.
The first metric is the Detection Decision Matriz (DDM). As shown in table 4.6, it is
a square matrix of dimension two. The elements on the main diagonal reflect correct
predictions (the predicted and true states are the same). False negatives are cases where
an existing fault is not detected by the algorithm. For this reason, they are also called
missed detections. False positives are cases where the algorithm detects erroneously a
non existing fault. This situation is known as a false alarm. It is obviously desirable to
maintain the number of missed detections as low as possible, but it is evenly desirable
to achieve the lowest possible false alarm rate. A too high false alarm rate would indeed
reduce the user’s trust in the algorithm, which could ultimately cause actual faults to be
ignored.

Predicted state
Fault No fault
True | Fault True Positives False Negatives

state | No fault | False Positives True Negatives

Table 4.6: Sample detection decision matrix (DDM)

As by—products of this matrix, the True Positive Rate (TPR) and False Positive Rate
(FPR) are given by

TP FP

TPR= —— FPR—= —
R=TFprn d FPR=5mg

(4.3)

The second metric is the Detection Delay, which is defined as the time required to detect
a fault after its initiation. It is desirable to have a minimum detection delay in order to
take corrective actions as soon as possible.

4.4.3 Metrics for isolation

We have also selected two metrics to assess the isolation capability of the diagnosis tool.
The first metric is the Classification Confusion Matriz (CCM). It is a square matrix,
whose dimension is equal to the number of fault types Ny.. In the most general form, the
no—fault type can be included as well. It is not the case here as we emphasise on fault
isolation, fault detection performance being assessed with the metrics mentioned above.
The elements on the main diagonal of the CCM reflect correct classifications. Each row
gives an overview of how the true occurrences of a given fault type (e.g., Ipc) are affected
to the various fault types by the algorithm. As a by—product of this matrix, the Percent
Correctly Classified (PCC) for a given fault type is defined as the ratio of the number of
correct classifications to the total number of occurrences for the said type.
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Predicted state

Fault 1 Fault 2 ... Fault Ny

Fault 1 CCMi1 CM;, ... CCMyp,,

True | Fault 2 CCMgy, CCMy, ... CCMgy,,
state : : K :

Fault Ny. | CCMy, .1 CCMy,. o ... CCMpyg N,

Table 4.7: Sample classification confusion matrix (CCM)

The second metric is the Kappa Coefficient r, defined in equation (4.4). It conveniently
summarises the content of the confusion matrix into a single scalar and can be interpreted
as a measure of an algorithm’s ability to correctly classify a fault, which takes into account
the expected number of correct classifications occurring by chance, i.e., if the classifications
were totally random. The upper bound on k is one, which means that the algorithm
achieves perfect classification.

Ncc - Nec
— - ee 4.4
" Ntot_Nec ( )

where
e N, is the number of correctly classified cases,

e N, is the total number of cases,

e N.. is the number of cases expected correct by chance,

Nfc Nfc Nfc
N = Z CCM;; Niot = Z Z CCM;
i=1 i=1 j=1
Nfc Nfc Nfc
CCM,,
Nec - Zl Zl Ntot ] ' Zl CCM@,]
1= J= J=

4.5 Results and discussion

We have generated 100 scenarios for each of the 18 fault classes listed in table 4.4. Such
a number allows a fair coverage of the fault pattern for module faults (both in magnitude
and coupling factor), as well as for system and sensor faults. Moreover, we have created
a complementary batch of 1800 no—fault scenarios (FC 0) in order to process an equal
number of faulty and non—faulty scenarios. We remind the reader that we do not consider
gradual deterioration as a faulty condition due to its continuous nature.
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We configure our diagnosis tool such that the Kalman filter estimates only the changes
in the efficiency SEi and flow SWi correcting factors of the turbomachinery components.
Indeed, the main purpose of the Kalman filter is to track the gradual deterioration of the
engine. Neither the systems nor the sensors are expected to exhibit this long-time—scale
degradation trend.

4.5.1 Comparison of various Kalman filters

We begin the analysis of the results with the comparison of the estimation accuracy
achieved by different flavours of the Kalman filter. More specifically, we compare the
semi-linear Kalman filter with the extended and unscented Kalman filters presented in
chapter 3. The semi-linear Kalman filter (SLKF) is a simplified version of the extended
Kalman filter in which the influence coefficient matrix is updated each fixed number of
flights (as specified by the user), around an average operating condition and the latest
estimate of the health condition. In the present study, we consider four different SLKFs,
whose update rate of the Jacobian matrix is listed in table 4.8.

Name Jacobian updating
SLKF-1 never

SLKF-2 every 1000 flights
SLKF-3 every 100 flights
SLKF-4 every 10 flights

Table 4.8: Tested configurations of the semi-linear Kalman filter (SLKF)

On a side note, we evaluate the Jacobian matrix through a centred—difference scheme,
hence the EKF makes the same number of calls to the non-linear engine model as the
UKF at each time step.

The health parameter distribution is initialised with the mean and standard deviation
vectors given in table 4.2. The health parameters of a brand new engine are assumed
independent to reflect the randomness in the manufacturing tolerances. The covariance
matrix of the process noise is set—up based on the average final deterioration reported in
table 4.2 and integrates coupling factors between the health parameters of a given module,
as explained in section 2.4.2.

Table 4.9 reports the RMSE, as defined in equation (4.2), evaluated over the batch of
1800 no—fault scenarios and expressed in percent of the average baseline value (equal to
one here) for each of the ten module health parameters and the six filter configurations.
The next—to—last row simply sums up the previous ones. The last row gives the mean
computing time to process one scenario i.e., 3000 flights. Note that more than the absolute
figures, which are highly dependent on the computer platform, the relative increase in
computing time from one configuration to another one is the main information to extract
from this last row.
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RMSE (%) SLKF-1 SLKF-2 SLKF-3 SLKF-4 EKF UKF

SW12 0.133 0.127 0.123 0.123 0.035 0.035
SE12 0.263 0.255 0.250 0.252 0.043 0.043
SW2 0.025 0.032 0.036 0.037 0.039 0.039
SE2 0.217 0.216 0.215 0.216 0.164 0.162
SW26 0.218 0.213 0.210 0.211 0.168 0.166
SE26 0.123 0.120 0.119 0.119 0.094 0.093
SW41 0.020 0.020 0.020 0.020 0.020 0.020
SE41 0.085 0.084 0.084 0.083 0.066 0.066
SW49 0.139 0.138 0.137 0.137 0.108 0.108
SE49 0.167 0.164 0.161 0.163 0.081 0.081
Sum 1.390 1.370 1.355 1.360 0.817 0.813
TCPU (s) 2.76 4.77 16.88 33.88 187.62 178.33

Table 4.9: Performance of different filters in terms of percent RMSE and mean computing
time per scenario

The analysis of table 4.9 reveals that the basic SLKF without any Jacobian update i.e., the
SLKF-1 configuration is a viable solution for trending the engine health fairly accurately
at a really modest computational cost. We note a slight improvement in the SLKF’s
estimation accuracy as the Jacobian update rate increases. Turning to the fully non-
linear filters leads to a reduction of roughly 70% in the global RMSE with respect to the
SLKF-1 configuration. The EKF and UKF achieve virtually the same RMSE performance,
which we can explain by the mild non-linearity level of the engine performance model.
Unlike the UKF, the EKF provides readily the influence coefficient matrix which is used
abundantly in the fault detection and isolation modules. For this reason, and given the
comparable level of accuracy, it seems wiser to prefer the EKF over the UKF. From the
last line of table 4.9, we note a continuous increase in computing time as the number of
Jacobian updates increases. The EKF and UKF have a similar computing time due to
the fact that the Jacobian matrix is evaluated with a centred-difference scheme. They
are however about two orders of magnitude slower than the SLKF-1 configuration. The
above comments are in line with the findings of other researchers who compared different
Kalman filters in various applications such as motion tracking [Orderud, 2005], estimation
of aircraft aerodynamic parameters [Chowdhary and Jategaonkar, 2010] or, interestingly,
jet engine performance trending [Simon, 2008].

Figure 4.4 depicts the tracking of gradual deterioration for one of the 1800 no-fault
scenario processed with the SLKF-1 algorithm. The subplots show the true (black line)
and estimated (orange line) health parameters, expressed in terms of percent deviation
with respect to a reference value (equal to one for all parameters). On the abscissa,
time is expressed in terms of flights. The non—zero deviation at flight zero is due to the
engine—to—engine variations in manufacturing. On the qualitative side, we can state that
the trend in each health parameter is well captured. In particular, the estimated values
look in fairly good agreement with the true ones for the Ipc, hpc and hpt.
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Figure 4.4: True (black line) and estimated (orange line) health parameters of a non-
faulty scenario — Health parameters are expressed as percent deviation from the reference
value — SLKF-1 algorithm

Figure 4.5 complements nicely the previous one by allowing a more quantitative assess-
ment. Indeed, each subplot shows the evolution of the absolute value of the estimation
error (orange line) and the 30 confidence bound (black line). This threshold is computed
here as three times the square root of the diagonal terms of the covariance matrix of the
health parameters. Both quantities are expressed in percent. On the abscissa, time is
again expressed in terms of flights. The estimation error is globally smaller than 0.1%
for all health parameters except the fan and Ipt efficiencies (resp. SE12 and SE49). The
observability analysis carried out in section 4.6.3 will provide an explanation to this fact.
This accuracy level is fairly acceptable except for the Ipt whose deterioration is, at about
0.5%, much lower than for the other components. The estimation error is moreover al-
ways below the 30 confidence bound i.e., the estimation error is inside the uncertainty
region caused by the measurement noise and the negative redundancy. Therefore, we can
say the solution is statistically meaningful. We observe a continuous increase in the 3o
confidence bound for the health parameters of the fan, hpc and Ipt. This increase is due
on one hand to the process noise needed to track the time evolving degradation and on
the other hand to the underdetermined nature of the estimation problem that makes some
health parameters only partially observable, as will be shown in section 4.6.3.
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Figure 4.5: Absolute estimation error (orange line) and 30 confidence bound (black line)
for the scenario plotted in figure 4.4 — Values expressed in percent — SLKF-1 algorithm

4.5.2 Fault detection performance

In this section, we focus on the fault detection capability of the diagnosis tool. First of
all, we study the influence of the two tuning parameters of the detection module which
are i) the length of the sliding window N,q over which the GLR is computed and ii)
the detection threshold which is indirectly set through the expected probability of false
alarm Pr, see equation (3.48). We consider three window lengths of 5, 10 and 20 flights
(one flight being here the time unit) and five threshold values corresponding to target
probabilities of false alarm of 10~%, 1072, 1073, 10~* and 107°.

For each of the fifteen configurations, we process the database of 3600 scenarios and
compute the TPR and FPR metrics. We have arbitrarily decided to evaluate the FPR
aka. the false alarm rate only from the no—fault scenarios. Any false alarm that might
occur on a faulty scenario is not accounted for in the FPR. Doing so, we implicitly assume
that the false alarm rate is the same for faulty scenarios as for no—fault ones. The TPR aka.
the correct detection rate is obviously evaluated from the faulty scenarios. Nonetheless,
we require the detection delay to be less than ten flights to increment the TPR counter.
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Figure 4.6: Partial receiver operating characteristic curves of the detection module for
three different window length N4

Figure 4.6 depicts portions of the so—called receiver operating characteristic (ROC) curves
for each of the three window lengths. These curves show the evolution of the TPR versus
the FPR as the detection threshold is varied. The axes are normalised so that the FPR
and TPR range between zero and one, we can therefore refer to them respectively as the
probability of false alarm and the probability of (correct) detection.

The curves in figure 4.6 have the typical shape of ROC curves see e.g., [DePold et al.,
2004]: a decrease in the detection threshold causes a beneficial increase in the TPR and
a simultaneous (but undesired) increase in the FPR. The worst TPR over the fifteen
examined configurations is achieved for the couple (Nyq, Pr) = (5,107°) and reaches a
rather encouraging value of roughly 87%. On the other hand, the best TPR tops the 93%
mark for the couple (N4, Pr) = (10,107!) but this comes with a false alarm rate of about
10%. These relatively high values of TPR are due to a favourable signal to noise ratio of
most of the faults as well as to their abrupt occurrence. Considering the FPR, table 4.10
shows that the computed values are in fairly good agreement with the Pr values that set
indirectly the detection threshold.

Pp (%) 107 1072 01 1.0 10.0
FPR (%) 00 00 01 07 89

Table 4.10: Comparison of expected and achieved false alarm rates — N,q = 10

Figure 4.6 also shows that, for a fixed value of the threshold, an increase in the length of
the sliding window N, leads to an increase in both TPR and FPR. This can be explained
by the fact that a wider window enhances the resolution of the detection module which
therefore allows more faults to be detected. However, the enhanced resolution applies also
to outliers hence the increase in FPR. We further note that TPRs are almost unaltered
when moving from a 10— to a 20-flight window width. We suspect this is caused by the
fact that the additional correct detections actually occur after a delay larger than the



4.5. Results and discussion 103

10-flight threshold discussed previously. As a result, those additional detections do not
contribute to the TPR.

On the basis of figure 4.6, we select the settings (N,q,Pr) = (10,1073) for a deeper analysis
of the results. This configuration appears as a good trade—off in terms of TPR/FPR as well
as in terms of computational load. The detection decision matrix in table 4.11 summarises
the global detection performance of the diagnosis algorithm and is a good quantitative
complement to the corresponding point on the ROC curve. A mere two false alarms were
issued over the 1800 no—fault scenarios, leading to a false positive rate of 0.1% which we
consider acceptable. Of course, other users might have more stringent requirement on the
FPR, which could be achieved at the price of a lower TPR as shown by the ROC curves.
Looking at the first row of the DDM, the number of missed detections amounts to 154
out of 1800 faulty scenarios. This translates in a score of 91.4% for the true positive rate.
The next step is to analyse the results for each fault type separately.

Predicted state
Fault No fault
True Fault 1646 154 TPR = 91.4%

state | No fault 2 1798 FPR = 0.1%

Table 4.11: Detection decision matrix

Table 4.12 provides an overview of the detection capability for the different fault types.
The third column gives the percentage of detected events for the said type. The mean
detection delay is reported in the fourth column. This average value is obviously computed
from the detection delay, as defined in section 4.4, of the detected cases. Finally, the fifth
column gives the so-called “Span”, defined as the difference between the maximum and
minimum detection delays for a specific fault type. This quantity provides somehow a
measure of the variability in the detection delay.

The PCD reaches 100% for all module faults (FC’s 1-5), meaning that for the range of
magnitudes and coupling factors considered in this study, any abrupt deterioration of a
component will be captured by the detection module. Detection of system faults (FC’s
6-7) is also successful over their whole range of severity index as confirmed by the PCDs
of 100%. The smal-valued MDDs and “Spans” hint at a rapid detection of the fault,
actually one or two flights after its initiation for all module and system faults. As stated
above, this level of performance results from the combination of a good signal to noise
ratio of all these fault types and of their abrupt occurrence.

