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Abstract. The objective of this paper is to introduce a new nonlinear dynamical absorber, the nonlinear tuned
vibration absorber, through a rigorous nonlinear extension of the tuning rule for the linear tuned vibration ab-
sorber. This nonlinear tuning methodology combined with the increased suppression bandwidth brought by the
intentional use of nonlinearity leads to the development of an absorber that is effective in wide ranges of frequen-
cies and motion amplitudes. The results are illustrated using a one-degree-of-freedom primary system.

1 Introduction

Controlling nonlinear dynamical instabilities represents a
great challenge, because nonlinear systems exhibit com-
plex phenomena, which linear systems cannot. Specifically,
the frequency of nonlinear oscillations depends intrinsi-
cally on motion amplitude. Any anti-vibration device that
ignores this nonlinear property simply does not work. Un-
fortunately, this statement holds for the linear tuned vibra-
tion absorber (TVA), which is tuned to a specific problem-
atic resonance frequency.

A handful of American laboratories [1-3] have pro-
posed the constructive utilization of nonlinearity for vibra-
tion absorption. For instance, the nonlinear energy sink, an
essentially nonlinear absorber, can extract energy from any
mode of a host structure, a result that has never been ob-
tained with linear absorbers [4]. This unconventional way
of thinking renders the state of affairs in nonlinear dynam-
ics particularly exciting, as pointed out in [5].

Although nonlinear absorbers can absorb disturbances
in wide ranges of frequencies due to their increased band-
width, their performance depends critically on motion am-
plitude [5]. One important observation is that all previ-
ously developed nonlinear absorbers are designed with-
out considering the frequency-energy dependence of the
nonlinear oscillations of the host structure. Typically, an
absorber with polynomial nonlinearity is considered (e.g.,
quadratic [1] or cubic [3]), regardless of the nonlinear phe-
nomena at the source of the instabilities.

The objective of this paper is to develop the nonlinear
tuned vibration absorber (NLTVA), a new passive device
for the effective and robust suppression of nonlinear insta-
bility.

2 The free response case

The linear TVA is the most widely used device for vibra-
tion control in engineering. Its mass and stiffness are cho-
sen so that its resonance frequency matches that of a spe-
cific problematic resonance frequency of the host struc-
ture. This condition is necessary for vigorous energy ex-
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changes between the primary structure and the attachment;
it is clearly at the basis of the success of the TVA.

In view of the frequency-energy dependence of nonlin-
ear oscillations, the proposed nonlinear absorber relies on a
rigorous nonlinear extension of this linear tuning rule. The
tuning will ensure that the NLTVA resonance frequency
matches that of the considered nonlinear instability, and
this for all motion amplitudes of interest. This tuning con-
dition combined with the increased suppression bandwidth
brought by the intentional use of nonlinearity leads to the
development of an absorber that is effective in wide ranges
of frequencies and motion amplitudes.

The results reported in reference [6] shows that the
functional form of the absorber nonlinearity should be such
that the NLTVA backbone curve possesses the same de-
pendence on energy as that of the primary system. For in-
stance, if a purely cubic primary oscillator is considered,
then the absorber nonlinearity should also be purely cubic.
The equations of motion of the coupled system are:

. . . . 3 3
mpxy+cix; + Cz(xl — )CQ) + k,,;,xl + knlz(xl — )Cg) =0

my¥y + oy — X1) + k(X2 — x1)° = 0(1)

The primary oscillator is impulsively loaded. The param-
eters of the primary system are m; = lkg, mp, = 0.05kg,
kni, = 0.0025N/m?, and ¢; = ¢, = 0.002Ns/m. Figure 1
represents the percentage of impulsive energy eventually
dissipated in the light-weight nonlinear absorber. When
kyy, 1s in the range [0.1-0.35] N/m?3, the NLTVA dissipates
90% of the energy for all impulse values considered. This
dynamics is similar to that of a linear TVA coupled to a
linear primary oscillator.

3 The forced response case

The forced system is now considered
mix¥| + c1X; + (k) — xp) +
k,,,]x? + ki, (x1 — xz)3 = F cos wt

myiy + c2(ia — 1) + k(2 —x1)* =0 (2)

with F = 0.1 N and m; = 1kg, my = 0.05kg, ky, = IN/m?3,
ku, = 0.0025N/m?, and ¢; = ¢; = 0.002Ns/m. Its fre-
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Fig. 1. Energy dissipated in the NLTVA against the nonlinear
stiffness of the primary system and the impulse magnitude.

quency response (NLFRF) is computed using the MAT-
CONT software and is represented in Figure 2(b). The fre-
quency response of the uncontrolled case (i.e., without the
nonlinear absorber) is depicted in Figure 2(a).

