LE LAMINAGE CIRCULAIRE (page 12)

ASSEMBLEES GENERALES EXTRAORDINAIRES ET ORDINAIRE & REMISE DES PRIX (page 5)

LIRE EN PAGE 18:
ACTIVITES CLUB AILg 2000

FEVRIER 2000 N° 1
153e ANNEE
Dioxines, voilà un mot qui, en quelques semaines, est revenu dans le langage public, après plusieurs années de latence, depuis Seveso. Il semble focaliser toutes les peurs et appréhensions à l'égard de la chimie, climat largement entretenu par des groupes de pression. Les craintes sont-elles à la mesure des risques et des effets engendrés par ces molécules ? Est-il justifié de leur faire la chasse en instaurant des normes sévères et des contrôles coûteux ?

Voici des questions que l'on peut se poser sur un sujet qui fait régulièrement l'objet de l'attention des médias. L'ampleur des derniers événements survenus en Belgique, aussi bien au niveau du vent de panique qu'économique, en est la preuve.

QUE SONT LES DIOXINES ?

Il n'existe pas une dioxine mais une famille étendue de composés (congénères) de structures chimiques, et par là d'activités biologiques, voisinées. Sous l'appellation "dioxines", on regroupe en fait deux grandes familles de composés :
- les PolyChloro Dibenzo-p-Dioxines (PCDD)
- et les PolyChloro DibenzoFurannes (PCDF).

Ce sont des molécules organiques aromatiques qui possèdent une structure spatiale plane. Lors des "analyses de dioxines", on dose également certains polychlorobiphenyles coplanaires (cPCBs) de structures et propriétés proches de celles des dioxines.

Les PCDD/Fs et cPCBs sont des molécules à faible moment dipolaire, à faible tension de vapeur et insolubles dans l'eau. Leur liposolubilité élevée en fait des hôtes de choix pour les matrices riches en graisses (lait, tissus adipeux). Ces composés sont également caractérisés par une très grande stabilité thermique (il faut atteindre une température de plus de 850°C pour les détruire).

Ils constituent un piège thermodynamique dans l'évolution chimique de systèmes contenant du carbone, du chlore, de l'oxygène et de l'hydrogène.

 Ils constituent un piège thermodynamique dans l'évolution chimique de systèmes contenant du carbone, du chlore, de l'oxygène et de l'hydrogène.

Les PCDD/Fs ne sont jamais produits intentionnellement. Ces composés sont libérés dans l'environnement à très faibles doses à partir de divers processus anthropogènes de combustion et en tant que produits secondaires dans divers produits chimiques chlorés (pentachlorophénol, chloranil, pigments textiles,...) ou lors de traitements chimiques du chlore ou des perchloratates.

Il existe deux voies de synthèse des dioxines et furannes. D'une part, la synthèse «de novo». Elle décrit la formation de dioxines comme étant le produit de réactions secondaires entre le carbone et l'oxygène en présence de chlore à des températures de l'ordre de 350°C.

Cette voie de synthèse concerne plus particulièrement les processus d'incinération et la sidérurgie. La seconde voie de synthèse fait appel à des précurseurs comme par exemple le pentachlorophénol, les polyaromatiques condensés (HAP). Elle est impliquée dans la production involontaire de dioxines dans des procédés tels que le blanchiment au chlore. Il faut noter que la distribution des congénères varie selon la voie de synthèse.

Des inventaires en ce qui concerne les différentes sources de dioxines existent dans plusieurs pays. Les sources les plus importantes sont d'une part les usines d'incinération d'ordures ménagères (50 à 70% des émissions) et d'autre part la sidérurgie.

On peut aussi mentionner la dégradation des PCBs (Ascolor, Arochlor, ...) utilisés jusque fin des années 1970 en tant que composants des huiles de transformateurs. Le rejet incontrôlé de ces huiles dans l'environnement suite à leur interdiction d'utilisation ainsi que leur combustion incomplète peut conduire à la formation de dioxines (pollution chaude aux PCBs).

D'OU PROVIENNENT LES DIOXINES ?

