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1. Introduction 
Most of the flows occurring in rivers and channels, even highly transient, can be reasonably 
seen as shallow, except in the vicinity of some singularities, as for example weirs. Indeed, 
vertical velocity components remain generally low compared to velocity components in the 
horizontal plane. Such flows may be considered as quasi two-dimensional. A depth integrated 
approach for flow modeling, taking into account a hydrostatic pressure distribution, is 
therefore suitable for many problems encountered in river, especially when modeling flows in 
channels with rather flat bottom. 
It is generally assumed that turbulence effects might be neglected in many practical 
engineering applications, especially if external forces due to the solid boundary friction are 
predominant (steady flow) or if major advection effects are present (unsteady flow). However, 
the predominance of transport terms in the hydrodynamic equations can be less important, 
mainly in low velocity flows, close to hydraulic structures or for specific geometrical 
configurations [1, 2] which leads to an increasing effect of recirculation currents and velocity 
gradients. 
Various approaches exist to handle turbulence in mathematical models, starting from direct 
numerical simulations (DNS) to large eddy simulations (LES) and mean flow variables 
simulations [3]. The modeling approach presented hereafter is based on a Reynolds averaging 
of the instantaneous flow variables. The new fluctuation terms in the resulting Reynolds 
averaged equations, called the Reynolds stresses, should be modeled by applying a proper 
turbulence model. For shallow water equations, several approaches are proposed in the 
literature, as rather simple algebraic expressions of turbulent viscosity [4 ,5] or more complex 
models with 1 or 2 additional equations [6, 7, 8]. 
In this paper, a new two-length-scale depth-integrated k-ε type model, involving two 
additional partial differential equations, is presented. This turbulence model integrated into 
shallow water equations [2] already proved to be relevant on test cases from the literature 
such as for a flow through a sudden enlargement [9] and in a channel with a groin [10]. In the 
present paper, this mathematical model is applied to another test case namely to backwater-
curve computations in a laboratory channel with large scale cavity roughness at both channel 
banks [11, 12].  
Such geometrical arrangements of river banks are used as a solution to mitigate the negative 
effects of hydro-peaking downstream of high head hydropower plants. They contribute to 
reduce peak discharge and water depth variations. The reliable numerical computation of 
steady states in such modified channels is a first step towards further analysis of transient 
flows and thus to systematic design of real arrangements.  
The geometrical configurations of macro-roughness investigated with systematic hydraulic 
model tests produce recirculation zones, vertical mixing layers and wakes due to high velocity 
gradients in the main flow plane [11]. These flow characteristics are closely related to 
turbulence generation/dissipation and transport effects, particularly regarding head losses 
through turbulent friction in the shear layer and wake dissipation. They constitute thus a true 
challenge for numerical flow modeling.   
 
2. Numerical model 
2.1 Mathematical model 
The flow model is based on the two-dimensional depth-averaged equations of volume and 
momentum conservation (Shallow Water Equations - SWE). In the “shallow-water” approach, 
it is assumed that velocities normal to a main flow plane are significantly smaller than those 
in the main flow direction. Consequently, the pressure field is almost hydrostatic everywhere.  
A two-length-scale turbulence modeling approach is used, as described for example by 
Babarutsi and Chu [13]. It is well suited for applications where the water depth is small 



compared to the horizontal dimensions of the flow and thus for SWE. The large-scale 
transverse-shear-generated turbulence, associated to the horizontal length-scale of the flow, 
and the small-scale bed-generated turbulence having a characteristic dimension in the order of 
magnitude of the water depth, are considered separately. This approach is based on the 
assumption that large scale velocity fluctuations are confined in the main flow plane, between 
the channel bottom and the free surface, while the small scale fluctuations are three-
dimensional [13].  
This assumption is consistent with the shallow water approach, where the depth-averaged 
velocity components in a main flow plane, i.e. the velocity components due to confined large-
scale fluctuations, are computed explicitly. 
The turbulence modeling is performed following a two-step Reynolds averaging procedure of 
the equations of motion, as suggested by Babarutsi and Chu [13]. The first stage filters out the 
bed-generated turbulence by treating the small scale fluctuations of the instantaneous three-
dimensional velocity components with an algebraic model. The second stage considers the 
transverse-shear-generated turbulence by means of additional fluctuations of the mean 
velocity components in the main flow plane, modeled by two additional transport equations: 
one for the depth-averaged turbulent kinetic energy k ′ , and one for the depth-averaged 
turbulence dissipation rate ε ′ . 
Following analytical developments, the new final form of the depth-averaged equations of 
mass and momentum conservation together with the depth-averaged kinetic energy and 
dissipation rate transport equations can be written using vector notations as follows [2]: 
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where [ Th hu hv k ]ε′ ′=s  is the vector of the conservative unknowns. f and g represent the 
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In equations (1) to (4), t represents the time, x and y the space coordinates, h the water depth, 
u and v the depth-averaged velocity components, zb the bottom elevation, g the gravity 
acceleration, Jx and Jy the bottom slopes, τxx and τyy the viscous and turbulent normal stresses, 
τxy and τyx the viscous and turbulent shear stresses. *

