Ion Mobility-Time-of-Flight Mass Spectrometry as a new tool for the screening of pesticide residues in food

November 2011, Recent Advances in Food Analysis

S. Goscinny, L. Joly, E. De Pauw, V. Hanot and G. Eppe
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
Pesticides are rich in diversity;

Chemical structure, solubility, volatility, potential for degradation...

in number;

~1200 molecules
~ 740 are allowed to be used in the EU
~ 500 compounds sought/sample
> ½ by LC
Multiresidue Methods are required tools for the determination of a great number of various compounds in one analysis

Has to be viable for the lab
Before

Specific
Complex
Time consuming
Now

No purification

- Generic
- Simple
- Fast
dirty samples
2
Mass spectrometry revolution

Optimize the acquisition

Only ESI +
In a perfect stairs shape

Fragile zones
Pesticides residue analysis

Continuous challenge;

Increasing number of compounds, at low levels, in complex matrices
Houston,
We have a problem
Strategy
Screening
Screening method

Method to detect analyte(s) in samples in an easy/rapid way
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
Synapt G2
Synapt G2
Synapt G2
Synapt G2
Ion Mobility

Small, compact

Large extended
• A 80 years old concept (C.F. Powell, 1932)
• The idea: ions «race»; the most mobile reach the detector first
• Separation is driven by electric fields not under vacuum

Traditional IMS
Travelling Wave Ion Guides

Introduced by Waters with the range of Premier MS:

Eliminates crosstalk problems ➝ faster ion transit
T-Wave and IM separation

High electric field applied SEQUENTIALLY through the IM cell

Ions are moved through the IM cell in PULSES as WAVES

- faster IMS duty cycles
- MS sensitivity is not compromised
Nature of the gas: N_2

IMS T-Wave velocity (m/sec)

IMS T-Wave Height (V)

Gas Pressure (mbar)

Biais (V)

Helium Cell Pressure
Last voltage before the IM cell

- Too low: bad transmission
- Too high: Ion fragmentation

Biais (V)
Buffer gas: softly reduces ion velocity

Maximises transmission of ions on entry into the IM cell

Helium Cell Pressure
IMS T-Wave velocity

Fast

Ions roll over the wave

Better the separation
IMS T-Wave Height

- High field
- High pulses
- Better separation selectivity
Gas Pressure

Higher

Better the resolving power
Stike the optimum
Where do we start?
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
Plackett-Burman design

So called « Screening Designs »

Finds influencing factors with a limited number of experiments
Plackett-Burman design

5 parameters
- IMS T-Wave velocity
- IMS T-Wave Height
- Gas Pressure
- Helium Cell Pressure
- Biais (V)

3 responses
- Intensity
- Resolution
- Relative drift time

The construction of the design is done with 15 runs
Most influencing factors

Nature of the gas
- IMS T-Wave velocity (m/sec)
- IMS T-Wave Height (V)
- Gas Pressure (mbar)

Biais (V)

Helium Cell Pressure
Most influencing factors

- Gas Pressure (mbar)
- Biais (V)

Optimization of 2 parameters!
Central Composite Design

The 3 less influencing parameters are set to the values of maximum separation.

Then the CCD will be performed with the 2 most influencing parameters:

- **Gas Pressure**
- **Biais (V)**

The construction of the design is done with 13 runs (5 with centered values):

- **3 responses**
 - Intensity
 - Resolution
 - Relative drift time
Ion Mobility of 5 classes of pesticide

Drift Time vs Measured Mass

- Carbamate
- Composés azotés
- Organophosphate
- Pyrethroid
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
How can we help the Detection?
Diuron
m/z (+1) 233.0248
Rt 6.38 min
Diuron
m/z (+1) 233.0248
Rt 6.38 min
Diuron
m/z (+1) 233.0248
Rt 6.38 min
Propamocarb
m/Z (+1) 189.1603
Rt 1.84 min
Indoxacarb
m/Z (+1) 528.0785
Rt 9.1 min
Leek

0.01 mg/kg Imaxalil

Retention time (min)

IM-MS

566

MS

3.03 e3
How can we help the Identification process?
New IP ?
Matrix effect on mobility time?

