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Abstract— This paper studies some extensions to the de-
centralized attitude synchronization of identical rigid bodies.
Considering fully actuated Euler equations, the communication
links between the rigid bodies are limited and the available
information is restricted to relative orientations and angular
velocities. In particular, no leader nor external reference dic-
tates the swarm’s behavior. The control laws are derived using
two classical approaches of nonlinear control - tracking and
energy shaping. This leads to a comparison of two correspond-
ing methods which are currently considered for distributed
synchronization - consensus and stabilization of mechanical
systems with symmetries.

I. INTRODUCTION
The distributed synchronization of a set of agents - i.e.

driving all the agents to a common position and orientation
without referring to any leader or external reference - is an
ubiquitous task in current engineering problems. Practical
applications include autonomous swarm/formation operation
([1]-[23] and references therein), distributed decision making
([24], [25], [26]), and many algorithmical problems involving
“dynamical average computations” ([27]). In a modeling
framework, the understanding of swarm behavior has also led
to many important studies ([12], [28], [29]). Synchronization
on non-Euclidean manifolds raises particular questions ([30],
[31]), but also appears in several applications. Beyond the
circle ([9], [10], [11], [32]), the most important example is
perhaps the group SO(3), representing the orientations of
3-dimensional rigid bodies ([3], [6], [7], [33], [34], [35]).
For example, attitude synchronization is required for modern
space mission concepts involving multiple satellites flying in
formation ([19]-[23],[36]-[39]).

The present paper addresses the distributed synchroniza-
tion problem on SO(3) in a consensus and dynamical
setting. In particular, the goal is to find control torques that
asymptotically drive a swarm of fully actuated rigid bodies
towards the same orientation under two constraints. First,
an imposed interconnection graph limits the information
exchange between the agents. Second, no leader nor external
reference is allowed to dictate the swarm’s behavior: the
agents are strictly identical and must synchronize without
any external help. This second constraint expresses the fully
autonomous and distributed character of the problem.

A first viewpoint on rigid body synchronization comes
from the field of control of mechanical systems. Most of the
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studies from this field rely on a common external reference
which must be tracked by the agents or introduce a leader in
the swarm ([2], [22], [23], [33]-[36]). Some of those authors
also noticed singular behavior due to their use of the non-
unique quaternion representation. Instead, the present paper
works directly on the manifold SO(3) and avoids leaders or
external references. This is in the line of the work in [1], [3]-
[7], [40]. However, the latter only considers specifically fixed
interconnection topologies. Moreover, the presented stability
results are not asymptotic, unless an external reference is in-
troduced. In summary, none of this work achieves asymptotic
synchronization in a fully autonomous and distributed way.

Another class of previous work in the area concerns
consensus algorithms. This approach works perfectly au-
tonomously: the focus lies on the absence of external ref-
erence (hence the need for consensus) and on imposed com-
munication constraints. However, working in a computational
or task-planning framework, the agents are often modeled as
first-order integrators, disregarding the full system dynam-
ics (in particular, for attitude control, the nonlinear Euler
equations). Most existing consensus results are valid for
Euclidean state spaces ([12], [16], [17], [25], [26], [41]-[44]),
but recent work also considers non-Euclidean spaces ([8]-
[11], [18], [27], [32], [45]), mainly the circle. The work in
[45] about consensus on homogeneous manifolds allows to
apply the consensus approach to SO(3).

In the present paper, the consensus approach and the
mechanical approach are brought together. To the best of
our knowledge, these are the first results that (i) achieve
asymptotic synchronization (ii) of a mechanical system that
evolves on the non-Euclidean manifold SO(3), and explicitly
consider both (iii) the autonomous, distributed character
of the problem and (iv) the Euler equations describing the
system dynamics.

In both the consensus and the mechanical approaches,
synchronization can be viewed as a distributed optimization
task. The difference lies in the way this optimization problem
is solved. For the “consensus tracking” point of view, a
consensus algorithm is used at a task planning level to
define desired trajectories which are tracked by the individual
agents. The mechanical point of view applies the “energy
shaping” method: the cost function is used as an artificial
potential and properly designed artificial dissipation asymp-
totically stabilizes the synchronized state as a minimum of
the artificial potential ([1], [3], [6], [7]).

