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Multi-Higgs-Doublet Models

• We introduce N complex Higgs doublets with electroweak isospin
Y = 1/2:

φa =

(
φ+
a

φ0
a

)
, a = 1, . . . ,N

• The generic Higgs potential can be written in a tensorial form:

V = Yāb(φ†aφb) + Zābc̄d(φ†aφb)(φ†cφd)

where all indices run from 1 to N.
• There are N2 independent components in Y and N2(N2 + 1)/2
independent components in Z .
• The explicit analysis of the most general case is impossible.
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Symmetries

Several questions concerning symmetry properties of the scalar sector of
NHDM arise;
• What groups G are realizable as symmetry groups of some potential V ?

• How to write examples of the Higgs potential whose symmetry group is
equal to a given realizable group G?

G is a realizable symmetry group if there exists a G -symmetric potential
and there’s no larger group which includes G and keeps this potential
invariant.

For N = 2 the model has been studied extensively, but for N > 2, these
questions have not been answered yet.

Here we introduce a strategy to find all Abelian subgroups in NHDM.
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Reparametrization trasformations

• Reparametrization transformations: non-degenerate linear
transformations which mix different doublets φa without changing the
intradoublet structure and which conserve the norm φ†aφa.

• All such transformations must be unitary or antiunitary:

U : φa → Uabφb

UCP = U · CP : φa → Uabφ
†
b

with unitary matrix Uab.

In this talk I focus on the unitary transformations.
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Unitary transformations

• Such transformations form the group U(N). The overall phase factor
multiplication is taken into account by the U(1)Y .

• This leaves us with SU(N), which has a non-trivial center
Z (SU(N)) = ZN generated by the diagonal matrix exp(2πi/N) · 1N .

• Therefore, the group of physically distinct reparametrization
transformations is

PSU(N) ' SU(N)/ZN
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Strategy

• At first we write maximal Abelian subgroups of PSU(N).
• Then we find all the subgroups of each maximal Abelian subgroup.
• At the end we check the potential is not symmetric under a larger group.

It can be proved that there are two sorts of maximal Abelian subgroups
inside PSU(N):
• The maximal tori, which will be constructed here.

• The image of the extraspecial N-groups, which is at most one additional
group for each N.
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Constructing maximal torus in PSU(N)

• Starting from SU(N); all maximal Abelian subgroups are maximal tori:

[U(1)]N−1 = U(1)× U(1)× · · · × U(1)

and all such maximal tori are conjugate inside SU(N).
• Therefore without loss of generality one could pick up a specific maximal
torus, for example, the one that is represented by phase rotations of
individual doublets

diag[e iα1 , e iα2 , . . . , e iαN−1 , e−i
∑

αi ]

and study its subgroups.
• We construct the representative maximal torus in PSU(N) analogously,
with the center Z (SU(N)) localized in only one of the U(1)’s.
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• A diagonal transformation matrix which performs phase rotations of
doublets will be written as a vector of phases:(

α1, α2, . . . , αN−1,−
∑

αi

)
• Then we construct a maximal torus in PSU(N) which has this form

T = U(1)1 × U(1)2 × · · · × Ũ(1)N−1

where

U(1)1 = α1(−1, 1, 0, 0, . . . , 0) ,

U(1)2 = α2(−2, 1, 1, 0, . . . , 0) ,

U(1)3 = α3(−3, 1, 1, 1, . . . , 0) ,
...

...

Ũ(1)N−1 = αN−1

(
−N − 1

N
,

1

N
, . . . ,

1

N

)
with all αi ∈ [0, 2π).
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Identifying the symmetry groups

• Now, using the strategy, we check which subgroups of maximal torus are
realizable:

• The Higgs potential is a sum of monomial terms of the form: φ†aφb or
(φ†aφb)(φ†cφd) .

• Each monomial gets a phase factor under T :

exp[i(pα1 + qα2 + · · ·+ tαN−1)]

• The coefficients p, q, . . . , t of such terms can be easily calculated for
every monomial.
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Identifying the symmetry groups

• Consider a Higgs potential V which is a sum of k terms, with
coefficients p1, q1, . . . t1 to pk , qk , . . . tk . This potential defines the
following (N − 1)× k matrix of coefficients:

X (V ) =


p1 q1 · · · t1

p2 q2 · · · t2
...

...
...

pk qk · · · tk


• The symmetry group of this potential can be constructed from the set of
solutions for αi of the following equations:

X (V )

 α1
...

αN−1

 =

 2πn1
...

2πnN−1
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• There are two major possibilities depending on the rank of matrix X :

• If rank of this matrix is less than N − 1, there exists a hyperplane in the
space of angles αi , which solves this equation for ni = 0. The potential is
symmetric under [U(1)]D , where D = N − 1− rank(X ).