,3T Dν ν ν= +  is the sum of the water 
viscosity ν and of the eddy viscosity ,3T Dν  related to the bed-generated turbulence and ,2T Dν  
the eddy viscosity related to the large-scale transverse-shear-generated turbulence. 
The bottom friction is conventionally modeled with an empirical law, such as the Manning 
formula. In addition, the friction along side walls is reproduced through a process-oriented 
formulation proposed by Dewals [1]. Finally friction terms become: 
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where the Manning coefficients nb and nw characterize respectively the bottom and the side-
walls roughness. These relations have been written for Cartesian grids used in the present 
study. 

The production term of turbulence by the transverse shear and the term reflecting the effect of 
bottom friction forces on the turbulence motion are given by equations (7) and (8). The later 
has been derived as suggested by Babarutsi and Chu [13]. 
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The viscous and turbulent stresses ijτ  are the sum of three terms representing the viscous 
effects V

ijτ , the bed-generated turbulence contribution  and the large-scale transverse-
shear-generated turbulence one . 

,3T D
ijτ

,2T D
ijτ

In the momentum equations, the viscous stresses are depth-averaged terms. In analogy with 
the general formulation for a Newtonian fluid, their gradients are modeled, for example along 
x-direction, as: 
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The corresponding turbulent stresses gradients associated to bed-generated turbulence are 
modeled in the same manner, following an approach similar to the one of Chapmann and Kuo 
[14]: 
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The corresponding turbulent viscosity ,3T Dν  is obtained based on a local equilibrium 
hypothesis [15], assuming equality between the production of turbulence by the bottom 
friction and its dissipation: 

*
,3T D c hUνν =   (11) 

where  is the bottom friction velocity and the value of the proportionality constant 
 is recommended for non-stratified flows of uniform density over the depth [15]. 

*U
0.08cν

In the same way, the turbulent stresses terms associated to large-scale transverse-shear-
generated turbulence are modeled by a Boussinesq-type approximation. For example for x-
momentum equation terms they write as: 

(,2
,2

T D
xx T D x yh uh vτ ν ′= ∂ − ∂ −)h k

)vh

 (12) 

(,2
,2

T D
xy T D y xh uhτ ν= ∂ + ∂  (13) 

The associated turbulent viscosity ,2T Dν  is evaluated according to Rodi [8] as a function of the 
turbulence variables k ′  and ε ′ , transported by the main flow: 
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The calculations are performed with a set of coefficients 1kσ = , 1.3εσ = , , 
 and  assumed to be the same as for unconfined three-dimensional flow 