Figure 4.7 shows the norm of the residuals, scaled by each sensor’s standard deviation, for
the lowest fault level considered in the study i.e., a 1% magnitude for module faults and
a unit severity index for system faults. We see that lpc and vbv faults have the smallest
overall signature on the gas—path measurements, which provides the explanation to the
fact that a handful of such faults are detected two flights after their initiation. On the
other hand, hpt and vsv faults cause the largest deviations in the gas—path measurements
and are accordingly the easiest to detect.
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FC Description PCD MDD  Span
1 fan fault 100 1.00 0
2 lpc fault 100 1.05 1
3 hpc fault 100 1.00 0
4  hpt fault 100 1.00 0
5 Ipt fault 100 1.00 0
6  vbv fault 100 1.01 1
7 vsv fault 100 1.00 0
8 P13 bias 98 2.07 7
9 T26 bias 100 1.50 4
10  P3 bias 100 1.78 5
11 T3 bias 100 1.62 3
12 NF bias 82 3.17 9
13 NC bias 70 2.53 8
14 T49 bias 100 1.51 4
15  WF bias 100 1.50 3
16  Pamb bias 0 n/a  n/a
17 P2 bias 96 2.34 9
18 T2 bias 100 1.60 5

PCD: Percent Correctly Detected

MDD: Mean Detection Delay

Span: Difference between minimum
and maximum detection delays

Table 4.12: Detection performance for the considered fault types
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Figure 4.7: Norm of residuals for component and system faults of lowest magnitude
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Back to the analysis of table 4.12, the detection of gas-path instrumentation faults (FC’s
8-14) is again satisfactory as far as PCD is concerned. Surprisingly, the PCD associated
to low— and high— spool speed faults reaches a mere 70% and 82% respectively while the
tachometers are among the most precise sensors (see table 4.5). However, we should not
forget that the diagnosis tool uses a covariance matrix for the measurement noise that
also accounts for the uncertainty in the sensed operating conditions. Figure 4.8 shows
that both spool speeds are the most sensitive to uncertainty in the operating conditions
therefore their effective standard deviation, as given in equation (2.24), is larger than
the one of the “bare” sensor. As a result, tachometer biases of low magnitudes are less
detectable, leading to lower PCD values.

Sensitivity to operating conditions
~
T
1

P13 T26 T3 P3 NF NC T49

Figure 4.8: Sensitivity of the gas—path measurements to uncertainty in the operating
conditions

Looking at the two other metrics for the gas—path sensor biases, the MDDs rise up to
3.17 flights while at the same time the “Spans” range between three and nine flights. As
a conclusion, the detection delay of a gas—path sensor fault is dependent not only on its
magnitude, but also on the faulty sensor itself. We suspect that the variability in detection
delay finds its roots in the very formulation of the detection module. In fact, taking a look
at equation (3.42), we see that the likelihood ratio is evaluated in the space of the health
parameters tracked by the Kalman filter. It means that before being detected, any fault,
and in particular a sensor fault, is first converted inside the algorithm into a change in
the module health parameters SWi and SEi. This transformation may modify the signal
to noise ratio of the original fault and therefore increase the detection delay.

With the notable exception of a biased Pamb sensor, detection of operating condition
instrumentation faults (FC’s 15-18) is of similar quality as for gas—path sensor faults.
Again the detection delay depends to some extent on the magnitude of the fault for the
same reason as gas—path sensor faults do. More intriguing is the case of Pamb. For the 15
configurations of the detection module considered in the present study, the PCD of that
fault type is equal to zero. Figure 4.9 provides the explanation of such a miserable score
at a glance. It shows the evolution of the norm of the residuals, scaled by the sensor’s
standard deviation, with respect to the sensor fault magnitude for Pamb (black line) and
for P2 (orange line). We clearly see that a faulty Pamb has no influence on the gas path
measurements for the range of sensor magnitudes considered here. The reason behind
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this is that the nozzle is choked at the cruise regimes considered here. The Mach number
in the exhaust section is hence equal to one, meaning that the engine simulation model is
unaffected by downstream conditions i.e., Pamb (see [Cumpsty, 2000] for further details).
One solution to detect Pamb faults at such operating points would be to rely on a thrust
measurement, which is unfortunately unavailable in flight.
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Figure 4.9: Norm of normalised residuals for Pamb (black line) and P2 (orange line) sensor
faults — magnitudes expressed in number of standard deviations

To conclude the analysis of the detection capability, table 4.13 reports the minimum level
of sensor bias (negative ones in the third column, positive ones in the fourth column) that
was successfully detected by the algorithm. The values quoted in the table are normalised
with the respective standard deviation of the sensor and are obtained from the processing
of the batch of scenarios previously defined.

Sensor PCC Negative bias Positive bias

P13 98 -1.22 1.09
T26 100 -1.05 1.08
P3 100 -1.15 1.04
T3 100 -1.00 1.00
NF 82 -1.95 1.71
NC 70 -2.23 2.15
T49 100 -1.03 1.18
WF 100 -1.12 1.02
Pamb 0 n/a n/a
P2 96 -1.25 1.03
T2 100 -1.04 1.02

Table 4.13: Minimum levels of detectable sensor bias (expressed in number of standard
deviations)
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Sensor faults for which a 100% PCD is achieved show bounds very close to one standard
deviation (in absolute value), which is the minimum fault magnitude considered in the
study. The values reported in table 4.13 are actually the lowest magnitudes for each fault
type in the processed batch of scenarios. On the other hand, sensors for which missed
detections occur (P13, NF, NC and P2) have a negative bound larger (in absolute value)
than the positive one (e.g., -1.250 versus 1.030 for a biased P2). Tachometer biases should
at least reach a magnitude of around two standard deviations i.e., 2 rpm for fan speed
and 4 rpm for compressor speed, to be detectable by the algorithm.

4.5.3 Fault isolation performance

In this section, we focus on the performance of the fault isolation module i.e., the combi-
nation of the sparse estimator and the isolation logic described in section 3.5. We begin
with a parametric study of the influence of the regularisation parameter A in (3.60) on
global performance factors of the isolation module. We process the batch of 1800 faulty
scenarios (even if we know that Pamb faults are not detectable) with the diagnosis tool
for four different values of the parameter A\: 10~%, 10!, 1.0 and 10.0. On the basis of
the CCM, we evaluate i) the overall percentage of correctly classified cases, defined as the
ratio of the total number of classifications to the total number of examined cases, ii) the
number of non—zero off-diagonal terms in the CCM, which provides a direct measure of
the randomness in the classification process and iii) the kappa coefficient. Going back to
its definition (4.4), the kappa coefficient is somehow related to the other two metrics.

A PCC(%) N,, &
1074 88.1 50  0.873
1071 92.6 46 0.921
1.0 93.6 41 0.931
10.0 85.4 44 0.845

Table 4.14: Influence of the parameter A on the performance of the isolation module

These three metrics, respectively abbreviated PCC, N, , and k, are reported in table 4.14
for the four A\ values mentioned above. Setting A to one leads to the best performance. In
this case, the overall PCC reaches an encouraging value of 93.6%, which means that 1540
fault cases are correctly classified out of the 1646 scenarios that are declared faulty by
the diagnosis tool. The number of non-zero off-diagonal terms N,, , equals 41, so roughly
fifteen percent of the non—diagonal terms are different from zero. Choosing A = 0.1 causes
a slight drop (about 1 point) in the global PCC and k&, as well as an increase in N, ,.

Selecting a much smaller value for )\, here 107%, we note a stronger deterioration in
isolation performance: the PCC goes down to 88.1% while N, , rises to 50. We can
explain this behaviour by the fact that the lower the A value, the weaker the sparsity
constraint in the estimator. As a result, computed solutions contain spurious changes in



108 Chapter 4. Assessment of the diagnosis tool

several health parameters. Such spoiled estimates may then fool the isolation logic. Large
A values have the same detrimental effect on the isolation capability. In fact, for A = 10.0
we achieve a PCC of 85% and 44 off-diagonal terms are non-zero. This time, the loss in
PCC is due to a too important weight of the sparsity constraint which reduces both the
number of non—zero terms in the sparse solution and their magnitudes. This translates
directly in misclassification of low—magnitude faults.

Table 4.15 reports the classification confusion matrix for A = 1.0. The true and predicted
fault classes are respectively on the vertical and horizontal axes, as in the sample CCM
shown in table 4.7. For sake of completeness, we kept the Pamb fault class in the matrix,
although that fault type is not detectable. The percentage of correctly classified (PCC)
cases for each fault type is quoted in the last column of the table. The horizontal and
vertical lines separate component/system faults from sensor faults. In an attempt to
maintain good legibility, only the non—zero elements in the CCM are displayed.

From the PCC figures of table 4.15, the isolation capability of all component /system faults
but the Ipc and the hpc is nearly perfect, with PCCs in excess of 98%. The discrimination
of Ipc and hpc faults is somewhat worse, with PCCs of respectively 85% and 77%. The
isolability of sensor faults is almost as good, with PCCs greater than 95% except for P13,
NF, NC and P2. On a side note, those four sensors were already not perfectly detectable.
Nonetheless, the worst PCC nearly tops the 80% mark, which is a decent performance. In
conclusion, the sparse estimation approach allows a rather accurate isolation over a wide
range of fault classes and magnitudes.

Looking in more details at the CCM in table 4.15, 14 percent of Ipc faults are erroneously
assigned to a vsv malfunction. This percentage rises to 23 in the case of hpc faults. On
the other hand, one lonesome vsv fault is reported as a compressor module fault. In some
way, those results are not so surprising. Indeed, the border is quite thin between the
impact of a compressor module fault and a system fault, especially for the duet hpc—vsv
as exposed below. Figure 4.10 depicts the situation for one of the erroneously isolated
hpc faults. The health parameter values, on the vertical axis, are expressed as percent
deviations from the condition before the occurrence of the fault for the efficiency and flow
factors and as the severity index for the system faults. Orange bars are related to the
solution provided by the sparse algorithm, black ones to the true fault.

We realise at a glance that the computed solution is in fact a sparse one as only two
parameters out of 12 show non-zero deviations. If the alteration of the hpc efficiency
SE26 is indeed captured with a reasonable accuracy, the change in hpc flow capacity
SW26 is believed to be a vsv problem by the sparse algorithm. Given that the deviation
on the vsv is larger than the combined one on the hpc, the isolation logic declares the
vsv as the faulty entity. Figure 4.11 provides an explanation to the confusion made by
the sparse algorithm between the hpc flow factor SW26 and the vsv parameter. It shows
the variation in each measurement, quoted in number of sensor’s standard deviation, for
a 1% change in SW26 (black bars) and a vsv malfunction of severity 0.5 (orange bars).
The value of the severity index for the vsv malfunction is chosen so that the maximal
deviation is of comparable magnitude for both parameters.
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Figure 4.10: Sparse estimate of a misclassified hpc fault
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Figure 4.11: Signatures of SW26 and VSV on the sensors

From the graph, it is obvious that the signature of SW26 is highly similar to the one of vsv
for that level of fault magnitude. In both cases, only one sensor reading, namely the core
speed NC, undergoes a significant deviation. Consequently, it is very hard to distinguish
between these two parameters in the case of faults of small magnitude. The true loss in
SW26 is preferentially affected to vsv as the same deviation in the sensors is achieved for
a fault severity of half the value it would have in the case of SW26. Part of the criterion
of the sparse algorithm penalises in fact the [;-norm of the parameter deviations.

As far as the isolation of sensor faults is concerned, we notice that the bottom left quad-
rant of the CCM is pretty densely populated, with not less than 25 non—zero terms. It
means that the isolation module attributes most of the misclassified sensor faults are to
component /system faults in a rather random manner. To complement the discussion,
figure 4.12 summarises the classification of sensor faults. The abscissa is the true sensor
fault magnitude, expressed in number of standard deviations. Grey dots indicate correctly
isolated cases while black crosses show the misclassifications. We see that for all sensors
but the quadruplet P13, NF, NC and P2, misclassifications occur for low fault magnitudes
(typically smaller than 1.50). For the other four sensors, misclassifications can occur at
larger fault magnitudes.
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Figure 4.12: Graphical summary of sensor fault isolation

To conclude the analysis of the isolation capability, we compare the sparse estimation
tool (3.60) to the classical least-squares estimator (3.55). The results presented below are
extracted from [Borguet and Léonard, 2010]. This paper was oriented towards the fault
isolation task only and the set-up was different in three aspects from the one considered
so far: i) the fault library was limited to component and system faults (i.e., FC 1-7 of
table 4.12); ii) we used a slightly different set of seven gas-path sensors; iii) we processed
1000 occurrences for each of the seven fault types. Tables 4.16 and 4.17 report the
classification confusion matrix for the sparse algorithm and for the usual least-squares
method respectively. Both tables are organised in the same way as table 4.15.

fan Ipc hpc hpt Ipt vbv wsv | PCC (%)

fan | 1000 100
Ipc 870 130 87

hpc 2 716 282 71.6
hpt 1000 100
Tt 1000 100
vbv 1000 100
VSV 1 7 992 99.2

Table 4.16: Classification confusion matrix and PCC — Sparse estimation

Proportionally, the numbers in table 4.16 are almost identical to their counter-parts in
table 4.15, again underlining the quite good overall isolation capability of the sparse es-
timation tool. On the other hand, the usual least-squares method has a much worse
isolation capability, as can be seen from table 4.17. Due to their good observability,
fan and hpt faults enjoy a correct classification rate of 100 %. The PCCs for the other
turbomachinery components are between ten and twenty percents lower than their cor-
responding values obtained with the sparse algorithm. The situation of system faults is
even worse, with only roughly one occurrence over two correctly isolated. Moreover, we
notice a much larger number of non-zero off-diagonals terms in table 4.17.
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fan Ipc hpc hpt Ipt vbv vsv | PCC (%)
fan | 1000 100
Ipc 40 688 161 111 68.8
hpc 4 284 602 110 60.2
hpt 1000 100
Ipt 3 220 70T 7.7
vbv | 152 113 229 506 50.6
VSV 0 181 331 488 48.8

Table 4.17: Classification confusion matrix and PCC — Least-squares estimation

The kappa coefficients for the sparse tool and for the classical least-squares method have
a value of 0.930 and 0.677 respectively. The lower value of the least-squares estimator
comes from the lower number of total correct classifications (sum of the diagonal terms of
the matrix), but also from the population of terms outside the main diagonal. Indeed, in
a given column of the CCM, the larger the number of non-zero terms, the more random
the fault is associated to a class by the algorithm. This effect is taken into account in the
computation of the kappa coefficient.

Finally, figure 4.13 compares the solutions obtained with the traditional least-squares
method (3.55), abbreviated LS2 below, and with the sparse algorithm for an Ipc fault.
The first thing to point out is the radically different pattern of the LLS2 and sparse so-
lutions. The sparse solution and the true fault have their non-zero components at the
same locations and with the same signs, so that the fault is clearly concentrated on the
Ipc. The estimated magnitudes are slightly lower than the actual ones. This results from
the effect of the measurement noise, but also illustrates the trade-off between fitting the
data and achieving a sparse solution. The solution computed by equation (3.55) shows
the typical spread (aka. smearing effect) over multiple parameters of a localised fault.
Among all the parasitic deviations, the one on SW26 is of the same order of magnitude
as the one on the two parameters of the Ipc. As a consequence, a combined degradation
of both the Ipc and the hpc can be suspected.
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Figure 4.13: Comparison of the sparse and usual least-squares solutions for an lpc fault
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4.6 Sensor set selection and analysis

In this section, we apply the tools developed in section 2.5 for sensor set selection and
analysis. For illustrative purpose, we consider an onboard engine performance monitoring
tool that shall track the deterioration of the turbomachinery components from cruise flight
data recordings.