The paper is organized as follows. The distributed attitude
synchronization problem is defined in Section II. Section
III highlights the similarities in previous work on consensus
and energy shaping. Section IV introduces the indirect



or consensus tracking approach, leading to new control
laws. Section V presents new results obtained with the
introduction of dissipation in the energy shaping method.
Proofs are omitted because of space limitations.

II. PROBLEM SETTING
Consider a swarm of n identical rigid bodies, called agents

in the following. An orthonormal reference frame Bk is
attached in the same way to each body k such that the
moment of inertia matrix in Bk is J = diag(J1, J2, J3)
with J1 > J2 > J3. The orientation of Bk with respect to
an inertial frame A is given by the rotation matrix Qk such
that a vector v with components v in A has components
QT

k v in Bk.
The variation with respect to time of the orientation of Bk

in A is characterized by the kinematic equation
d
dtQk = Qk[ωk]∧ (1)

where ωk denotes the angular velocity of agent k expressed
in Bk and [·]∧ : R3 → so(3) denotes the skew-symmetric
matrix implementing the cross-product [x]∧y = x × y ∀y.
For x = (x1 x2 x3)T this implies

[x]∧ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .

The inverse of [·]∧ is denoted [·]∨ : so(3) → R3. For
example, ωk =

[
QT

k
d
dtQk

]∨
.

The dynamics of agent k are governed by

J d
dtωk = (Jωk)× ωk + τk (2)

(Euler equations) where the torque τk is expressed in Bk.
The objective of the present paper is to design control inputs
τk coupling the n agents such that the n systems of equations
(1)-(2), k = 1, ...n, drive the swarm to a synchronized state
where Qk = Qj ∀k, j, whatever their absolute orientation
and absolute angular velocity may be. As noted in [1], [40],
only the absolute orientation can be factored out of the state
space. Indeed, the dynamics (2) are invariant w.r.t. a fixed
rotation Q of all the agents, but not w.r.t. any synchronized
motion since the angular velocity ωk appears explicitly.

The agents are assumed to be fully actuated. However, they
have access to limited information. In particular, each agent k
only gets information from a subset of the other agents. This
is denoted by j  k (“j is a neighbor of ≡ sends information
to k”). The collected communication links form a directed
graph G. G is undirected if k  j whenever j  k. The
associated undirected graph of a directed graph G simply
replaces all the directed links of G by bidirectional links. It
is assumed that agent k gets the following information from
each of its neighbors j:
• its relative orientation QT

k Qj ;
• its relative angular velocity QT

k (Qjωj −Qkωk) ;
• possibly a set of scalar auxiliary variables Xj .

In addition, k may have to measure ωk =
[
QT

k
d
dtQk

]∨
, its

own angular velocity w.r.t. A and expressed in Bk (in the

remainder of the paper this is called the absolute or inertial
angular velocity of k, in opposition to its relative angular
velocity which characterizes its motion w.r.t. another agent).
However, it never knows its absolute orientation Qk. Note
that the measurement of ωk does not necessarily involve
an external reference but can be retrieved by an isolated
agent equipped with an inertial device (gyroscope). This is
consistent with the symmetries of the dynamics.

III. CONSENSUS COST FUNCTION

The goal of the present section is mainly to highlight
the similarities of the consensus and energy shaping
approaches to attitude synchronization. Many specificities
of both approaches are therefore neglected, most notably the
important work on mechanical symmetries and reduction
described among others in [1], [6], [7], [40]. Notations
and formulations have also been adapted, for the sake of
simplicity and at the cost of generality. Among others, in
an effort to design globally valid algorithms, an inherent
geometric representation of SO(3) is favored and the more
popular quaternion representation ([2], [23], [36]) is ignored.

Consider the function

PG(Q1, ..., Qn) =
1

2n2

n∑
k=1

∑
j k

trace
(
QT

j Qk

)
.

