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INFERENCE STATISTIQUE
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EN REGRESSION LOGISTIQUE BINAIRE

R. PALM*, Y. BROSTAUX T et J. J. CLAUSTRIAUX ¢

RESUME

Les principes de l'inférence statistique basée sur la fonction de vraisem-
blance sont rappelés et ensuite appliqués a la régression logistique binaire. Diffé-
rents critéres globaux d’ajustement de la régression logistique binaire sont éga-
lement présentés.

Les diverses notions sont illustrées par un exemple traité par le logiciel
Minitab et par le logiciel SAS.

SUMMARY

The principles of statistical inference based on the maximum likelihood
function are described and applied to binary logistic regression. Several goodness
of fit statistics are also given.

These topics are illustrated by an example processed by Minitab and SAS
softwares.

1. INTRODUCTION

La régression logistique est une méthode statistique qui vise & mettre en
relation une variable & expliquer de nature qualitative avec une ou plusieurs va-
riables explicatives. Elle offre plusieurs variantes en fonction du nombre et de la
nature des modalités de la variable a expliquer. Lorsque celle-ci présente unique-
ment deux modalités, il s’agit de la régression logistique binaire'. Si la variable
A expliquer présente plusieurs modalités sans que ’ordre de celles-ci ne soit pris
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en considération, on utilise la régression logistique nominale?. Enfin, lorsque la
variable & expliquer présente plus de deux modalités et que ces modalités sont
ordonnées, on se trouve dans le cas de la régression logistique ordinale®.

L’objectif de cette note est d’aider I'utilisateur débutant ou occasionnel de
la régression logistique & mieux comprendre les résultats fournis par les logiciels
statistiques. Nous nous focalisons sur les principaux tests statistiques et sur les
mesures globales de la qualité des ajustements réalisés. Nous n’abordons pas
les problémes de construction de modéles et de choix de variables ni ’examen
détaillé des résidus et des mesures de I'influence des observations. Nous nous
limitons également & la régression logistique binaire, bien que différentes no-
tions qui sont présentées puissent s’appliquer ou étre étendues aux autres cas de
régression logistique.

Le lecteur trouvera des informations complémentaires sur la régression lo-
gistique dans les ouvrages spécialisés, parmi lesquels on peut citer les livres
d’AGRESTI [2002] et de HOSMER et LEMESHOW [2000]. Une présentation trés
synthétique de la régression logistique binaire est également disponible dans
DUYME et CLAUSTRIAUX [2006]. Enfin, des informations plus directement en
relation avec le logiciel SAS sont données par ALLISON [1999].

Apres cette introduction (paragraphe 1), nous rappelons la notion de fonc-
tion de vraisemblance et son utilisation pour I'estimation de paramétres (para-
graphe 2). Le modéle logit pour données binaires est alors présenté (paragraphe
3). Le paragraphe 4 a trait a la fonction de vraisemblance dans le cas de la ré-
gression logistique. Le paragraphe 5 est consacré aux tests de signification des
coefficients de régression. Les critéres globaux d’ajustement utilisés en régres-
sion logistique binaire sont alors décrits (paragraphe 6). Nous cloturons enfin
par quelques informations complémentaires (paragraphe 7).

Les différentes notions sont illustrées par un exemple traité, d’une part, avec
Minitab [Minitab, 2010] et, d’autre part, avec SAS [SAS Institute Inc, 2010]. Les
listes de commandes Minitab et la procédure SAS utilisées pour générer les ré-
sultats repris dans les figures illustrant cette note sont regroupées en annexe. Les
données retenues concernent le niveau de dépérissement de 230 chénes observés
dans deux régions naturelles et I'altitude des stations dans lesquelles ces chénes
ont été observés. Elles proviennent d’une étude de GILLET [2005] et ont déja été
utilisées antérieurement pour illustrer les différents modeéles de régression logis-
tique [GILLET et al. 2011] et leur analyse avec Minitab [PALM et BROSTAUX,
2011]. Le dépérissement a été évalué par ’aspect du houppier sur une échelle a
quatre niveaux. La variable & expliquer, qui est donc, au départ, une variable
qualitative ordinale, a été recodée sous forme binaire. La premiére modalité cor-
respond au dépérissement « trés faible » et la seconde modalité au dépérissement
« faible & trés fort ». L’appartenance & la deuxiéme classe a été choisie arbitrai-
rement comme la modalité de référence. Nous supposons également que les 230
arbres observés peuvent étre considérés comme constituant un échantillon aléa-
toire et simple d’arbres choisis parmi tous les arbres atteints de dépérissement
dans la zone considérée.