[15].  as proposed by Babarutsi and Chu [13] to model transverse mixing layer in 
shallow open-channel flows. 
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2, 1.92c ε =
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2.2 Grid and numerical scheme 
The solver includes a mesh generator for a Cartesian grid. Compared to unstructured grids the 
main advantages of such structured grids are a lower computation time and a gain in accuracy. 
To overcome the main problem of Cartesian grids, i.e. the high number of cells needed for an 
enough fine discretization, multiblock features can increase the domain areas which can be 
discretized with a constant cells number and enable local mesh refinements near areas of 
interest [16]. 
The space of Eq. 1 is discretized with a finite volume scheme. This ensures a correct mass and 
momentum conservation, which is a must for handling properly discontinuous solutions such 
as moving hydraulic jumps. As a consequence, no assumption is required regarding the 
smoothness of the solution. Reconstruction at cell interfaces can be performed with a constant 
or linear approach. For the latter, together with slope limiting, a second-order spatial accuracy 
is obtained. 
Appropriate flux computation has always been a challenging issue in computational fluid 
dynamics. The fluxes f and g are computed by a Flux Vector Splitting (FVS) method [2] 
where the upwinding direction of each term of the fluxes is simply dictated by the sign of the 
flow velocity reconstructed at the cells interfaces. It can be formally expressed as:  
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where the exponents + and - refer to, respectively, an upstream and a downstream evaluation 
of the corresponding terms. A stability analysis has shown that this FVS ensures a stable 
spatial discretization of the terms x∂ ∂f  and y∂ ∂g  in Eq. 1 [2]. Due to their diffusive 
character, the fluxes fd and gd can be determined by means of a centred scheme. The non-
conservative terms are obtained in upstream direction by analogy with the corresponding 
advective terms.  
Besides low computation costs, this FVS has the advantages of being completely Froude 
independent. Furthermore the adequacy of discretization of the bottom slope term is facilited 
[1, 2, 16, 17, 18].  
2.3 Time discretization and boundary conditions 
Since the model is applied to compute steady-state solutions, the time integration is performed 
by means of a 3-step first order accurate Runge-Kutta algorithm, providing adequate 
dissipation in time. For stability reasons, the time step is constrained by the Courant-
Friedrichs-Levy condition based on gravity waves. The bottom friction term is treated semi-
implicitly, without increasing computational time [1]. 
For each application, the value of the specific discharge can be fixed as an inflow boundary 
condition. The transverse specific discharge is usually set to zero at the inflow even if a 
different value can be used if necessary. In case of supercritical flow, a water surface 
elevation can be provided as additional inflow boundary condition. 
The outflow boundary condition may be a water surface elevation, a Froude number or no 
specific condition if the outflow is supercritical. At solid walls, the component of the specific 
discharge normal to the wall is set to zero.  
Regarding turbulence variables, the shear velocity on solid walls is computed according the 
law of the wall. The corresponding depth-averaged kinetic energy and dissipation rates are 
calculated, in analogy with Rodi [8] and Younus and Chaudhry [19], as respectively 
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where Uτ is the shear velocity assuming a logarithmic velocity profile near the wall, κ the von 
Karman constant and d the distance to the wall. Furthermore, this approach assumes that the 
laminar boundary layer is within the mesh next to the wall. At inlets, values of 4 2

0 010k q−′ = h  
and 3 2

0 010kε ′ ′= h  are used [20] to link the turbulence variables intensity to the discharge 
boundary condition q0. 
 



