

Early Stage Researcher Network Meeting

13-14 Feb 2012, Edinburgh, UK

Purna Bhadra Kandel Gembloux Agro-Biotech (GxABT) University of Liège, Belgium

Technical Report

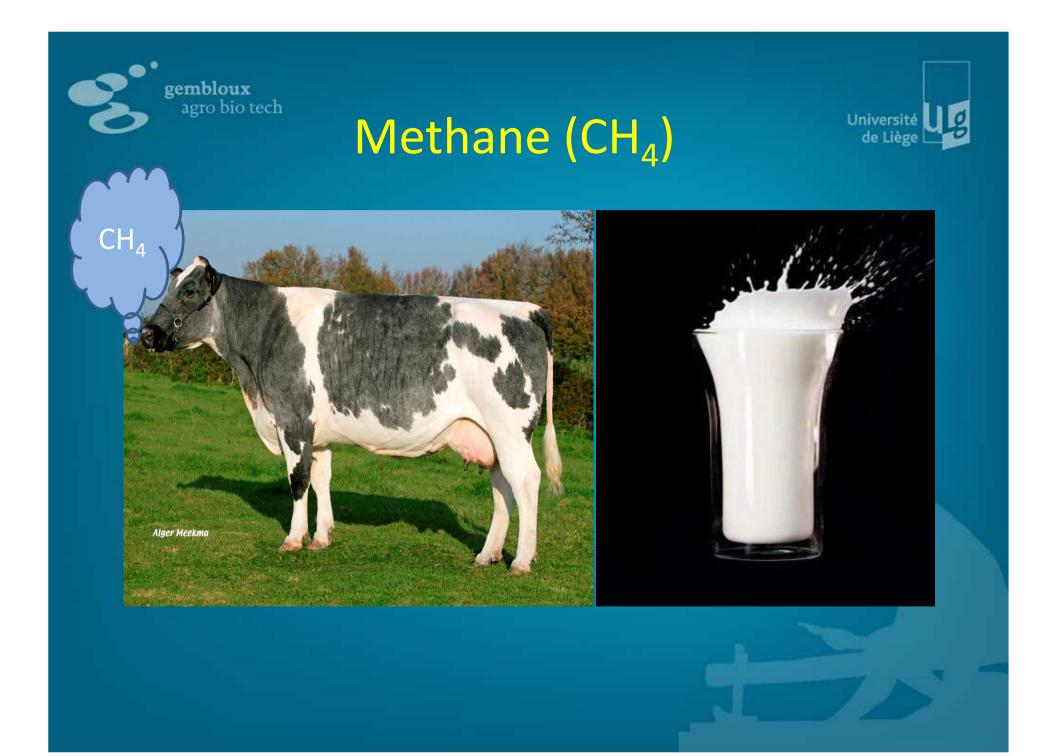
Genetic parameters for methane indicator traits based on milk fatty acids in cows

P. B. Kandel¹, N. Gengler¹, and H. Soyeurt^{1,2}

¹ Animal Science Unit, Gembloux Agro-Bio Tech (GxABT), University of Liège, Gembloux, Belgium ² National Fund for Scientific Research (FNRS), Brussels, Belgium

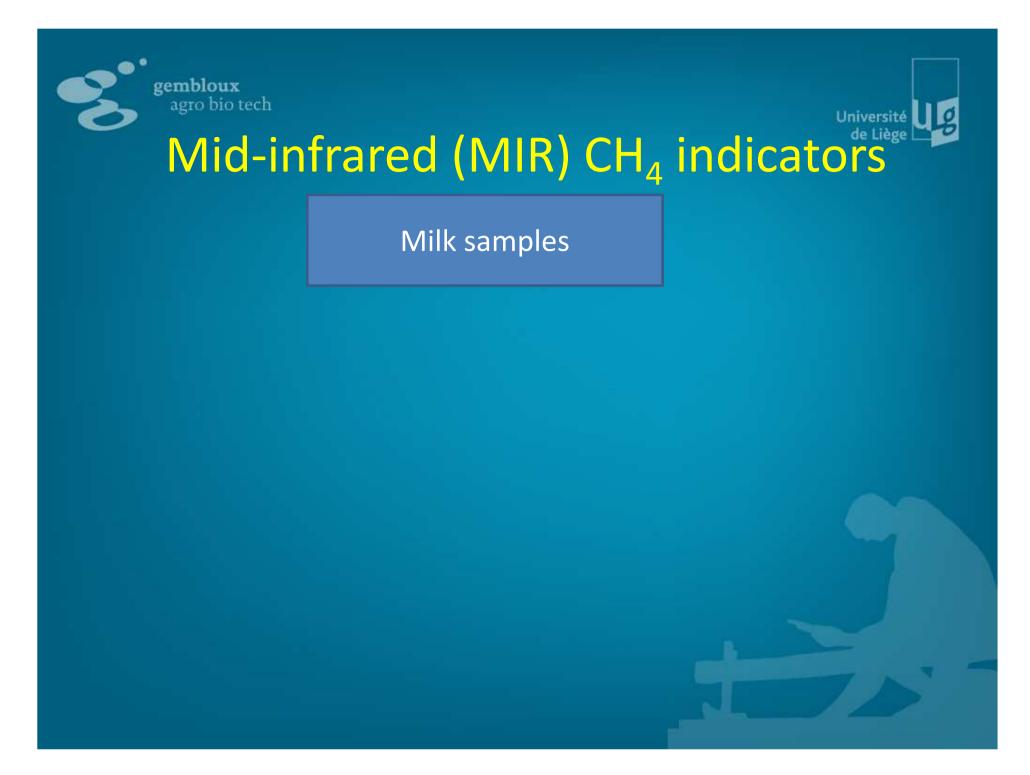
Funded by ITN-Marie Curie GreenHouseMilk Project

