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Abstract— In this paper, we study the behavior of a
discrete-time network of N agents, each evolving on the
circle. The global convergence analysis on the N -torus is
a distinctive feature of the present work with respect to
previous synchronization results that have focused on conver-
gence in the Euclidean space (Rn)N . We address the question
from a control perspective, but make several connections with
existing models, including the Hopfield network, the Vicsek
model and the (continuous-time) Kuramoto model.

We propose two different distributed algorithms. The first
one achieves convergence to equilibria in shape space that
are the local extrema of a potential UL built on the graph
Laplacian associated to a fixed, undirected interconnection
topology; it can be implemented with sensor-based interaction
only, since each agent just relies on the relative position of
its neighbors. The second one achieves synchronization under
varying and/or directed communication topology using local
estimates of a consensus variable that are communicated
between interacting agents. Both algorithms are based on
the notion of centroid and can be interpreted as descent
algorithms. The proposed approach can be extended to other
embedded compact manifolds.

Keywords— Coordinated control, Synchronization

I. INTRODUCTION
Swarm control is a topic of growing interest among

scientists and engineers. Indeed, several current applica-
tions involve the cooperation of many identical agents in
order to perform a global task; among others, these include
formation flight [1], ocean exploration [2] and some space
applications [3],[4],[5]. In addition, many complex natural
systems are composed of many similar individuals that are
interacting [6],[7],[8]; our understanding of the phenomena
that are observed in those systems should benefit from
the study of the basic mechanisms involved in distributed
systems.

In the present paper, we focus on the (almost-)global
distributed stabilization of orientation variables in discrete-
time. The global convergence analysis on the N -torus
is a distinctive feature of the present work with respect
to previous synchronization results [9],[10],[11],[12],[13]
that have focused on convergence in the Euclidean space
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(Rn)N , considering the present problem either by local
linearization or by restriction of the initial conditions to a
convex subspace.

We start by making some specific observations on a
class of consensus algorithms in the plane (CN ), which
can then be extended to the embedded torus (TN ). This
provides a first class of discrete-time descent algorithms
(Algorithm A) that lead to analogies with several existing
models, explicitly the Vicsek model (discrete-time on
SE(2)N/SE(2)), the Hopfield model (discrete-time on the
N -hypercube) and the Kuramoto model (continuous-time
on TN/T1). Convergence is established when the commu-
nication topology is fixed and undirected. The algorithm is
based on a local centroid computation and asynchronous
operation, extending to synchronous operation for “suffi-
ciently small moves”.

A second control strategy (Algorithm B) for which
global convergence properties can be established is pre-
sented on the same basis of local centroid computation.
Using an idea recently proposed in [14], Algorithm B is
similar to Algorithm A but uses a somewhat increased
exchange of information among communicating agents: in
addition to its relative position, each agent communicates
its current estimate of a consensus variable.

The paper is organized as follows. In Section II, we
make some observations about consensus algorithms in
the Euclidean space C. This summary of existing results
paves the way for the corresponding algorithms that we
develop on the torus. Algorithm A is presented in Section
III, along with a discussion of the various connections
with existing models. Section IV presents Algorithm
B, achieving global synchronization under directed and
switching communication with the help of an estimator
variable. We conclude with some perspectives for future
research in Section V.

II. CONSENSUS ALGORITHMS IN EUCLIDEAN
SPACE

We consider a swarm of N identical agents evolving
in the (complex) plane; the state of each agent k is the
number zk ∈ C. The agents interact through links that may
be undirected or directed, static or varying as a function
of time or system state. The interconnection topology is
specified by means of a directed graph G on N vertices,
containing the edge (l, k) if agent l sends information to
(≡ is a neighbor of) agent k, which is denoted l ∼ k;
the number d

(o)
k of agents l such that k ∼ l is called the

out-degree of k and the number d
(i)
k of agents l such that



l ∼ k is called the in-degree of k. The swarm has no
leader and no external reference. The goal is to reach and
stabilize certain particular formations (i.e. configurations
that are invariant modulo a rigid-body transformation)
using a control law

zk[t+1] = zk[t] + uk({zl[t]−zk[t] : l ∼ k}) ,

k = 1, 2, ..., N . (1)

A particular form of (1) considers

pk = av
l∼k

(zl) =
∑

l∼k zl

d
(i)
k

,

the centroid of the neighbors of agent k, as the point to
reach. This is motivated by the objective to gather all the
agents at a single point (the so-called “consensus value”).
The fraction of the distance towards pk that is covered over
a single iteration can be imposed by including the position
of agent k itself with a certain weight in the average. This
leads to the particular family of control laws

zk[t+1] = εk av
l∼k

(zl[t]) + (1− εk)zk[t] ,

εk ∈ (0, 1), k = 1, 2, ..., N . (2)

A. MAIN CONVERGENCE PROPERTY

A number of authors have recently studied the properties
of systems comprising (2) as a particular case. Conver-
gence results are available that allow time-varying and
directed interconnection graphs [10],[11],[13] and may be
summarized by the following proposition adapted from
[10].