4.6.1 Optimisation of the sensor configuration

The sensor selection problem is formulated for the operating point specified in table 4.18,
which is the centroid of the envelope mentioned in table 4.1. The set of health parameters
is restricted to the ten modification factors on the efficiency and flow capacity of the
rotating components.

Label WEF
Value 0.390 kg/s

ALT MN DTisa
10668 m 0.80 0.0 K

Table 4.18: Mean operating conditions for the optimal selection problem

Sensors that may be fitted on the engine are listed with their associated uncertainty
(noise level) in table 4.19. We do not consider sensors that are not available in flight (e.g.,
thrust, air mass flow) nor advanced instrumentation (e.g., torque, hpt inlet temperature,
emissions) that is still at the development level [Simon et al., 2004]. Therefore, the
catalogue mostly consists of total temperatures and pressures at various inter-component
planes as well as both spool speeds.

Label  Description Uncertainty
P13 fan outlet total pressure +150 Pa
T13 fan outlet total temperature +2 K
P26 Ipc outlet total pressure +500 Pa
T26 Ipc outlet total temperature +2 K

P3 hpc outlet total pressure +5000 Pa
T3 hpc outlet total temperature  +£4 K

NF fan speed +3 rpm
NC core speed +6 rpm
P49 hpt outlet total pressure +500 Pa
T49 hpt outlet total temperature  £8 K

P5 Ipt outlet total pressure +300 Pa
T5 Ipt outlet total temperature +5 K

Table 4.19: Available sensors for the optimal selection problem
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In a nutshell, we shall determine the n, gas path sensors, among the twelve listed above,
that maximise the figure of merit of equation (2.88) for the set of n, = 10 health pa-
rameters associated to the turbomachinery components. The number of sensors that are
installed on the engine n,, is not strictly speaking a free design parameter as it should ide-
ally be as small as possible. Nonetheless, a number of n, = 7 sensors seems a reasonable
choice for contemporary commercial turbofans according to the information reported in
Jaw and Garg [2005].

The optimisation problem is basically of combinatorial nature as any sensor is either part
or not of the optimal instrumentation. Although some algorithms are especially tailored to
that kind of problem, we opt for a naive and brute force technique: we evaluate the figure
of merit for every of the 792 (12 choose 7 binomial coefficient) possible combinations. We
apply unit weights to each component of the FOM (IW; = 1.0, ¢ = 1,2,3) in equation
(2.88).

Table 4.20 reports the first ten optimal configurations based on the figure of merit defined
in equation (2.88). The bottom row in the table gives the frequency of each sensor in the
ten best sensor sets. To complete the picture, the first five optimal configurations accord-
ing to each component of the FOM are given in tables 4.21, 4.22 and 4.23 (respectively the
condition number, the trace and the determinant). The optimal configuration according
to the full FOM (i.e., first row of table 4.20) is ranked respectively fourth, first and second
according to the condition number, the trace and the determinant criterion. Hence, the
aggregated metric elegantly merges the different objectives of the optimisation problem.

Looking at the last row of each table, we deduce that T13, T26 and P5 are certainly no
good candidate to the optimal instrumentation whatever the considered metric. On the
contrary, P13, P26, P49 and the spool speeds appear to be mandatory in the optimised
configuration. This point will be discussed in more details subsequently. As underlined by
Roth et al. [2005], installation of an inter—turbine pressure sensor becomes more difficult
on modern engines. Consequently, we remove P49 from the list of available sensors and
carry out the search process a second time over the mere 330 possible configurations.

Table 4.24 lists the four sensor sets selected for further investigations. Set A is the
standard instrumentation defined in table 4.5 and used to validate our diagnosis tool in
the preceding sections. It serves here as the baseline for comparison, set B is the optimal
configuration when considering P49 as available whereas set C is the optimal one when
discarding P49. Finally, set D is the worst sensor set. The notion of optimality is of
course relative to the metric in equation (2.88).

Upon examination of table 4.24, we notice that P13, both tachometers and P3 are common
to the sets A, B and C. P13 is indeed required to assess correctly fan performance.
Concerning the spool speeds and P3, these sensors are mandatory for control purpose. It
is thus a good point that they appear in the optimal sets. Furthermore, spool speeds are
generally measured with a high accuracy, which is one of the reasons of their presence in
the optimal configurations. The main characteristic of set B is obviously the presence of
P49. This sensor is in fact the only one in the list that allows full discrimination between
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Table 4.20: Top 10 configurations based on the aggregated metric

P13 T13 P26 T26 P3 T3 NF NC P49 T49 P5 T5
1| v v v v v v v
21 Vv v v v v v v
3| Vv v v vV v v
4| v v v v v Y v
51 Vv v v v v Y v
5 0 ) 0 3 3 5 5 5 2 0 2

Table 4.21: Top 5 configurations based on the condition number of the FIM

P13 T13 P26 T26 P3 T3 NF NC P49 T49 P5 T5
1| v v v v v Y v
21 Vv v v v Y v v
3 v v v v Y v v
41 v v v v v v v
S5 Vv v v v Y v v
4 0 4 0 3 1 5 5 5 5 0 3

Table 4.22: Top 5 configurations based on the trace of the FIM

P13 T13 P26 T26 P3 T3 NF NC P49 T49 P5 T5
1 v v v v v v v
2| Vv v v v v Y v
3| Vv v v v v v v
41 v v v v v v v
51 Vv v v v v v v
5 0 4 0 3 4 5 5 5 3 0 1

Table 4.23: Top 5 configurations based on the determinant of the FIM

115
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set A P13 T26 P3 T3 NF NC T49
set B P13 P26 P3 NF NC P49 T49
set C P13 P26 P3 T3 NF NC T5
set D P13 T13 T26 T3 T49 T5 P5

Table 4.24: Selected sensors sets for further investigation

hpt and Ipt degradation. It is also worth noting that the Exhaust Gas Temperature
(defined as T49 or T5, depending on the manufacturer) is part of these three sensor sets.
An EGT sensor is already fitted on every engine as this quantity serves nowadays as a
crude indicator of engine health in the cockpit (through the so-called EGT margin).

We see that the optimal sets B and C have the largest number of pressure sensors,
respectively four and three out of seven. This is explained by the fact that pressure sensors
are more informative about the engine condition than temperature sensors. From this
statement, the absence of the Ipt exhaust pressure P5 from the optimal instrumentation
may appear strange. However, in a mixed—flow turbofan, this quantity is quite correlated
with the fan outlet pressure P13. Consequently selecting P13 discards P5 and vice—versa.
Set A is made of two pressure and three temperature sensors, relatively well distributed
across the engine. On the contrary, set D is truly the black sheep among the possible
instrumentation sets. It combines the five available temperatures, two almost redundant
pressures (namely P13 and P5) and no tachometer.

4.6.2 Evaluation of the sensor sets

In order to illustrate the benefit brought by optimal instrumentation, we follow a proce-
dure similar to the one used for the comparison of various flavours of the Kalman filter in
section 4.5.1. We generate a series of 200 scenarios for each of the four sensor sets listed
in table 4.24. As we formulated the selection of optimal instrumentation to estimate the
ten health parameters of the turbomachinery components, these scenarios contain only
gradual deterioration. The progressive change in engine condition is tracked by means of
the SLKF-1 type of Kalman filter.

Table 4.25 reports the RMSE, as defined in equation (4.2), evaluated over the batch of
200 no—fault scenarios and expressed in percent of the average baseline value (equal to
one here) for each of the ten module health parameters and the four sensor sets. The last
row sums up the previous ones.

The last row of table 4.9 shows clearly the influence of the sensor configuration on the
estimation accuracy. The optimal set including P49 i.e., set B leads to the lowest RMSE;,
closely followed by the optimal set C (without P49). The RMSE achieved with the
baseline instrumentation is slightly larger than the one of the optimal sensor sets. Among
the 330 possible configurations without P49, set A is ranked number 10, indeed not so
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RMSE (%) Set A Set B Set C Set D

SW12 0.133 0.102 0.083 0.656
SE12 0.263 0.174 0.163 0.075
SW2 0.025 0.206 0.235 0.198
SE2 0.217 0.146 0.153 1.172
SW26 0.218 0.198 0.177 2.121
SE26 0.123 0.211 0.109 0.736
SW41 0.020 0.050 0.079 1.102
SE41 0.085 0.107 0.083 0.240
SW49 0.139 0.020 0.115 0.710
SE49 0.167 0.122 0.151 0.346
Sum 1.390 1.337 1.346 7.356

Table 4.25: Performance of the selected sensor sets in terms of RMSE

far from the best one, set C. On the other hand table 4.9 confirms that setbf D is a true
poor performer. Indeed, its RMSE is 5.5 larger than the one of set B.

It seems worth pointing out that the criterion supporting our sensor selection is mainly
related to the variance in the estimated parameters as it is based on the Fisher information
matrix. On the other hand, the RMSE is a measure of the global estimation error that
combines both the bias and variance parts. The validation procedure tends to show that
the optimal sets according to the figure of merit (2.88) are also optimal in the RMSE
sense.

4.6.3 Observability analysis of the sensor sets

We conclude this chapter with an observabilty analysis as per the concepts defined in sec-
tion 2.5.4. Our goal is to obtain a coarse indication of how accurately a health parameter
can be estimated on one hand and how responsive a sensor is to a change in the health
condition on the other hand. This information is given respectively by the observability
and sensitivity indices.

Figure 4.14 depicts the observability indices of the health parameters for the four sensors
sets. Concerning set A, the observability index of SW2 and SW49 reaches one so these two
parameters are perfectly observable (i.e., unbiased estimates on average) The observability
levels of SW12, SW26, SE26 and SE41 are quite high. The least observable parameters
are SE12 and SW49. The optimal set B makes SW49 perfectly observable due to the
presence of the inter—turbine pressure sensor P49. On the other hand, the observability of
the health parameters of the booster and SE26 is degraded with respect to set A because
we have one less sensor in the neighbourhood of these components. This kind of “transfer
of observability” between the different parameters that depends on the instrumentation
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is a result of the underdetermined nature of the estimation problem. The optimal set
C enhances the observability of the fan, the hpc and SE2 with respect to the baseline
instrumentation. This comes at the price of a reduced observability of SW2. The situation
of set D is as expected much worse. Except SE12 that shows a perfect observability due
to the duet of sensors P13 and T13, all health parameters exhibit observability levels that
are well below those of sensor set A. This is particularly obvious for SW26 that is almost
unobservable and, to a lesser extent, for the health parameters of the booster.

1 NOGTTX

04} -
—e—set A
set B

02)- —=—set C ]
set D

oL i

SW12 SE12 SW2 SE2 SW26 SE26 SW41 SE41 SW49 SE49

Figure 4.14: Comparison of the observability indices Ol

Figure 4.15 shows the sensitivity indices of the sensor sets as computed with equation
(2.90). As a matter of fact, the bars in each subfigure sum to unity. Looking at the three
well-designed instrumentation sets (A, B and C), the spool speeds are the most sensitive
to a change in the health condition followed by the pressures and finally the temperatures
as mentioned above. Table 4.26 completes the picture by reporting the global sensitivity
of each sensor set i.e., the denominator in equation (2.90). The optimal sets B and C have
obviously the highest sensitivity. Nonetheless, the gap between set A and B is narrow.
As a further argument of its poor nature, the overall sensitivity of set D is more than one
order of magnitude lower than for the three others.

set A set B set C set D
192.52 231.90 201.83 16.37

Table 4.26: Total sensitivity of the selected sensor sets

Finally, figure 4.16 shows the unobservable directions for sensor set A. Each direction is
presented as a cobweb plot [see Butler et al., 2006] that we find convenient to plot a 10-
dimensional vector. Each spoke of the cobweb plot is associated to a health parameter, the
sign in front of the parameter’s name specifying the sense of the change. The circles are
contours of deviation magnitude and range between zero and one since the unobservable
directions are vector of unit norms. Indeed the unobservable directions are the base
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vectors of the null space of the influence coefficient matrix. As we consider a well-designed
configuration with ten health parameters and seven sensors, we have three unobservable
directions in the space of the health parameters.

Roughly speaking, the unobservable direction in the left subfigure involves the triplet
SE2, SW26 and SE26. The unobservable direction in the central subfigure impacts the
triplet SE41, SW49 and SE49 and is a well-known issue in gas—path analysis: standard
instrumentation does not allow perfect discrimination between hpt and Ipt degradation.
The unobservable direction in the right subfigure mixes SW12, SE12 and SE49. This
last subfigure explains the increasing estimation errors on these three parameters that
we observe in figure 4.5. On the other hand, the fact that SW2 and SWA41 are perfectly
observable and that we introduce correlations between the flow and efficiency factors on
each component minimises the effects of the other two unobservable directions.

+SW12 —SWi12

—swa9/ +SW2 +SW49 “\-sw2 +swag/

025 05 075 10 625 05 075 10

/—SE2  _SE41\ /+SE2

+SW26 —Sw4l —SW26
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Figure 4.16: Unobservable directions for sensor set A
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5.1 Context and motivations

ODULE performance analysis was initially formulated for a steady-state operation of

the engine, mainly for simplicity and computational cost reasons. However, we have

seen previously that the major downside associated with the processing of data collected

at a single steady-state operating point is that the resulting estimation problem is under-

determined. One of the remedies proposed in the community is to extend the analysis to

multiple steady-state operating points [Gulati et al., 2001, Gronstedt, 2002]. This solution

takes advantage of the non-linearity of the engine with respect to its operating point to
increase the informational content of the data.

In practice, collecting steady-state data of good quality can be tedious. A commercial
aircraft operates in (quasi-)steady-state at cruise and possibly at the end of the take-off
phase. A military aircraft on the other hand spends up to 70% of the time in transient
operation. In fact, stabilising an engine at a number of steady-state points turns out to be
quite a lengthy — read costly — procedure that is best achieved outside regular operations,
preferably in a test cell.

Consequently the idea emerged in the late 1980’s to try and assess the engine condition
directly from transient recordings. Much of the early research was targeted to military
applications and was of qualitative nature i.e., concerned with the detection of a change
in the engine condition. The first efforts [Henry, 1988, Cue and Muir, 1991, Eustace et al.,
1994] were dedicated to the derivation of so-called signatures, in both healthy (new and
clean) and deteriorated conditions, from transient manoeuvres representative of take-off
accelerations. The implanted fault types were mainly of mechanical nature, such as biased
variable guide vanes, biased nozzle area and customer bleed leak. Malfunction of various
sensors was also investigated. The signatures take the form of a time trace of the gas-path
measurements (figure 5.1(a)) or a cross-plot of two gas-path measurements (figure 5.1(b)).
This research also scrutinised the factors that impact the repeatability of the data, such
as ambient conditions and rate of change of the throttle lever.
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time Corrected fan speed
(a) Time trace (b) Correlation between gas-path sensors

Figure 5.1: Signature of deterioration on the transient response of an engine
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Soon enough, trend monitoring based on transient data was formulated as an estimation
problem. In a first step, the goal was to estimate the parameters of transfer functions that
model the dynamic response of the engine [Merrington, 1988]. Equation (5.1) shows such
a transfer function that approximates the response of the fan speed with respect to the
fuel flow as a first order dynamic system. Deterioration modifies that relationship which
translates into changes in the static gain K and the time constant 7. These changes in
the dynamic characteristics can then be correlated to particular engine faults. Additional
studies [Merrington et al., 1991, Merrington, 1994] investigated the influence of various
effects such as heat soakage, under-modelling and linearisation errors on the effectiveness
of the estimation scheme.