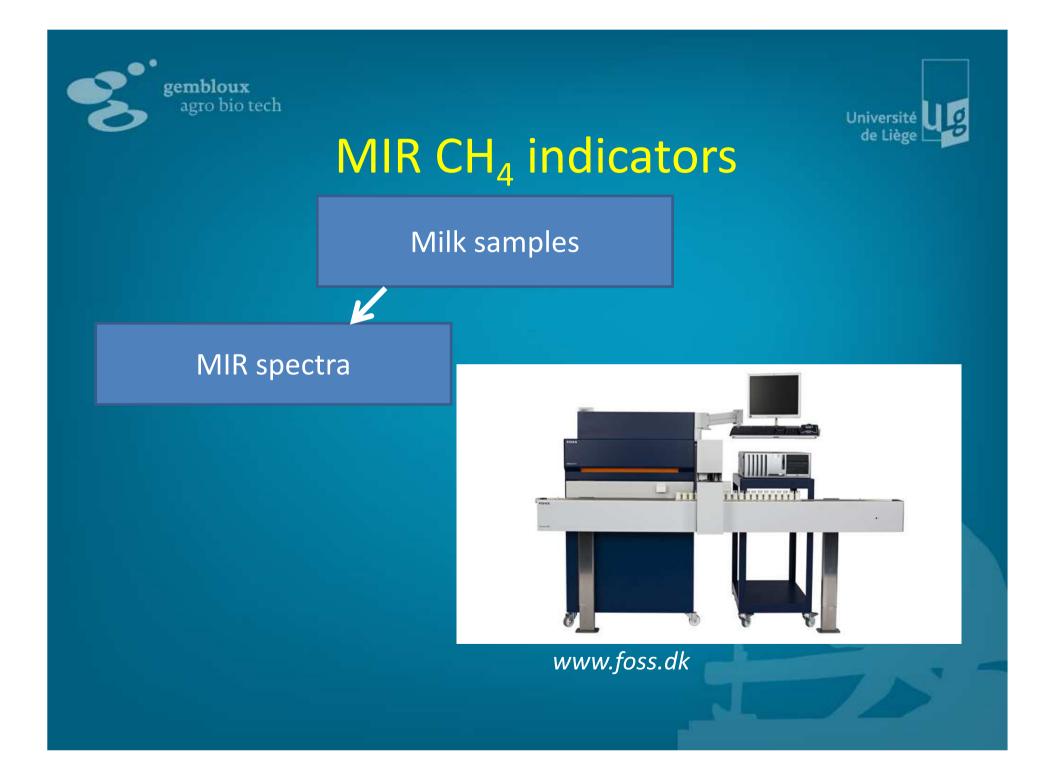
Early Stage Researcher Network Meeting; 13-14 Feb 2012, Edinburgh, UK

