Supervised learning to tune simulated annealing
for in silico protein structure prediction

Alejandro Marcos Alvarez, Francis Maes and Louis Wehenkel *

Department of Electrical Engineering and Computer Science
University of Liege, Sart-Tilman B28, B-4000 Liege - Belgium

Abstract. Simulated annealing is a widely used stochastic optimization
algorithm whose efficiency essentially depends on the proposal distribu-
tion used to generate the next search state at each step. We propose to
adapt this distribution to a family of parametric optimization problems
by using supervised machine learning on a sample of search states derived
from a set of typical runs of the algorithm over this family. We apply
this idea in the context of in silico protein structure prediction.

1 Introduction

Protein structure prediction is a topical and challenging open problem in bioin-
formatics. The significance of this problem is due to the importance of studying
protein structures in biomedical research in order to improve our understanding
of the human physiology and to accelerate drug design processes.

The most reliable way to determine protein structures is to use experimental
methods such as X-ray crystallography or NMR spectroscopy. These methods
are however expensive and time consuming, and hence the design of in silico
protein structure prediction methods has become a very active research field.
The computational problem may be formulated in the form of a parametric
optimization problem whose goal is to find the global minimum of the energy
function of the protein, which corresponds to the sought structure [1], based
only on its amino-acid sequence. This modeling however generates, for use-
fully sized proteins, a very high dimensional' optimization problem in which
the objective function has typically a huge number of local minima [1]. There-
fore, meta-heuristic global optimization strategies (such as Simulated Annealing
(SA) [2]) are often used to try to solve this problem [1, 3, 4].

Since the optimization problem has to be solved for many different proteins,
and since the efficiency of the simulated annealing algorithm critically depends
on the proposal distribution used to generate the next candidate structure at
its intermediate steps, we propose to adapt this distribution to the protein
structure optimization problem by using supervised learning on a sample of
search states derived from a set of typical runs of the algorithm over this family.

The rest of this paper is organized as follows: Section 2 formulates ab-
stractly the general problem we address and Section 3 sketches the solution

*This work was funded by the Biomagnet IUAP network of the Belgian Science Policy
Office and the Pascal2 network of excellence of the EC. The scientific responsibility rests
with the authors.

1The search space is R3" where n is the number of atoms of the protein.

Algorithm 1 Simulated annealing

Let B be a budget of iterations, £(-) the oracle evaluating the energy and 7'(4)
a non increasing cooling schedule defined over {1, ..., B}.
Input:) the problem instance, Sy its solution space, s° € Sy the chosen initial
state, and p (o | s) a proposal distribution over O conditional on s € Sy
1: s:so;ezé’(so)
2: fori=1...B do

3 propose a state modification operator o € O by drawing from p (o | s)
4 s'=o0(s);e =E(5)

5: with probability min (1, exp (,f;—(ez/))) (i.e. Metropolis criterion) do
6: s=se=¢

7 end

8: end for

9: return s

framework that we propose. Section 4 explains how we applied this frame-
work to protein structure prediction and outlines some first simulation results.
Section 5 concludes and suggests future work directions.

2 General problem statement

We are interested in solving repeatedly a parametric optimization problem, de-
fined by a parameter space A: for any A € A, we want to find the minimum over
Sy of an energy function £(+) defined over the union of admissible state spaces
S = U,ea Sx. We consider a sequential stochastic optimization procedure that
receives the description of a problem instance (namely A, and other relevant
details), generates a sequence of length B + 1 of states (59\, ey sf) and then
returns the last state of this sequence sf . The procedure uses a proposal distri-
bution p (0| s), in order to generate this trajectory, as explained in Algorithm
1, which sketches the well-known simulated annealing procedure [2].

Given A, the value returned by the algorithm, sf , is a random variable that
results from the particular trajectory ¥ (\, p, B) = (59\, cee sf) the SA algo-
rithm followed during its execution, which depends on the proposal distribution
p=p(o|s)and also on the budget B of iterations. We denote by SA,, g(\) the
conditional distribution of sf given A\, B, and p. We assume that there is a set
P of candidate proposal distributions over & and O, and define our objective
as the choice of p € P in order to minimize the value & (sf) on average over
all problems and over all induced trajectories of the SA algorithm. Denoting
by D, the distribution of optimization problems, and fixing the optimization
budget B, this corresponds to computing

* : B
p = arggé%{ E/\NDx,stSAp,B()\) { g (S)\) } } (2.1)

3 Proposed supervised learning based framework

Rather than directly searching for a solution of problem (2.1), which is in-
tractable in general, we propose an indirect approach to improve a given pro-
posal distribution. First, we parameterize the space of candidate distributions
P, so that finding an optimal p* € P amounts to solving

o — arg%@{ Erpy 525, 5(0) [£ (s?) }} (3.1)
where the vector § € R? represents our degrees of freedom of choice of py. We
also represent the states sy by a vector of features ¢(s)) € RP and formulate
po (0] s) as a function of 6 and ¢ (see Section 4, for a precise example).

