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1. Abstract
As many manufacturing techniques, microfabrication methods possess limitations. Consequently, man-
ufacturing constraints have to be considered during microsystems design process. Therefore, the direct
use of automatic design tools like topology optimization is not possible. For instance, optimal topologies
generally contain closed cavities that cannot be produced using the usual microfabrication techniques
like layer deposition. The present paper intends to add a layer deposition constraint to the optimization
problem using recent developments of CONLIN software. However, with this new optimization proce-
dure we could observe that classical sensitivities filtering makes optimization problem rather unstable
while filtering the density field itself keeps good convergence properties.
2. Keywords : Topology optimization, multiphysic, manufacturing constraint, microsystems

3. Introduction
Topology optimization has been widely applied during last years to problems involving one physical
field (see [3, 2, 4, 6, 7, 14] for instance). The topology problem consists in distributing material in a
fixed design volume in order to maximize a performance criterion given limited resources. The material
distribution is represented mathematically by a density function equal to 1 where material is present and
0 in void areas. The privileged approach is based on a finite element discretization of the design domain.
Usually, the density function is parameterized by attaching one design variable to each element. Then,
the function is considered to be constant on each finite element. Nevertheless, the pure discrete problem
suffers from non-existence of solution. Therefore, one solution is to relax the problem by allowing the
density function to vary continuously between zero and one. Intermediate densities represent then either
a porous material [3] whom properties are computed according to homogenization theory or an artificial
material with mechanical properties given by an analytic law as the famous SIMP [2].
Because of the development of MEMS and their inherent multiphysic characteristics, the need for adap-
tation of optimization techniques to this field is constantly growing. However, the use of topology
optimization for multiphysic problems is still under development. One of the first attempts to apply
topology optimization to multiphysics systems was proposed by Sigmund [14]. Sigmund’s objective was
to use topology optimization to design electrothermal actuators in order to maximize the output point
displacement. Yin and Ananthasuresh [17] have also studied these devices and have introduced an
improvement of thermal convection modeling.
Later, topology optimization of electrostatic actuators has been studied by Raulli [11]. The approach
proposed by Raulli is very general and gives a large design freedom to the optimizer. Even if the
introduction of topology optimization complicates the staggered modeling, the resulting force inverters
are very original and interesting.
An important phenomenon appearing in electrostatic actuators is pull-in effect. Indeed, these actuators
possess a limit voltage called pull-in voltage beyond which they are unstable. Above a certain displace-
ment and the corresponding voltage, elastic forces of suspension system cannot equilibrate electrostatic
forces and electrodes stick together. This effect can eventually damage the actuator since it can be
impossible to separate the electrodes afterward. In consequence pull-in limits the usable voltage range
and it seems natural to use optimization methods in order to maximize the pull-in voltage. Abdalla
et al. [1] initially propose and solve this optimization problem for microbeam with the help of a sizing
technique. This method has been generalized recently by some of the authors in Ref. [9] using topology
optimization. Moreover, a strongly coupled finite element formulation and a continuation procedure
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were used in order to improve the modeling and sensitivity analysis exactness. Interesting and encour-
aging results were obtained. However, the final design lacks realism on a manufacturing point of view.
Therefore, the main purpose of the present paper is to add a layer deposition manufacturing constraint
to the optimization problem.
The paper is structured as follows. First, we recall the principles of the strongly coupled modeling and
a path following algorithm, i.e. the normal flow, is adapted this formulation. Secondly, the optimization
problem is described and we show how it is possible to evaluate its sensitivities. Then, we present
the manufacturing constraint and justify its necessity. Finally, before the conclusions, applications
are presented in order to highlight benefits and issues resulting from the manufacturing constraint
introduction.

4. Strongly coupled modeling
Strongly coupled modeling methods are opposed to staggered or weakly coupled computation schemes in
which each physical field of the model is solved separately. The advantage of weakly coupled modeling
is the possibility to use existing modeling software for each physical problem whereas strong coupling
requires for instance the development of a new finite element formulation. However, the ability of
strongly coupled methods, also called monolithic, to solve all physical fields at the same time provides
better convergence and stability properties than staggered procedures.