Proposition 1: Considering a sequence of directed
graphs G[t] with edge set E [t], we say that agent l is
connected to agent k across a time interval I if there is a
directed path from l to k in the graph containing the edges
appearing in

⋃
t∈I E [t].

• If there is T ≥ 0 such that for all t0 ∈ N there is an
agent connected to all other agents across [t0, t0+T ],
or

• if all communication graphs are bidirectional and for
all t0 ∈ N there is an agent connected to all other
agents across [t0, +∞),

then any solution of (2) converges to zk = c0 ∀k when
t → +∞.

B. FIXED UNDIRECTED GRAPH

We further examine the situation of a fixed, undirected
interconnection topology; in that case, d

(i)
k = d

(o)
k = dk .

Following [15], we consider an artificial potential UL built
on the Laplacian of the graph G,

UL(z) =
1

2N
〈z|Lz〉 (3)

=
1

2N
‖BT z‖2 . (4)

In (3), 〈v1|v2〉 denotes the scalar product [v̄1]T [v2] and z
denotes the vector containing all zk ’s. The equivalent ex-
pression (4) uses the incidence matrix B of G. This matrix
has one row per agent and one column per communication
link and is defined as follows: if link e connects agent k
to agent l, then Bke = −1 and Ble = 1 (for undirected
graphs, which one of the two agents takes the minus sign
is irrelevant); Bme = 0 ∀m /∈ {k, l}. The incidence matrix
is related to the Laplacian by BBT = L. The use of the
potential (3) is motivated by the following properties.

(i) For any connected communication topology, UL = 0
if and only if zk = z1 ∀k. The global minimum of
UL thus selects the synchronized state.

(ii) According to (4), UL may be interpreted as the
sum of the squared lengths of the links between
connected agents. In that sense, UL will be small
for a “grouped” swarm and large for a “dispersed”
swarm.

(iii) Expression (4) shows that the potential UL can be
computed from relative positions that are available
through the communication topology defined by G.

(iv) The symmetry of L for undirected graphs ensures
that the k-th component of the gradient ∇zUL can be
computed from the relative positions between agent
k and its neighbors.

We observe that (2) is strictly equivalent to

zk[t+1] = zk[t]− Nεk

dk

∂UL

∂zk
. (5)

This observation has the following implications.

Descent property: For any 0 < εk < 1, (2) is a de-
scent algorithm for UL (i.e. UL(z[t+1]) ≤ UL(z[t])); this
is true for synchronous operation (all agents are updated
at time t), as well as any type of partially asynchronous
operation (only the agents belonging to some subset of
{1, 2, ...N} are updated at time t).

Continuous-time limit: When εk → 0, (2) turns out
to be an Euler discretization of the continuous-time system

ż(t) = −KLz(t) (6)

where K is a positive diagonal gain matrix. System (6) is
a gradient descent algorithm for 〈z|Lz〉 with respect to
the (diagonal) metric 〈z|K−1z〉, as studied in e.g. [9].

III. CONSENSUS ALGORITHMS ON THE
N -TORUS

When studying e.g. the synchronization of headings in
the plane, the system evolves on the N -torus, which can be
embedded in CN . Our goal is to present some properties
of (2) that can still be considered when the state space is
reduced to the circle |zk| = 1. The state of each agent k
then reduces to the angle θk ∈ S1, and the analog of (1)
is the state equation

θk[t+1] = θk[t] + uk({θl[t]−θk[t] : l ∼ k}) ,

k = 1, 2, ..., N . (7)
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Fig. 1. Interpretation of (9) as the projection of (5) onto the state space
of agent k.