In a mechanical/energy-shaping framework, the function
PG itself was already introduced in [1], [34], [40], [3].
It can also be directly derived from the chordal distance
d(Qj , Qk) =

√
trace(I3 −QT

j Qk) introduced in [31] to
represent the agreement between interconnected agents in
a consensus/algorithmical framework. In fact, it is shown in
[45] how this function arises as a special case of consensus
functions on compact connected homogeneous manifolds.
One easily checks that

trace
(
QT

j Qk

)
= 1 + 2 cos(θ)

where θ ∈ [0, π] is the rotation angle of the single-axis rota-
tion between Qj and Qk (see Euler’s rotation theorem) and
represents the canonical geodesic distance from Qj to Qk

∈ SO(3). PG is thus a measure of attitude synchronization in
the swarm. Consequently, if G is connected, synchronization
is the unique global maximum of PG; unless otherwise spec-
ified, the present paper always assumes that G is connected.
Because SO(3) is a non-Euclidean manifold, in general, PG

may have local maxima. The following proposition identifies
particular situations where the synchronized state is the only
local maximum of PG.

Prop. 1: If the undirected graph G associated to the
agent interconnections is a complete graph or a tree, then
attitude synchronization is the only maximum of PG.

In an energy-shaping framework, PG is used to build an
artificial potential σPG, σ < 0, whose global minimum
corresponds to the synchronized state ([1], [3], [6], [7]). This



leads to the following basic control torque, which only uses
information on relative orientations of the agents in a fixed,
undirected interconnection graph G ([3], [7], [1], [6]):

τ
(S)
k = −

[
QT

k
∂ σPG

∂Qk

]∨
= −σ

2n2 [
∑
j k

(QT
k Qj −QT

j Qk) ]∨. (3)

Using different energy-related methods, [1] proves that
synchronization with zero velocity is a stable equilibrium
of (1)-(2) with the control (3), and [3], [6], [7] extend
this stability result to the case where the rigid bodies
rotate together about their aligned short axis. However, the
Hamiltonian of the system (consisting of the kinetic energy
and the artificial potential, such that (3) is accounted for
by the artificial potential) is conserved, such that some
form of dissipation must be added to obtain asymptotic
stability. This is left as an open question in [3] and solved
with the help of an external reference frame in [6], [7].
In [1], it is suggested to use external dissipation (drag) to
obtain asymptotic stability. Dissipation without any external
reference is considered in the present paper, see Section
V. Due to the derivation of the control torques from the
potential σPG, the energy shaping approach is restricted to
fixed undirected interconnection graphs G and sensitive to
the local minima of σPG imposed by G.

This limitation can be removed in the consensus frame-
work. However, the consensus algorithms do not consider
the dynamics of the system. Instead, they define desired
kinematic trajectories to maximize PG, assuming that the
angular velocity ωk is a direct control input. When G is
fixed and undirected, the system is simply steered along the
gradient of PG, leading to the desired trajectory

QT
k

d
dtQk = [ω(d)

k ]∧ = αk

2n2

∑
j k

(
QT

k Qj −QT
j Qk

)
(4)

where αk > 0. Note the similarity between this desired
rotational velocity and the control torque (3). When G
is directed and/or time-varying, (4) no longer defines a
gradient system and, on non-Euclidean manifolds, solutions
do not always converge to synchronization. In this case, the
approach first proposed in [32] for the circle and generalized
to homogeneous manifolds in [45] is to equip each agent with
a consensus estimator (see also [27], [8], [10]). For SO(3),
this auxiliary variable Xk is a 3 × 3-array of numbers that
interconnected agents communicate. Defining Nk = QkXk,
the equations computed by the agents in their local frames
Bk can be rewritten as ([45])

d
dtNk = α

(1)
k

∑
j k

(Nj −Nk) (5)

QT
k

d
dtQk = [ω(d)

k ]∧ = α
(2)
k

2 (QT
k Nk −NT

k Qk) (6)

where the first equation is expressed in inertial frame A
and α

(1)
k , α

(2)
k > 0. The first equation (5) is a classical

linear consensus algorithm in Euclidean space, leading to
synchronization of the Nk under the following assumption
(see [26], [41], [42]).