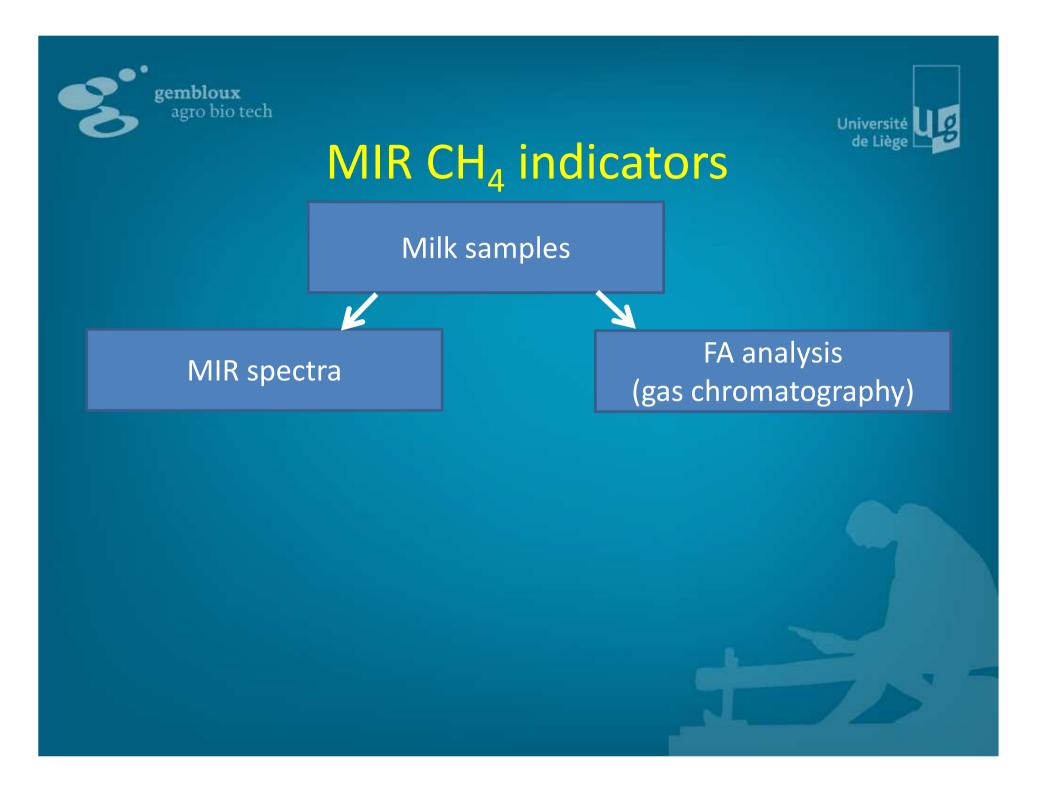


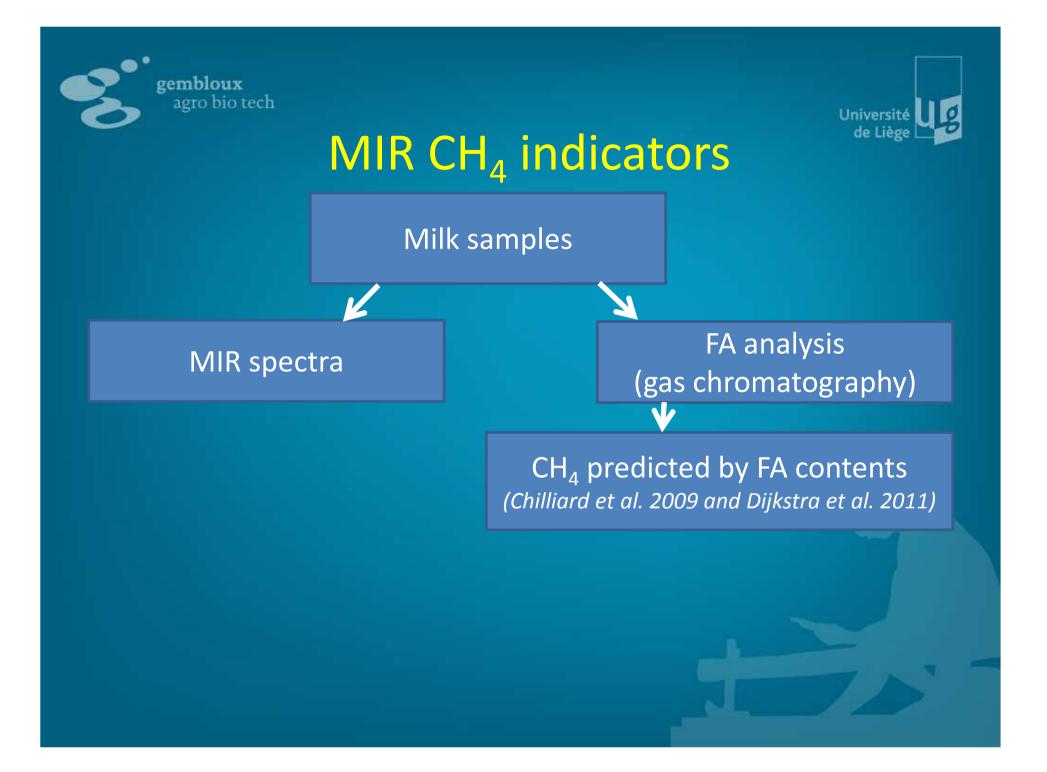
Introduction

- CH₄ is the largest contributor to total GHG emitted by the dairy sector
- CH₄ is 21 times more potent to CO₂ in greenhouse effect
- Generally CH₄ is measured by respiration chamber or Sulphur hexafluoride (SF₆) method in animals