Les premières traces de dioxines retrouvées dans l'environnement (à des concentrations très basses) remontent à plusieurs centaines d'années. Elles ont vraisemblablement toujours existé. On attribue la contamination des sédiments anciens aux divers processus de combustion naturels comme les feux de forêts, les éruptions volcaniques, ...

Les premières traces de dioxines retrouvées dans l'environnement (à des concentrations très basses) remontent à plusieurs centaines d'années. Elles ont vraisemblablement toujours existé. On attribue la contamination des sédiments anciens aux divers processus de combustion naturels comme les feux de forêts, les éruptions volcaniques, ...

Les préoccupations actuelles concernent principalement le risque pour la santé humaine des populations vivant à proximité de sources de contamination (routes, zones industrielle) ou consommant des aliments contaminés par ces composés.
Selon l’origine de l’émission, la distribution des congénères peut varier. Cela permet d’établir des « signatures » pour les différentes sources de contamination.

On peut ainsi faire la différence entre une contamination type « Seveso » et une intoxication alimentaire due à une pollution chaude de PCBs. Les congénères dioxines 2,3,7,8 cédant le pas aux furanes dans le cas de formation via les PCBs.

Les dioxines ont été produites bien avant l’industrialisation. Les millions de tonnes de bois et de charbon brûlés chaque année ainsi que la croissance de la production des métaux en étaient les causes principales.

Notre siècle a vu les émissions de dioxines augmenter de manière rapide pour culminer dans les années 1970 suite au développement industriel, aux transports et à la nécessité d’éliminer les déchets. Les quantités émises diminuent continuellement depuis cette période grâce à la prise de conscience environnementale (1). Plusieurs facteurs contribuent à cette diminution. On peut citer l’amélioration des procédés utilisés dans l’industrie des composés chlorés ainsi que l’apparition de techniques alternatives pour le blanchiment du papier (2). Cela est également dû à la diminution de la consommation d’énergie fossile et à la réglementation de l’usage des PCBs.

La modernisation des incinérateurs, une meilleure maîtrise des processus de combustion (incinération catalytique, thermolyse, combustion à lit fluidisé, l’ajout d’inhibiteurs, utilisation de frittes, contrôle des températures de combustion), ainsi que l’amélioration des procédés sidérurgiques jouent enfin un rôle important dans la diminution des émissions.

L’Europe et les États-Unis incinèrent de 15 à 20% de leurs déchets; le Japon 75%.

En ce qui concerne la teneur en PVC des déchets ménagers et sa relation avec la quantité de dioxines rejetée à l’incinération, il ne semble pas exister de raisons fondées pour considérer le PVC comme précurseur particulier de dioxines.

Enfin, de nombreuses sources individuelles existent (échappement des véhicules à explosion, chauffage par combustibles fossiles et bois). De manière plus anecdotique, les dioxines sont également formées lors de la cuisson au barbecue, lors de la combustion du tabac... Ces sources individuelles ne doivent cepenant pas servir d’alibi aux productions plus importantes.

FAITS MARQUANTS

La « renommée » des dioxines repose sur diverses expériences ayant eu lieu ces dernières décennies. L’accident de Seveso en Italie en 1976 (usine de trichlorophénol, ICMEA, Hoffman-LaRoche) qui, selon les sources, a relâché de 0,5 à 3 kilos de dioxines dans l’atmosphère est l’un des plus célèbres (3,4). Aucune mort humaine directe ne peut être attribuée à cet accident. Les cas d’acné du chlore dus au passage direct des dioxines au travers de la barrière cutanée et la mort de nombre d’animaux furent les effets les plus spectaculaires.

Les 40.000 tonnes de défoliant (Agent Orange) contaminées par l’isomère 2,3,7,8 de la dioxine (2ppm) qui furent épandues par les forces américaines sur le Sud Vietnam durant l’opération "Ranch Hand" dans les années 1960 constitue l’une des contaminations les plus importantes aux dioxines.

En ce qui concerne l’Agent Orange, une attention particulière est toujours portée sur les habitants des zones défoliées. En effet, quant on sait que les dioxines, et en particulier les congénères 2,3,7,8, ont des temps de demi-vie de plusieurs dizaines d’années, on peut comprendre qu’elles sont toujours présentes sur le sol et ce pour de nombreuses années.