4.1. Electromechanical modeling
The modeling of electromechanical phenomenon as the pull-in effect occurring in microsystems is rela-
tively difficult with a staggered algorithm. Therefore, a monolithic finite element formulation has been
developed by Rochus (see reference [12]). To include both mechanical and electrostatic effects this formu-
lation is based on the Gibbs energy density G given in equation (1). Gibbs energy density is constituted
of two terms. The first one accounts for the mechanical energy contribution with the product of the
stress tensor S by the strain tensor T. The second term corresponds to the electric part of the energy
and is equal to the product between the electric displacement D and the electric field E.

G =
1
2
ST T︸ ︷︷ ︸

mech.

− 1
2
DT E︸ ︷︷ ︸
elec.

(1)

Then, the application of a variational principle to the Gibbs energy density allows generating the fi-
nite element formulation. As a result, Rochus is able to compute the tangent stiffness matrix KT of
the complete multiphysic problem. Therefore, the linearized equilibrium equation linking generalized
displacements increments ∆q and generalized forces increments ∆g can be written,

KT ∆q = ∆g

Where q the electromechanical degrees of freedom vector contains both mechanical displacements and
electric potentials and g corresponds to the electromechanical generalized forces and collects mechanical
forces and electric charges. Of course, the matrix KT depends on the configuration q.

4.2. Normal flow algorithm
Accurate knowledge of pull-in conditions is required by the sensitivity analysis. To solve this highly non
linear problem, Rochus et al. in reference [12] propose to use a continuation algorithm in order to reach
the pull-in point starting from the rest position. Continuation methods are similar to Newton-Raphson
procedure since they consist in a succession of tangent predictions and correction phases. However,
unlike Newton-Raphson, they introduce an additional load variable allowing the correction process to
adjust the load applied to the system. The extra-variable requires an additional equation in order to
keep a determined equation system. The choice of this equation depends on the continuation method.
For instance, the normal flow method used in this paper (see references [1, 10]) constrains the corrections
to be perpendicular to the Davidenko flow defined by the perturbed equilibrium equation,

r (q, λ) = fext − fint = δ
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where r is the residual forces vector, equal to the difference between external fext and internal fint

forces, δ is any perturbation vector and λ is the load path variable. Figure 1 illustrates the normal flow
iterative process. First a tangent step is performed starting form the equilibrium curve (continuous line)
and secondly the correction phase restores the equilibrium condition following a path perpendicular to
the Davidenko flow (dashed).
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Figure 1: Normal flow method

As many non-linear solver, the normal flow method makes use of the linearized expression of the residual
forces r. Let’s linearize r around the point (q0, λ0),

r (q0 + ∆q, λ0 + ∆λ) ' r (q0, λ0)︸ ︷︷ ︸
r0

+
∂r
∂q︸︷︷︸
−KT

∆q +
∂r
∂λ

∆λ (2)

Since in this paper no external forces are considered, r is simply equal to the opposite of the internal
forces. This is why we have,

∂r
∂q

= −∂fint

∂q
= −KT (3)

with KT denoting the tangent stiffness matrix. Then, considering that we search ∆q and ∆λ to zero r,
equation (2) can be rewritten, [

KT − ∂r
∂λ

]︸ ︷︷ ︸
Dr

[
∆q
∆λ

]
︸ ︷︷ ︸

∆c

= r0 (4)

The perpendicularity condition is imposed by first computing the Davidenko flow tangent vector u
defined by, Dr · u = 0. Therefore u can be computed by extracting the kernel of Dr. Then, the
perpendicularity condition uT ·∆c = 0 is introduced in the equation system (4), which finally gives,[

KT − ∂r
∂λ

vT dλ
ds

]
·
[

∆q
∆λ

]
=
[

r0

0

]
if
[
vT dλ/ds

]
= uT (s being a curvilinear abscissa).