For the rest we replace zk by eiθk . That is, for a fixed,
undirected communication topology, we first build the
potential

UL(θ) =
1

2N
〈eiθ|Leiθ〉

=
1

2N

(
N∑

l=1

dl −
N∑

l=1

∑

m∼l

cos(θm − θl)

)
. (8)

According to (8), the symmetry of L ensures that the
k-th component of the gradient ∇θUL can still be com-
puted from the relative positions between agent k and its
neighbors. Then we consider the same centroid pk and the
update law

θk[t+1] = arg
(

εk av
l∼k

(zl[t]) + (1− εk)zk[t]
)

(9)

=: arg
(
ρk[t]ei(uk[t]+θk[t])

)
,

εk ∈ (0, 1), k = 1, 2, ..., N .

This amounts to projecting the point reached after the
gradient descent (5) onto the unit circle, as depicted on
Figure 1. In case ρk = 0, the angle uk is not defined and
we allow agent k to choose any position on the circle.

Locally, the dynamics (9) can be mapped onto the
real line, leading to an Euclidean algorithm of the type
(2), with zk ∈ R. This has been suggested e.g. in [10]
as a way to use the results of the previous section on
the circle, allowing for convergence analysis in the case
of directed and varying communication topologies. The
obtained convergence results however are not global: when
working out more than a local stability analysis, they
restrict the set of initial conditions to half a circle.

Connection with the Vicsek model: We note that the
control law (9) is directly related to the Vicsek model. This
model was first proposed in [16] to describe the discrete-
time evolution of interacting particles that move with unit
velocity in the plane. In the absence of noise, the update
law of the Vicsek model is

rk[t+1] = rk[t] + eiθk[t]

θk[t+1] = atan

( ∑
m∈{k,{l:l∼k}} sin(θm[t])∑
m∈{k,{l:l∼k}} cos(θm[t])

)
(10)

where θk denotes the heading angles and rk the positions
in the plane. The latter influence the dynamics of the
headings through the interconnection topology that varies
as a function of the proximity of the agents; this part is
beyond the scope of the present work. It is easy to verify
that (10) actually corresponds to (9) with εk = dk

1+dk
.

A. AN ASYNCHRONOUS DESCENT ALGORITHM

We still consider a fixed, undirected communication
topology. The descent property of (2) in Section II cannot
be extended to (9) on the torus in its full generality.
However, randomly choosing one single agent to update at
each time instant decouples the dynamics of the individual
agents, allowing to minimize UL by consecutive (and
hence independent) displacement of each agent. This leads
to an asynchronous descent algorithm for UL on the torus
(Algorithm A), which trivially extends to the situation
where only disconnected agents do update their state at
the same time (we refer to this operation mode as “locally
asynchronous”). Synchronous operation is investigated in
the next subsection.

According to (8) and (7), if only agent k is updated at
time t, the variation of the potential reduces to

∆UL = −2dk

N
sin

(
uk

2

)

=m

(
e−iuk/2

∑
l∼k ei(θl−θk)

dk

)

= −2(dk+bk)
N

sin
(

uk

2

)

=m

(
e−iuk/2

∑
l∼k ei(θl−θk) + bk

dk+bk

)

− bk

N
(1− cos(uk)) , bk > 0 . (11)



In fact, writing εk = dk

dk+bk
and introducing (9), we have

∑
l∼k ei(θl−θk) + bk

dk+bk
= (εkpk+(1−εk)zk)e−iθk = ρkeiuk .

For ρk 6= 0, (11) becomes

∆UL =
(dk+bk) ρk + bk

N

(
cos(uk)− 1

)
≤ 0 . (12)

In case ρk = 0, ∆UL is negative for any uk 6= 0 and
consequently, we get a descent algorithm for UL.

In order to allow global convergence with asynchronous
operation, we must ensure that every agent is eventually
updated over a uniform time horizon. This leads to the
following assumption, which is generically satisfied for a
randomly chosen update sequence.

Assumption 1: The sequence of indices {I[t]}t0≤t<∞,
I[t] ∈ {1, 2, ...N} chosen for the asynchronous update
of the agents has the property that there exist a finite
time span T and a partition of the discrete-time space
[t0, t1) , [t1, t2),... with (tn+1 − tn) < T ∀n ∈ N, such
that k ∈ {I[t] : tn ≤ t < tn+1} for every agent
k ∈ {1, 2, ...N} and for every interval [tn, tn+1).