Aujourd’hui encore ces individus exposés sont suivis afin de permettre l’étude des effets à long terme de ces molécules sur l’espèce humaine. Des études épidémiologiques ont été et sont réalisées pour tenter d’établir des relations directes entre les divers effets observés (variation de la quantité de cellules au sein du système immunitaire, sensible augmentation du nombre d’enfants mort-nés, malformations néoniales, tendance à l’augmentation du nombre de cancers, ...) et l’exposition des soldats et réfugiés du Vietnam (5).

TOXICITE DES DIOXINES

Les dioxines sont des composés qui perturbent le bon fonctionnement de notre organisme. De plus, ces molécules sont persistantes et s’accumulent tout au long de la chaîne alimentaire jusqu’à l’Homme (95 % de l’exposition aux dioxines proviennent de la nourriture). Après avoir pénétré l’organisme, elles sont transportées par les lipides du sang pour ensuite s’accumuler dans les tissus adipeux.

1. **ÉVALUATION DE LA TOXICITÉ**

Depuis les premières recherches effectuées suite à ce que l’on a appelé "le facteur d’œdème du poulet" qui déclencha plusieurs millions de volailles aux États-Unis en 1957, les études sur la toxicité des dioxines se sont succédé (6).

L’évaluation de la toxicité de ces composés n’est pas chose aisé. Il peut s’avérer être très difficile de comprendre l’apparition de divers effets. La 2,3,7,8-tétrachloro dibenz-p-dioxine (2,3,7,8-TCDD) est le congénère le plus toxique. Elle entraîne diverses réponses de l’organisme chez les animaux comme par exemple : nécoplasie, immunsuppression, hépatotoxicité, dysplasie épithéliale, perturbation des organes reproducteurs, perte de poids, lésions de la peau, cancérisation... Des effets cancéreux importants sont déjà observés après quelques mois sur des animaux soumis à une dose journalière de 1 ng/kg de 2,3,7,8-TCDD. Une des difficultés lors des études toxicologiques réside dans le fait que, non seulement, chaque espèce ne présente pas le spectre complet de la toxicité ni même des sensibilités égales, mais en plus, divers paramètres tels l’âge, le poids, la masse grasseuse, le sexe peuvent modifier fortement les réponses au sein d’une même espèce.

Echelle de sensibilité chez les animaux

<table>
<thead>
<tr>
<th>Cochons, rats, poulets, sangs, lapin, chien, hamster</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

En ce qui concerne l’homme, les risques posés par les dioxines restent mal définis. La sensibilité humaine est beaucoup plus faible que celle de nombreux animaux (7). Bien que la 2,3,7,8-TCDD ait récemment été déclarée cancérogène par l’IARC (International Agency for Research on Cancer), aucun congénère n’est capable de amorcer un processus de cancérisation.

C’est à ce sujet que les valeurs concernant les quantités admissibles chez l’homme sans risque (NOEL-No Observed Effect Level) divergent entre d’une part le WHO (World Health Organization) et, d’autre part, l’USEPA. La WHO se base sur les valeurs les plus...
basses entraînant un effet cancérogène observé (LOEL-Lowest Observed Effect Level) chez le rat en y ajoutant un facteur de sécurité d'environ 200. Cela conduit à une dose journalière acceptable de 1 à 5 pg par kg de poids corporel. L'USEPA, à l'inverse du WHO, reconnaît la 2,3,7,8-TCDD comme étant capable à elle seule d'initier le processus de cancérénese. Ceci a pour conséquence l'absence d'un seuil de sûreté et du facteur de sécurité. L'USEPA, pour qui le risque n'existe qu'à quantité nulle, a donc choisi une valeur environ 1000 fois inférieure à celle du WHO (0.0064 pg/kg/j). Cette valeur repose sur une hypothèse souvent critiquée (8).

2. MECANISME D'ACTION

Les dioxines et molécules apparentées sont parties des composés chimiques qualifiés de disrupteurs endocriniens (perturbation du système hormonal).