Ass. 1 [42]: The interconnection graph G(t) is piecewise
continuous in time. Moreover, define the graph Gδ,T (t) to
contain all the interconnections that are found in G(t) for
at least δ seconds during the time interval [t, t+T ]. Then it
is assumed that there are time constants δ > 0, T > 0 and
an agent k such that for all t, in the graph Gδ,T (t) there is
a path from agent k to all the other agents. This property is
known as uniform connectedness [42].

The second equation simply makes Qk track the projection
of Nk on SO(3). The latter can be computed in closed
form and is generically unique, so that the kinematic
algorithm generically converges to synchronization when
Assumption 1 is satisfied. Note that, by using a consensus
algorithm in Euclidean space, the problem of local maxima
is circumvented.

IV. CONSENSUS TRACKING
The consensus algorithms (4) and (5)-(6) directly assign

a velocity to each agent k at each time instant t. A second
step is required to obtain dynamical algorithms, i.e. explicit
expressions for the control torques τk of (2). The new
contribution of this section is to briefly discuss this link from
consensus to dynamics.

The knowledge of an individual’s own absolute angular
velocity ωk is unavoidable for the control laws of the
present section. With this information, it is rather obvious
to make the agents individually track a desired angular
velocity field ω

(d)
k defined by a consensus algorithm. The

simplest control strategy based on (5) defines the desired
orientation Q

(d)
k to be the projection of Nk on SO(3);

equation (6) is replaced by a dynamical tracking algorithm
on SO(3). Since the projection process from R3×3 to SO(3)
presents a discontinuity when Xk is singular, Q

(d)
k is not

necessarily continuous. However, it is unimportant to track
the transient trajectory: the only objective is to synchronize
the rigid bodies towards the final consensus value of Nk. In
this setting, it might even seem useless to move the rigid
bodies before the auxiliary variables approach a consensus
situation. Moving the rigid bodies into the desired attitude
after the agents have reached consensus on Nk would just
require a global attitude stabilization controller for each
agent. Algorithms for attitude tracking or stabilization may
be found among others in [19], [33]-[36], [46]. Tracking
approaches to attitude coordination can also be found in
[2], [22], [23], though the presence of a common external
reference is necessary for their results.

The following explicitly considers some control torques
for a consensus tracking synchronization strategy based on
(5). Both (4) and (6) impose zero angular velocity when
synchronization is achieved. To be more general, a common
constant (in body frame) angular velocity ω0 is imposed to
the synchronized swarm (ω0 may e.g. result from a consensus
algorithm in R3). Therefore, the desired orientation for Qk

becomes Nket[ω0]
∧

and the desired angular velocity becomes

ω
(d)
k = ω0 + α

(2)
k

2 [QT
k Nket[ω0]

∧
− e−t[ω0]

∧
NT

k Qk ]∨ . (7)



In order to drive ωk to ω
(d)
k , an exponential evolution

d
dt (ωk − ω

(d)
k ) = −βk(ωk − ω

(d)
k ) (8)

is imposed, where βk > 0 and d
dtω

(d)
k is deduced from (7)

and (5). Given the form of (2), the torque

τk = J d
dtω

(d)
k − βk(ωk − ω

(d)
k )− (Jωk)× ωk (9)

achieves (8) by using available information, i.e. auxiliary
variables, relative orientations and relative angular velocities
of interconnected agents and one’s own absolute angular
velocity.

Prop. 2: Consider a swarm of agents applying the control
torque (9) where ω

(d)
k is defined by (7), in combination with

(an equivalent in body coordinates of) the consensus algo-
rithm (5). If the interconnection graph satisfies Assumption
1 and the initial values of Nk are randomly chosen in R3×3,
then the only stable limit set for t → +∞ is synchronization
of the orientations with ωk = ω0 ∀k.

Unstable situations include some agents being turned by
exactly 180 degrees w.r.t. the common Q(d), and the rare
cases where the Nk converge to a matrix for which Q

(d)
k is

not uniquely defined. Limit cycles are not expected.