ONF = K
1

TS

SWF (5.1)

The most important findings that were extracted from these studies are that:

e some faults appear only during transient operation but could seriously degrade the
operability of the engine in its whole envelope e.g., misscheduling of the variable
nozzle,

e transient records provide significant diagnostic content,

e transient data is more sensitive to faults thereby facilitating their detection, locali-
sation and quantification.

The estimation problem turned then to a more quantitative formulation with the use of
state variable models incorporating health parameters similar to those found in steady-
state MPA (i.e., correcting factors on the flow capacity and efficiency of the modules). The
earliest publications [Luppold et al., 1989, Kerr et al., 1992] seem to favour the Kalman
filter to estimate the health parameters. Later, various techniques used in steady-state
analysis made their way to the transient realm. These include artificial neural networks
[Li, 2003, Sampath et al., 2003], genetic algorithms [Ogaji et al., 2003] and traditional
least-squares [Gronstedt, 2005]. These batch methods rely on a so-called accumulated
deviation, defined in equation (5.2) to evaluate the engine condition. The accumulated
deviation can be visualised by the shaded area in figure 5.1(a). Next to these batch
approaches, further studies on the effectiveness of a sequential treatment of the data
by means of the Kalman filter are also reported in the recent literature [Dewallef and
Léonard, 2003, Kobayashi et al., 2005].

sy [ty -"0) ar 52

Transient diagnostics was advocated as a palliative to the underdetermined nature of
the estimation problem. As paradoxical as it can be, most of the references cited above
consider “well-posed” estimation problems, i.e., configurations for which the number of
gas-path measurements is at least equal to the number of health parameters. Nonetheless,
a common outcome of these studies consists in an improvement in the accuracy of the
health parameter estimates with respect to the results obtained with steady-state data.
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Most authors relate this improvement to a better information content of transient data
than steady-state one, yet it seems relatively difficult to provide a generic proof that
supports this observation. In a recent contribution [Borguet et al., 2011], we proposed
a theoretical framework that formalises the benefit of transient analysis for a particular
class of input signals.

Another important issue concerns the quality of the performance deck. If steady-state
models of high fidelity can be obtained relatively easily, transient models on the other
hand are recognised to suffer from modelling errors. The influence of these errors on the
estimation accuracy as well as ways to cope with them have been the topic of several
studies as we will see later.

The remainder of this chapter reports our contributions to module performance analysis
based on transient data. In section 5.2 we point out the differences between steady-
state and transient analysis. Then we extend the performance monitoring tool based on a
Kalman filter to the processing of transient data. Section 5.3 addresses the issue of model-
plant-mismatch, i.e., using a model that is not perfectly faithful. We propose an original
approach that mixes the physics based, imperfect model with a black-box component
to improve the robustness of the diagnosis tool with respect to these modelling errors.
Finally, these theoretical developments are assessed on simulated scenarios. The results
obtained on an underdetermined configuration are presented and discussed in section 5.4.

5.2 Changes with respect to the steady-state case

5.2.1 The engine model

We saw in section 2.1.2 that the application of the equations of conservation of mass,
momentum and energy to the components of the engine flow path leads naturally to a
non-linear state-space model in continuous time:

x(t) = Jfe(x(t),u(t),h(t)) (5.3)
y(t) = g(x(t),u(t),h(t)) (5.4)

where x are the dynamic state variables associated to the transient phenomena (e.g., spool
speeds for the shaft inertia, metal temperatures for the heat soakage), x stands for the
time derivatives of the states, u are the input signals, h are the health parameters and y
are the gas path measurements.

The continuous-time nature of the dynamic equation (5.3) is not quite suited for the
sequential processing of data on a digital computer. Hence, the equation is integrated
over one time step and under the zero-order hold assumption (i.e., the value of the input
signals is constant over the time step). As no analytical formulation of the vector function
fe is available, it is integrated numerically to lead to its discrete time counter-part (5.5).
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On the other hand, the static equation (5.4) generating the measurements is valid in both
time settings.

Xp+1 = f(Xk,Uk,hk)

Yi = G(xg,ug, hy)

Finally, following the example of the statistical model used in steady-state, we acknowl-
edge the fact that the transient model contains some inaccuracies and that the measure-
ments are corrupted by noise. Moreover, we complement the description of the system
with a random walk for the temporal evolution of the health parameters which leads to
the following set of equations:

hit1 = hy+w; with wy € N (0, Qn k)
Xpr1 = ]:(Xk, ug, hk) + vy with v, € N(O, Qx,k) .
Ye = Q(xk, U, hk) + €L Wlth €L € N(O, Ry’k) (59)

where the random vectors wy, v and €, are respectively the process noise for the health
parameters, the process noise for the state variables and the measurement noise. They
are assumed to be zero-mean, white, Gaussian and independent of each other.

5.2.2 The dual estimation problem

Performance trending based on transient data can be cast as an estimation problem. Let
us again define the residual ry as the difference between the actual measurements y; taken
on the engine and some prediction y, from the simulation deck. For transient operation,
the residual is a function of both the health parameters h; and the state variables x:

e = yr — Yo = f(xi, hg) (5.10)

In fact the prediction of measurements with the transient simulation deck (i.e., the de-
terministic part of equation (5.9)) requires that values for the health parameters hy and
the state variables x; be provided in addition to the control inputs uy:

Vi = G(xk,ui,hy) (5.11)

Consequently, two tasks must be simultaneously carried out during transient performance
monitoring: i) the estimation of the state variables x; associated to the engine dynamics,
and ii) the estimation of the health parameters hy reflecting the degradation of the engine.

Such a situation where both the model parameters and the state variables must be deter-
mined from the same stream of noisy measurements is known as the dual (read double)
estimation problem [Wan and Nelson, 2001]. Estimates of these quantities are obtained
by minimising the distance between the actual and predicted measurements, according to
some metric specified by the scalar-valued function py:
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<Hk7§(\k) = arg lriuxri {pk(yk — S(\,;)} (5.12)

For sake of completeness, let us mention that the dual estimation problem can be simplified
in the case of a batch processing of the data. Assuming that the health condition does not
change during the collection of the data and that the engine is initially at steady-state,
the problem reduces to the estimation of the constant health condition h. This can be
solved with proven techniques, see [Loisy et al., 1992].

These simplifications do not match our requirements of a sequential processing of the
data under a possibly time-varying health condition. As a result, we have to stick to
the dual estimation framework that is illustrated schematically in figure 5.2. The “dual
estimation procedure” box hides the resolution of the minimisation problem (5.12). If we
assume that the states and the health parameters are Gaussian random vectors and that
the system is linear, the choice of the mean-square error as the cost function p; leads to
the Kalman filter as we saw in chapter 3.
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Figure 5.2: The dual estimation problem

The Kalman filter can be applied in two ways to the dual estimation problem. In the
joint estimation approach, the states and health parameters are concatenated into one
augmented state vector that is estimated with a single Kalman filter. Although it was
successfully applied to engine health monitoring [Kobayashi and Simon, 2003, Kobayashi
et al., 2005], the joint approach was also reported to suffer from instability problems in
other applications [Wan and Nelson, 1996].

The alternative is to handle the dual estimation task by running two Kalman filters
concurrently, one dealing with the estimation of the health parameters and the other,
with the estimation of the state variables. We prefer this dual Kalman filter approach to
the joint one given the different time-scales associated with the engine dynamics (rather
fast) and with the health parameters (much slower) [Borguet et al., 2005]. Moreover, this
implementation allows to tune each estimation procedure to its characteristics. The next
section describes in more details the principle of operation of the dual Kalman filter.
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5.2.3 The dual Kalman filter

The dual Kalman filter was successfully applied in numerous fields as various as speech
processing [Wan and Nelson, 1997], training of neural networks [Ciocoiu, 2002], aero-
dynamic characterisation of spacecraft [VanDyke et al., 2004] and geophysics modelling
[Gove and Hollinger, 2006]. All these systems are genuinely non-linear and require ad hoc
extensions of the Kalman filter to solve the dual estimation problem. We also use non-
linear filters in the case of transient performance monitoring. Indeed, typical manoeuvres
span the whole power range of the engine at several points in its flight envelope.

Figure 5.3 illustrates the aforementioned structure of the dual Kalman filter that decom-
poses the dual estimation problem into separate state estimation and parameter estima-
tion blocks. At time step k, both filters are fed with the most recent estimates of the states
X,—1 and of the parameters h,_; as well as with the latest measurements y, and inputs
ui. Basically, each filter updates one of the two vectors of interest assuming the other one
is known. This is akin to optimising a multidimensional objective function by optimising
one argument at a time while the others are fixed. As we have only access to estimates of
the states and parameters, we should take into account the influence of their respective
uncertainty on the other quantity that we estimate [Nelson, 2000]. Such an error-coupling
strategy allows to account, at least approximately, for the cross-dependencies between the
states and the parameters that appear explicitly in the joint approach.

unit delay |«

" state variable estimation

health parameter estimation

unit delay |«

Figure 5.3: Structure of the dual Kalman filter

It is worth mentioning that in contrast to batch methods, the present technique does
not provide the actual trajectory of the system in the state space due to the estimation
error on the health parameters. Nonetheless, as the estimated health parameters converge
toward their actual values, the estimated state trajectory gets closer to the true one. It
is not a drawback per se since our foremost interest is in the health parameter values.

We have implemented both the extended and unscented Kalman filters for our transient
performance monitoring tool. These algorithms were derived in chapter 3 under the
assumption of a steady-state operation. In the following, we focus on the modifications
brought to deal with the peculiarities of a processing of transient data.
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Algorithm 5.1 Extended Kalman filter for state variable estimation

Require: X, and Py
1: for k=1to N do
2 X = F(Rk_1, up, he_y)
3:  Compute Jacobian matrix Fy as per equation (5.15)
4: P;k = FyiPxi—1 sz + Qu i + Panx i1
5. 1y ZYk—g(ig,uk,ﬂk—l)
6:  Compute Jacobian matrix Gy as per equation (5.16)
T Pyr = GeiPGrr + Ryi + Pyny i1
8 Ki=P, Gl P,
9 X=X, +Kiprg
10: Py = (1= Ky Gep) Py (1= Ki Gyi)™ + Ky Ry i Kf
11: end for

Algorithm 5.2 Unscented Kalman filter for state variable estimation

Require: X, and Py
1: for k=1to N do
2 X=X X1 +7y/Priot X1 — 7Pt
3 Xi;s’ :f(Xi,k—lauk,Hk—l) 1=0,1,...,2n,

2Ny

%=y Wiy
1=0
2Ny
5 P=> WX — %) (X — %07 + Qui + Pancit
=0

o =[5 %P % -1y
7 ik =G(Xipuphpy) i=0,1,...,2n,

2Ny

8 ¥y, = Z Wi(m)yz',k
=0

9 =Y —Y,

2Ny

10:  Pyp= Z Wz‘(c) (Vig — /y\I;)<yi,k - yi;)T + Ryk + Pyhyr—1
i=0

21y

1: Pyu= > WX = %) Vi — 7))
=0

12: Kk = ny,k P;’,l€

13: S(\k = /)E; + K 1

14: Px,k = P;,k — Kk Py,k K{

15: end for
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Estimation of the state variables

In the framework of module performance analysis, some states (e.g., the spool speeds)
are measured while others (e.g., metal temperatures) are not measurable. It is in fact
quite difficult to define a representative carcass temperature for the heat soakage from a
reasonable number of thermocouples.

The estimation of the states of a dynamic system was the original scope of Kalman’s work
in the early 60’s [Kalman, 1960]. As stated above, we estimate the state variables at time
step k assuming that the health parameters are fixed at their latest available estimate
h;_;. Consequently, we rely on the following state-space model:

i = F(xpo1,uphpy) + v, (5.13)
Yo = G(Xp ug, hp_1) + € (5.14)

Algorithm 5.1 describes in pseudo-code style the operations involved within the extended
Kalman filter. As both the state transition and the measurement equations are non-linear,
we have to compute two Jacobian matrices in order to assess the Kalman gain. These
Jacobian matrices (5.15) and (5.16) give respectively the sensitivity of the updated states
and of the measurements with respect to the states.

h
Fo = Zuwh) (515)
X u=uy; h=h,_1;x=%X}_,
h
Gy = % (5.16)
X u:umhk:ﬁk_ux:?;

Algorithm 5.2 describes in pseudo-code style the operations involved within the unscented
Kalman filter. We notice that the unscented transform (see section 3.3.3) is called twice
due, again, to the non-linearity of both equations in the state-space model (5.13-5.14).
The state transition equation is applied to sigma points sampled from the distribution of
the previous state estimate while the measurement equation is applied to sigma points
sampled from the distribution of the prior state estimate, in the manner of the evaluation
of the Jacobian matrices Fyj and Gy, respectively at X,_; and X; .

The matrices Pyny -1 and Pynyr—1 appearing at lines 4 and 7 in the extended Kalman
filter and at lines 5 and 10 in the unscented Kalman filter embed the uncertainty in the
health parameters into the state estimation process. We discuss them in more details in
the section dedicated to the error-coupling strategy.

Both filters are quite equivalent from the viewpoint of computational cost if the Jacobian
matrices in the EKF are evaluated via a centred-difference scheme. The number of calls
to the non-linear performance model amounts in that case to 2(2n, + 1) at each time
step.
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Algorithm 5.3 Extended Kalman filter for health parameter estimation

Require: HU and P

1: for k=1to N do

2. h; =h,_,

30 Phup=Pni—1+ Qus

4 ry ZYk_M(S(\k—luuk;H;)

5 Compute Jacobian matrix My as per equation (5.20)

6:  Pyr=MuiP ML+ Ry + Py i

T Kp=P Ml Py

s hy=h. +Kg.r

9: Pnp=(1—KiMpyp) P (1 = K, M i)” + Ky Ry x KE
10: end for

Algorithm 5.4 Unscented Kalman filter for health parameter estimation

Require: i'l\g and Py
1: for k=1to N do
2: i‘l\,; = i’l\k_l
3 Pup=Pnra+ Qn

4: Hk—l = |:h]; h;; + 7y P;,k h]; -7 PI:,k::|
5 Vik = MXp—1,up, Hip—1) 1=0,1,...,2n

2np

6y, = Z M/Z-(m)yi,k
=0

T =Yi— Y,

2np

8 Py = Z Wz‘(c) (Vig — /y\I:)<yi,k - yi;)T + Ry + Pyxy i1
i=0

2np,

9:  Puyr = Z W, (Hig—1 — h) ) Vi = ¥)"
=0

10: K. = PhyJCPy_,Ilg

11: il\k = i’;; + Ky, 1,

12: Ph,k = PI:,k — K, Py,k Kg

13: end for
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Estimation of the health parameters

The estimation of the health parameters from a transient data stream is conceptually
identical to its steady-state counter-part that we considered in chapter 3. The major
difference lies in the fact that the measurements depend also on the states in the present
case. Furthermore, the state vector is itself a function of the health parameters. Con-
sequently, the state-space model relies on a modified measurement equation that makes
this dependence explicit:

h, = he +wy (5.17)
Y = M(Xgp_1,ug, hy) + € (5.18)

The non-linear function M results from the aggregation of the state transition equation
(5.5) and the measurement equation (5.6) and is readily available from a performance deck.
Interestingly, this transformation allows the measurements y; to be predicted based on
the state estimate at the previous time step X,_; which fits into our formulation of the
dual estimation problem.

f(xk—lu ug, hk)
G (xx, ug, hy)

X
Y&

} = yr = M(x4—1, up; hy) (5.19)

Algorithm 5.3 describes in pseudo-code style the operations involved within the extended
Kalman filter. The similarities with the extended Kalman filter for steady-state data
(see algorithm 3.2) are obvious. The Jacobian matrix (5.20) gives the sensitivity of the
aggregated measurement model with respect to the health parameters. It is equivalent to
the computation of the total derivative of equation (5.6) with respect to the parameters.