On regroupe sous l'appellation "disrupteur endocrinien" toute substance exogène qui interfère avec la synthèse, la sécrétion, le transport, l'action ou l'élimination d'hormones naturelles responsables de la maintenance de diverses fonctions au sein d'un organisme intact ou sa progéniture.

Le mécanisme général d'action de ces composés consiste en un mimétisme hormonal sans métabolisation préalable. C'est via le courant sanguin que ces antagonistes hormonaux se fixent sur des récepteurs spécifiques (récepteurs AhR - Aryl hydrocarbon Receptor) présents à la surface des cellules cibles. Le complexe dioxine-AhR peut alors, après avoir franchi la membrane nucléaire, se lier à certains sites de reconnaissance sur l'ADN (CYP1A responsable de la sécrétion du Cytochrome P450). Le matériel génétique de la cellule ainsi atteint, l'expression de gènes spécifiques habituellement réprimés peut avoir lieu, avec pour conséquence la synthèse de protéines ayant divers effets biologiques perturbant l'homéostasie (9).

On relie la toxicité des différents congénères avec leur capacité à se lier au récepteur AhR. Il a été montré (QSGAR) qu'un lien efficace avec le récepteur est obtenu lorsque les positions latérales 2,3,7,8 sont occupées par des atomes de chlore.

Chaque congénère ne présentant pas la même affinité avec le récepteur AhR, une échelle de toxicité a été établie afin de pouvoir évaluer le risque total présenté par l'ensemble des congénères. Ainsi est apparue une table de toxicité, exprimée en TEF (Toxic Equivalency Factor) qui exprime l'activité de chaque congénère par rapport à la 2,3,7,8-TCDD. Cela permet d'évaluer la quantité de 2,3,7,8-TCDD qui serait nécessaire pour produire les mêmes effets toxiques que le mélange considéré.

C'est ce que l'on appelle la conversion en TEGs (Toxic Equivalents). La dose journalière admissible (WHO) pour toutes les dioxines et composés apparentés est donc de 1 à 5 pgTEQ/kg/j pour l'homme.

3. LES EFFETS CHEZ L'HUMAIN

Les effets les plus spectaculaires dus à l'action des dioxines sur l'organisme sont regroupés ici :

- On constate une diminution de la taille du thymus (organe responsable de l'éducation des lymphocytes T, "patrouilleurs de l'organisme") ce qui entraîne une diminution du nombre de lymphocytes T actifs. Cela se traduit par un affaiblissement de notre système immunitaire. Certains auteurs décrivent cet effet comme "le sida des dioxines".

- On attribue aussi aux dioxines des effets de perturbation du processus de différenciation cellulaire (c'est-à-dire au stade où des cellules similaires fraîchement formées vont assurer des fonctions différentes). Chez l'homme, les tissus épithéliaux, notamment au niveau de la peau, sont très sensibles à ce phénomène.

Une différenciation perturbée des cellules de l'épiderme conduit à une modification des glandes sébacées. Celles-ci cessent de sécrétion du sébum pour produire de la kératine. Cette hyperkératinisation aboutit à la formation de kystes, c'est l'acné du chlore.

L'amaigrissement des dioxines et cancer est plus utilisé au Canada. Il faut toutefois rester prudent. La 2,3,7,8-TCDD est un agent tératogène puissant chez les animaux de laboratoire. Chez l'homme, cependant, de plus en plus de chercheurs se positionnent du côté du WHO et estiment que les dioxines ne sont pas capables à elles seules d'amorcer le processus de cancérisation mais agissent en tant que promoteurs. Personne n'est malheureusement encore parvenue à assembler les pièces du puzzle cancer-dioxines chez l'homme.

Un autre effet de ces molécules est la perturbation du stockage de la vitamine A qui doit être préalablement métabolisée. Les enzymes estérifiants responsables de cette métabolisation semblent être inhibées par les dioxines.

L'activité oestrogénique chez la femme peut, elle aussi, être fortement perturbée. Ces effets peuvent être lourds de conséquences quant on sait que les rôles principaux des oestrogènes sont la détermination sexuelle, la différenciation sexuelle et le développement sexuel. Cela pourrait servir de base à l'explication de l'apparente modification de la balance œstrogènes-progestérone observée depuis 1976 dans la région de Séveso (10).

