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In particular, three domains of applications will be considered:
- Statistical Process Control in Total Quality Management

- Flexible Modelling in Financial Risk Management

- Survival Analysis for General Duration Data (time to find a

new job, insurance contract duration, ...)

In each case, new statistical methodologies are proposed to
solve given problems for which no or only partial solutions have
been provided.
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[) Statistical Process Control
(SPC)

A) Context and basic ingredients

B)Problems met and proposed
solutions
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A) Context and basic ingredients

* Question: how to monitor a production or
services process? (How to detect failures and

their causes, to warn and repair the system
sufficiently early...)

« Basic answer: use SPC

« Example of a general process:

Equipment People Materials
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Sick patient —» Process +— Well person

e

Procedures Environment
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The very simple idea of SPC is to monitor a characteristic of

interest of the process (for example the mean time to achieve a

task or a measure of the quality of a product) by

1. considering its distribution,

2. comparing observed values of the characteristic (on the basis
of successive samples) with the above distribution,

3. defining a decision rule that establishes if the process is « in
control » or « out of control ».

Walter Shewhart
Developer of Control Charts in the late 1920’s
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Natural distribution:
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Normal distribution
defined by two parameters:
mean and standard deviation

X~N(u, o)
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Control charts provide a graphical mean to
test hypotheses about the data being

monitored.
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Design control chart

sample size
— larger sample size leads to faster detection

setting control limits

time between samples
— sample more frequently with few items or
— sample less frequently with more items?

choice of measurement
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Heuristic Designs of control Charts

- X~N(u, o
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Example

Data for X, R, and s Charts”

Batch #
(1) Obs.1 Obs.2 Obs.3 Obs.4 Obs.5 X R s
1 4.5 4.6 4.5 4.4 4.4 4.48 0.2 0.084
2 4.6 4.5 4.4 4.3 4.1 4.38 0.5 0.192
3 4.6 4.1 4.4 44 4.1 4.32 0.5 0.217
4 4.4 4.3 4.4 4.2 4.3 4.32 0.2 0.084
5 4.3 4.3 4.4 4.2 4.3 4.30 0.2 0.071
6 4.6 4.6 4.2 4.5 4.5 4.46 0.4 0.167
7 4.1 4.3 4.6 4.5 4.2 4.34 0.5 0.207
8 4.5 4.5 4.4 4.6 4.4 4.48 0.2 0.084
9 4.4 4.2 4.6 4.6 4.2 4.40 0.4 0.200
10 4.2 4.2 4.2 4.5 4.2 4.26 0.3 0.134
11 4.3 4.2 4.3 4.4 4.2 4.28 0.2 0.084
12 4.4 4.4 4.4 4.4 4.1 4.34 0.3 0.134
13 4.3 4.2 4.4 4.6 4.6 4.42 0.4 0.179
14 4.2 4.4 4.4 4.1 4.4 4.30 0.3 0.141
15 4.2 4.3 4.1 4.5 4.6 4.34 0.5 0.207
16 4.6 4.4 4.3 4.5 4.1 4.38 0.5 0.192
17 4.6 4.6 4.6 4.2 4.5 4.50 0.4 0.173
18 4.4 4.6 4.3 4.1 4.3 4.34 0.5 0.182
19 4.3 4.6 4.2 4.2 4.1 4.28 0.5 0.192
20 4.2 4.5 4.1 4.4 4.4 4.32 0.4 0.164
Average Mo = 4.36 0.37 00=0.15
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How do you know a process is “out of control”?

“Out of control” patterns:
- points outside of control limits (x30)
- 8 consecutive points on one side of center line
- 2 of 3 consecutive points outside the 2o limits
- 4 of 5 consecutive points outside the 1o limits
- 7 consecutive points trending up or down
- sudden shift in process average
- cycles
- trends
- hugging the center line
- hugging the control limits
- instability
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Identitying Potential Shifts
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Shift in Process Average
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Trend

62.389 ., ucL

\[\ \} PN

F
57410 ||||||||| [ I W W T B I D Y O | U T T G T AR I L a3 1 2. 1211 L a0 0 40 343 J LCL
D 10 20 30 40 50

NHEC EY




“Hugging” the Centerline




“Hugging” the Control Limits




Instability
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How does the control
chart relate to the tolerances?