~ OM(x,u,h)

My = =2 (5.20)

Uu=ug; h:h; 5 X:ik,1

Algorithm 5.4 describes in pseudo-code style the operations involved within the unscented
Kalman filter. Due to the linearity of the transition model for the health parameters, we
perform the unscented transformation only on the measurement equation. This limits the
number of calls to the non-linear performance model to (2n;, + 1) at each time step.

The matrix Pyyy, 1 appearing at line 6 in the extended Kalman filter and at line 8 in the

unscented Kalman filter embeds the uncertainty in the state variables into the parameter
estimation process. We discuss it in more details below.

Error-coupling strategy

As stated above, the tenet behind the dual Kalman filter is to split the dual estimation
task into two blocks. For sake of clarity, let us consider the state estimation problem.
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The discussion below can obviously be transposed to the health parameter estimation
problem mutatis mutandis. The Kalman filter estimates the state vector while the health
parameters (the other unknown in our dual estimation problem) are fixed at their latest
estimates. In the algorithms (5.1-5.2), we call the performance model with the mean
value of this estimate. However, in the Kalman filter framework, the health parameter
estimates are not deterministic variables, but Gaussian random variables. We should
therefore incorporate the available information about the error in this estimate, which is
conveyed by its covariance matrix.

The approach taken here to feedback the uncertainty in one quantity (the health param-
eters) into the filter estimating the other quantity (the state vector) is identical to the
way we dealt with the influence of the noise on the operating conditions over the residuals
(see section 2.1.3). As a reminder, we increased the uncertainty in the prediction error by
using a modified measurement noise signal whose variance was larger than the nominal
one.

Transposing the technique to the state estimation problem, we first realise that the health
parameters appear in both the state transition (5.13) and the measurement (5.14) equa-
tions. As a result, the variance of both the process noise v, and the measurement noise €
are complemented respectively with the matrices Pyny r and Pyny i which basically project
the uncertainty in the health parameters onto the state and measurement spaces. In the
EKF framework, these two matrices are evaluated through:

Put = Mg, Phg ME: (5.21)
Pynys = Mk Phix My, (5.22)
with
. OM*(x,u,h
hk = % (5.23)

u=uyg; h:ﬁ; IX=Xp_1
where the function M* stands for the aggregated model M that outputs the states instead
of the measurements.

The case of the health parameter estimation problem is somewhat simpler given that the
states appear in the measurement equation (5.18) only. The variance of the measurement
noise is complemented with the matrix Pyyy 1 that projects the uncertainty in the states
onto the measurement space. In the EKF framework, the matrix is computed through:

Pyxy,k - Gx,k Px,k Gz:k (524)

In our implementation of the dual Kalman filter, the matrices Pyny i and Pyny . are eval-
uated inside the health parameter filter while the matrix Py, is evaluated in the state
filter. The matrices are exchanged between the filters with a one-step delay, as indicated
by the time index k& — 1 in algorithms (5.1-5.4). A direct benefit of this approximation
is that no additional call to the performance model is required to assess these matrices.
As a side note, the error-coupling strategy extends to the UKF framework, where the
unscented transform replaces the Jacobian matrices to project the uncertainty.
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5.3 Improving robustness to model-plant-mismatch

5.3.1 Context

The vast majority of the literature about module performance analysis based on transient
data assumes the availability of a perfectly faithful simulation model. Nonetheless, this
hypothesis is rarely met in practice. In fact, complex phenomena such as heat transfer,
volume dynamics, clearances, secondary airflows and power off-takes to name a few are
poorly (or even not at all) modelled in current state-of-the-art aero-thermodynamic mod-
els [RTO, 2002, Nielsen et al., 2005]. Consequently, the measurements predicted with the
simulation model are biased with respect to the actual measurements taken on the engine.
Such biases are generally called model-plant-mismatch or modelling errors.

As reported by Volponi [2005], model-plant-mismatch has a detrimental effect on the
accuracy of the estimated health parameters. We recall that the principle of operation of
the Kalman filter consists, loosely speaking, in modifying the health parameters so as to
drive the residuals to zero on average. If the residuals contain modelling errors in addition
to the signature induced by engine deterioration, the health parameters lose their useful
meaning for diagnosis and become mere tuners that capture the modelling errors. In this
respect, Muske and Badgwell [2002] adopted such a solution in the framework of robust
adaptive control. They introduced dummy parameters in their physics-based model of a
distillation column to cancel the model-plant-mismatch.

In order to maintain a good diagnosis capability we have to take the model-plant-mismatch
into account in our estimation procedure. Reinelt et al. [2002] review different methods
used in robust identification to model modelling errors. Three approaches have emerged:

1. stochastic embedding is a frequency domain method where the non-modelled dynam-
ics are represented by a non-stationary stochastic process whose variance increases
with frequency. This comes down to encircle the nominal transfer function with an
uncertainty tube whose size grows with increasing frequencies (see figure 5.4(a)),

2. model-error modelling consists in building a model of the residuals (i.e., the differ-
ence between the gas turbine response and its physics-based model) by means of
system identification techniques. The combination of the physics-based model and
the residual model enhances the fidelity of the predictions (see figure 5.4(b)),

3. set membership provides a set of feasible models for a given batch of input-output
data under the assumption of an unknown-but-bounded modelling error.

To the best of the author’s knowledge, only the first two approaches made their way
to module performance analysis. On one hand, Yedavalli and Li [2007] developed a
robust algorithm for fault detection based on adaptive thresholding. The dynamics of
the threshold is computed from the uncertainty associated to the engine model. The
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Figure 5.4: Modelling model-plant-mismatch

technique was found to decrease significantly the false alarm rate caused by modelling
errors. Unfortunately, this work tackled only the detection part of the diagnosis task due
to the qualitative nature of the stochastic embedding approach.

On the other hand, Volponi and his coworkers followed the model-error modelling ap-
proach to design so-called hybrid models. Basically, a hybrid model combines a traditional
aero-thermodynamic model (or a linearised version thereof) and an empirical (black-box)
component. In [Volponi, 2005], the empirical component consists in a neural network
whose purpose is to reproduce the modelling errors. The neural network is trained from a
database of residuals collected on an engine supposed in a reference health condition. The
work reported by the team covers many issues encompassing the modelling of model biases
from mild transients [Brotherton et al., 2003], the coverage of the whole flight envelope
[Volponi and Brotherton, 2003] and the implementation on airworthy computers [Volponi
et al., 2007]. Used in a Kalman filter framework, the hybrid model improved dramatically
the accuracy of the health parameter estimates in contrast to the physics-based model
alone.

Due to the finer description of model biases it provides, the hybrid model approach en-
hances the fidelity of the predicted measurements and leads therefore to more quantitative
results than the stochastic embedding approach. For sake of completeness, we shall men-
tion that Bird and Schwartz [1994] already advocated the concept of hybrid model as a
means to achieve robust fault detection and isolation in transient operation.

Part of our research [Borguet et al., 2008] also addressed the use of hybrid models to
deal with model-plant-mismatch. In that publication, we selected a response surface
model as the empirical component and witnessed a noticeable improvement in the esti-
mation accuracy for a simplified diagnosis application. In the next section, we present
our methodology for taking into account the model biases in the estimation procedure
and we discuss the integration of our black-box component, called the bias compensation
module (BCM), with the dual Kalman filter.
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5.3.2 Dealing with model biases in the estimation procedure

Going back to the state-space description, the model-plant-mismatch results from approx-
imations in both the state transition equation (5.8) and the measurement equation (5.9)
with respect to the actual behaviour of the gas turbine. A possible mathematical trans-
lation of this fact is to consider that neither v nor €, are zero-mean, Gaussian random
vectors. However, only the input/output data streams (i.e., the sequence of controls uy
and gas-path measurements yj) are available in practice. From this external viewpoint,
model biases look similar to sensor malfunctions.

Consequently, we propose to gather all the effects caused by model biases in the noise
term of equation (5.9). The Gaussian random vector €, has now time-varying properties
and combines the sensor inaccuracy and the model biases. As can be seen from equation
(5.25), both the mean and the covariance matrix of €, are adapted. The mean value by
obviously represents the average model bias for the operating point at time step k. The
covariance matrix Rpk accounts not only for the sensor uncertainty (similarly to Ry ),
but also for a possible local inaccuracy of the mean bias value.

€ € N(O, Ry7k) — € € N(bk, Rb,k) (525)

This revised definition of the noise term €; leads to two changes in the dual Kalman filter,
one impacting the mean value and the other, the covariance of the residuals. Considering
the mean value, relation (5.26) indicates that the mean bias by is added to the predicted
measurements y, to form the outputs of the hybrid model. Considering the covariance,
the matrix Ry replaces the matrix Ry used so far.

=Y —Y, — =Yy~ (¥, +bx) (5.26)
Ryk  —  Rix (5.27)
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Figure 5.5: Integration of the bias compensation module with the dual Kalman filter




136 Chapter 5. Diagnostics in transient operation

Figure 5.5 shows the block diagram of the modified diagnosis algorithm. Conceptually,
the only change with respect to the basic algorithm of figure 5.2 resides in the addition of
the bias compensation module (BCM) to the biased physics-based model to form the so-
called hybrid model delimited by the dashed perimeter. Given that the performance deck
alone incorporates state variables and health parameters, the bias compensation module
is called outside the dual estimation procedure and its outputs by and Ry are handed
to each Kalman filter in the practical implementation. In the next section, we detail the
structure of the bias compensation module.

5.3.3 Inside the bias compensation module

As stated above, model-plant-mismatch resembles sensor errors from an operator’s point
of view. However, unlike sensor errors, which are totally random, model biases have a
much more predictable nature. Consequently, they can be studied beforehand, for example
during the acceptance tests that every engine undergoes before it is put into service.

During this learning phase, outputs of the physics-based model are compared to the
observed measurements without estimating the health parameters which are assumed to
be at their reference level. As the model is not perfect, the residuals ry identify with the
model-plant-mismatch. The next step of the learning phase consists in characterising the
mean by and the covariance matrix Ry of the observed biases.

Modelling the mean bias by

Modelling the mean bias by is a so-called system identification exercise. Numerous text-
books address this problem in an exhaustive way, see for instance Ljung [1999]. Basically,
system identification consists in selecting a class of models ‘H and determining parameters
p of the model to fit a batch of noisy input-output data. The model for the mean bias
takes the generic form of equation (5.28). The mean bias at time step k, by depends on
the controls at time step k, uy, as well as on lagged values of itself and of the controls. In
fact, the model of the mean bias is identified at the baseline health condition of the engine.
The random vector ¢, includes the measurement noise and other possible perturbations.

b, = H(ux, p) + ¢, (5.28)

This formulation suffers from the fact that by represents the difference between two non-
linear systems that are respectively the real engine and the biased aero-thermodynamic
model. To find a class of models suitable for representing these differences turns out to
be quite tedious. As a palliative, we decide to identify a black-box model of the real
engine instead, which comes with some advantages. First, the real engine is a nonlinear
system that obeys physical laws, much like any other engineering system (e.g., a satellite,
an electrical engine). Second, such black-box models of the engine are used throughout
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the development and operational stages of an engine’s life. Third, this approach allows to
bring evolutions in the performance deck without having to re-identify the bias model. On
the other hand, the major flaw lies in the introduction of additional model-plant mismatch
in case of a not-accurate-enough black-box model.

The identification of dynamic models of jet engines has been widely addressed both at
the local (linear) and global (nonlinear) levels [Arkov et al., 2000, Evans et al., 2001,
Boaghe et al., 2002, Chiras et al., 2002] due to their abundant use at the control system
department of engine manufacturers as previously said. We have selected the class of
Wiener models to capture the behaviour of the engine. Wiener models combine a Linear-
Time-Invariant dynamic system in series with a static output nonlinearity, as sketched in
figure 5.6 and have already been applied successfully to the modelling of gas turbine by
other authors [Chiras et al., 2001, Kulikov and Thompson, 2004].

" § LTI YiTIk | static output
k : dynamic system non-linearity

Figure 5.6: Sketch of a generic Wiener model

In the application reported in section 5.4, the dynamic part of the model is represented
by a rational transfer function H(z) and the static nonlinearity h(-) is a piecewise linear
function. The parameters of the model are therefore the location and number of the poles
and zeros of the transfer function as well as the location and number of breakpoints of
the piecewise linear function. Mathematically, our Wiener model writes:

Yirre = H(z) ug (5.29)
Ye = h(YLTI,k)-i—Ck

where z is the discrete time shift operator

Although the engine is a true multi-input, multi-output system, we set up one Wiener
model for each gas-path sensor. Considering the inputs, we mentioned earlier that the
main control variable is the fuel flow, variable geometry devices such as stator vanes
and bleed valves being scheduled on engine parameters such as corrected speeds. To
further simplify the identification procedure, we reasonably suppose that the model biases
are collected at a single atmospheric condition, the one prevailing during the pass-off
test. As a result, we identify n, single-input (the fuel flow), single-output (each of the
gas-path sensors) Wiener models. As the development of algorithms dedicated to the
identification of Wiener models is beyond the scope of the present work, we rely on the
System Identification toolbox built in Matlab to perform the task.
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Computation of the covariance matrix Ry

Once the model of the mean bias is available, we can assess its covariance matrix Ry k. Let
us recall that Ry is intended to capture both the uncertainty due to the measurement
noise and possible inaccuracies in the model of the mean bias. Similarly to the stochastic
embedding approach, we assume that the fidelity of the mean bias model decreases when
the “intensity” of the transient increases. We motivate this assumption by the fact that
it is relatively easier to obtain an accurate aero-thermodynamic model of (quasi-)steady-
state operation than of severe transient operation (e.g., slam or bodie manoeuvres). To
carry on the comparison with the stochastic embedding, the confidence region around the
mean bias model, represented by the covariance matrix Rpk is here scheduled with an
indicator of the “intensity” of the transient in lieu of the frequency.

For sake of effectiveness, the intensity indicator shall be a scalar quantity easy to compute
from the various data streams involved in the bias compensation module. We define the
transient index Tl as:

Tl = i Xi(i) (5.31)

ng <= xI (1)

where n, is the number of state variables of the on-board model, Xk (7) is the derivative of
state variable i at time index & and x"¢/(7) is the reference value of the ith state variable
(e.g., at take-off rating). The units of Tl are s™!. The normalisation by a reference
state value is required given the different orders of magnitude of the state variables. The
transient index is zero in steady-state operation, positive when the engine is accelerating

and negative otherwise.

Equation (5.31) shows that the transient index is computed from the state derivatives
provided by the biased performance deck rather than from measurements taken on the
real engine. Three reasons dictate this choice: first, the engine model produces noise-
free signals and outputs directly the state derivatives. Second, not all state variables
are measurable on the real engine (e.g., the metal temperatures involved in the heat
transfers), but are available in the engine model. Third, it avoids the computation of
numerical derivative, a process that is generally very sensitive to the noise level. It would
be illusory to evaluate the functional dependence of Ry x with respect to Tl. Therefore, we
chop the Tl axis in a small number of segments (e.g., sharp deceleration, mild deceleration,
quasi-steady, mild acceleration, sharp acceleration) and evaluate one covariance matrix
per interval.