4. PREDISPOSITION DUE A L'AGE ET AU SEXE

Chez les enfants, où l'activité thymique est importante, ainsi qu'au stade fetal, haut lieu de différenciation cellulaire, la sensibilité est plus élevée. L'enfant qui, relativement à son poids corporel, prend plus de nourriture que l'adulte, augmente la quantité relative de dioxines ingérées. De plus, le plus faible contenu en graisse des enfants supprime l'éventuel "réservoir de sécurité" dont disposent les adultes.

Enfin, la population féminine semble être assez vulnérable lors du passage à la puberté. Les mêmes qui allaitent disposent cependant d'un moyen d'évacuation d'une partie des dioxines contenues dans leur sang et leur lait. Les bébés nourris au sein reçoivent quant à eux des quantités de 10 à 20 fois plus importantes que les adultes.

La diminution des quantités de dioxines présentes dans le lait et le sang humain au cours de ces dernières années (on est passé de 20 à 5 pgTEQ/g de graisse dans le sang, mais la population du Vietnam se situe toujours entre 50 et 80 pgTEQ/g de graisse) ne nous autorise pas à relâcher notre vigilance. Les oiseaux des Grands Lacs aux Etats-Unis (150 pgTEQ/g de graisse) ou les poulets belges (700 pgTEQ/g de graisse) en sont la preuve.

OU ET COMMENT TROUVER CES DIOXINES?

Pour toutes les raisons évoquées précédemment, il est nécessaire de pouvoir localiser les sources et doser de manière précise les quantités de dioxines présentent dans notre environnement.
Les dioxines sont insolubles dans l'eau, non volatiles, très lipophiles et ne se déplacent que sur un support. Ces propriétés ont permis d'identifier les matrices privilégiées des analyses comme étant principalement: les cendres, les sols, les sédiments et, de façon générale, les tissus adipex. (Tout organisme contenant des lipides est un réservoir potentiel).

Une fois présentes dans la chaîne alimentaire (une vache broute à côté d'un incinérateur, une farine animale est contaminée, ...), ces molécules vont être accumulées par l'homme. C'est pourquoi il est nécessaire de contrôler régulièrement les sources, mais aussi les denrées alimentaires, afin de minimiser l'ingestion.

Ce contrôle est organisé dans plusieurs pays européens mais il est lourd et difficile. La principale difficulté est la complexité des méthodes d'analyse. Les dioxines et composés apparentés sont présents, selon les matrices, à l'échelle du picol (par million *), voir même du picogramme (par quadrillion *), c'est-à-dire respectivement de l'ordre du picogramme et du femtogramme de dioxine par gramme d'échantillon.

A l'heure actuelle, la seule technique analytique capable de doser ces échantillons avec la sensibilité et la spécificité requises est la spectrométrie de masse à haute résolution (HRMS). Une analyse de dioxines se compose essentiellement de quatre étapes. La première étape consiste en une extraction des dioxines (et molécules apparentées) par des solvants organiques. Suite une étape de nettoyage de l'échantillon faisant intervenir des colonnes de chromatographie contenant divers adsorbants. Cette étape est particulièrement délicate. L'analyse doit repérer les différents congénères, chacun ayant une toxicité relative différente. Une étape de chromatographie en phase gazeuse à haute résolution précède donc la détection proprement dite, effectuée en suivi d'ions à haute résolution, par spectrométrie de masse. Divers contrôles de qualité sont introduits aux différentes étapes de l'analyse. La quantification se fait par dilution isotopique c'est-à-dire en incorporant à l'échantillon des congénères marqués par de l'isotope de carbone 13, qui auront donc un comportement chromatographique identique pour une masse différente. Cet enchainement de techniques analytiques nécessite un matériel coûteux et performant ainsi qu'un temps d'analyse important. Ceci justifie le prix souvent élevé des analyses (entre 20 000 et 70 000 BEF). Seuls quelques laboratoires sont habilités à faire de telles mesures, par exemple, le RIKLTL- DLO (Rijks- Kwaliteitsinstituut voor Land- en Tuinbouwprodukten) à Wageningen (NL) ou le VITO (Vlaamse Instelling Voor Technologisch Onderzoek) à Mol. Le Laboratoire de Spectrométrie de Masse de l'Université de Liège, en association avec le Laboratoire d'Analyse des Denrées Alimentaires, contribue à ces mesures et développe des méthodes alternatives d'analyse.