The control torque (9) includes a term that exactly cancels
the free rigid body dynamics. This is characteristic of the
“computed torque” method and requires perfect knowledge
of the inertia matrix J . An alternative is to dominate the
natural dynamics using a high-gain method. If βk is large
enough, the control torque (9) can be reduced to

τk = J d
dtω

(d)
k − βk(ωk − ω

(d)
k ) . (10)

Prop. 3: Consider a swarm of agents applying the control
torque (10) where ω

(d)
k is defined by (7), in combination with

(an equivalent in body coordinates of) the consensus algo-
rithm (5). Moreover, assume that the interconnection graph
satisfies Assumption 1, the initial values of Nk are randomly
chosen in R3×3 and ω0 is aligned with the principal axis of
the rigid bodies corresponding to Ji. If, ∀k,

βk > 1
J3

( 3√
2
αkJ1‖Nk‖F + 3J1+Ji

2 ‖ω0‖) (11)

where ‖·‖F denotes the Frobenius norm, then the only stable
limit set for t → +∞ is synchronization of the orientations
with ωk = ω0 ∀k.

Remarks:
1) The values of ‖Nk‖F are ensured to be bounded

because, for whatever interconnection graph and at any
time, the values of Nk(t) lie in the convex hull of the
initial values {N1(0), N2(0), ...Nn(0)}.

2) The values of αk and βk in the algorithms of the
present section may be smoothly varied by each agent
above arbitrarily fixed lower bounds αmin > 0 and
βmin > 0. This enables adaptation to constraints of
the system. For example, one may choose αk inversely
proportional to ‖Nk‖F in order to satisfy (11).

3) Proposition 3 allows to impose a rotation ω0 about a
principal axis only. This is probably the most useful
case in practice, as maintaining other motions would
require persistent control torques.

V. ENERGY SHAPING

The present section considers extensions of the energy
shaping approach of [1], [3], [6], [7]: introducing new
dissipative terms, the goal is to obtain asymptotic syn-
chronization with control torques satisfying the assumptions
about available information made in Section II. The energy
shaping approach leads to simpler and arguably more robust
control laws. Moreover, the basic control torque (3) can be
computed without requiring any information about angular
velocities; those will only appear through the dissipation.
As a consequence, (3) imposes no restrictions on the final
motion of the synchronized agents; the set of possible
motions will only be reduced according to the symmetries of
the inherent dynamics and the dissipation term. At the end
of this section, a locally synchronizing control torque that
can be implemented without absolute angular velocity (ωk)
measurements is presented. A current limitation of energy
shaping is that the interconnection graph G must be fixed
and undirected (and connected).

The dissipative torque to be designed is denoted τ
(D)
k ,

such that τk = τ
(S)
k + τ

(D)
k with τ

(S)
k defined in (3). The

total energy (including the artificial potential) of the swarm

H = 1
2

n∑
k=1

ωT
k Jωk + σ

2n2

∑
j k

trace(QT
k Qj)


evolves as d

dtH =
∑

k ωT
k τ

(D)
k .

A. Dissipation w.r.t. inertial space

Introducing dissipation on the motion of each individual
agent is admissible if each agent measures its own angular
velocity. This was already suggested in [1].

Prop. 4: The control torque τk = τ
(S)
k − bkωk with bk >

0 and τ
(S)
k defined in (3), drives the swarm towards an

equilibrium set where ωk = 0 ∀k and the Qk are at a critical
point of PG. The only stable equilibria are the maxima of
PG.

Proposition 4 uses a simplified control torque with
respect to Propositions 2 and 3. In particular, no exchange
of angular velocities is needed, the free rigid body dynamics
are not counteracted and there is no condition on the
strength of the control torques. However, the convergence
result is significantly weaker. Indeed, it is restricted to
fixed, undirected graphs and, except for special graphs
like trees or complete graphs, does not exclude locally
stable equilibria that are different from synchronization.
Moreover, the introduction of dissipation in inertial space
always stabilizes the agents at rest (ω0 = 0 with respect
to Propositions 2 and 3). The first issue is inherent to the



energy shaping approach based on PG. The second issue is
addressed in the following, where “inter-agent dissipation”
is considered in order to synchronize the agents in a moving
situation.