The procedure to compute Ry over a generic segment [T, TIMAX ] is given in algorithm
5.5. As a first step, the gap between each data point and the mean bias is computed for
all data points belonging to the particular segment (lines 2 to 5, note that each vector e;
is a ny x 1 vector). Finally, each element of the symmetric covariance matrix is obtained
using the well-known definition of the covariance of random variables (line 6).
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Algorithm 5.5 Covariance matrix computation

set N =0

. for all k such that TI™" < Tl < TIM4X do
N=N+1
ey =1r; — bk

end for

N
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It should not be surprising that some off-diagonal terms of the matrix Rpx are non-zero.
This simply indicates that the model biases are inter-dependent as the modelling errors
introduce some relationships between the measurements. For instance the bias on the
EGT sensor measurement is linked to that of low pressure spool speed, since temperature
recovery factor for thermocouples varies with mass flow.

Extension of the BCM to other flight conditions

The bias model is built from a database collected at one point in the flight envelope and
is therefore valid at that particular point. However, the engine will obviously be operated
at several other points in its flight domain during its life. This raises the question of the
extension of the bias model to the whole operating envelope.

A first solution would be to collect additional mismatch data at a number of atmospheric
conditions, but we already mentioned the difficulty to achieve it in practice. Another
solution consists in having recourse to the so-called corrected parameters which rely on
similarity laws and first order approximation of the aero-thermodynamic processes. The
idea behind similarity laws is to define dimensionless groups of parameters that are as-
sociated with the flow field in the engine. These corrected parameters allow comparison,
generally on a Mach number basis, of the performance of the engine operating under differ-
ent atmospheric conditions. As a reminder, the general expression to correct a parameter
X is given by:

X
R
where § = T2/288.15 K and § = P2/101325 Pa.

X0 (5.32)

Parameter correction is a well-established practice and the theoretical values of exponents
a and b for the variables of interest can be found in many references, see for instance [Walsh
and Fletcher, 1998] or [Volponi, 1999]. Yet, additional effects, such as the modification
of the thermo-physical properties of the working fluid, Reynolds number effects or geo-
metrical effects (e.g., clearance, blade untwist) make the engine behaviour deviate from
the assumptions of the Mach number similarity. As a remedy, the a and b exponents for
each parameter involved in the BCM can be fine-tuned as explained by Kurzke [2003] to
further improve the accuracy.
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Practical implementation

Figure 5.7 shows the different components and main data streams of the bias compensation
module. As a first step, the main input (fuel flow) is corrected to ISA-SLS conditions
before entering the core of the BCM. Note that all variables appearing inside the dashed
perimeter are corrected quantities.

The corrected fuel flow feeds on one hand the Wiener models that generate corrected
outputs Yy representative of the real engine at baseline health condition. On the other
hand, the biased performance deck (the same that is used in the dual Kalman filter)
also receives the corrected fuel flow on input and outputs gas path measurements y for
ambient conditions set to ISA-SLS and health condition fixed at its reference value. The
corrected mean bias is computed as the difference between the Wiener models and the
performance deck outputs. It is then “un-corrected” back to the current atmospheric
conditions to provide the actual mean bias b, that is used in the computation of the
residuals, see equation (5.26).

~hl
The biased physics-based model also outputs the state derivatives x; that are converted
into the transient index Tl; defined previously. Finally, the adequate covariance matrix
Rpk is selected from a predefined bank based on the transient index value.
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Figure 5.7: Structure of the bias compensation module

As can be noted from figure 5.7, the mean bias by is “un-corrected”, but not its associated
covariance matrix Rp . Doing so, we implicitly assume that the uncertainty in the mean
bias is constant throughout the flight domain. It means that the highest contribution
to the uncertainty is the measurement noise (the magnitude of which is here supposed
independent of the operating conditions) rather than the inaccuracy in the mean bias
model.
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5.4 Application of the methodology

This section is dedicated to the evaluation of the potential benefit that can be achieved
from the processing of transient data by means of the dual Kalman filter presented above.
For the very same reasons as in chapter 4, the assessment is again carried out on the basis
of simulated test-cases. In section 5.4.1, we describe the transient capabilities offered by
the OBIDICOTE model and present the test-cases. Section 5.4.2 provides a comparison
of the estimation accuracy of the transient method with respect to the steady-state one in
the case of a perfect performance deck. Finally, section 5.4.3 illustrates the enhancement
in estimation accuracy offered by the hybrid model approach in the case of a biased
performance deck.

5.4.1 Setting up the engine model and the test-cases

The OBIDICOTE model is used both at the test-case generation stage, mimicking a real
engine, and at the data processing stage, as a classical performance deck. For sake of
clarity and with some abuse of language, we will therefore refer to the OBIDICOTE
model as the “real engine” when it is used for data generation whereas we will name it
the “on-board model” when it is used for data processing.

For the creation of the transient test-cases, we add a basic control system to the real
engine. The percent corrected fan speed PCNF serves as the thrust setting parameter.
It is indeed well correlated with the fan airflow and, as such, with the delivered thrust
given that the fan is responsible for more than 80% of the total thrust in high by-pass
ratio turbofan engines. The control system and the PCNF scale are presented in appendix
B. The engine control system translates the PCNF request into a fuel flow demand.
The variable geometry devices (vbv and vsv) still follow a static schedule based on the
corrected spool speeds.

At the test-case generation stage, the atmospheric conditions are again specified through
the triplet formed by pressure altitude ALT, flight Mach number MN and the temperature
offset with respect to a standard day DTisa. On the other hand, the on-board model is fed
with the inlet total pressure P2 and temperature T2 and the ambient pressure Pamb. As
the collection of transient data can theoretically take place anywhere in the flight envelope,
a complete description of the thermodynamical state of the ambient air should include
an information about its moisture content. In fact, the humidity level of a mass of air
modifies its density and consequently affects the engine performance. Although neglected
in the simulated test-cases, the effect of humidity could quite easily be accounted for as
we will see below.

The deterioration level of the engine is described through ten health parameters which
are correction factors on the efficiency (SEi) and flow capacity (SWi) of each rotating
component as illustrated in figure 5.8. Unlike in the steady-state test-cases, we do not



142 Chapter 5. Diagnostics in transient operation

consider here parameters related to the working condition of the variable geometry devices.
Let us take the case of the bleed valves. When functioning nominally, they are open at
low power (idle regime) and progressively closed as the engine reaches full power (take-off
regime). In the case of a failed bleed valve that is stuck open, it means that a parameter
attached to its health condition will vary depending on the operating point. For sake of
simplicity, we restrict to health parameters that are constant throughout the test-case.

SW12 SW2 SW26 Sw41 SW49
SE12 SE2 SE26 SE41 SE49

nozzle

N

26 3 41 49 5

Figure 5.8: Turbofan layout with station numbering and health parameters location

Although a version of the model including gas dynamics is available, we discard its use
for two reasons. First it requires tiny integration steps (less than a millisecond), which
increases dramatically the computing load. Second, gas dynamics effects are negligible
for normal operation of the engine. Consequently, the transient effects taken into account
in the model are the inertia of the low- and high-pressure spools and the heat soakage in
the components of the gas generator (i.e., hpc, combustor and hpt) leading to the set of
seven state variables listed in table 5.1.

Label  Description Units
NF fan speed rpm
NC core speed rpm

TM3b  hpc blade temperature
TM3c  hpc casing temperature
TM4c  burner casing temperature
TM41b hpt blade temperature
TM41lc hpt casing temperature

O A A

Table 5.1: State variables

The instrumentation selected to perform the diagnosis is the same as in the steady-state
test-cases and is recalled in table 5.2, the first seven sensors are located in the gas-path and
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the last four define the operating point. The noise level of the gas-path sensors is supposed
to be independent of the operating point which causes lower signal-to-noise ratios at low

regimes. The operating point is assumed to be measured without any uncertainty.

Label  Description Uncertainty
P13 fan outlet total pressure +150 Pa
T26 Ipc outlet total temperature  £2 K

P3 hpc outlet total pressure +5000 Pa
T3 hpc outlet total temperature +4 K

NF fan speed +3 rpm
NC core speed +6 rpm
T49 Ipt inlet total temperature +8 K

WF fuel flow +0 g/s
Pamb ambient pressure +0 Pa

P2 fan inlet total pressure +0 Pa
T2 fan inlet total temperature +0 K

Table 5.2: Gas-path and operating point instrumentation.

Figure 5.9 sketches the procedure to generate the scenarios. Each test-case combines
the same transient manoeuvre, namely a typical take-off sequence, and a unique health
condition that is constant over the whole duration of the scenario. We add Gaussian noise,
whose magnitude is specified in table 5.2, to the clean, simulated outputs to make them
closer to real data. We set the sampling frequency to 50 Hz which is the usual update
rate of most of the current digital engine control systems. Additionally, the associated
discrete time step (20 milliseconds) allows a stable temporal integration of the dynamic
model with any explicit integration method.
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Figure 5.9: Schematic of the scenario generator

Constant health conditions

The transient manoeuvre is representative of a take-off sequence on a standard day
(DTisa= 0 K) from an airport located at sea level. Figure 5.10 depicts the evolution
of the requested PCNF, the altitude and the aircraft speed (in terms of Mach number)
with respect to time. The engine is initially at the Min Idle regime (PCNF = 40%). At
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Figure 5.10: Typical take-off sequence from an airport at sea level, standard day

time t = 15 s, the pilot activates the take-off mode which causes the engine to progres-

sively accelerate to PCNF = 95%. This value depends on many factors such as aircraft

weight, ambient air temperature and runway properties and is nowadays computed by

the flight management computer of the aircraft. At time t = 55 s, the aircraft has gained

a sufficient speed so that it is able to lift off. The scenario terminates arbitrarily at time
= 225 s when the aircraft reaches an altitude of 10 kft (3048 m).

On a side note, let us mention that the effect of humidity could be taken into account
relatively easily for the take-off roll part of the test-case, that is up to time t = 55 s. In
fact, this portion of the scenario happens in a narrow geographic area and at a constant
altitude so that the humidity content of the surrounding mass of air can be regarded as
uniform. Although neither the engine, nor the aircraft are fitted with a hygrometer, this
information is available in the weather reports issued at the airport and could therefore
be used as an additional input to the on-board model.

As mentioned above, each scenario is characterised by a unique health condition that is
constant throughout the complete take-off sequence. In fact, the duration of the test-
case is far too short for engine wear to change appreciably. Moreover, we suppose that
no accidental event, for instance the ingestion of a foreign object on the runway, occurs
during the first 225 seconds of the flight. At the test-case generation stage, the health
condition is specified by means of a deterioration level. As shown in figure 5.11, we have
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Health parameter

Low Medium Deterioration level High

Figure 5.11: Definition of the three deterioration levels from the wear model

defined three deterioration levels along the wear model presented in section 4.3.2: low,
medium and high corresponding to the ageing of an engine after respectively 500, 1500
and 3000 cycles. Given that all parameters defining the wear model are random variables,
we effectively have an envelope of possible values for each health parameter at each of the
three deterioration levels.

In the specific scope of performance trending, the crucial piece of information that we are
interested in is the health condition. On the contrary, we have little to no interest in the
state variables, which we see as a secondary quantity that we are however forced to esti-
mate due to the formulation of the problem. Consequently, we assess the performance of
the transient methodology only from the health parameter side, which allows furthermore
a comparison with the results obtained from steady-state data.

To gauge the accuracy of the health parameter estimates, we rely on the Root Mean Square
(estimation) Error as defined in equation (5.33) for the ith health parameter. This scalar
is a measure of the average gap between the estimated and true health condition and
captures both the bias and the variance components of the estimation error.

RMSE;(iong) = mz 3 (ﬁf;(z)_hi@)f (5.33)

j:l k:iendiw+1

where

e N,., is the number of scenarios,

N,, is the length of the window, here N,, = 100,

teng 18 the discrete time index at which the evaluation window ends,

ﬂfc(z) is the estimated value of the ith parameter at time step k£ of scenario j,

h7 (i) is the true value of the sth parameter over the whole jth scenario.
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As can be seen from equation (5.33), the RMSE is evaluated at a certain moment, for
instance at lift-off, represented by its discrete time index i.,4. The computation is carried
out for a certain number of scenarios Ny., and over a window spanning the N, = 100
latest data points (corresponding to a time interval of two seconds) in order to average
possible fluctuations in the estimates.

To assess the performance of the transient methodology, we generate 10 instances of each
of the three deterioration levels. For each of the 30 health conditions, we consider 10
different realisations of the measurement noise. This leads to a grand total of 300 take-
off scenarios. In order to have a fair basis of comparison between the steady-state and
transient approaches, we generate an equivalent number of steady-state scenarios based on
the same batch of health conditions. Each steady-state scenario consists of data simulated
with the steady-state model to which Gaussian noise is added. The operating point is the
same throughout all scenarios. It is taken as the mean cruise condition defined in table
4.18. A steady-state scenario contains the same number of data samples as the take-off
sequence, that is 11251 points.

5.4.2 Comparison of Kalman filters

In this section, we consider that a perfect model of the engine is available. We process the
batch of 300 transient scenarios with the dual Kalman filter based either on two extended
or two unscented filters. We do not consider mixed configurations (e.g., EKF for the
parameters, UKF for the states).

For all scenarios, we initialise the health parameter distribution in the following way: the
mean value is set at the fleet average baseline value, that is a value of one for each health
parameter. The diagonal covariance matrix is based on an a priori assumed standard
deviation of one percent for each parameter. The covariance matrix of the process noise
was set to the identity matrix multiplied by a tiny factor of 107'2. This provides a mobility
of roughly one percent over the full duration of the scenario.

On the other hand, we initialise the state distribution as follows: the mean value is set
at the steady-state value predicted by the on-board model for the initial value of the
health parameters. Therefore, we totally overlook the fact that two of the states, namely
the spool speeds, are actually measured and could be initialised more accurately. The
selection of the covariance matrix turns out to be much more difficult, especially in the
case of the UKF. Indeed, setting a too large value results in a non-convergence of the
on-board model during the unscented projection. After some trials, we end up with a
covariance matrix equal to the identity matrix multiplied by a factor 100. The covariance
of the associated process noise is then set to one percent of the initial covariance matrix
of the health parameters.

Considering the steady-state scenarios, we process them with the monitoring tool pre-
sented in chapter 3 in which we disable the fault detection and isolation modules given
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that the health condition is constant throughout the test-case. We initialise the health
parameter distribution in the exact same way as for the transient scenarios.

Tables 5.3 and 5.4 report the RMSE, as defined in equation (5.33), expressed in percent
of the fleet average baseline value achieved respectively with the extended and unscented
filters. The last row sums up the ten previous ones to provide a global measure over
the full set of health parameters. Column-wise, both tables are organised in three main
blocks, corresponding to the three deterioration levels defined previously (low, medium,
high). Each block is itself subdivided into three columns corresponding to the evaluation
of the RMSE at the three moments defined below:

TR1 time of lift-off in the transient scenarios (t = 55 s)
TR2 final time in the transient scenarios (t = 225 s)
SS final sample in the steady-state scenarios

The first valuable result to extract from table 5.3 is the neat superiority of the transient
approach with respect to the steady-state one in terms of estimation accuracy. Ratios
between the RMSE evaluated at the end of the transient sequence (TR2 columns) and at
the end of the steady-state test-case (SS columns) range between two and ten after the
processing of an equal number of data samples. We explain this dramatic improvement by
the wealthier amount of information provided by the unsteady data sequence, that covers
a substantial part of the operating regimes of the engine, compared to the one provided
by steady-state data captured at a single cruise condition.