3. Physical experiments and selected test cases 
Hydraulic model tests of macro-rough channel configurations have been performed in a flume 
with a useful length of 38.33 m and a mean bed slope of 1.14 ‰ (Fig. 1). The channel is 
divided from upstream to downstream into an inlet reach (length 7.41 m), a reach with large 
scale cavity roughness at the banks (26.92 m) and an outlet reach (4.0 m). The channel bottom 
is made of painted steel. The sidewalls of the inlet reach are constructed by wooden boards. 
The sidewalls of the reach including the large scale depressions, namely rectangular cavities, 
and the outlet reach are formed by smooth limestone bricks. The channel bed is fixed and no 
sediment transport is taken into account. 
The channel base width is B = 0.485 ± 0.002 m and remained constant during all the tests. 
Three geometrical parameters namely the length of the cavity Lb, the distance between two 
cavities Lc and the depth of the cavities ΔB, have been systematically varied (Fig. 1). Table 1 
summarizes the range of the investigated geometrical parameters Lb, Lc and ΔB as well as 
derived ratios such as the aspect and expansion ratios of the cavity defined as AR = ΔB / Lb 
and ER = (B + 2ΔB) / B respectively. The combination of three different values for Lb and Lc 
and four different values of ΔB results in 36 different, axi-symmetric geometrical 
configurations covering 8 aspect and 4 expansion ratios. Additionally, a prismatic and a 
randomly generated configuration have been analyzed [11]. 
Four out of the 36 different geometrical configurations (Fig. 2) have been selected to be 
investigated with the numerical model for various discharges (Table 2). Furthermore, the 
prismatic channel served as reference for the calibration for the bottom and wall surface 
roughness.  
The choice of the test cases is motivated by the different cavity flow types identified in the 
experimental study [11] namely the square grooved flow type (conf. 124), the reattachment 
flow type (conf. 221) and the normal recirculating flow type (conf. 121 and 224).  
The discharge during the tests was controlled by an electromagnetic flow meter. The water 
levels have been recorded with ultrasonic elevation probes located along the channel axis. The 
accuracy of the measurements is at least ± 0.002 m. The ultrasonic elevation probes have been 
placed in the small channel sections or at the beginning, in the middle and at the end of the 
widened channel reaches (Fig. 2). Thus, variations of the flow depth at specific locations can 
be evaluated. 
The discharge is introduced at the upstream border of the channel through a horizontal 
opening of the inlet basin. At the downstream border of the channel, the flow depth is 
controlled by a particularly shaped cross section. It corresponds almost to the normal flow 
depth of the prismatic channel without macro-roughness.  
Characteristic values of Froude Fr = U⋅(g⋅h)-1and Reynolds Re = U⋅Rh⋅ν -1 numbers relative to 
the base width B ranged between 0.37 < Fr < 0.64 and 6’800 < Re < 110’000 for typical flow 
depths between 0.03 m < h < 0.34 m and mean flow velocities between 0.24 ms-1 

< U < 0.80 ms-1. U is the mean flow velocity in the cross-section and Rh is the hydraulic 
radius, both calculated relative to the small channel section at base width B. 
4. Results 
4.1 Prismatic channel 
First the prismatic channel has been modeled both experimentally and numerically for 
discharges of 0.278 m2/s and 0.0133 m2/s in order to fit the Manning’s roughness coefficients 
nb and nw value in the numerical model. Regarding the surface materials of the flume, i.e. 
painted steel and limestone bricks, the values of nb and nw have been considered constant 
along the channel bottom and the side walls respectively. 
A mesh size of 0.02 m has been used to model a length of 34.22 m of the channel of constant 
width (0.48 m). The values of the free water surface elevation measured at a downstream 
probe in the experimental facility have been used as the downstream boundary conditions. 



The constant specific discharges injected in the channel constitute the upstream ones. The 
measurements realized on nine ultrasonic elevation probes, regularly spaced along the channel 
(Fig. 2), have been used for the comparison to the numerical results. 
The best balance between bottom and sidewall friction has been found to be nb=0.0087 s/m1/3 
and nw=0.0105 s/m1/3. The sidewalls are rougher than the bottom, in agreement with the 
experimental facility materials surface patterns. These values have been definitively validated 
by the comparison of the numerical results with the experimental measurements for seven 
additional discharges between 0.219 m2/s and 0.0275 m2/s (Fig. 3, Table 3 and Table 4). 
4.2 Macro-rough channels 
In a second stage, four configurations with large scale depression roughness at the side walls 
(Fig. 2 and Table 2) have been modeled. The same mesh size of 0.02 m has been used to 
model a length of 36.32 m of the channel. The width varies along the channel, depending on 
the geometrical configurations. The only numerical model parameters are the roughness 
coefficients previously found from the calibration tests in the prismatic channel 
(nb=0.0087 s/m1/3 and nw=0.0105 s/m1/3). 
The free surface elevations measured at the downstream probe have again been used as the 
downstream boundary conditions. Constant specific discharges injected in the channel 
constitute the upstream ones. The free surface elevation measured with 25 ultrasonic elevation 
probes located at the channel axis along the experimental flume have been used for the 
assessment of the accuracy of the numerical results (Fig. 2). 
The backwater curves of the configuration with reattachment of the flow to the side walls are 
very well reproduced. The difference between the measured and computed water depths is in 
the order of magnitude of the probes accuracy and less than 2% for the higher discharges 
(Fig. 4, Table 3 and Table 4). The configurations with normal recirculating flow type are also 
satisfactory reproduced for the aspect ratio ΔB/Lb equal to 0.2 and a little less for ΔB/Lb equal 
to 0.4. The configuration governed by a square grooved flow type shows a difference between 
measured and computed flow depths reading 15% for the higher discharges. Furthermore the 
computed flow depths are underestimated by 0.025 m in maximum. 
Additional simulations of the first two axi-symmetric cavities have been carried out in each 
configuration with a mesh size of 0.01 m in order to get a finer modeling of the flow pattern 
inside the cavities. The boundary conditions have been taken from the simulations along the 
whole channel. 
 