In fact, Assumption 1 ensures that every agent k
is updated at an infinite number of time instants
t1k, t2k, ... tnk, .... As a consequence, since UL ≥ 0 and
∆UL ≤ 0, it is necessary that all sequences {∆UL[tnk]}
converge to 0 when n → +∞. Considering (12), this
implies that uk → 0 and agent k asymptotically reaches
a point θ∗. Note that if ρk|θ∗ = 0 for any agent k,
then θ∗ is not a fixed point (since any move of agent k
would be allowed at θ∗). However, convergence towards
such a point is highly unstable since it corresponds to a
maximum of UL with respect to θk; in fact, this instability
is reflected by the discontinuity of the control law (9)
when ρk = 0. In the vicinity of any other equilibrium
point, the control law (9) is continuous so that the stable
equilibria of the descent algorithm are the local minima
of U . As ∂2UL

∂θ2
k

= 1
N

∑
l∼k cos (θl−θk) ≥ 0 at these

points, one easily cross-checks indeed that they correspond
to situations with ρk > 0. This leads to the following
proposition.

Proposition 2 (Algorithm A): Consider a fixed,
undirected graph G and the artificial potential UL built
on its Laplacian according to (8). Then, any (locally)
asynchronous descent algorithm resulting from the
application of (9) and satisfying Assumption 1 drives the
system towards a local minimum of UL for almost all
initial situations. The position vector of agent k is then
aligned with the centroid pk of its neighbors as defined
by the graph G.

Remarks:
1) The minima of UL correspond to “grouped states” in

the sense of (ii) in Section II.B. In particular, for all-
to-all communication (G being the complete graph),

the synchronized state θk = θ1 ∀k is the only local
minimum of UL along the N -torus.

2) Using (11) with bk < 0, one can develop a similar
asynchronous ascent algorithm for UL(θ), leading to
the local maxima which correspond to “distributed
states”. For all-to-all communication, they corre-
spond to “balanced states” where the centroid of the
agents is located at the center of the circle.

3) It is not difficult to show that these algorithms remain
valid when εk varies with time.

B. CONTINUOUS-TIME LIMIT and SYNCHRONOUS
OPERATION

When εk → 0, the movements of the agents are infinites-
imal. In this limit case, moving agent k by −Nεk

dk

∂UL

∂zk
and

then projecting the new position onto the circle (Algorithm
A) is strictly equivalent to taking the component ∂UL

∂θk
of

the gradient that is tangent to the circle and moving by
−Nεk

dk

∂UL

∂θk
along the circle.

As a consequence, for small εk, (9) may be seen as an
Euler-discretization of the continuous-time gradient system

θ̇k = K
∂UL

∂θk
= −K

N

∑

l∼k

sin(θl−θk) , K < 0 (13)

described in [17] and [15] which inspired the present work.
In equation (13), for all-to-all communication we recover
the celebrated Kuramoto model for the evolution of agents
on the circle. This shows how the sine function of the
Kuramoto model is actually linked to a centroid strategy.

In [15], the continuous-time gradient algorithm (13) is
shown to converge towards the local minima of UL; this
means that Algorithm A may be used in synchronous
operation when εk → 0. On the other hand, the global
convergence properties of Algorithm A are lost in syn-
chronous operation when εk → 1. Indeed, in that case the
distinction between the proposed descent algorithm and the
corresponding ascent algorithm (see Remark 2) is lost in
shape space and, depending on initial state, the system may
converge to local maxima or local minima of UL; further
illustration, not presented here, shows that at least for some
topologies, the synchronous algorithm is even prone to run
into a limit cycle. A striking question at the present point
is thus to know to what extent the asynchronous setting
is required to ensure convergence of Algorithm A. As
could be imagined, the answer involves a bound on εk;
the following (very conservative) bound is derived in the
appendix:

εk

1− 2εk
≤ M∗dk

2dmax
∀k

where
eM∗ − 1

M∗ = 1 +
dmax

Ndmean
.

However, a major shortcoming is that distributed knowl-
edge of the global information dmax, dmean and N
(through M∗) is needed for every agent to compute this
bound.



Connection with the Hopfield model: The property
of asynchronous convergence that fails to extend to syn-
chronous operation was already observed on the discrete-
time network proposed by Hopfield in [18]. The Hopfield
network considers N neurons with states xk ∈ {−1, 1}.
The discrete-time update law for the states of the neurons
is

x[t+1] = sign (Wx[t] + ξ) (14)

where ξk is a firing threshold for neuron k and W is a
symmetric weight matrix with wkk = 0. Considering the
potential

UL = −1
2
〈x|Wx〉 − 〈x|ξ〉 ,

Hopfield showed that when (14) is applied asynchronously
with a random update sequence, the property UL[t+1] ≤
UL[t] always holds and the network eventually reaches a
fixed point that corresponds to a local minimum of UL.
This is not true anymore for synchronous operation. In
fact, it is shown in [19] that the system can go into a limit
cycle in that case.