Focusing more specifically on the transient results, the estimates at the end of the test-case
(TR2 columns) are more accurate than the estimates at lift-off (TR1 columns) by a factor
of roughly 1.55, whatever the deterioration level is. The reason behind this improvement
is basically due to the larger number of data samples processed over the complete test-case
than on part of it which allows a better filtering of the measurement noise. The reduction
in RMSE between the moments TR1 and TR2 is mainly noticeable on the flow capacity
factors SWi. The trend is less obvious for the Ipt flow factor given its relatively lower
deterioration magnitude with respect to the other rotating components.

Table 5.3 shows that at a given moment (TR1, TR2 or SS), the RMSE increases with
stronger deterioration level. This loss in estimation accuracy is due to the fact that the
health parameter distribution is initialised independently of the deterioration level. As a
result, the initial estimation error grows with stronger deterioration level. Moreover, the
bandwidth of the filter estimating the health parameters, which is essentially governed
by the initial covariance of the parameters and by the covariance of the process noise
(given that the noise level is constant), could possibly be too low to capture the larger
changes in the health parameters within the duration of the test-case. We can indeed
observe this reduction in bandwidth in table 5.3: the overall RMSE at time TR2 for
the medium deterioration level is almost equal to the overall RMSE at time TR1 for the
low deterioration level. In practice, we can expect a better accuracy at the medium and
high deterioration levels given that the mean value of the health parameters would be
initialised to the most recent available estimate of the engine condition.
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Taking a look at table 5.4, we realise that similar comments apply to the results obtained
with the unscented Kalman filter. Contrary to the expectations, the RMSE’s of the
UKF are slightly higher than those of the EKF, especially on the efficiency factors of the
compressors (SE12, SE2, SE26). The last row of the table shows that the global RMSE
is 0.2% higher for the low and medium deterioration levels and up to 0.7% higher for the
high deterioration level. We explain this lower performance of the UKF by a very touchy
behaviour of the performance deck during the unscented projection.
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Figure 5.12: Comparison of the overall estimation accuracy between transient and steady-
state approaches in terms of global percent RMSE. Black lines are for the EKF, orange
lines are for the UKF. Plain lines are for evaluation at time TRI1, dashed lines are for
evaluation at time TR2, Dash-dotted lines are for evaluation at time SS

Figure 5.12 gathers the information contained in the last row of tables 5.3 and 5.4. Black
lines are related to the extended filters and orange lines are related to the unscented filters.
There are three families of broken lines related to the three moments at which the RMSE
is evaluated: plain lines for time TR1, dashed lines for time TR2 and dash-dotted lines
for time SS. For steady-state data, the performance of the EKF and UKF is essentially
the same. This is in line with the results obtained in section 4.5.1. For transient data,
the gap between the EKF and the UKF is larger for the reason explained above. The
improvement in estimation accuracy between time TR1 and TR2, should be traded-off
with the additional computational cost and data management.

Furthermore, we note that the slope of the broken lines related to transient test-cases is
smaller than those related to steady-state test-cases, especially considering the segment
between the medium and high deterioration levels. We can conclude that with the same
initialisation procedure of the health parameter distribution, the transient methodology
has better exploration properties than the steady-state one. This is a consequence of the
fact that the transient algorithm processes data representative of a myriad of operating
points of a non-linear system.
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Figure 5.13 illustrates the results that are obtained by running the dual extended Kalman
filter on one of the test-cases at the high deterioration level. Each subplot depicts the
evolution of the absolute value of the estimation error (orange line) and the 3o confidence
bound (black line) for a given health parameter. The confidence bound is computed as
three times the square root of the diagonal terms of the covariance matrix of the health
parameters. Both quantities are expressed in percent.
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Figure 5.13: Absolute estimation error (orange line) and 3o confidence bound (black line)
for the health parameters — Values expressed in percent — Dual EKF algorithm — high
deterioration level

Focusing on the first 15 seconds of the test-cases i.e., before any transient manoeuvre is
initiated, the convergence of the estimates toward the actual health condition is relatively
poor. Although the estimation error indeed decreases for the health parameters related
to the fan and the Ipc, we observe rather severe oscillations for the parameters linked to
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Figure 5.14: Absolute estimation error (orange line) and 30 confidence bound (black
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both turbines. Besides, the estimation error increases on the health parameters associated
to the hpe. Shortly after the take-off mode is engaged (around t = 17 s), we see a dra-
matic improvement in the convergence of the health parameters toward the solution. This
illustrates the (probably obvious) statement that the transient methodology is most effec-
tive when processing transient data. The parameters with the lowest convergence speed
are SW26, SW41 and SE41, which is not surprising given that they are the parameters
undergoing the largest change in magnitude.

At the time of lift-off the estimation error on most health parameters except SW2, SW26,
SW41 and SE41 are within the confidence bound which explains the slight improvement
in overall RMSE between times TR1 and TR2. By the end of the test-case, the estimation
error of all the parameters is inside the 30 region. Therefore, we can say the solution is
statistically meaningful.

To complete the analysis of that specific test-case, figure 5.14 shows the results from the
state filter. Each subplot depicts the evolution of the absolute value of the estimation
error (orange line) and the 30 confidence bound (black line) for a given state variable.
The confidence bound is computed as three times the square root of the diagonal terms
of the covariance matrix of the state variables. Both quantities are expressed in actual
units i.e., rpm for the spool speeds and Kelvin for the metal temperatures.

The initial estimation error is relatively large on the spool speeds and on the hpt metal
temperatures. The spool speeds converge quite rapidly to their true values, even during
the first 15 seconds of steady-state operation of the scenario, given that they are mea-
sured. We notice a very small estimation error on the metal temperatures of the hpc,
which seems to indicate that this particular case of deterioration does not affect appre-
ciably the temperatures in the cold section of the engine. The convergence speed of the
metal temperatures correlates with the characteristic time of the heat transfers on each
component of the gas generator: the hpc has the fastest dynamics, due to its relatively
low mass, the hpt ranks at the second position and the combustor has the largest thermal
inertia due to its large volume.

Considering the uncertainty in the state estimates, the spool speeds achieve the lowest
level, since they are measured. Then come the metal temperatures of the hpc, the hpt
and the combustor in that particular order. The converged values of the confidence bound
are related to the observability of the different state variables.

For indicative purpose, table 5.5 reports the average computing time for one scenario
(11251 data samples) in the transient and steady-state cases. More than the absolute
values, which are highly dependent on hardware as well as software characteristics, the
relative change in computational load is the main information to extract from this table.

In the steady-state case, both the EKF and the UKF have similar computing demand
as was already witnessed in table 4.9. In the transient case, the UKF is almost 50 %
slower than the EKF although the performance deck is called the same number of times
in both algorithms. Unlike the computation of the Jacobian matrices, which involves
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tiny perturbation steps, the unscented transformation literally challenges the internal
solver of the OBIDICOTE model with the larger perturbations in both states and health
parameters it uses.

EKF UKF
Steady-state 157 195
Transient 5b1 816

Table 5.5: Average computing time expressed in seconds per scenario (11251 data samples)

Comparing the computing times of the EKF’s in the steady-state and transient cases,
we notice that the average time to process 11251 data points rises by a factor of about
3.5. Most of this increase comes from the higher number of calls to the performance
deck for each data sample, which amounts to 21 in steady-state and 51 in transient
operation. In the algorithms, the most computationally demanding task is in fact running
the performance deck.

5.4.3 Robustness against modelling errors

In this section, we investigate the ability of the hybrid model approach to provide accurate
estimate of the engine condition in the presence of modelling errors. As we work with
simulated data, the first step is to introduce model-plant-mismatch in the on-board model
so that its response is different from the real engine. Second, we briefly discuss some issues
related to the building of the bias compensation module. Finally, we report some results
obtained on the transient scenarios described previously.

Introducing bias in the on-board model

So far, we hypothesised that the on-board model could predict perfectly i.e., without any
substantial bias, the response of the real engine. This situation is however never met
in practice despite the continuous efforts deployed by the manufacturers to improve the
fidelity of their decks. To study the effect of model-plant mismatch on the estimation
accuracy of the dual Kalman filter with simulated data, we therefore have to introduce
modelling errors in the on-board model.

As far as the dynamic effects are concerned, the on-board model incorporates the rotating
inertia of both spools and a partial modelling of the heat soakage processes that is confined
to the hpt. This leads to the set of three state variables listed in table 5.6. Heat transfer
processes are the slowest dynamics in a turbine engine and they influence quite strongly
its transient response (see Nielsen et al. [2005]). In the present case, we account for the
heat transfer in the hpt since it is the hottest part of the engine and therefore the thermal
effects are expected to be more important than in the other components.
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Label Description

NF fan speed

NC core speed

TM41 bulk hpt metal temperature

Table 5.6: State variables of the on-board model

The incomplete modelling of the heat transfers generates model-plant-mismatch only dur-
ing transient operation of the gas turbine. To spoil the steady-state predictions (and as
a side effect the transient behaviour), we introduce on one hand a power off-take on the
high pressure spool, that could result from an incorrect bookkeeping of the power con-
sumption of the auxiliary equipment (such as fuel and oil pumps). On the other hand,
we introduce a bleed leak at the outlet of the hpc that could result from neglecting some
bleed air demands such as cabin climate control or anti-ice systems for instance.

Building and validation of the bias compensation module

To build the empirical component of the hybrid model, previously termed the bias compen-
sation module, we first create a learning set of data. We assume that the data collection
occurs during the acceptance testing, that is when the real engine is in its “new and clean”
condition. The testing takes place on a standard day at sea level.

One of the most critical issues in system identification concerns the choice of the input
signal, whose content should be sufficiently rich to allow all major features of the engine
response to be identified. For non-linear systems, this is still an open question whose
solution is well beyond the scope of this work. Therefore, we consider the manoeuvre
sketched in figure 5.15 as the input sequence. The first part of the manoeuvre (up to t
= 350 s) is a sharply shortened version of a typical cycle used in endurance testing. The
plateau at 100% PCNF is representative of the take-off, climb and cruise portions of a
flight, the plateau at 45% PCNF is representative of the descent and approach phases, the
short hump at 75% PCNF accounts for thrust reversing. A staircase-shaped power sweep
complements the sequence. The database contains ten realisations of the input sequence
in order to reduce the effect of the measurement noise.

For each of the seven gas-path sensors we identify a single-input (fuel flow) single-output
(said sensor) Wiener model of the response of the real engine. If this approximation
simplifies greatly the identification task, it unfortunately comes at a price: we loose the
correlation between the response of the various sensors that embeds some of the physics
of the turbine engine. We do not automate the procedure to determine the optimal
level of complexity of the Wiener models (i.e., number of poles and zeros of the transfer
function, number of segments for the piece-wise linear static non-linearity). Instead we
start with the lowest possible model complexity and progressively increase the number
of parameters. Once the goodness of fit does not appreciably vary, we stop the process.
The most complex model we end up with has three poles, two zeros and an eight-segment
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Figure 5.15: Sequence of requested PCNF used to build the bias compensation module

non-linearity. The next step consists in creating the bank of covariance matrices from the
residuals between the Wiener models and the actual recordings. We split the Tl axis in
five portions corresponding to fierce deceleration, mild deceleration, quasi-steady-state,
mild acceleration and fierce acceleration.

As a validation procedure of the bias compensation module, we compute the residuals
between the real engine and the hybrid model for the take-off sequence at sea level and
compare them to the residuals obtained with the biased model alone. During this valida-
tion step, we assume that the real engine is still in its “new and clean” condition so that
the residuals represent actually the modelling errors.

Figure 5.16 depicts the normalised RMS error integrated over the whole take-off sequence
and expressed in number of nominal standard deviations! for each sensor. Note that
the vertical axis is in logarithmic scale. Let us consider the plain lines for now. The
black line links the errors obtained with the biased model, the orange line is related to
the hybrid model. The fidelity of the biased model is obviously very poor, except for
T26 and T3. Indeed, the error for a perfect model would be equal to one as the only
contributor would be the random measurement noise. In the case of the biased model,
the largest error, occurring on NC reaches about seventy standard deviations while the
lowest one, occurring on T26 and T3, is about three standard deviations. The addition of
the bias compensation module to the biased model, leading to the hybrid model, improves
considerably the quality of the predictions. The reduction factor on the various errors
ranges between a factor two for T3 to thirty for NC. We can therefore expect a much
more accurate estimate of the engine condition when using the hybrid model even if it
still contains some modelling errors.

We built the bias compensation module from data collected at ISA-SLS conditions and
validated it on a take-off sequence starting from the same ambient conditions. We now
would like to gauge the suitability of the corrected parameters when using the bias com-
pensation module at other atmospheric conditions. To this end, we devise a new take-off

Ithat is one third of the values quoted in table 5.2
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Figure 5.16: Comparison of the prediction error on each sensor with the biased and hybrid
models — plain lines are for the ISA, sea-level take-off, dashed lines are for the hot 'n high
take-off

sequence from an airport at an elevation of 7316 feet (2230 m) and a temperature of ISA
+ 25°C which are so-called hot 'n high conditions. Obviously, the ambient temperature
and pressure are quite different from those in the standard conditions. The results are
illustrated in figure 5.16 through the dashed lines, with the same colour code as for the
take-off at sea level. We notice that the errors made with the biased model are shockingly
close in magnitude to those achieved for the nominal take-off. Furthermore, we observe
the same trend for the dashed orange line, meaning that the bias compensation module
formulated in corrected variables can effectively take care of changing ambient conditions.

Results

We evaluate the gains in estimation accuracy brought by the hybrid model from the orig-
inal batch of 300 transient scenarios. We process these test-cases with the dual extended
Kalman filter only as it turned out to be more accurate than its unscented cousin.

Table 5.7 reports the RMSE, as defined in equation (5.33), expressed in percent of the
fleet average baseline value evaluated at the time of lift-off (t = 55 s). The last row
sums up the ten previous ones to provide a global measure over the full set of health
parameters. Column-wise, both tables are organised in three main blocks, corresponding
to the three deterioration levels defined previously (low, medium, high). Each block is
itself subdivided into three columns corresponding to a different version of the on-board
model used in the dual Kalman filter. Next to the results obtained with the biased and
hybrid model, those achieved with a perfect model are recalled as target values.
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The results obtained with the biased model indicate that the model-plant-mismatch im-
pacts primarily the efficiency factors SEi and the flow capacity factor of the Ipt. We do
not think it is worth attempting to explain this phenomenon for it is entirely dependent
on the modelling errors. Adding the bias compensation module in the loop improves
unmistakably the quality of the estimates. Most of the errors are in the same ballpark as
those obtained with the perfect model, except for the health parameters of the booster
and to a lesser extent for those of the hpc. This is most likely caused by the remaining
modelling errors on the hpc outlet pressure and spool speeds that we highlighted in figure
5.16.