5. Discussion 
5.1 Importance of turbulence modeling 
In 2D flow solvers, the turbulence terms in the momentum equations play an important role 
on external friction modeling, especially when the friction along the side walls can not be 
neglected. Without using any turbulence model, the velocity distribution over the channel 
width is rather uniform with a sudden local decrease along rough side walls (Fig. 5), and the 
velocity gradient is counterbalanced only by pressure gradients. Considering the turbulence 
terms in the momentum equations, this high velocity gradient along the side walls is in 
addition also counterbalanced by transverse shear stresses. Thus, the velocity distribution is 
more gradual (Fig. 5). 
The velocity distribution directly influences the roughness terms and thus the head losses. 
Without using a turbulence model and when considering a high roughness of the side walls 
compared to the bottom roughness, the velocity remains small in the meshes close to the side 
walls. Thus, the influence of side walls on the head losses is small even if they are very rough. 
Therefore it was not possible to fit the roughness coefficients in the prismatic channel using 
the 2D flow model without any turbulence terms, despite a good representation of the side 
walls friction effect. A first set of friction coefficients (nb = 0.01 s/m1/3 – nw = 0.0125 s/m1/3) 



has been used to compute the backwater curves for the discharges q1 and q9 without using 
turbulence terms. The obtained backwater curves in Fig. 6 reveal that the bottom roughness 
should slightly be decreased and the side wall roughness strongly increased in order to fit the 
measured water depths along the channel. For the second set of friction coefficients (nb = 
0.0087 s/m1/3 – nw = 0.02 s/m1/3), despite a strong increase of the side wall roughness, the head 
loss along the channel generally decreases (Fig. 6) as the flow velocity along the side wall 
decreases. The local increase of the head loss at the upstream end of the channel is due to the 
discharge boundary condition assuming uniform velocity distribution over the channel width. 
It may be concluded that without using turbulence terms in a 2D modeling approach, no set of 
roughness coefficients can be found to fit the water depth measurements for various 
discharges. This problem does not exist in 1D models where all friction terms in a cross 
section are computed from the mean flow velocity [11]. 
5.2 Flow patterns 
In Figure 7, the experimental and numerical time averaged flow patterns are compared. Flow 
patterns have been qualitatively visualized during the experiments by the help of dye 
injection. A good agreement between numerical and physical results can be observed 
especially in the case of the reattachment flow type (ΔB/Lb ≤ 0.1), for which an elongated, 
triangular recirculation gyre develops next to the cavity leading edge. Good agreement of the 
flow patterns is also found for the square grooved flow type (ΔB/Lb ≅ 0.8) which is 
characterized by a single and almost circular gyre. For the normal recirculating flow type, the 
experiments indicate a recirculation of the flow with a primary and secondary gyre inside of 
the cavity as well as a slight expansion of the main flow streamlines into the cavity. The size 
of the secondary gyre might vary and it can become very small. Furthermore, in all cases, the 
secondary gyre is rotating with a much smaller velocity than the primary gyre [11]. In the 
numerical simulations the size of this secondary gyre is underestimated. 
Transversal flow oscillations have been observed during the experiments for the test cases 124 
and 224 in the widened channel reaches. For both configurations, the semi-confined water 
bodies are seiching with a frequency that can be predicted with the theory of sloshing in a 
rectangular basin [21]. Oscillations transverse to the main flow direction, coupled with 
alternating vortex shedding at the cavity leading edge, also occurred for the geometrical 
configurations 124 and 224 in the numerical simulations. However, the frequency is much 
lower in the numerical simulations. 
The occurrence of these oscillations in the numerical model should be explained by an 
analysis of the computation process. Indeed, having a symmetrical geometry along the 
channel and uniform boundary conditions, non symmetric behavior can not be initiated by the 
numerical scheme. Despite a dissipative time integration scheme, the oscillations are 
amplified and reach a periodic behavior in configurations 124 and 224. On the other hand 
they are not amplified in any steady solution for configurations 121 and 221. This is in 
agreement with the experimental observations for which stable flow patterns have been 
observed in configurations 121 and 221. 
5.3 Turbulent viscosity components 
Figure 8 illustrates the evolution along the channel length of both the width-integrated bed 
generated (3D) and width-integrated transverse shear generated (2D) turbulent viscosity 
components. The 3D component, computed assuming equilibrium between production and 
dissipation, is rather constant along the channel axis. It is concentrated in the main channel 
(Fig 9), where the depth integrated velocities are maximum. Furthermore, the 3D turbulent 
viscosity components are very small in the cavities due to the small flow velocities. Finally, 
whatever the channel geometry, the amplitude of the width-integrated 3D turbulent viscosity 
component is rather constant for a certain discharge (Fig. 8). 