A comparison with Algorithm A is straightforward,
though the systems themselves are completely different.
Indeed, both laws are descent algorithms for a symmetric
quadratic potential, with states restricted to a subset of an
Euclidean state space: the N -torus in the present paper, the
N -hypercube for Hopfield networks. In both situations,
convergence is achieved by asynchronously moving agent
k towards the point in its state space which is closest to
some point pk that lies in the associated Euclidean space
(C or R); this point is defined as the (possibly weighted)
centroid of the neighbors of agent k in the Euclidean
space. Both algorithms can alternatively be viewed as
moving along the gradient of UL in the associated
Euclidean space and projecting the reached point on the
state space manifold of agent k. The assumption wkk = 0
in the Hopfield network may be linked to εk → 1 in
Algorithm A; in this case, both algorithms fail to converge
in synchronous operation.

IV. A GLOBALLY CONVERGENT ALGORITHM
ON THE N -TORUS

Algorithm A in the previous section has two shortcom-
ings:

(i) the convergence analysis requires a fixed communi-
cation graph;

(ii) depending on the communication graph, the synchro-
nized state is usually not the unique minimum of the
potential.

Simulations indicate that the convergence properties of
the algorithm are generically1 retained with switching
communication graphs, and in fact improved because the
synchronized state is the only persistent minimum of the

1This means with unit probability for a randomly chosen graph
sequence. In fact, one can easily construct counterexamples for some
particular graph sequences.

family of potentials UL(θ). Nevertheless, the convergence
analysis remains elusive in this more general framework.

In this section, we present an alternative synchronization
algorithm (Algorithm B), for which global convergence
properties can be established. Based on an idea recently
proposed in [14], this algorithm involves a different ex-
change of information between communicating agents: in
addition to communicating their relative position, agents
are required to communicate their current estimate of a
consensus orientation vector pk[t] ∈ C.

The estimate pk of agent k is updated according to the
consensus algorithm (2), that is,

pk[t+1] = εk av
l∼k

(pl[t]) + (1− εk)pk[t] . (15)

The (normalized) estimate is then used in the update law
(9) as a substitute to the local centroid avl∼k(zl), that is,

θk[t+1] = arg
(

ζk
pk[t]
‖pk[t]‖ + (1− ζk)zk[t]

)
,

ζk ∈ (0, 1], k = 1, 2, ..., N . (16)

Convergence of the consensus algorithm (15) is guaran-
teed under the assumptions of Proposition 1. This means
that the state dynamics (16) are asymptotically governed
by the update law

θk[t+1] = arg
(

ζk
p∞[t]
‖p∞[t]‖ + (1− ζk)zk[t]

)
. (17)

The only stable fixed point of the (decentralized) dynamics
(17) is θk = arg(p∞); for ζk > 1/2, it is the only fixed
point. This means that the synchronous state θk = arg(p∞)
is the only limit set of the dynamic algorithm (15),(16).
This result is summarized in the following proposition.

Proposition 3 (Algorithm B): Considering a sequence
of graphs satisfying one of the assumptions of Proposition
1, any solution of (15),(16) with ζk > 1/2 and such
that p∞ 6= 0 globally synchronizes the agents at
θk = arg(p∞) ∀k when t → +∞.

Remarks:
1) A particular weighting of each agent’s contribution

in the centroid computation, leading to

pk[t+1] =
∑

l∼k

pl[t]

d
(o)
l [t] + 1

, k = 1, 2, ..., N ,

(18)
allows to control p∞ by ensuring that

∑N
k=1 pk = c0

is invariant; the value of p∞ is then fixed by the
initial conditions which will generically be such that
c0 6= 0.

2) As written down in (15) and (16), Algorithm B is
not rotationally invariant; this is in contradiction with
our goal to design distributed algorithms that need
no external reference. The following expressions are
equivalent to (15),(16), but they only involve the
relative variables θl − θk, pke−iθk =:

(
pe−iθ

)
k

and
θk[t+1]−θk[t]; the variables θl−θk and

(
pe−iθ

)
l

are



the values actually exchanged among communicating
agents.

θk[t+1]− θk[t] = arg

(
ζk

(
pe−iθ

)
k
[t]

‖pk[t]‖ + (1− ζk)

)

(
pe−iθ

)
k
[t+1] =

(
e−i(θk[t+1]−θk[t])

)

(
(1− εk)

(
pe−iθ

)
k
[t]

+ εk av
l∼k

((
pe−iθ

)
l
[t] e−i(θk[t]−θl[t])

))
.