Figure 5.17 depicts the information contained in the last row of table 5.7. For sake of
completeness, the results obtained from steady-state test-cases are added to the plot.
First, we notice that the overall estimation error achieved with the biased model is almost
independent of the deterioration level. In fact, going back to table 5.7 teaches us that
the combined error on the efficiency factors of the compressors is nearly constant with
respect to the deterioration level and accounts for not less than 73% of the total RMSE.
As previously mentioned, the use of the hybrid model reduces appreciably the RMSE,
however it stays at a higher level than what would be achieved in a perfect world. The
key information to grab from the graph is that the global RMSE obtained with the hybrid
model is of comparable magnitude to that achieved with steady-state data collected at a
single operating point.
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Figure 5.17: Comparison of the estimation accuracy in the presence of model-plant-
mismatch
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6.1 Conclusions

HE objective of this thesis was to bring additional capabilities to an existing perfor-
T mance monitoring tool. The theoretical developments were assessed on a large panel
of test-cases such that the results are sufficiently representative of the performance of the
enhanced algorithm. Nonetheless, we remind the reader that the validation was carried
out with simulated data, which are always “better looking” than true operational data.

Even if we considered an aircraft engine application in this thesis, we would like to un-
derline that the developed algorithms can be applied to any gas turbine configuration. In
the following, we summarise the essential findings for the four topics listed in section 1.5
to which our work has contributed.

Tools for sensor set selection and analysis

We revisited the problem of the optimal selection of the sensor suite from the viewpoint
of Information Theory. From sound mathematical arguments, the Fisher Information
Matrix appeared to be a relevant quantity for the problem of sensor selection. Although
the Fisher Information Matrix is related to the variance in the estimates, simulation
results showed that sensor sets selected according to the FIM-based figure of merit led
to lower root mean square estimation errors over the full set of parameters. It would be
interesting to complement the FIM-based metric with a term that explicitly accounts for
the bias part of the estimation error, similarly to research by Simon and Garg [2009].

The framework developed in this thesis can be extended to variations of the sensor se-
lection problem such as the selection of the best sensors to add to an existing set (for
instance imposed by control system requirements) for a given set of health parameters.
Another theme is the selection of the best sensor configuration to estimate engine perfor-
mance parameters that are currently not measurable in flight such as thrust, stall margin
and turbine entry temperature, see e.g., [Litt, 2008]. Additional considerations such as
the cost and the reliability of the sensors could be embedded in the formulation of the
sensor selection problem. Finally the developed methodology could also be applied in
more prospective studies to assess the benefit of new sensor technology (e.g., emissions,
turbine inlet temperature, airflow).

Improved fault detection

We improved the reactivity of the diagnosis tool with respect to accidental faults by
introducing a transition model that explicitly accounts for such events. The resulting
algorithm combines a traditional Kalman filter, which provides accurate estimation of the
health condition for long-time-scale deterioration (such as engine wear), and a detection
module based on a hypothesis testing that monitors the residuals and looks for abrupt
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changes in the health condition. We carried out a parametric study on the influence of
the two tuning parameters of the detection module on its performance.

High correct detection rates and low detection latency could be achieved on abrupt com-
ponent faults while keeping the false alarm rate at an acceptable level. The detection
capability of sensor faults was slightly worse, this is probably due to the fact that the
hypothesis testing is formulated in terms of signatures in the health parameter space and
as such any sensor fault is projected into that space prior to its detection.

We have identified at least one area of improvement of the detection module, namely its
robustness to outliers in the data. Actual recordings can indeed contain spikes which
would increase the false alarm rate. The addition of a persistency logic to the detection
module should take care of this issue.

Improved fault isolation

We improved the fault isolation capability of the diagnosis tool by using a regularisation
term that better matches the expected pattern of a fault i.e., many nought terms in
the solution vector. The resulting fault isolation module implements an estimator that
combines least-squares fit of the data and sparsity in the solution. Moreover, it is efficiently
formulated as a quadratic programming problem. The isolation module has one tuning
parameter whose selection can be done according to sound guidelines. An interesting
feature of the fault isolation tool is that it does not require the set-up of a pre-defined
bank of accidental faults, but makes better use of prior knowledge about the structure of
localised faults to enhance its ability to concentrate them.

High correct classification rates were achieved on most of the fault types considered in
the library of scenarios. On the other hand, a non-negligible number of high pressure
compressor faults were misclassified as variable stator vane faults. After investigation,
we found the misclassification was due to highly similar signatures of the high pressure
compressor flow capacity and variable stator vane health parameters. Nonetheless, the
results also illustrated the superiority of the sparse estimation approach versus the legacy
least-squares estimator as far as fault isolation is concerned.

Our latest work [Borguet and Léonard, 2011] consisted in adding constraints to the sparse
estimation problem. These constraints translate additional knowledge about the param-
eters such as the fact that efficiencies do not improve when a fault occurs, or that a
component fault involves a simultaneous change in efficiency and flow capacity. The con-
strained framework helped resolve the confusion issue between high pressure compressor
and variable stator vane faults.
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Diagnosis from transient data and
robustness with respect to modelling errors

In a sequential framework, module performance analysis from data recorded during tran-
sient operation requires two vectors to be estimated, namely the heath parameters and the
state variables associated to the dynamic behaviour of the engine. Our solution is based
on two Kalman filters running concurrently. Such a dual approach allows, if necessary,
the tuning of each filter to the quantity it estimates. Results obtained on data represen-
tative of a take-off sequence showed that the processing of transient data leads to a more
accurate estimation of the health condition than the processing of single point, steady-
state data. This improvement comes from the wealthier information contained in the
large number of operating points visited during a transient manoeuvre. The bottleneck
of the dual Kalman filter lies in the computational demand associated to the numerous
calls to the engine performance deck at each time step. It currently prevents running the
algorithm on on-board hardware.

In a second step, we saw that modelling errors in the performance deck have a disastrous
effect on the estimation procedure. We applied the concept of hybrid model to cope with
these modelling errors. The hybrid model combines the biased performance deck, based
on first principles, and a black-box component called the bias compensation module in
this work. The BCM relies on Wiener models and is identified from data collected when
the engine is in a “new and clean” condition. Results obtained on take-off roll scenarios
showed a neat improvement in estimation accuracy when the hybrid model replaced the
biased performance deck. However, the level of fidelity achieved with the hybrid model
led to estimation errors of the same order of magnitude as those obtained from single
point steady-state data, which warrants further refinements of the BCM.

Complementary developments to the transient algorithm include its extension to system
faults (such as variable blade valve and variable stator vane) and sensor faults. Another
question of practical interest is the possibility to decrease the sampling frequency of data
down to around one Hertz, which would reduce the memory requirements and might allow
real-time execution on on-board hardware.

6.2 Perspectives

Next to the complementary developments proposed in the previous section, which are
directly related to the performance monitoring tool designed in the scope of this thesis,
we would like to mention three directions for future research efforts in the same perimeter.

The first direction concerns the validation of the monitoring tool. In this thesis, we
evaluated its performance on the basis of simulated data. The next logical step would
be to check its behaviour against real data. It is however particularly difficult to be
granted access to such data due to proprietary reasons. As a workaround, NASA set up
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the ProDiMES initiative, see [Simon et al., 2008], whose purpose is to provide develop-
ers of health monitoring solutions with a benchmark problem. Even if it still consists
of simulated measurements, the ProDiMES data is released as a blind-test designed by
representatives of industries and research agencies.

Secondly, the topic of “more intelligent engines” [RTO, 2009] is gaining momentum in the
community. One of the objectives is to bring additional capabilities in the engine control
system. On one hand, the control laws would adapt to the actual condition of the engine
(e.g, the acceleration schedule would be modified in the case where the high pressure
compressor is degraded). On the other hand, the regulation would be based on so-called
virtual sensors. For instance, the thrust predicted by an on-board model would replace
current thrust setting parameters such as the fan speed or engine pressure ratio. Both of
these strategies require accurate estimates of the health condition and of non-measurable
quantities which could be handled by tools similar to the one designed in this thesis.

The third area for future research that we propose addresses a number of questions related
to modelling. Firstly, we remember that the Kalman filter tracks gradual deterioration
on the basis of a very coarse model for the temporal evolution of the health parameters.
It mainly serves to dampen the measurement noise, but does not take into account the
operational history of the engine. However, the wear profile depends to a large extent on
engine usage. The development of ageing models based on operational factors, see e.g.,
[Spieler et al., 2007, Wensky et al., 2010], is an emerging field that will increase the level
of information available to track performance changes.

Another axis of research that deserves further work is the introduction of zooming in the
performance deck. Basically, zooming consists in replacing 0-D models of some compo-
nents — mainly compressors and turbines — with higher order representations — mainly
1-D not to penalise excessively the computational load, see for instance [Aretakis et al.,
2010, Pilet et al., 2011]. The major advantage offered by zooming would be to describe
the health of rotating modules with more physical parameters than the legacy correction
factors applied to component maps. This is especially important in the case of multi-point
(either steady-state or transient) estimation for which the validity of uniform health in-
dices throughout the operating range may be questioned.






Appendix A

The mathematics toolbox

A.1 The Gaussian distribution

The Gaussian distribution is a probability density function (pdf) that is very frequently
used to model the statistical behaviour of a random variable. For a scalar random variable
x, it writes:

p(z) = ! exp {—M} (A.1)

The scalar Gaussian distribution is completely specified by its mean value Z and its
variance o2. These two parameters are defined as:

T = /_ h z p(z) do = E[z] (A.2)
o2 = /im@—ifmmdx:EKr—@ﬂ (A.3)

where E[-] stands for the mathematical expectation operator. The square root of the
variance is called the standard deviation o.

Figure A.1 illustrates the celebrated bell-shaped allure of the scalar Gaussian pdf that has
a mean value of zero and a unit variance. The distribution is symmetric about the mean
value, which is the most likely one. The variance provides a measure of the dispersion
about the mean value.

The Gaussian distribution can be generalised to a random vector x of dimension n. In
this case, the pdf writes:

! x0T x - %) (A4)

Y e T 12

where X is a n-dimensional column vector that contains the mean value of each element
of the vector, X a symmetric, positive definite and square matrix of dimension n and |X|
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Figure A.1: The scalar Gaussian pdf with Figure A.2: The 2D Gaussian pdf with zero
zero mean and unit variance mean and an identity covariance matrix

denotes the determinant of . The mean value x and covariance matrix X are defined as:

X = E[x (A.5)
Y = Elx-%)(x-%7] (A.6)

Figure A.2 depicts the Gaussian pdf of a random vector of dimension two whose mean is
the nought vector and whose covariance matrix is the identity matrix. In such cases where
the covariance matrix is diagonal, the components of the random vector are statistically
independent.

As shown in figure A.3 for the two-dimensional case, the surface of constant probability
density are hyper-ellipsoids defined through:

(x—R)TE (x—%) =C? (A.7)
x(2)
A
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g .

X
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Figure A.3: Principal directions of a covariance matrix.
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The axes of the hyper-ellipsoids are given by the eigenvectors of X which satisfy:

and the corresponding eigenvalues \; give the variances along the respective principal
directions. The eigenvectors of 3 actually define an auxiliary coordinate system in which
the variables are statistically independent.

The Gaussian distribution benefits from a number of very handy properties that explain
its popularity in many scientific fields.

1. It has a relatively simple analytical form allowing many closed-form solutions to be
obtained.

2. The central limit theorem states that, under rather general circumstances, the mean
of n independent random variables tends to be asymptotically Gaussian i.e., follows
a Gaussian probability density as n tends to infinity. A common application is to
the sum of a set of variables drawn independently from the same distribution. In
practice, convergence tends to be very fast, so that for values as small as 10 the
approximation to a Gaussian distribution can be very good. We can reasonably ex-
pect that measurements of naturally occurring phenomena have several components,
leading to a distribution which is close to Gaussian.

3. Any non-singular linear transformation changes a Gaussian distribution into another
Gaussian distribution characterised by different mean and covariance parameters,

4. The marginal probabilities of a Gaussian probability, obtained by integrating out
some of the variables, are themselves Gaussian. Similarly, the conditional probabil-
ities obtained by setting some variables to fixed values, are also Gaussian.

A.2 The ¢, norm family

For any real number p > 1 and a real-valued column vector x with n components, the
¢,-norm is defined as:

n 1/p
1[I, = <Z IXiV’> (A.9)

In particular, the o-norm is the well-known Euclidian norm

(A.10)

[x[|2 =
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and the /;-norm can be expressed as

x|l = (Z |in> =1"x| (A.11)

where 1 is a column vector of appropriate dimensions with all elements equal to one.

The formula is also valid for 0 < p < 1, but the resulting function does not define a norm
strictly speaking because it violates the triangle inequality. Taking the limit p — oo yields
the uniform norm and taking the limit p — 0 yields the ¢, quasi-norm.

A.3 The Quadratic Programming problem

A Quadratic Programming problem is an optimisation problem in which the objective
function is quadratic and the constraint functions are linear. The problem is to find a
solution vector X, to:

1
minf(x)zéxTHx—f—ng

al x=1b, i€E (A.12)

subject to T ‘
c;x>dj, jel

where F and I are respectively the sets of equality and inequality constraints.

If the symmetric Hessian matrix H is positive semi-definite then f(x) is a convex function.
In this case, the optimisation problem has a global optimiser if there exists some feasible
vector X, satisfying the constraints and if f is bounded below on the feasible domain.
If the Hessian is positive definite and the problem has a feasible solution, then the global
optimiser is moreover unique.



Appendix B

A basic engine control system

B.1 Definition of the 100% PCNF regime

For the transient test-cases, the engine is piloted in terms of percent corrected fan speed
PCNF, rather than directly through the fuel flow. The reference point on the fan speed
scale, namely the 100% corrected fan speed in Sea Level Static, standard conditions (ISA-
SLS) is defined in the table below:

Label Description Value
WF fuel flow 1.238 kg/s
Alt pressure altitude 0m

Mach flight Mach number 0
DTisa offset in temperature 0 K

NF fan speed 4114 rpm
NC core speed 12401 rpm
FN net thrust 127.8 kN

Wair  total air mass flow 421 kg/s

Table B.1: Definition of the 100% corrected fan speed regime at ISA-SLS conditions

The OBIDICOTE model is limited to simulation of above-idle operations. Moreover, in
order to ensure the convergence of the model in the range of considered deterioration, the
minimum regime (Min Idle) is set to 40% PCNF.

B.2 About the controller

The controller used in the transient test-cases is derived from an existing control system
provided with the OBIDICOTE model. It combines a feed-forward action to maintain the
current fan speed with three Proportional-Integral feedback loops that handle transient
manoeuvres. One of the PI loop tracks the PCNF value set by the user, the other two
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loops limit the acceleration/deceleration rate of the high-pressure spool in order to avoid
compressor surge. This basic system controls only the fuel flow. The other two actuators,
namely the blow-off valves at the LPC outlet and the variables stator vanes on the HPC
follow a pre-defined schedule, much as in the current engine control system actually. A
single set of gains is used throughout the operating envelope of the engine. As a result
the control system is far from delivering optimal performance, it is however deemed to be
sufficiently representative for the application at hand.

Figure B.1 shows the closed-loop engine response to a fast acceleration-deceleration ma-
noeuvre between the Min Idle and 100% regimes. The upper left graph gives the evolution
of the fuel flow, the upper right graph plots the requested (grey line) and effective (black
line) percent corrected fan speed. The lower left graph shows the relative acceleration of
the high pressure spool and the lower right graph gives the active loop (1: NF tracking,
2: limiter on HP spool acceleration, 3: limiter on HP spool deceleration).
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Figure B.1: Closed-loop response of the engine to a typical acceleration-deceleration ma-
noeuvre
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