The 2D turbulent viscosity is computed on the basis of two variables obtained from additional 
transport equations. From the 2D turbulent viscosity distribution (Fig. 10) two effects can be 
seen. First, in cavities with a low aspect ratio ΔB/Lb, the 2D turbulent viscosity increases in 
the direction of the flow. In the cavities with high aspect ratios, it is distributed 
homogeneously. Secondly, the 2D turbulence increases due to transport in the main channel 
from upstream to downstream. The width integrated 2D turbulent viscosity increases along 
the macro-rough configuration and reaches an equilibrium level after a few widenings 
(Fig. 8). In cavities with a low aspect ratio ΔB/Lb, the width integrated 2D turbulent viscosity 
increases linearly with the flow expansion up to a maximum which is reached at the sudden 
contraction, where the flow velocity gradients are maximum. In cavities with higher aspect 
ratio, the turbulent viscosity is more constant along the cavity since the velocity gradients are 
high in the vicinity of the recirculating gyre. Furthermore, in configuration 124, a local 
increase of the width-integrated 2D turbulent viscosity is observed due to the stagnation point. 
5.4 Research perspectives 
A way to further improve the numerical results is to change the value of the coefficients of the 
turbulence model. Tests have been carried out to assess the effect of bottom friction in the 
depth averaged dissipation equation by changing the 3,c ε  parameter value to 1 as suggested by 
Babarutsi [13]. At this stage, no significant change is seen on the numerical results. The 
influence of the parameter cν  in eq. 11 should be analysed in a further step as it directly 
regulates the bed-generated turbulence intensity. There is less reason to modify the other 
parameters of turbulence equations as they are generally assumed as universal constants in the 
three-dimensional k-ε model. Nevertheless, their validity for the depth integrated approach 
described in this paper should be analysed properly. 
Furthermore, to improve the flow patterns in the corners of the cavities, the boundary 
condition on the depth averaged kinetic energy and dissipation rate along side walls might be 
modified considering developments of Nassiri [22] for example. Finally, in the case of this 
specific application with quite low flow velocities in the cavities, other boundary friction laws 
than Manning could by applied. 
6. Conclusions 
A numerical flow model has been applied to flows in a macro-rough channel. The model 
solves the shallow water equations with a new two-length-scale depth integrated k-ε type 
turbulence modeling approach. Data for the comparison were obtained from experiments 
performed with different non prismatic channel configurations, namely large scale cavities at 
the side walls, and various discharges. Two dimensional flow features such as vertical mixing 
layers, wake zones and flow recirculation in cavities could be observed. 
With 2D numerical model features, and especially considering turbulence modeling, a single 
set of bottom and side wall roughness for a large range of discharges investigated in a 
prismatic channel can be found. It is shown that this is not possible without turbulence terms 
in the momentum equations. 
By the separation of 2D and 3D turbulence effects in the model, an excellent agreement 
between experimental and numerical results could be obtained regarding backwater curves 
and flow patterns in the macro-rough configurations with low aspect ratios. For configurations 
with high aspect ratios of the side wall cavities, the head losses generated by the important 
recirculation gyres are slightly underestimated. 
Furthermore, the analysis of the turbulent viscosity in geometrical configurations with macro-
roughness at side walls clearly shows the important part of the total turbulent viscosity related 
to 2D transverse shear effects compared to bed-generated 3D turbulence. Thus, in 2D flow 
numerical modeling, the amplitude of 3D, bed-generated turbulence, and 2D, transverse-
shear-generated turbulence, can be very different. As a consequence, the separation of the 



turbulence effects in the mathematical model makes it suitable to reproduce accurately most 
flow features depending on internal friction effects. 
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Notations 
AR = ΔB / Lb  aspect ratio of a cavity [-] 
B channel base width [L] 