The design of the NLTVA, i.e., the determination of
appropriation values for k,;, and c; is carried out using bi-
furcation analysis. Indeed, Figure 2(b) illustrates that the
points of maximum amplitude «, 8 and y correspond to
bifurcations (limit points, LP). Tracking such bifurcation
in parameter space (k,;,,c2) is therefore a possible means
of optimizing the NLTVA performance. However, because
the excitation frequency is also a necessary parameter dur-
ing numerical continuation, a codimension three continua-
tion problem is to be solved, which is beyond the current
capability of MATCONT. The solution is to optimize the
absorber performance with respect to the nonlinear stiff-
ness, which is a codimension two problem. The same pro-
cedure can then be carried out for damping, and the whole
process is repeated until convergence.

The continuation of bifurcations @, 8 and y with re-
spect to k,;, and w is shown in Figure 3. The first interest-
ing feature is that the bifurcation point y is eliminated for
kn, > 0.007601 N/ m3. At point R, the locus of bifurcation
v meets the locus of another bifurcation point (different
from @ and ), which eventually leads to the elimination
of the two bifurcations. In addition, for k,, = 0.0076515
N/m? denoted by 6, the two remaining bifurcations a and
B are such that the corresponding resonance peaks have the
same amplitude, which is the selected tuning condition in
the forced case; the TVA is also designed such that the two
FRF peaks have the same amplitude. The peak amplitude
is reduced by approximately 50% after this first iteration.

The optimization of the damping coefficient is the next
step of the procedure. The initial guess is the point com-
puted by the previous iteration, i.e., k;, = 0.0076515 [N/m’]
and ¢, = 0.002 [Ns/m]. The details of this procedure are
explained in [7]. The sequential optimization of the ab-
sorber nonlinear stiffness and damping coefficients can be
continued, and convergence is reached after only 3 itera-
tions. Eventually, the peak amplitude is reduced by 85%.

Table 1 compares the results for three different forc-
ing amplitudes F. Substantial peak reduction can be ob-
tained in all three cases, which highlights the excellent per-
formance of the NLTVA. It also turns out that, while the

Set Force Iteration k,, ) % of X, reduction
1 0.01 3 0.0104 0.0079 78
2 0.1 3 0.0103 0.0170 85
3 1 3 0.0103 0.0365 90

Table 1. Optimal absorber configuration for different forcing am-
plitudes F.

nonlinear stiffness seems to be intrinsic to the system, the
choice of damping is to be made according to the trade-
off between performance (i.e., peak reduction maximiza-
tion) and robustness (i.e., sensitivity to forcing amplitude).
Small damping results in lower performance, but the ab-
sorber is effective in a larger range of forcing amplitudes.
Conversely, large damping results in increased performance,
but the absorber is effective in a narrower range of forcing
amplitudes. Interestingly, the same trade-off exists for the
TVA, but, for this linear absorber, the performance is to be
balanced against the frequency range of interest.

The same procedure was applied to a more general pri-
mary oscillator comprising both a linear spring and a cubic
spring. In this case, the NLTVA also possesses linear and
cubic springs. Peak amplitude reduction of at least 85%
was also achieved for all considered excitation levels [7].

4 Conclusion

The objective of this paper is to develop an absorber which
can mitigate the vibrations of a nonlinear system in a wide
range of input energies. The backbone of the absorber should
possess the same dependence on energy as that of the back-
bone of the primary system. To fulfill this frequency-energy-
based tuning condition, the functional form of the absorber
nonlinearity is to be carefully selected.
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Fig. 2. Frequency response for F = 0.1 N. (a) Uncontrolled response; (b) controlled response with k,;, = 0.0025 N/m*. Solid and dashed
lines correspond to stable and unstable periodic solutions, respectively; dots are related to bifurcation points.
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Fig. 3. Bifurcation tracking versus k,;,. Solid and dotted lines without symbols are related to the stable and unstable parts of the NLFRFs,
respectively. Solid lines with squares, circles and diamonds are related to bifurcation loci. (a) Three dimensional plot; (b) two-dimensional
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projection in the plane (k,,,X}); (c) close-up of the 2D projection around the optimal region.