B. Dissipation in shape space

A more elegant way to introduce dissipation in the context
of relative motions is through the relative angular velocities.
This replaces the measurement of absolute angular velocities
ωk by relative angular velocities of interconnected agents,
such that the agents can implement their control torque
without any absolute information about their own state. The
resulting control torque is

τk = τ
(S)
k − b

∑
j k

(ωk −QT
k Qjωj) (12)

with b > 0. A fundamental property of (12) is the fact that
the torques Qkτk in inertial space A sum to zero, such that
the total angular momentum of the swarm

∑
k QkJωk is

conserved.
The control (12) always asymptotically leads to angular

velocity synchronization, i.e. Qkωk = Qjωj ∀k, j. This
means that asymptotically, the relative orientations QT

k Qj

in the swarm are constant. As a consequence, the control
torques τk are all constant as well. However, the control
law does not necessarily lead to attitude synchonization. A
simple counterexample with just 2 rigid bodies indicates
that asymptotic orientation synchronization - even locally -
requires an additional assumption on the relative strength of
the artificial potential with respect to the kinetic energy.

Prop. 5: Assume that G is connected. The control torque (12)
where τ

(S)
k is defined in (3), drives the swarm towards an

invariant set under (3) with synchronized angular velocities
Qkωk (and hence fixed relative orientations QT

k Qj). More-
over, for every set of initial angular velocities, there exists
a constant σ∗ < 0 (actually depending on n, J , G and the
initial kinetic energy K(0) only) such that when |σ| > |σ∗|,
the orientations Qk of the agents locally asymptotically
synchronize.

Sketch of the proof: The fact that the angular velocities
Qkωk synchronize readily appears by using H as a Lyapunov
function. For the synchronization of the orientations Qk, the
bound |σ|∗ serves two purposes. First, it is shown that given a
neighborhood W of synchronization, there exist a value |σ1|
and a neighborhood U of synchronization such that starting
in U imposes staying in W for |σ| > |σ1|. Then it is shown,
using linearization, that there exists a value |σ2| such that for
|σ| > |σ2|, synchronization is a locally unique solution of
(1)-(2)-(3) with identical angular velocities Qkωk. Choosing
W such that this linear/local result is valid inside W allows
us to conclude that solutions starting in U converge to
synchronization for |σ| > max(|σ1|, |σ2|). The conservation
of total angular momentum plays a central role in the proof.

M

In the reduced space (TSO(3))n/TSO(3) of relative ori-
entations and relative angular velocities, the statement about
orientation synchronization is equivalent to local asymptotic
stability of the isolated equilibrium QT

k Qj = I3, QT
k Qjωj−

ωk = 0 ∀k, j. The absolute angular velocity is then an
external variable inducing time-varying dynamics. The bound
|σ| > |σ∗(K(0))| for synchronization is non-uniform with
respect to the (initial) absolute angular velocity.

Remarks:

1) The sum appearing in τ
(D)
k of (12) need not consider

the same interconnection graph G as for τ
(S)
k . It is just

a natural assumption in the present context.
2) The control (12) vanishes when the agents are all

synchronized. Hence any synchronized free rigid body
motion is an equilibrium in (TSO(3))n/TSO(3) for
(1)-(2) with input (12).

3) The design of relative dissipation in mechanical
systems is also addressed in [47], with a different
approach.

VI. CONCLUSION

The goal of the present work was to explore some issues
arising when synchronization algorithms on non-Euclidean
manifolds are designed at a dynamical level with limited
inter-agent communications and relative orientation and
angular velocity measurements only.

In contrast with the simplified kinematic description ([8],
[10], [11],...), the rigid body dynamics do not retain full
symmetry w.r.t. any synchronized motion of the agents ([1],
[40]). Therefore, a tracking approach ([2], [33]-[36]) requires
each individual to know its own angular velocity.

For fixed undirected interconnection graphs, the energy
shaping approach can be applied ([3], [6], [7]). The main
issue here is to design artificial dissipation without referring
to absolute angular velocities.

An interesting topic for future research is to try to combine
the energy shaping control (12) with estimator variables
as in (5)-(6) to achieve global attitude synchronization for
potentially directed and time-varying interconnection graphs
and using only relative angular velocities.
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