Assigned Tolerances

|

2.45 255
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Process Capability

« Comparing the control chart information
with the tolerance specification tells you
about the process capabillity.
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The capability index is defined as:
Cp = (allowable range)/6s = (USL - LSL)/6s

LSL USL (Upper Specification Limit)
LCL UCL {(Upper Control Limit)
“HTTTTTTTT T T
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The process performance index
takes into account the mean (m)
and is defined as:

Cpk = min[ (USL - m)/3s, (m - LSL)/3s ]

LSL USL (Upper Specification Limit)
LCL UCL {(Upper Control Limit)
“rrrrrrrrtttteteh T T
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Process Capablllty ASS|gned Tolerances
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Capability Versus Control

Control
Capability In Control  Out of Control
Capable %
Not Capable
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Types of control charts

 Variables control charts

— continuous data are measured. For example: time, weight,
distance or temperature with continuous distribution

e Attributes control charts

— Attribute data: presence or absence, success or failure, accept
or reject, correct or false, following discrete distribution

— Example: the number of errors (a nonnegative integer) of a
report has a discrete distribution.

HHEC 1Y |




 Variables control charts

— X-bar and R chart
— X-bar and s chart
— CUSUM (cumulative sum chart)

— EWMA (exponentially weighted moving
average chart)

— multivariate chart
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« Attributes control charts
— p chart (proportion chart)
— ¢ chart (count chart)
— U chart
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B) Some problems met and proposed solutions

* Delivery chains: supply chains management is a popular
discipline which was up to now not monitored globally. A
multivariate control chart has therefore been designed to
jointly control each delivery path of a supply chain.

* The problem of designing control charts can be very
complex. A new idea has been developed in order to
provide the parameters of the charts (sample size, time
between sampling, control limits,...) that minimize the
costs related to monitoring and disfunctioning of the
process (find assignable causes, repairing the system,
cost of sampling...). This named « economic statistical
design » has been applied to many usual control charts.
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Flexible Modelling in Financial
Risk Management

A) Context and basic ingredients

B) Problems met and proposed
solutions
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A) Context and basic ingredients

The most common model adopted in the financial and statistical
literature devoted to empirical methods in financial markets is the
mean-variance model. we suppose that the stocks returns are
governed by the following equations:

Iy = 'LLt + €t (].)

where ¢; ~ N(0, 0?)
€+ = Ot (2)
2~ N(0,1) 3)



Moreover, the structures of 1 and o; are often specified by
ARIMA (p,q) and GARCH (1,1) models. The equations are the

following :

p q
[t = Z Pklt—k + Z Oket—k (4)
k=1 k=1

0f = w+ 1071 + Pro165_ (5)




Empirical facts
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B) Some problems met and proposed solutions

1. Normal and other distributions fail to capture the structure of the tails of
the residuals distribution. As a consequence, resulting models fails to
predict for example exceptional Values at Risk (VaR).

2. Estimation of the parameters of GARCH models are based on
likelihood methods using the parametric distribution of residuals.
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xample : Apple daily stock returns from 09 /07
2005 to 02/03 2012

Apple daily stock retums
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GARCH(1,1) estimated variance

. w10 Condiional vanance of Appla stock retuns using a GARCH(1, 1) model
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Comparison between estimated GARCH(1,1
variance and daily returns

Camparison betseen daiy retums and estimated condliona! vanance
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Comparison between daily returns and estimated

VaR

Comparison between daly reburns and Value-al-Risk
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Alternatives to these assumptions:

e use of probability density functions more flexible and closer to
the empirical distribution of the returns (like Student-t,
generalized hyperbolic or sinh-arcsinh functions) or Extreme

Value Theory (EVT)

e use of non-parametric methods to avoid the choice of a bad
distribution or a bad structure of variance.

e use of other time-dependent structures in the equations of the
variance (alternative GARCH models)



Examples of residuals distributions:
1. t-law

v/2+1/2) 1 X2 Iy
[(v/2) s vV

where [ is the Euler's Gamma function.

fu(x) = (

2. General error distribution

F(u;8) = 2727 (5/2 + 1)) expl—5 uf*/*

3. Generalized hyperbolic distribution
4. ...

floo o) [



Basic idea to obtain preliminary nonparametric estimator of the
conditional variance at time t:

Use a weighted sum of squares of returns in a neighborhood of t
(nonparametric kernel estimators).