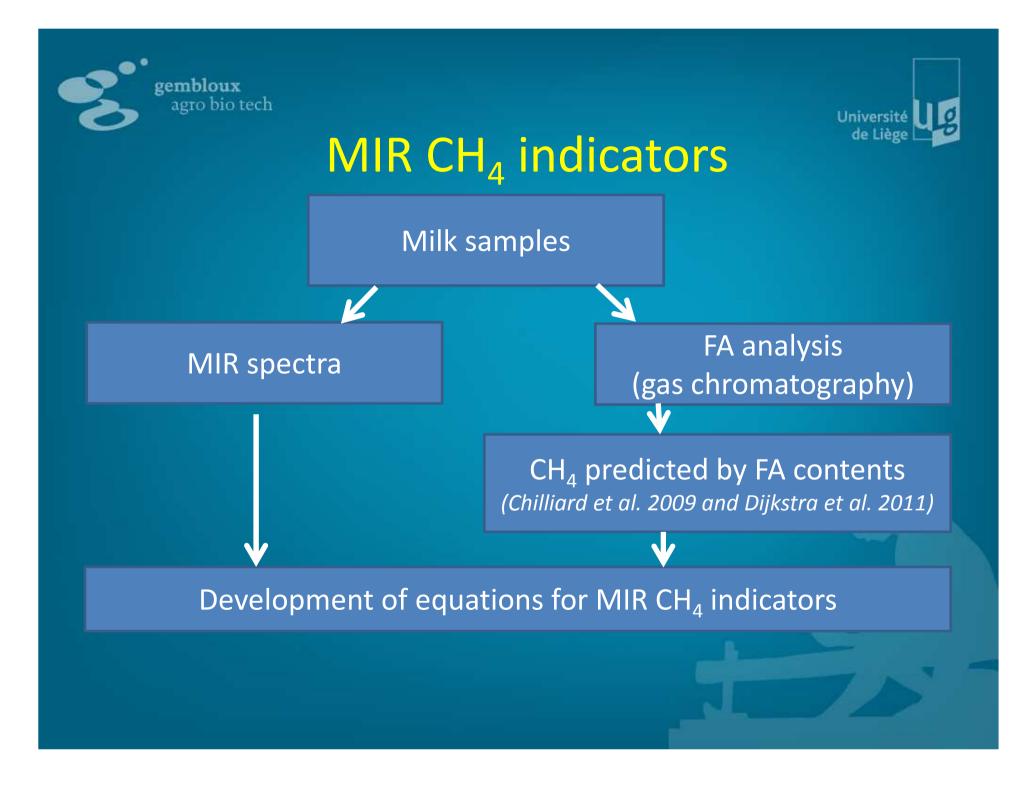

IPCC (2007), FAO (2010), EU (1998), Johnson (1994)




CH₄ prediction from milk FA profile


- The fermentation of feed in rumen is essentially a digestion process of ruminants and CH₄ is produced
- Many fatty acids (FAs) are synthesized and degraded in rumen during this process
- These FAs are absorbed in blood; some FAs are secreted directly to milk and others are produced by *de novo* synthesis in mammary gland
- Therefore, a link between milk FAs and CH₄ production seems to exist → prediction equations