Les recherches actuelles vont dans le sens de la mise au point de méthodes plus rapides et plus faciles à mettre en œuvre. C'est dans cette optique que diverses méthodes alternatives sont envisagées. En ce qui concerne l'extraction, l'utilisation des fluides supercritiques (SE), l'extraction accélérée par solvant (ASE) et l'extraction par micro-ondes (MAE) sont les techniques les plus étudiées. Celles-ci ont parfois l'avantage de réduire l'importance de l'étape de nettoyage qui tend, elle, à être automatisée. Pour l'analyse proprement dite, la chromatographie multidimensionnelle, ainsi que la spectrométrie de masse à base de résolution en tandem apparaissent comme assez prometteuses.

Enfin, l'utilisation de méthodes biologiques (bio-assays) pourrait venir en aide aux analyses physico-chimiques classiques en tant qu'outil de tri préalable des échantillons dits positifs ou négatifs. Ces méthodes basées par exemple sur des anticorps spécifiques aux dioxines ou sur l'utilisation de lignées cellulaires modifiées (insertion du gène codant pour la luciferase) permettent, dans certaines limites, de réduire le nombre d'échantillons analysés par spectrométrie de masse et ainsi permettre des campagnes d'analyses sur de grands nombres d'échantillons sans engendrer des coûts trop élevés.

L'AFFAIRE DES POULETS CONTAMINÉS

Début mars 1999, un inspecteur vétérinaire a envoyé chez un producteur de poulets belge ayant constaté la mort subite de plusieurs de ses bêtes fin janvier. Les premières investigations montrent rapidement que la cause de ces décès est liée aux grasises contenues dans la nourriture des animaux. Des échantillons de nourriture ainsi que des poulets datant du mois de janvier sont alors livrés à un examen complet. Comme cet incident rappelle un cas similaire survenu aux États-Unis dans les années 1950, le RIKLTL (NL) procède à une analyse de dioxines. On trouvera dans ces échantillons des quantités de dioxines (essentiellement des furannes en fait, moins de 5% TCD) importantes (780 ng TEQ/g de nourriture et 950 pg TEQ/g de graisse pour les poulets).

En accord avec le comité scientifique européen, des mesures draconniennes d'arrêt de distribution sont alors prises par le ministère de la santé publique envers tous les produits présentant un quelconque risque de contamination. Des milliers de tonnes de denrées alimentaires ont ainsi été interdites temporairement à la consommation, par mesure de sécurité.

L'étude de la distribution des différents congénères dans les matrices analysées a permis de relier la présence de dioxines à une contamination due à la dégradation thermique de PCBs. De plus, les analyses de PCBs réalisées dans le cadre de cet incident ont montré que la distribution des PCBs correspondait à celle de l'Arcorol 1260 (57). Ces résultats ont permis, fin avril, d'attribuer l'origine de la contamination à la présence d'huile de transformateur dans la friture de recyle du graisse (FOGRA, Verviers) destinées aux producteurs de nourriture pour animaux (De Braebecker, Huy, ...). Environ 80 tonnes de graisse auraient ainsi pu être contaminées par des quantités estimées à 1 g de dioxines et 50 kg de PCBs.

En octobre 1999, plusieurs dizaines de milliers de tonnes de poulets et cochons étaient toujours sous restriction, attendant de voir s'ils étaient propres à la consommation ou s'ils étaient à considérer comme matériels à haut risque. Tous les animaux contaminés sont ainsi inculpés à des températures de plus de 1400 °C afin de minimiser les risques de nouvelles émissions dans l'environnement.