• If rankX (V ) = N − 1, there is no continuous symmetry. Instead, there
exists a unique solution for any ni .
All such solutions form the finite group of phase rotations of the given
potential.
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finite groups

• One could easily diagonalize matrix X (V ) with integer entries.
• Diagonalizing the X (V ) matrix results in:

X (V ) =


d1 0 · · · 0
0 d2 · · · 0
...

...
...

0 0 · · · dN−1


Then we will have the finite symmetry group:

Zd1 × Zd2 × · · · × ZdN−1
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Now we’re done with the strategy of the work.

It’s time for some examples in 3HDM and 4HDM.
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The 3HDM example

• In the 3HDM the representative maximal torus T ⊂ PSU(3) is
parametrized as

T = U(1)1 × U(1)2 , U(1)1 = α(−1, 1, 0) , U(1)2 = β

(
−2

3
,

1

3
,

1

3

)
• There are six bilinear combinations of doublets transforming non-trivialy
under T

(φ†aφb)→ exp[i(pα + qβ)](φ†aφb)

p q

(φ†2φ1) −2 −1

(φ†3φ2) 1 0

(φ†1φ3) 1 1

and their conjugates with opposite coefficients p and q.

Venus Ebrahimi-Keus (IFPA, ULg) Abelian symmetries Scalars 2011, Warsaw, 27/08/11 15/22



Introduction Abelian subgroups Examples Conclusions

• Any monomial term is symmetric under a U(1), because rankX (V ) = 1.
In order to have a finite group we need at least 2 terms.

• To find all realizable groups, one has to write the full list of possible
terms and then calculate the symmetry group of all distinct pairs of terms.
For example, if the two monomials are v1 = (φ†1φ2)(φ†1φ3) and

v2 = (φ†2φ1)(φ†2φ3), then the matrix X (v1 + v2) has form

X (v1 + v2) =

(
3 2
−3 −1

)
→
(

3 2
0 1

)
→
(

3 0
0 1

)
and it produces the symmetry group Z3. The solution of the equation

X (v1 + v2)

(
α
β

)
=

(
2πn1

2πn2

)
yields α = 2π/3 · k , β = 0.
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Full list of subgroups of 3HDM

• Checking all possible combination of monomials, we arrive at the full list
of unitary Abelian subgroups of the maximal torus:

Z2, Z3, Z4, Z2 × Z2,

U(1), U(1)× Z2, U(1)× U(1)
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The 4HDM example

• In the case of 4 Higgs doublets, the representative maximal torus in
PSU(4) is T = U(1)1 × U(1)2 × U(1)3, where

U(1)1 = α(−1, 1, 0, 0) , U(1)2 = β(−2, 1, 1, 0) , U(1)3 = γ

(
−3

4
,

1

4
,

1

4
,

1

4

)
• The phase rotations of a generic bilinear of doublets under T is
characterized by three integers p, q, r ,

(φ†aφb)→ exp[i(pα + qβ + rγ)](φ†aφb)
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• Using the strategy we have found all finite unitary Abelian groups with
order ≤ 8

Zk with k = 2, . . . , 8; Z2 × Zk with k = 2, 3, 4; Z2 × Z2 × Z2

• And all realizable continuous groups:

U(1)×U(1)×U(1) , U(1)×U(1)×Z2 , U(1)×Zk , k = 2, 3, 4, 5, 6
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General NHDM

• The algorithm described above can be used to find all Abelian groups
realizable as the symmetry groups of the Higgs potential for any N.

Several statements:

• Upper bound on the order of finite Abelian groups:
For any given N there exists an upper bound on the order of finite Abelian
groups realizable as symmetry groups of the NHDM potentials: The order

of any such group must be ≤ 2
3
2

(N−1). We suspect that this bound could
be improved to 2N−1.
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• Cyclic groups:
The cyclic group Zp is realizable for any positive integer p ≤ 2N−1.

• Polycyclic groups:
Let (N − 1) =

∑k
i=1 ni be a partitioning of (N − 1) into a sum of

non-negative integers ni . Then, the finite group

G = Zp1 × Zp2 × · · · × Zpk

is realizable for any 0 < pi ≤ 2ni .
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Conclusion

To summarize:

• NHDM are interesting because one can introduce many non-trivial
symmetries. Finding such symmetries is one the hot topics.

• In this work we have focused on Abelian symmetries and developed a
strategy to find all Abelian groups realizable for any NHDM.
Specific examples of 3HDM and 4HDM have been shown.

• We have derived some general conclusion for NHDM.
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