Drawback: this method depends on the length of the neighborhood
=» Possible oversmoothing and need to obtain a good way to
automatically compute the length of this neighborhood.
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Example with Apple
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Comparison with Kernel variance estimate
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[II) Survival Analysis for
General Duration Data

A) Example of problems met

B)Idea of proposed solutions
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A) Example of problems met

The Spanish Institute for Statistics studied between 1987 and 1997
the unemployment of active people, and more especially the
married women.

For these data, we note that

e the time of unemployment will not be completely observed,

e the age of the woman acts on the future job.

| LR |



Unemployment duration (in months)
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We consider the nonparametric regression model
Y =m(X)+ o(X)e

where
e Y is the response variable

e X is the covariate

e m(-) = E[Y|] and 0?(-) = Var[Y|-] are unknown smooth
functions

e ¢ is independent of X, with E[s] = 0 and Var[s] = 1

B e ) B
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Particularity of (X, Y)
e (X,Y) is obtained from cross-sectional sampling

e Y is subject to right censoring.

We study the variable Y delimited by
r<y<¢c

where
e [ is the truncation variable

e ( is the censoring variable.

B ) ) B
Marsgeeed SAaet - yvernty of Luge “ [



Real World

We use as notation F for cdf

Time



Real World

Truncation Time Time

We use as notation F for cdf



Real World

>

—

Truncation Time Time

We use as notation F for cdf



Intermediate Observed World

Y1

Cc2

Y3

Y4

C5,

C6

Truncation Time Time

We use as notation H for cdf, n the sample size
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Observed World

Y1

Y3

Y4

—

Truncation Time Time

We use as notation H for cdf



Aim : Estimation of the error distribution

F.(e) =P(c <e)
with
(X,Y)where T<Y <C

where
o the distribution Fy|x is a parametric distribution

e the distribution Fc_1 x is completely unknown

- Maugueet 3ot - dvverny of Luge - -



Assumptions:
e the variables Y and T are independent, conditionally on X

o for each value x, the support of Fy x(:[x) is included into the
support of Frx(-|x)

e the lower bound of the T support is zero

e the variables (7,Y) and C — T are independent, conditionally
on I <Y, X




We have

HX<xY<HT<Y<Q
= (E[w(X,Y)] / / w(r,s)dFx y(r,s),
r<x ./s<y

HX,Y(X,_Y)

the weight function w(x, y) is defined by

wiey) = [ (1=~ th} dFrix(tlx)

where G(z|x) =P(C—-T <z|[X =x,T <Y).
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We obtain

Fx y(x,y) = /rgx /Sgy Elw(X, ) dHx y(r,s)

w(r,s)

Therefore,

e = F <Y o(X) < e)
/ /{ (xy): 2578 <e | dFx.y (x.y)

(x) —

//{(xy) rom) < E[vt((;;)/)] dHx v (x,y)
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Thus, the estimator is

1 EWX Y,
F-(e) = — ' [{si < e Aj=1
)= 12 e vy o< e di=1)
with (X)
Y: — m(X; k
£ = —— ' M= A
a(X;) ;

1
where the functions m(-), &(-) and w(-,-) are nonparametric
estimators.




For G(t|x), we use the Beran (1981) estimator defined by

A VV,'(X, hn) )
G(tlx) =1~ (1 - =5
( |X) Z;Sgi=0 ijl VVJ'(X? h")l {ZJ > Z’}

where

e Zi=min(CG;—T;,Y;—T;)and A; = I{Y; < G}

()
P W) = ()

e K is a kernel function

are the Nadaraya-Watson weights

e h, is a bandwidth sequence tending to 0 when n — oc

=>i(x.y) = [ _{1-8(y - tb)} dFrix(tlx)

t<y

o flieisiad |



The estimators of m(-) and o(-) are given by

zf} Wi (x,hn)YiAA;

=1 W(X,\/l)

N Wi (x,hn)A;
=1  w(x,Y;)

n . Wi(X,hnlA(i(::i)—'%(X))z
/\2 I= W X, i
6°(x) = n W:(x.hn);
2 i=1 &.S(;y,?) |

extension of the estimators in de Ufa-Alvarez and Iglesias-Pérez
(2008).