Chilliard et al., 2000 & 2009; Moss et al., 2000; Dijkstra et al., 2011

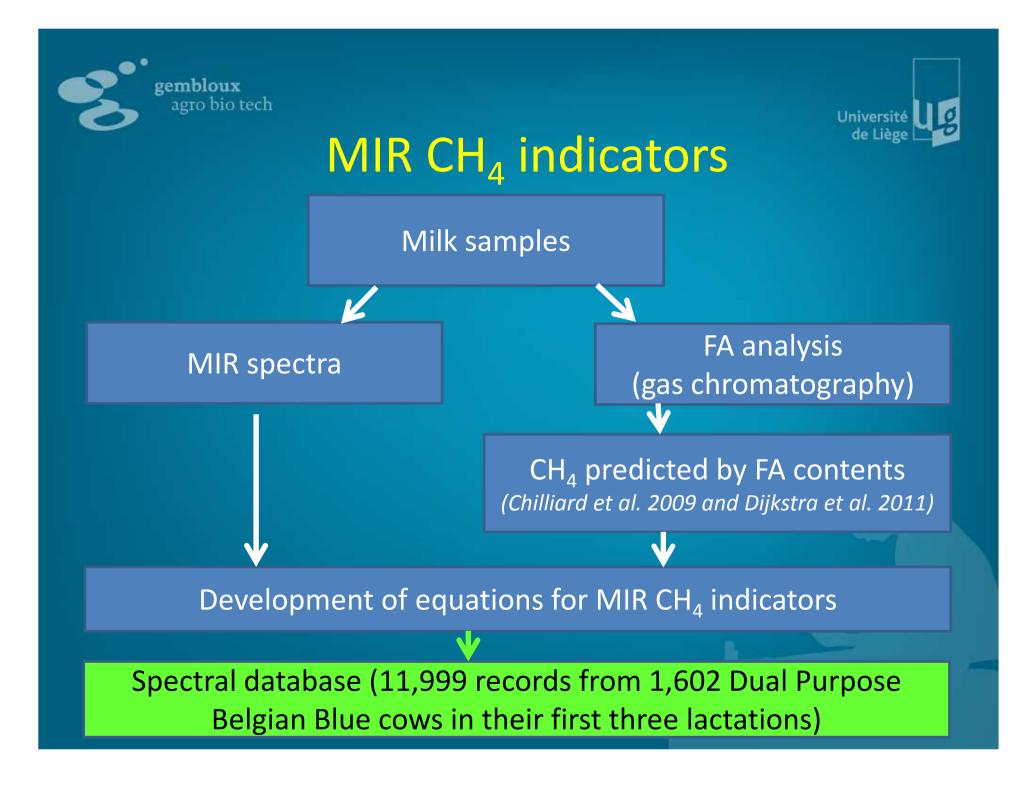

CH₄ predicted by FA contents

gembloux

agro bio tech

Prediction	Equation	R ²	Reference
Methane1 g/day	9.97 x (C8:0 to C16:0) - 80	0.88	
Methane2 g/day	-8.72 x C18:0 + 729	0.88	Chilliard et
Methane3 g/day	282 x C8:0 + 11	0.81	al., 2009
Methane4 g/day	16.8 x C16:0 - 77	0.82	
Methane5 g/kg DM, 17.7 kg DM/day	24.6 + 8.74 x C17:0 anteiso – 1.97 x trans-10+11 C18 :1 – 9.09 x C18 :1 cis-11 + 5.07 x C18 :1 cis-13	0.73	Dijkstra et al., 2011

 R^2 represents the relationship between the SF₆ CH₄ data and the predictors



MIR CH₄ indicators

g/day	N	Mean	SD	R ² cv
Methane1	597	446.75	68.50	0.92
Methane2	602	421.52	60.71	0.91
Methane3	595	368.53	43.23	0.72
Methane4	588	459.55	88.11	0.92
Methane5	592	368.38	51.33	0.69

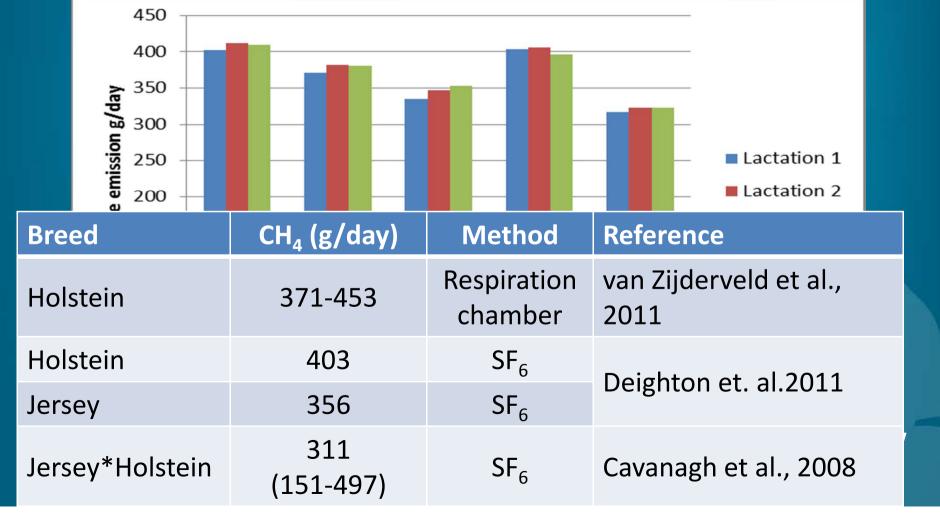
Mean= mean of reference values; SD= SD of reference values; R²cv= cross-validation coefficient of determination