In the context of an electrostatic actuator, it is logical to choose the applied voltage V as load variable.
Notice that V corresponds to fixed electric potential degrees of freedom. In order to develop the expres-
sion of ∂r/∂V , we define qi containing the imposed and fixed degrees of freedom of the model and Kf,i

T

the part of the complete tangent stiffness matrix (i.e. before elimination) linking free degrees of freedom
to imposed ones. Therefore since V only appears in qi and not in q, the derivative of r with respect to
V can be written,

∂r
∂V

=
∂r
∂qi

∂qi

∂V
= −Kf,i

T

∂qi

∂V
(5)

Components of the vector ∂qi/∂V are equal to 1 if the corresponding degree of freedom is electric and
imposed to V , otherwise they are zero.
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Finally, notice that the unknown vector c contains both electrical and mechanical variables. Since
MEMS usually experience voltages of at least 1 V and displacements about 1 µm, there exists a great
magnitude dispersion of c components. Therefore, our experience has shown that the stability of the
procedure was highly improved by normalizing the vector c such that all components are of the same
order of magnitude.

5. Optimization problem
5.1. Description of the optimization problem
As shown by Raulli in Ref. [11] in the case of electromechanical coupling, the main difficulty of elec-
tromechanical optimization topology problems from the location of the electrostatic forces application
point. These forces should normally be applied at the boundary between void and solid. However, in
topology optimization this boundary is usually unclear since there is often a smooth transition between
void and solid.
In this paper, in order to fix the electrostatic forces application point, we consider the reinforcement
problem of a mobile electrode. Figure 2 represents the studied optimization problem. We can see in this
figure that the mobile electrode, drawn in dark gray, separates the electric (in white) and optimization
(in light gray) domains. Since, this electrode is non-optimizable, it prevents the optimization process to
move the electrostatic forces application point. Moreover, as the mobile electrode is assumed perfectly
conducting, the optimization domain is insulated from electrical effects and purely mechanical. Actually,
the optimization problem consists in designing an optimal suspension for the mobile electrode. How-
ever, our optimization problem is still multiphysic and strongly non-linear since the interaction between
mechanical and electric phenomena remains.

V

f f f f f f f

Electric 
Domain

Optimization 
domain

Fixed electrode

Mobile 
electrode

Figure 2: Schematic view of the considered optimization problem

The optimization problem considered is to maximize the pull-in voltage of an electromechanical device
with a bound on the available volume of material. This can be mathematically stated as follow,

max
µ

Vpi (µ) s.t.

{
v (µ) 6 v

µmin 6 µi 6 1 ∀i

where µ represents the vector of design variables, v the upper bound on available material volume, v (µ)
the structure volume and µmin the lower bound on the unknowns.
The design material is an elastic-linear material under small strains assumption. In this study, we
choose to model material behavior for non-integer densities using general homogenization laws for fiber
composites proposed by Halpin and Tsai [8]. Considering a plane structure perforated by long fibers of
very weak material perpendicularly to the plane of the structure, then according to Halpin-Tsai laws,
the effective in plane Young’s E modulus is given by the following equation in which ρ is the relative
density of the material:

E =
ξρ

1 + ξ − ρ
E0

The reinforcement parameter ξ can be modified in order to adjust the penalty on intermediate densities.
A linear law is obtained for ξ = ∞ while the discrete problem is recovered for ξ = 0.

4



5.2. Sensitivity analysis
Considering the optimization problem stated above, it is possible to obtain an expression of the pull-in
voltage sensitivities in function of the pull-in conditions. The sensitivities equation can be evaluated
starting from the equilibrium equation by adapting the reasoning proposed by reference [1] to the strongly
coupled formulation. Within the framework of this study, the equilibrium equation is written,

r (q, V ) = fext − fint = 0

where r stands for residual force vector, q are the generalized displacements and V is the applied electric
potential. The equilibrium equation is then derived with respect to the design variable µi,