V. CONCLUSIONS AND FUTURE RESEARCH

In the present paper, we presented two strategies based
on a local centroid computation to achieve global synchro-
nization of a network of agents evolving on the circle in
discrete-time.

The first strategy drives the system towards the local
minima of an artificial potential based on the fixed, undi-
rected communication topology. The control law requires
knowledge of the relative positions of an agent’s neighbors;
it always converges when implemented asynchronously,
but synchronous operation requires an appropriate step
size.

The second strategy requires communication of a con-
sensus variable which evolves in the embedding Euclidean
space rather than simply the position of the agents on the
circle. However, with this additional information and under
some mild assumptions, the system is driven towards the
synchronized state when the communication topology is
varying and possibly directed.

In future work, we plan to consider similar
synchronization algorithms on more general manifolds.
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APPENDIX

In this appendix, we derive a sufficient bound on the
value of εk in order to ensure convergence for synchronous
operation of Algorithm A. We proceed in two steps.

Step 1: Consider a first-order Euler-discretization of
(13) in the form

θk[t+1] = θk[t] + KT
∂UL

∂θk
, K < 0 . (19)

The variation of the potential between two time steps is

∆UL[t] = KT ‖∇θUL‖2

+ 1
2!∇2

θUL

2∏
m=1

×m(KT∇θUL)

+ 1
3!∇3

θUL

3∏
m=1

×m(KT∇θUL)

+... (20)

where ×m denotes tensor multiplication along dimension
m. According to (20), UL will be non-increasing as long as
the first term remains dominant. To satisfy this condition,
a bound has to be imposed on the value of KT . For this
purpose, we consider the potential in the form (8) and its
derivatives with respect to θ. By giving the maximal value
1 to all appearing sines and cosines, one observes that the
sum of the absolute values of all elements in the tensor
∇n

θ UL is smaller than dmean2n−1:

abs (∇n
θ UL)

n∏
m=1

×m

(
[11...1]T

) ≤ dmean2n−1



where dmean = 1
N

∑N
k=1 dk denotes the average degree

in the communication graph, abs(A) denotes the tensor
containing the absolute values of the elements of tensor A
and n ≥ 2.

For any vector x and any tensor An of degree n ≥ 2,
one has∣∣∣∣∣An

n∏
m=1

×m x

∣∣∣∣∣

≤ abs(An)
2∏

m=1

×m[11...1]T xT x

n∏
m=3

×m abs(x)

≤ abs(An)
n∏

m=1

×m[11...1]T xT x

(
max

k
|xk|

)n−2

.

In particular, replacing x by (KT∇θUL) and An by
∇n

θ UL, we see that the higher order terms in (20) are
bounded by
∣∣∣∆UL −KT ‖∇θUL‖2

∣∣∣
∣∣∣KT ‖∇θUL‖2

∣∣∣

≤
∑+∞

n=2
1
n! |An

∏n
m=1×m x|∣∣∣KT ‖∇θUL‖2

∣∣∣

≤ |K|Tdmean

+∞∑
n=2

1
n!

2n−1

( |K|Tdmax

N

)n−2

≤ N

M

dmean

dmax

+∞∑
n=2

Mn

n!
,

M =
2|K|Tdmax

N
.

This implies that the first term of (20) will be dominant if

eM − 1
M

≤ 1 +
dmax

Ndmean
(21)

which may be solved numerically to produce a sufficient2

convergence condition M ≤ M∗. This in turn fixes a
sufficient bound on KT for a given topology, which
through (19) leads to the following equivalent requirement
on the move of agent k between two time steps:

|∆θk| ≤ M∗N
2dmax

∣∣∣∣
∂UL

∂θk

∣∣∣∣ . (22)

Step 2: The second step is to connect (19) to Algo-
rithm A. After some elementary geometrical observations,
one verifies that for εk < 1/2, the distance ∆θk travelled
along the circle when applying control law (9) satisfies

|∆θk| ≤ N

dk

∣∣∣∣
∂UL

∂θk

∣∣∣∣
εk

1− 2εk
.

Comparing with (22), we finally obtain the condition on
εk:

εk

1− 2εk
≤ M∗dk

2dmax
.

2Note that this bound is very conservative; solutions of (21) reduce to
M = 0 when dmax

Ndmean
approaches 0.