_ From the initial proposal distribution p we would then like to find a value
0 defining a better proposal distribution. To do this, we proceed as follows:

e First we choose a sample of problems IT = (););"; according to Dy and
we apply to each A\; Algorithm 1 with p as proposal distribution.
. (B,m)
e We then exploit the resulting set of trajectories S = {sz()_)} :
777 (4,5)=(0,1)
— For each s € S (or for a subset of S), we apply a search algorithm
to determine 6(s) € O leading to a good decrease in energy.

— We build a learning sample composed of the pairs (¢(s),0(s)) and
use a supervised learning algorithm to derive a model pg (0 | s) max-
imizing the (conditional) likelihood of (¢(s), o(s)).

This strategy leads to the creation of a py (0| s) that will, at each iteration
of SA, select an operator that well decreases (on average) the energy of the
system. The result will be a quite greedy operator selection policy that will,
at first glance, speed up the convergence but might lead the system to a local
minimum. This is however counterbalanced by SA that already has a counter-
measure to avoid this trap. The main rationale behind this approach is that
average efficiency of the SA algorithm, in terms of the average optimality of its
final states, is well reflected by the average quality of its proposal distribution
in terms of its average local improvements of the objective function. Of course,
the whole procedure may be bootstrapped, leading then to a sequence of ‘ap-
proximate policy gradient’ iterations over the space of proposal distributions.

4 Application to in silico protein structure prediction

A protein is entirely described by its amino acid sequence, we thus used this
sequence as the parameters A of a problem instance. The set Sy is the set of
tridimensional positions of the atoms of protein A and £ is an energy reflecting
the chemical stability of the protein.

We use the Rosetta software [4] to handle the proteins (energy computa-
tion and implementation of structure modification operators). The operators

o(m,~) used by SA are defined by the type m € M of modification they pro-
duce on the structure and by a vector of parameters v, = (Ym.1,- - Ym.L,)
in which each component is either continuous (magnitude of the modification
e.g.) or discrete (choice of the amino acid on which the operator is applied).
We use three different operators that produce, for two of them, rotations of
the backbone of the protein and, for the last one, respective translation and/or
rotation of two rigid sets of amino acids (see [5], for further details of our work).

4.1 Features describing a protein structure

The 23 first features encode the amino acids histogram of the protein. The other
features are obtained by discretizing the following three quantities: the length
n of the protein, its current energy and a compactness measure fe(sx) = =
where x is the average distance between amino acids in sy. These quantities
are discretized into, respectively, 12, 10 and 20 bins before being concatenated

to form the feature vector ¢(sy) of dimension p = 23 + 12 + 10 + 20 = 65.

4.2 Assumptions about P

We make the assumption that operators can be drawn from py in two steps, by
first drawing the type m of the operator and then accordingly the parameters
Ym of the drawn operator. We also make the assumption that the parameters
of each operator are drawn independently of each other, therefore allowing to
learn their marginal distributions independently. The probability distribution

Py, with 6 = (Ot, 07 15 ,HfMl L\M\) € R?, can thus be formulated as follows?

po (0= (mm) | 6(5) =y ([65 [Ty a1 6(52)) . (A1)

Operator-type proposal distribution. We model the choice of the operator type
m € M with a log-linear conditional probability distribution, parameterized

by 6t = (9{, e QTM\)’ whose formulation is

poe(m | ¢(sx)) = exp(f,,, #(sx)) (4.2)

1
Zgt(d(s2))
where Zg:(¢(sx)) is a normalization factor. This distribution implements the
well-known maximum entropy classifier and is learned using the corresponding
algorithm that maximizes the log-likelihood of the data [6].