∂r
∂µi

+
∂r
∂q

∂q
∂µi

+
∂r
∂V

∂V

∂µi
= 0

Notice that the perturbation of a design variable will not solely modify the structure pull-in voltage but
also the deformation state at pull-in point. This is why, both derivatives of V and q with respect to
µi have to be conserved. Adopting the notations of section 4.2. and using equations (3) and (5) the
derivative of the residual forces becomes,

∂r
∂µi

−KT
∂q
∂µi

−Kf,i
T

∂qi

∂V

∂V

∂µi
= 0 (6)

Next, let’s left multiply this equation by the first eigenvector p of KT . Since this matrix is singular at
pull-in point we have KT p = 0. In addition, the eigenvector is normalized to have,

pT Kf,i
T

∂qi

∂V
= −1

Under this condition, the multiplication of (6) by p gives,

pT ∂r
∂µi

+
∂Vpi

∂µi
= 0

As the optimization domain is purely mechanical, the variation of r resulting from a density perturbation
comes solely from the mechanical contribution to the internal forces fint. This finally gives,

∂Vpi

∂µi
= pT ∂K

∂µi
q

if K denotes the system linear stiffness matrix. In consequence, the sensitivities of pull-in voltage with
respect to every variables requires only one pull-in search and the extraction of the first eigenmode of
KT at pull-in point.

5.3. Optimization problem regularization
As recalled in the introduction, the discrete topology optimization problem is ill-posed and the extension
of design space to non entire densities is one possibility to obtain a well-posed problem. However this
is not sufficient in general because mesh dependency problems can occur. Therefore, different solutions
have been proposed as for instance perimeter constraint [7], sensitivity filtering [13] or density filtering
[5, 6]. As this paper uses both sensitivity and density filters, these two methods are detailed here below.

5.3.1. Sensitivity filter
Inspired from image processing, sensitivity filtering was introduced in topology optimization by Sigmund
[13]. The purpose of this method is to smooth the sensitivity field by using the following low pass filter,

∂f̂

∂µi
=

∑N
j=1 Ĥijµj

∂f
∂µj

µi

∑N
k=1 Ĥik

with Ĥij = max (0, rmax − dist (i, j))

The function dist (i, j) provides the distance between elements i and j barycenters. Consequently, the
sensitivity of each element is replaced by a weighted average of the sensitivities of elements included
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in a neighborhood of radius rmax. This way, sensitivity filter prevents the appearance of checkerboard
pattern and also introduces a minimum size constraint in the optimization problem. In spite of the
heuristic nature of sensitivity filter, it has shown to provide good results and is widely used in topology
optimization software.

5.3.2. Density filter
Another approach to regularize the optimization problem has been proposed by Bruns in reference [6].
Rather than filtering the sensitivities, Bruns proposes to average directly the densities. This means that
the density ρk of an element is no more taken equal to only one design variable µi but is computed as
a weighted average of the neighbor design variables. The expression of Bruns density filter is in fact
similar to the sensitivity filter and is given by,

ρi =

∑N
j=1 Ĥijµj∑N
k=1 Ĥik

with Ĥij = max (0, rmax − dist (i, j)) (7)

where the operator dist (i, j) represents the distance between the element i barycenter and the location
of the variable µj (generally the element j barycenter). The sensitivities evaluation is then a little
more sophisticated since a perturbation of the design variable µj influences several pseudo-densities.
Therefore, ∂f/∂µi is expressed as a linear combination of the ∂f/∂ρi,

∂f

∂µj
=

N∑
i=1

∂f

∂ρi

∂ρi

∂µj
=

N∑
i=1

(
∂f

∂ρi

Ĥij∑N
k=1 Ĥik

)

As proved by Bourdin in Ref.[5], density filtering gives rise to a well-posed optimization problem. More-
over, the non-heuristic character of this method is its principal advantage on sensitivity filtering while
the parameter rmax also allows introducing a minimum size constraint. One drawback of this filter is
that the resulting topologies possess very smooth boundaries between void and solid. A few possibilities
have been studied to remove gray material from the final design as bilateral filtering (see Ref. [16]) and
image morphology operators (Ref. [15]).