IHEC 7Y
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e BERAN, R. (1981): Nonparametric regression with randomly
censored survival data. Technical Report, University of
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length-biased data. Annals of the Institute of Statistical
Mathematics, in press. doi: 10.1007/510463-008-0178-0.
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R-Chart

Always look at the Range chart first. The control limits on the X-bar
chart are derived from the average range, so if the Range chart is
out of control, then the control limits on the X-bar chart are
meaningless.

Look for out of control points. If there are any, then the special
causes must be eliminated.

There should be more than five distinct values plotted.

If there are values repeated too often, then you have inadequate
resolution of your measurements, which will adversely affect your
control limit calculations. In this case, you'll have to look at how you
measure the variable, and try to measure it more precisely.

Once the effect of the out of control points from the Range chart is
removed, look at the X-bar Chart.
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Example: R Control Chart

In the manufacturing of a certain machine part, the percentage of aluminum in the finished part is
especially critical. For each production day, the aluminum percentage of five parts is measured. The
table below consists of the average aluminum percentage of ten consecutive production days, along
with the minimum and maximum sample values (aluminum percentage) for each day. The sum of the
10 samples means (below) is 258.8.

Day 1 2 3 4 5 6 7 8 9 10

Sample Mean 252 260 252 25.2 260 256 260 260 246 29.0

Maximum Value 266 276 27.7 27.4 276 274 275 279 26.8 31.6
Minimum Value 23.5 244 246 23.2 233 233 241 238 235 27.4

R =max-min,i=1,2,3,....m UCL RD4

2" LCL =RD

R =
m 3
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S Chart

 The sample standard deviations are plotted in order to
control the variability of a variable.

* For sample size (n>10), the S-chart is more efficient than
R-chart.

— ESi
S =

N2 k
S, = 2 (¥, = %) UCL = sB,
n-—1

LCL = sB,

(http://www.statsoft.com/textbook/stquacon.html)
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Exponentially-weighted Moving
Average (EWMA) Chart

« EWNMA Charts are generally used for detecting small shifts in the process
mean. They will detect shifts of .5 sigma to 2 sigma much faster.

UCL = EWMA, +ks. /i
EWMA,,,,, = AY, + (1= A)EWMA, 2-4

LCL=EWMA1-A:9,/L
2-A

where A is the weighting factor. The factor k is chosen generally to be 2 or 3.

(http://www.statsoft.com/textbook/stquacon.html)
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P-Chart

« Itis used when the sample size varies: the total number of
circuit boards, meals, or bills delivered varies from one sampling
period to the next.

Repeated samples of 150 coffee cans are inspected to determine whether a can is out of round or
whether it contains leaks due to improper construction. Such a can is said to be nonconforming.

Following is the data.

Sample 1 2 3 | b 5 6 7 8 9 10

Nonconforming# 19 ~710_

HHEC 1Y |




C-Chart

There are more than one defect per unit.

Examples might include: the number of defective elements on a circuit
board, the number of defects in a dining experience--order wrong, food
too cold, check wrong, or the number of defects in bank statement,
invoice, or bill.

The c chart is useful when it's easy to count the number of defects and
the sample size is always the same.

An automobile assembly worker is interested in monitoring and controlling the # of minor paint blemishes appearing
on the outside door panel on the driver’s side of a certain make of automobile. The following data were obtained,
using a sample of 25 door panel.

Sample 1 2 3 4 5 6 7 - - 25

# of Paint Blemishes 19 10 4 6 8 9 S 4

UCL=c+3e  LCL=MAX[.c -3c]
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U-Chart

The u chart will help evaluate process stability when there can be
more than one defect per unit.

It is used when the sample size varies: the number of circuit boards,
meals, or bills delivered each day varies.
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Control Chart Selection
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Multivariate SPPC
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Ex- Multi Quality
Dimensions of an Education
g Oy Stem:

student/:staff ratios
quality of teaching staff
quality of students
Classes and Campus size
quality of teaching
1 experience and training
2 research record
3 perceived quality, judged by student
7/ research environment
8 level of intellectual challenge
9 level of the curriculum
10 student engagement
11 Scholar performance and degree classifications
12 student retention and persistence
13 employability and graduate destinations
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