1, 2, 3,, , , ,µc c c c cν ε ε ε  constants of the turbulence model [-] 
d  distance to the wall [L] 
ER = (B + 2ΔB) / B  expansion ratios of a cavity [-] 
f  advective and pressure fluxes in direction x  
fd    diffusive fluxes in direction x 
F’ effect of bed-friction on turbulence motion [L³T-²] 
Fr Froude number [-] 
g gravity acceleration [LT-²] 
g  advective and pressure fluxes in direction y 
gd    diffusive fluxes in direction y 
h water depth [L] 
Jx  bottom slope component along x-axis [-] 
Jy  bottom slope component along y-axis [-] 
k turbulent kinetic energy [L²T-2] 
k’ depth-averaged turbulent kinetic energy [L3T-2] 
Lb length of a cavity [L] 
Lc  distance between two cavities  [L] 
nb  Manning coefficient for bottom roughness [TL-1/3] 
nw  Manning coefficients for side-walls roughness [TL-1/3] 
P’ production term of turbulence by the transverse shear [L³T-²] 
Re  Reynold number [-] 
Rh  hydraulic radius [L] 
s vector of the conservative unknowns 
S    vector of the sink and non-conservative terms 
t time [T] 
u depth-averaged velocity component along x-axis [LT-1] 
U  mean flow velocity in the cross-section [LT-1] 

*U   bottom friction velocity [LT-1] 
Uτ  shear velocity  [LT-1] 
v  depth-averaged velocity component along y-axis [LT-1] 
x space coordinate [L] 
y  space coordinate [L] 
zb  bottom elevation [L] 
 
ΔB depth of the cavities [L] 
Δx space discretization step along x-axis [L] 
Δy space discretization step along y-axis [L] 



ε turbulence dissipation rate [L²T-3] 
ε’ depth-averaged turbulence dissipation rate [L4T-3] 
κ  von Karman constant [-] 

*ν   sum of the water viscosity ν and of the eddy viscosity ,3T Dν   [L²T-1] 
ν  water viscosity  [L²T-1] 

,3T Dν   eddy viscosity related to the small scale bed-generated turbulence[L²T-1] 

,2T Dν    eddy viscosity related to the large-scale transverse-shear-generated 
turbulence [L²T-1] 

,k εσ σ   constants of the turbulence model [-] 
τxx and τyy   viscous and turbulent normal stresses [L²/T-2] 
τxy and τyx   viscous and turbulent shear stresses [L²/T-2] 

V
ijτ   components of τij related to viscous effects [L²/T-2] 

,3T D
ijτ    components of τij related to the bed-generated turbulence [L²/T-2] 

,2T D
ijτ  components of τij related to the large-scale transverse-shear-generated 

turbulence [L²/T-2] 
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Figure 1: Plane view of the test flume (above) and definition of the parameters of the macro-rough geometrical 
configurations (below). 
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Figure 2: Prismatic and macro-rough test cases. The positions of the ultrasonic elevation probes along the 
channel axis are indicated with . 
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Figure 3: Comparison of experimental and simulated backwater curves in the prismatic reference configuration 
for nine different specific discharges q in the channel. 



 
Figure 4: Comparison of experimental and simulated backwater curves for different specific discharges q in the 
channel for the configurations with large scale depression roughness at the side walls.  
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Figure 5: Streamwise velocity components with and without turbulence model. 
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Figure 6: Backwater curve computations in the prismatic channel without turbulence model. q is the specific 
discharge in the channel, nb is the bottom roughness coefficient and nw is the side walls roughness coefficient 
 



 
Figure 7: Cavity flow patterns for the configurations with large scale roughness (Flow velocity in m/s). 
Discharge is q4 according to table 2. (a) 221, flow reattachment. (b) 121, normal recirculating flow type. (c) 224, 
normal recirculating flow type. (d) 124, square grooved flow type. 