Dual-Purpose Belgian Blue

- Study of the genetic variability of MIR CH₄ indicators
- Estimation of genetic parameters of MIR CH₄ indicators
 - Heritability
 - Genetic correlations
- Estimation of breeding values using same data

Estimated CH₄ production from MIR CH₄ indicators

Universite


de Lièg

gembloux

Estimated CH₄ emission 115 to 150 kg /year from one cow

estimated CH₄ production Université de Liège from MIR CH₄ indicators

Model : Single trait random regression test day y=Xβ+Q(Zp+Zu)+e

y: separate 5 MIR CH₄ indicators
β: herd x test day, 24 classes of days in milk, and 3 classes of age at calving → fixed effects
p: random permanent environmental effects
u: additive genetic effects, e: random residual effect
Q: coefficients of 2nd order Legendre polynomials
X and Z: incidence matrices

Variance components were calculated by REML.

Lactation heritability

Cassandro et al. (2010) 0.12

de Haas et al. (2011) 0.38

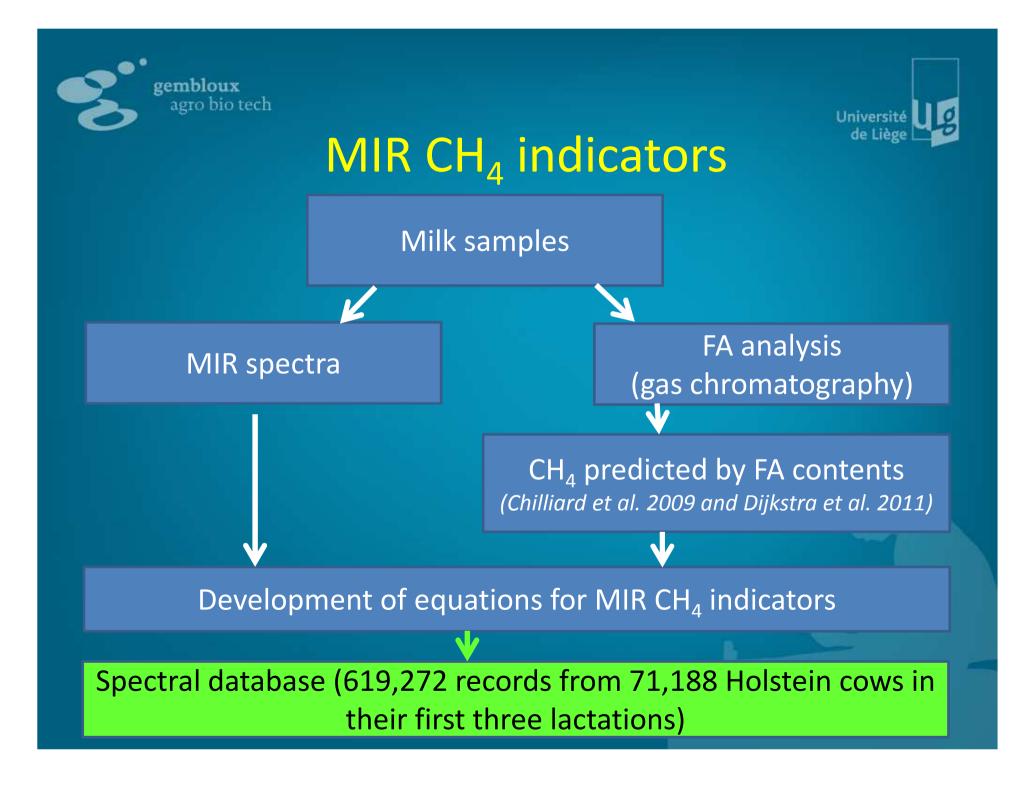
The heritability values suggested a potential transmission from generation to generation of the capacity of the CH₄ eructation by dairy cattle.

Observed and genetic correlations

Indicator	1	2	3	4	5
Methane1		0.99	0.51	0.88	0.61
Methane2	0.96		0.52	0.88	0.65
Methane3	0.64	0.70		0.25	0.16
Methane4	0.81	0.71	0.35		0.65
Methane5	0.62	0.61	0.24	0.66	

Yellow color- Observed correlation among MIR indicators; Green color- Genetic correlation approximated by correlation between EBVs

EBV for sires which have daughters with MIR CH₄ indicator records kg/lactation (305 days)