5.4. Layer deposition constrain
The optimization procedure described provides interesting results. Figure 3 presents one application
example of the method corresponding to the optimization of a simply supported microbeam. The design
material is an isotropic quartz with a Young modulus E = 86.79 GPa and a Poisson ratio ν = 0.17. The
available volume of quartz is limited to 50% of the design domain volume and the material interpolation
was performed using a Halpin-Tsai law of parameter 0.05. The design domain is meshed with 79 by 17
elements resulting in 1683 elements. A sensitivity filtering is applied with a radius 1.2 times the element
size.
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(a) Dimensions and boundary conditions
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(b) Optimization result

Figure 3: Topology optimization of pull-in without fabrication constraint

The bridge shaped result is common in topology optimization. However, closed cavities included into
the structure are not suitable to classical MEMS layer deposition manufacturing process. In order to
avoid the creation of those closed cavities, a fabrication constraint has been introduced. This fabrication
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constraint is inspired from topology optimization of molded parts [18] where all cavities have to be opened
in the same direction. The material deposition process used in MEMS imposes that all cavities have to be
opened upward. Therefore, the deposition constraint is simply expressed by imposing decreasing densities
when going upward in each column of the finite element mesh as stated in the following inequations for
the column highlighted in the neighbor figure using the numbering given by the figure,

1
2

n
.
......

D
ep
os
iti
on

di
re
ct
io
n

Finite element mesh column


1 > µ1 > µ2

µi−1 > µi > µi+1 if 2 6 i 6 n− 1
µn−1 > µn > µmin

(8)

This implementation results in an important number of linear constraints which increases the optimizer
task difficulty. Therefore, different possibilities have been tested in order to avoid the use of linear
constraints as replacing them by side constraints. But the use of side constraints is not enough flexible
since it leads to a strong restriction of the design and causes optimization difficulties. However recent
developments of CONLIN software allow handling this kind of constraint directly at the dual problem
level without adding classical linear constraints. The applications of the present paper are solved using
this new version of CONLIN.

6. Applications
6.1. Simply supported beam
In order to show the influence of the manufacturing constraint, we have chosen to apply it to the
simply supported beam example presented in section 5.4. (see figure 3(a) for dimensions and boundary
conditions). However with the new constraint, convergence to a 0-1 material distribution turned out to
be difficult even with a strong penalty (ξ = 0.01 see figure 4(b)). In our mind this issue arises from the
high sensitivities existing in the elements of the top of the domain (which results in the arch in figure
3(b)). Therefore the optimizer prefers to place intermediate density material higher in the optimization
domain rather than placing unitary densities on the electrode. Nevertheless, we notice that replacing
the uniform initial distribution by a shaded distribution (as shown in figure 4(a)) helps the optimizer
and makes suppression of non-integer densities easier. With this initial distribution, a penalty coefficient
ξ = 0.1 is sufficient to reach a (nearly) 0-1 distribution.
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(a) Shaded initial distribution
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(b) Halpin-Tsai model for ξ = 0.1 and
ξ = 0.01

Figure 4: Dimensions and initial distribution of the first application

For this application and the following one, the stopping criteria of the optimization loop is based on the
maximum variation of the design variables during optimization phase. We choose to stop the loop when
this variations drops under 0.01. Finally, the minimal density ρmin is set at 10−6.

6.1.1. Sensitivity filter
At first, the optimization problem is regularized by using the sensitivity filter because the method has
generally gives good results [4]. The filtering radius is taken equal to rmax = 1.2×d where d is the finite
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element size. However, after 13 iterations, the objective function begins to decrease at each optimization
as shown in figure 5(a). From this iteration, the optimizer reduces elementary densities in large areas as
illustrated in figure 5(b) where only one half of the domain is represented. This behavior is completely
unexpected since we search to maximize the pull-in voltage. After a check of the sensitivities using
finite differences, we have found that an increase of the filter radius makes the problem worse while a
decrease has the opposite effect. In consequence, we have deactivated the regularization by setting the
filter radius lower than elements size. The evolution curve obtained also presented in figure 5(a) shows
a monotonous increase of the objective function. Therefore, this is most probably the association of the
heuristic sensitivity filter with the new optimizer solver which generates the optimization troubles since
without deposition constraint the sensitivity filter works properly as shown by the example in figure 3.
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(b) Density distribution for iterations 13 and 14
with rmax = 1.2× d (half domain)