- Mobility time (ms) on the y-axis.
- M/Z on the x-axis.
- Data points showing the effect of matrix on mobility time.
Matrix effect on mobility time?

![Graph showing the relationship between M/Z and Mobility time (ms).](image-url)
Matrix effect on mobility time?

- STD
- Orange
- Leek
- Pepper
False positive: case study (SM 3)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Molar Mass (MR)</th>
<th>MS/MS Confirmation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fenamidone</td>
<td>312.1172 (+1)</td>
<td>YES</td>
</tr>
<tr>
<td>Mevinphos</td>
<td>225.0528 (+1)</td>
<td>YES</td>
</tr>
<tr>
<td>Phentoate</td>
<td>321.0384 (+1)</td>
<td>NO</td>
</tr>
<tr>
<td>Quinalphos</td>
<td>299.0619 (+1)</td>
<td>YES</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>230.1172 (+1)</td>
<td>YES</td>
</tr>
</tbody>
</table>
Unusual Suspect

Quinalphos 299.0619 (+1) 8.22 (min)

Phenthoate 321.0384 (+1) 8.27 (min)

Co-elution
<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Mass Number</th>
<th>Electron Configuration</th>
<th>Atomic Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>11</td>
<td>22.989770</td>
<td>[Ne]3s1</td>
<td>22.989770</td>
</tr>
<tr>
<td>Mg</td>
<td>12</td>
<td>24.3050</td>
<td>[Ne]3s2</td>
<td>24.3050</td>
</tr>
<tr>
<td>Ca</td>
<td>20</td>
<td>40.078</td>
<td>[Ar]4s2</td>
<td>40.078</td>
</tr>
</tbody>
</table>

Caution: The atomic weight of Sodium (Na) is highlighted with a pink circle.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Molecular Weight</th>
<th>Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quinalphos</td>
<td>299.0619</td>
<td>(+1)</td>
</tr>
<tr>
<td>Phenthoate</td>
<td>321.0384</td>
<td>(+1)</td>
</tr>
<tr>
<td>Quinalphos + Na</td>
<td>321.0439</td>
<td>(+1)</td>
</tr>
</tbody>
</table>
Unusual Suspect

Quinalphos 299.0619 (+1)

Phenthoate 321.0384 (+1)

Quinalphos + Na 321.0439 (+1)

Can IMS help?
Unusual Suspect

Normalized intensity

Drift time (ms)

Phenthoate
Unusual Suspect

Normalized intensity

Drift time (ms)

Phenthoate
Quinalphos + Na
IM adds value to the data obtained;

- Helps the **identification** process as a new IP
- Helps the **detection** 1) by **separating** the target compounds from matrix background and 2) by increasing the **sensitivity** of the method (higher concentration of ions/push)
Our Path today:

- Purpose
- Power
- Plackett-Burman
- Practical
- Prospect
In progress

Establishing the drift times of the salt adducts

Testing the impact of post-IM fragmentation for identification

Processing data faster with new software (ex. MS^

E)
Supp. data
Nature of the Gas

He

- Spectre complet
- Methamidophos
- Dichlorvos
- Mepanipyrim
- Spinosad

N₂

- Spectre complet
- Methamidophos
- Dichlorvos
- Mepanipyrim
- Spinosad

CO₂

- Spectre complet
- Methamidophos
- Dichlorvos
- Mepanipyrim
- Spinosad
<table>
<thead>
<tr>
<th>Compound</th>
<th>m/z</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methamidophos</td>
<td>141.0013</td>
<td></td>
</tr>
<tr>
<td>Dichlorvos</td>
<td>219.9459</td>
<td></td>
</tr>
<tr>
<td>Mepanipyrim</td>
<td>223.1109</td>
<td></td>
</tr>
<tr>
<td>Spinosad</td>
<td>731.4608</td>
<td></td>
</tr>
</tbody>
</table>
Methamidophos 141.9976
Dichlorvos 220.9004
Mepamipyrim 224.0638
Spinosad 732.4915
How does it work?