0.8

0.6

0.4
0.3

0.0

a)

c) d)

b)

 

 
Figure 8: Evolution of the width integrated turbulent viscosity components along the channel in case of the 
specific discharge q4. 
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Figure 9: 3D turbulent viscosity components (10-4 m²/s) in the upstream part of the macro-rough channel reach 
(7.50 m <x< 14.9 m). Configuration 221 (up) and 224 (down) with specific discharge q4. 
 

 
Figure 10: 2D turbulent viscosity components (10-4 m²/s) in the upstream part of the macro-rough channel reach 
(7.50 m <x< 14.9 m). Configuration 221 (up) and 224 (down) with specific discharge q4. 
 



Table 1: Summary of test range of geometrical parameters Lb, Lc and ΔB and derived ratios. 
Cavity length Lb [m] 0.5 ; 1.0 ; 2.0 

Distance between cavities Lc [m] 0.5 ; 1.0 ; 2.0 

Depth of the cavity ΔB [m] 0.1 ; 0.2 ; 0.3 ; 0.4 

Aspect ratio AR = ΔB / Lb [-] 0.05 ; 0.10 ; 0.15 ; 0.20 ; 0.30 ; 0.40 ; 0.60 ; 0.80 

Expansion ratio ER = (B+2ΔB) / B [-] 1.41; 1.82; 2.24; 2.65 

 
Table 2: Geometrical characteristics and specific discharges q [m2/s] of the prismatic and the macro-rough test 
cases. Lb is the cavity length, Lc is the distance between cavities, ΔB is the depth of cavities, AR is the aspect 
ratio and ER is the expansion ratio 

Case Lb [m] Lc [m] ΔB 
[ ]

AR [-] ER [-] q1 q2 q3 q4 q5 q6 q7 q8 q9 

Prismatic - - - - - .0134 .0275 .0451 .0651 .0996 .1391 .1769 .2193 .2781

221 1.0 1.0 0.1 0.1 1.41 .0100 .0229 .0367 .0708 .1006 .1317 .1731 .2149 - 

121 0.5 1.0 0.1 0.2 1.41 .0114 .0245 .0404 .0726 .1033 .1300 .1762 .2189 - 

224 1.0 1.0 0.4 0.4 2.65 .0108 .0238 .0396 .0693 .0999 .1343 .1738 .2186 - 

124 0.5 1.0 0.4 0.8 2.65 .0130 .0218 .0397 .0719 .0971 .1311 - - - 
* specific discharge at the flume entrance (x = 0.0 m) 
 
Table 3: Absolute value of mean relative errors between computed and measured flow depths for all investigated 
geometries and specific discharges q. Errors higher than 5% are indicated in italic. 

 Absolute value of mean relative error on flow depths [%] 
Geometry q1 q2 q3 q4 q5 q6 q7 q8 q9 

Prismatic 4.2 3.8 3.9 1.8 1.8 0.8 0.9 0.8 0.7 

221 3.2 5.7 4.3 1.5 1.0 0.8 1.1 1.3 - 

121 3.4 8.2 3.0 2.2 3.8 2.5 1.1 0.6 - 

224 12.2 7.2 3.9 4.4 6.4 6.1 7.3 6.3 - 

124 5.9 17.4 6.3 15.0 13.8 10.7 - - - 

 

Table 4: Absolute value of mean errors between computed and measured flow depths for all investigated 
geometries and specific discharges q. Errors higher than the precision of the measurements (± 2mm) are 
indicated in italic. 

 Absolute value of mean error on flow depths [mm] 
Geometry q1 q2 q3 q4 q5 q6 q7 q8 q9 

Prismatic 1.3 1.8 2.6 1.6 2.0 1.2 1.5 1.5 1.5 

221 1.0 3.2 3.4 1.9 1.6 1.8 2.9 4.3 - 

121 1.2 4.3 2.3 2.9 7.1 5.4 2.7 1.7 - 

224 5.0 4.6 3.5 6.3 12.5 14.5 21.3 21.8 - 

124 2.5 10.8 5.6 21.7 25.4 23.5 - - - 

 