Operator-parameter proposal distribution. We impose that the discrete pa-
rameters (amino-acid choices) are drawn uniformly, while the continuous pa-
rameters are drawn from a Gaussian distribution which mean and standard
deviation are learned functions of the protein features. One distribution is

2The total number d of parameters is 975.

used for each continuous parameter of each operator type. The distributions,

parameterized by 67 = (65,67) € R2, are of the form

P (7] 6(s)) = Uj%exp{—o.5 (%5*) }; (3)
with p = (07;6(sx)) and o =log{l +exp(—(05;0(sx)))}. (4.4)

These distributions are trained using a stochastic gradient descent algorithm
that maximizes the log-likelihood of the data at hand. The particular expres-
sion of ¢ has been chosen to improve numerical stability.

4.3 Creation of the learning database

We use the framework detailed in Section 3 in order to save a certain number of
protein structures in the database D necessary to learn the probability density
function (4.1). We then apply an estimation of distribution algorithm (EDA,
[7]) to each structure in D to discover good operators for these structures. The
EDA works iteratively and, at each iteration, randomly samples K operators
from a distribution® and then evaluates their quality with the energy function
of the protein. The & < K best operators are then chosen to compute a new
distribution making good operators more probable. This process is repeated
to generate progressively better operators, until convergence.

4.4 Simulation results
The training set used to learn the distribution pg and the test set used to assess
the performances are composed, respectively, of 100 and 10 proteins of less
than 100 amino acids randomly selected from the database PSIPRED [8]. The
Metropolis criterion used in SA has been determined by a rule of thumb based
on what can be found in official Rosetta tutorials (see [5] for more details).
Figure 1 illustrates the results of one run of the optimization procedure. The
curves represent the evolution of the average energy of the proteins of the test
set. The blue curve corresponds to the optimization by SA with the original
proposal distribution while the red curve corresponds to the use of the learned
one. This latter outperforms the first one in terms of convergence speed and of
final result. More precisely, it yields, after around 2 x 10* iterations, the same
results than the first method after 2.5 x 10° iterations. While these results are
encouraging, the structures predicted after one such learning iteration are still
very different from the real structures.

5 Conclusions and future work

The idea developed in this article shows that we can get improvement in per-
formance by learning the proposal distribution used by SA from automatic
experiments with this algorithm. When applied to the in silico protein struc-
ture prediction problem, the procedure already shows promising results that
could lead in the end to important breakthroughs in this field.

3This distribution is the same as the one described in Section 4.2 but, in this case, P(sy) =
{1} because we want to learn p (o) while, in Section 4.2, we were interested in p (o | ¢(sy)).

; ;
—=&— Original proposal distribution
—6— Learned proposal distribution

Average energy [Iog10 (kCal/mol)]

—&— 8888854
©—6—g
26
0 0.5 1 15 2 2.5
Iterations x 10°

Fig. 1: Evolution of average energy of the test set proteins during optimization.

This approach could be called learning for search as it consists in learning
a good way to search through the state space of a problem, and can of course
be applied to other complex optimization problems and other heuristic search
methods. In the present work, the improvement was obtained through the
learning of a locally good proposal distribution. In general, better efficiency
may be expected if learning could also take into account more global information
about the optimization process. In the context of protein structure prediction,
such information can be provided by supplying the learning algorithm with the
description of the true structure, e.g. obtained from wet-lab experiments.

Further work includes the improvement of the optimization algorithm (e.g.
fine tuning of its other parameters and testing of other algorithms) and im-
provement of the learning procedure itself (e.g. local- vs global considerations
and improvement of feature and model selection techniques).

References

[1] P. E. Bourne and H. Weissig. Structural bioinformatics. Wiley, first edition, 2003.

[2] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, New Series, 220(4598):671-680, 1983.

[3] P. Koehl. Protein structure prediction. In Biomedical Applications of Biophysics, vol-
ume 3 of Handbook of Modern Biophysics, pages 1 — 34. Humana Press, 2010.

[4] A. Leaver-Fay et al. Rosetta3: An object-oriented software suite for the simulation and
design of macromolecules. In Michael L. Johnson and Ludwig Brand, editors, Computer
Methods, Part C, volume 487 of Methods in Enzymology, pages 545 — 574. Academic
Press, 2011.

[5] A. Marcos Alvarez. Prédiction de structures de macromolécules par apprentissage au-
tomatique. Master’s thesis, University of Liege, Faculty of Engineering, 2011.

[6] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra. A maximum entropy approach to
natural language processing. Computational linguistics, 22(1):39-71, 1996.

[7] P. Larrafiaga and J. A. Lozano. Estimation of Distribution Algorithms: A New Tool for
Evolutionary Computation. Springer, October 2002.

[8] D. T. Jones. Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292(2):195 — 202, 1999.