Figure 5: Optimization results with sensitivity filtering and fabrication constraint activated (d being the
elements size)

6.1.2. Density filter
Because mesh dependency problems can occur if the topology problem is not regularized, we choose
to replace the sensitivity filtering by a density filtering (7). Density filtering has the advantage to be
rigorous and relatively easy to implement. Figure 6 presents the optimal topology and the pull-in voltage
evolution versus iteration for the current application with a filtering radius of 1.2× d. The monotonous
increase of the objective function and the well-converged resulting structure show the efficiency of the
density filtering to avoid previous troubles while keeping the optimization problem well-posed.
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(b) Final structure

Figure 6: Optimization result with density filtering and fabrication constraint activated

The effect on the final structure of the fabrication constraint is clearly visible since no closed cavities
are included in the microbeam. Nevertheless, the introduction of the manufacturing constraint reduces
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strongly the optimal pull-in voltage. It decreases form 581 V (without constraint) to 345 V (with
constraint) that is to say a loss of 41 %. Moreover, this good result requires an important computational
cost. Indeed, even if the pull-in voltage doesn’t evolve a lot during the last 150 iterations, these 188
iterations are necessary to obtain a structure with a regular and smooth profile.

6.2. Clamped-Simply supported beam
The second application aims to design an optimal suspension for the cantilever beam presented in figure
7(a). Fixations are now placed on the lower half of the mechanical domain left side while the fixed
electrode lies solely under the right half of the mobile electrode. The amount of material is limited to
40 % of the design domain volume and the design material is identical to the previous application. The
optimization domain is discretized with a mesh of 80 by 15 nodes resulting in 1027 design variables and
the density filter has a radius of 1.2× d. The penalty has to be higher in this case, ξ is set to 0.05.
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(b) Optimization result

Figure 7: Clamped-Simply supported beam application

The resulting structure is presented on figure 7(b). This structure is divided in two parts by a hinge.
The left part makes profit of the fixations available on this side and the right part reproduces a structure
similar to the one obtained in the last application but not perfectly symmetrical this time. In fact, we
can say that the left part generates at the position of the hinge a simple support on which the right part
relies.

7. Conclusion and perspectives
The generality of topology optimization allows this method to design unexpected and original structures.
Nevertheless, this generality may also become a drawback when considering the manufacturing of the
optimization result. This is the case in the field of microsystems as illustrated above with the pull-in
voltage topology optimization problem. Indeed, because of closed holes, the final structures are generally
not compatible with the material deposition manufacturing process usually used in MEMS.
In this paper, a manufacturing constraint preventing the creation of closed holes has been added to the
optimization problem. However, this constraint inspired from topology optimization of molded parts
results in an important number of linear constraints and optimization problem by dual methods would
be computationally too expensive. Nevertheless, the use of recent developments in CONLIN optimizer
allows a fast and flexible treatment of this type constraint.
Unfortunately, we have observed that the new optimizer was incompatible with the regularization by
sensitivity filtering. Indeed after a few iterations, the design variables updates performed by the optimizer
become completely incoherent. Such problems arise most probably from the heuristic character of
sensitivity filtering. Therefore, we have successfully replaced sensitivity filtering by a rigorous density
filtering. The two applications proposed show that the method allows to obtain optimal structures
without included cavities which are easier to manufacture using layer deposition.
In future work, one of the first tasks will be to allow the optimization process to modify the electro-
static forces application point. This will have for consequence to remove the non-optimizable layer
insulating the optimization domain from electric effect. Therefore, the optimization domain being elec-
tromechanical, the interpolation of the electric behavior will be required. This improvement will allow
using completely the capabilities of topology optimization. In this context, the addition of the layer
deposition constraint to the new problem will also be interesting.
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