L'ampleur des mesures prises par le gouvernement aura sans doute permis de limiter la diffusion de denrées potentiellement contaminées. Que les aliments aient été fortement contaminés ou que la contamination ait été de plus faible

* = 10⁻¹² dans l'acception US du terme.
niveau, c’est un coup dur pour la Belgique, dont la qualité des produits est bien connue de par le monde. Heureusement, seule une faible proportion de l’agriculture belge a été affectée.

Le gouvernement belge doit rapidement contribuer à rétablir la confiance dans les produits exportés. Il doit également se pencher sur le problème de l’indemnisation des agriculteurs touchés par la crise, qui ont subi des pertes considérables.

Cet incident apparaît comme un cas sérieux de contamination isolé dans le temps. Cependant, étant donné le manque de données quant au contenu de base en dioxines de nos denrées alimentaires avant la crise, on ne peut écarter totalement l’hypothèse de contaminations répétées de plus faible ampleur. Si l’huile de transformateur ne s’est pas retrouvée de manière fortuite dans la filière de recyclage des grasses, il y a fort à penser que d’autres introductions frauduleuses ont pu et pourront encore avoir lieu.

On peut enfin noter que, même si les quantités de dioxines ingérées par la population ne constituent qu’une légère augmentation temporaire des admissions de dioxines, cet événement a probablement rendu insignifiants les efforts de ces dernières années en ce qui concerne la réduction de nos émissions.

CONCLUSION

L’évaluation des risques apportés par les dioxines et molécules apparentées est complexe. Une approche interdisciplinaire est nécessaire.

Ces polluants organiques persistants demandent un suivi car ils sont omniprésents dans notre environnement et chaque être humain y est exposé au cours de son existence. Les données actuellement disponibles indiquent une série d’effets corréls sur les animaux. En ce qui concerne l’homme, on en sait malheureusement beaucoup moins. La transposition à l’échelle humaine des observations faites sur le modèle animalier n’est pas chose aisée et l’étude sur l’homme se heurte à la difficulté des analyses.

Une meilleure caractérisation de la relation dose-réponse et des facteurs associés à la variation individuelle de la susceptibility est nécessaire pour évaluer de façon objective les risques réellement encourus par l’homme exposé à ces molécules. Les effets de certains « cocktails » de molécules doivent, eux aussi, être mieux interprétés.

La consommation journalière de produits d’alimentation contaminés conduit à l’accumulation des PCB/F’s dans nos tissus adipeux. Il est concevable de penser, étant donné le temps de demi-vie des dioxines (7 ans), que des expositions chroniques à des doses très faibles soient équivalentes à de courtes expositions à de fortes doses. Les études sur les effets à court et long terme des expositions à faibles doses sont cependant peu nombreuses. Le recul dont nous disposons n’est pas suffisant pour mettre en évidence des périodes de latence éventuelles.

Un suivi environnemental en temps réel des sources ainsi que des denrées alimentaires est nécessaire pour que l’on puisse prévenir et évaluer de façon efficace nos contacts avec ces micro-polluants.

Les événements récents ont bien montré qu’un manque de suivi régulier peut conduire à des contaminations dont l’ampleur est très difficile à évaluer. Ce qui, économiquement parlant, peut amener à de véritables catastrophes et à la mise à mal de tout le système de production d’un pays.

Un système d’alerte doit être mis en place, de manière à prévenir d’autres accidents, à cibler sans obtenir impact sur la santé publique que sur l’économie et à réduire la contamination généralisée.

Des études épidémiologiques comme celles effectuées par le CDC (Centers for Disease Control and Prevention) sur de longues périodes et pour un nombre élevé d’individus sont capitales pour une meilleure compréhension des effets à long termes (12).

Continuons à rester vigilants quant à nos émissions et à suivre médicalement les personnes contaminées dans le passé afin de pouvoir, dans le futur, être capable d’identifier, d’estimer et ainsi d’évaluer objectivement le risque.

REFERENCES

(2) Fédération des industries Chimiques de Belgique, La Chime et Vous, numéro 7, Novembre 1994.

DIOXINES: UN RISQUE POUR LA SANTÉ OU UNE ARME ÉCONOMIQUE ? (SUITE DE LA PAGE 9)