Indicator Lac		tion 1 (1	27 bulls)	Lactat	ion <mark>2 (</mark> 11	2 bulls)	2 bulls) Lactation 3 (97 bulls)		
mulcator	SD	Range	Range/SD	SD	Range	Range/SD	SD	Range	Range/SD
Methane1	1.9	11.6	6.1	2.0	13.0	6.4	1.1	6.3	5.6
Methane2	1.5	9.4	6.3	1.5	9.0	5.9	1.1	5.3	5.4
Methane3	3.7	21.2	5.8	3.0	16.3	5.4	2.1	11.1	5.4
Methane4	2.7	13.4	5.0	3.6	18.9	5.3	2.2	12.2	5.6
Methane5	0.6	4.0	7.2	0.8	4.8	5.9	0.8	4.9	5.8

Appreciable genetic difference was observed for e.g. Methane1-11.6 kg per lactation

Indicator	Lacta	tion 1 (1,	301 cows)	Lactat	ion 2 (88	80 cows)	Lactat	ion 3 (58	1cows)
indicator	SD	Range	Range/SD	SD	Range	Range/SD	SD	Range	Range/SD
Methane1	2.1	15.1	6.9	2.1	13.9	6.4	1.3	7.6	6.1
Methane2	1.7	11.6	6.8	1.6	9.6	5.9	1.2	6.9	5.7
Methane3	4.3	27.7	6.5	3.6	27.3	7.5	2.2	13.2	6.1
Methane4	3.1	22.8	7.4	3.5	25.4	7.2	2.3	14.6	6.5
methane5	0.6	4.8	7.8	0.8	5.0	6.3	1.0	7.2	7.4

Appreciable genetic difference was observed for e.g. Methane1-15.1 kg per lactation

Holstein

- Study of the genetic variability of MIR CH₄ indicators on a subsample:
 - 210,280 records from ~25,000 cows
- Estimation of genetic parameters of MIR CH₄ indicators
 - Heritability

gembloux

agro bio tech

- Genetic correlations
- Estimation of breeding values using same data

Prelimenary Results (Holstein)

Methane1

Lactation	Daily heritability		Lactation heritability		
	Mean	SD	Mean	SD	
First	0.35	0.01	0.67	0.02	
Second	0.35	0.01	0.72	0.02	
Third	0.32	0.02	0.62	0.03	

EBV for sires which have daughters with MIR CH₄ indicator records kg/lactation (305 days)

Indicator	Lactation 1 (1,542 bulls)		Lactation 2 (1,230 bulls)			Lactation 3 (1,303 bulls)			
	SD	Range	Range/SD	SD	Range	Range/SD	SD	Range	Range/SD
Methane1	3.3	21.8	6.6	3.5	22.8	6.5	3.5	24.9	6.9
Methane2									
Methane3									
Methane4									
Methane5									

Appreciable genetic difference was observed

Indicator	Lactation 1 (18,805 cows)			Lactation 2 (14,069 cows)			Lactation 3 (9,949cows)		
	SD	Range	Range/SD	SD	Range	Range/SD	SD	Range	Range/SD
Methane1	3.5	31.0	8.8	4.1	34.5	8.4	3.8	31.8	8.4
Methane2									
Methane3									
Methane4									
methane5									

Appreciable genetic difference was observed

Conclusions

- MIR predictions of MIR CH₄ indicators possible
- Given current results, more relevant MIR CH₄ indicators could be:
 - Methane1:
 - \circ The best relation between SF₆ data and the predictor (R²= 0.88)
 - The highest R²cv (0.92) of MIR prediction
 - Methane5:
 - o Low genetic correlation with other MIR CH₄ indicators
- Preliminary heritability estimates sufficient to select animals
- Genetic variability of CH₄ production seems to exist

Publication/Training /Exchange

gembloux agro bio tech

Publication

Faculty of **Bioscience** Engineering

Communications in Agricultural and Applied Biological Sciences Ghent University

Published Extended Abstract in **Communications in Applied Biological** Science Vol:77(1)

Comm. Appl. Biol. Sci. Ghent University, 77/1, 2012 21

ESTIMATION OF GENETIC PARAMETERS FOR METHANE ESTIMATOR TRAITS BASED ON MILK FATTY ACIDS IN DUAL PURPOSE BELGIAN BLUE CATTLE

P. B. KANDEL1,2, H. SOYEURT 1,3, N. GENGLER1

P. B. KANDELLY, Inversity of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium Animal Science Unit, University of Liège, Gembloux Agro-Bio Tech, Gembloux, Belgium National Fund for Scientific Research (FNRS), Brussels, Belgium

INTRODUCTION

INTRODUCION Livestock production is one of the key sources of Greenhouse gas (GHG) Livestock product as methane (CH4). Since CH4 is 21 times more potent to emissions such a greenhouse effect, reduction of CH₄ would play an important contribution to abate greenhouse emissions (IPCC, 2007)

Accurate measurement of CH4 emission can be obtained using respiration chamber calorimetry method but the cost and the analysis time limit the number of evaluated animals (Kebreab, et al., 2006). The sulfur hexafluoride gas (SF6) measurement is an alternative (Johnson et al., 1994) because of its relatively lower price but accurate measurement of CH4 is complex and recording of such data is unfeasible at a large scale. Therefore, some studies have focused on the use of traits indirectly related to the CH4 emission and easily recorded at large scale, as fatty acids (FA). CH4 output from ruminants is indeed to microbial digestion in the rum

	o bio tech Prese	entatio	on	Université de Liège
ACTIVITY	DESCRIPTION	DATES	LOCATION	KEY OUTCOMES
Oral Presentation	Estimation of CH ₄ and its variation across different breeds of cattle predicted from milk fatty acids	2 Dec 2011	GHM meeting, Paris	Presented research work
Oral Presentation	Estimation of genetic parameters for CH ₄ indicator traits based on milk fatty acids in Dual Purpose Belgian Blue cattle	10 Feb 2012	Symposium on Applied Biological Sciences, Leuven, Belgium	Presented research work
Poster Presentation	Relationships between CH ₄ emission of dairy cattle and farm management*	10 Feb 2012	Symposium on Applied Biological Sciences, Leuven, Belgium	Presented research work
Oral Presentation	GreenHouseMilk meeting	14 Feb 2012	SAC, Scotland	Research work presentation

...

*M.-L. Vanrobays, A. Vanlierde, P. B. Kandel, E. Froidmont, F. Dehareng, H. Soyeurt & N. Gengler

Submitted abstracts

DESCRIPTION	DATES	LOCATION	KEY OUTCOMES (inc any
			weblink)
Estimation of genetic	3 Feb 2012	Fourth	Research work will be
parameters for		International	presented
methane indicator traits		Conference of	http://www.icqg4.org.uk/
based on milk fatty		Quantitative	
acids in Dual Purpose		Edinburgh, UK	
Belgian Blue cattle			
Genetic parameters for	12 Feb 2012	ADSA [®] ASAS Joint	Research work presentation
methane indicator traits		Annual Meeting,	http://www.jtmtg.org/2012/
based on milk fatty		Phoenix, USA	
acids in cows			

Training

DESCRIPTION	DATES	LOCATION	KEY OUTCOMES (inc any weblink)
French Language Course	20 Sept 2011-	Gembloux, Belgium	Learned basic French to
	23 Feb 2012		communicate
Training for users of	25 Sept 2011 –	University	Linux operations
computing devices and	15 Dec 2011	Catholique Louvain	High memory computing
mass storage			http://goo.gl/i9OSH
Dairy cow lactations,	5 Dec 2011 –	Aarhus University,	Lactation profile , energy use and
profiles, nutrient allocation	9 Dec 2011	Viborg, Denmark	genetic basis of negative energy
and energy balances			balance
			http://goo.gl/ouudy
Training on infrared	27 Feb 2012 -	CRA-W, Belgium	Sampling and analysis skill of
spectroscopy and	2 Mar2012		infrared spectroscopy
chemometrics			http://goo.gl/zYe6Q
Mixed Models in	11 Jun 2012-	Edinburgh, UK	Advanced Knowledge of Mixed
Quantitative Genetics	16 Jun 2012		Model and R for Genetic analysis
Advanced R programming			will be learned
for Bioinformatics			http://goo.gl/VioJf

Conferences

DESCRIPTION	DATES	LOCATION	KEY OUTCOMES (inc any weblink)
Healthy Food from	23 Apr 2012-		Latest development in
Healthy Animals	26 Apr 2012	Nottingham, UK	livestock research and
			industry
			Learning soft skills
			http://goo.gl/MoUxe
ICAR and IINTERBULL	28 May 2012	Cork, Ireland	Animal recording system
meeting	-2 June 2012		skills;
			Interaction with dairy
			industry people
			http://goo.gl/5uU1m

Exchange

Partner Visited	Description	Period	Objective/Outcome
TEAGSAC, Ireland (Proposed)	Experiment , Report, Publication	Apr 2012 to Aug 2012	 Compilation of performance data from herds with SF6 CH4 measures study the phenotypic and genetic variability of CH4 indicators predicted by MIR on Irish Data model the SF6 data (e.g., test- day mixed model)

(SPW-DGARNE) of Belgium. This presentation does not necessarily reflect the view of these institutions.

Thank you for your attention!