2. En anglais : polytomous nominal logistic regression.
3. En anglais : polytomous ordinal logistic regression.



2. PRINCIPE DU MAXIMUM DE VRAISEMBLANCE

2.1. Inférence relative a une proportion

L’inférence statistique en régression logistique repose trés largement sur la
fonction de vraisemblance et ’objectif de ce paragraphe est de rappeler ce qu’est
cette fonction et comment elle est utilisée pour estimer des paramétres, calculer
des limites de confiance et réaliser des tests d’hypothéses. Nous envisageons
d’abord un probléme particuliérement simple qui ne fait intervenir qu’un seul
paramétre et pour lequel les calculs peuvent étre réalisés sans recourir a des
programmes trés spécifiques. Il s’agit de ’estimation d’une proportion & partir
d’un échantillon aléatoire et simple et des problémes d’inférence associés. La
généralisation & d’autres situations sera abordée au paragraphe 2.2.

En relation avec ’exemple présenté dans I'introduction, on se propose d’es-
timer la proportion de chénes caractérisés par un dépérissement faible & trés
fort parmi les chénes atteints, ainsi que les limites de confiance correspondantes.
De plus, on souhaite vérifier si cette proportion doit étre considérée ou non
comme différente de 50 %. Sur les 230 arbres atteints de dépérissement qui ont
été examinés, 183 sont atteints d’un dépérissement faible & trés fort et 47 d’un
dépérissement trés faible.

Soit 7 la proportion & estimer, c’est-a-dire la proportion d’arbres atteints
d’un dépérissement faible & trés fort parmi les chénes atteints dans la zone consi-
dérée. L’expression, en fonction de 7, de la probabilité d’observer 183 individus
présentant un dépérissement faible a trés fort parmi 230 arbres observés est ap-
pelée fonction de vraisemblance et est notée L(w). Cette probabilité est donnée
par la loi binomiale de paramétre n et 7 :

L(m) = P(X = z) = C% n%(1 — )" 2,

X étant la variable aléatoire décrivant le nombre d’individus, parmi les n indi-
vidus prélevés, qui ont un dépérissement faible & trés fort4. On a donc, pour
n=230et xr =183 :

L(m) = Cégg 7183 (1 — 7)?7.

Le facteur C335 est un nombre et ne dépend donc pas de 7. Dans la me-
sure otl, par la suite, ce sont essentiellement des valeurs relatives, telles que des
rapports de valeurs de la fonction de vraisemblance pour différentes valeurs de
7, qui vont nous intéresser, on peut éliminer cette constante. On a alors :

L(m) = 7%(1 — 7)™ % = 7183(1 — )47,

L’estimation du paramétre 7 au sens du maximum de vraisemblance consiste
a déterminer la valeur de 7, notée 7, qui rend maximum L(7). Cette estimation

4. Nous désignons par C'Z le nombre de combinaisons de n objets pris par groupes de z

objets au sens de l’analyse combinatoire. Ce nombre est souvent désigné par (7).



peut étre obtenue en dérivant L(7) par rapport & 7 et en recherchant la valeur 7
qui annule cette dérivée. Le probléme est cependant sensiblement simplifié si on
remplace la fonction L(7) par son logarithme. La transformation logarithmique
étant une transformation monotone croissante, la valeur 7 qui rend maximum
L(7) est aussi la valeur qui rend maximum log, L(7) :

log, L(w) = z log (7) + (n — x) log, (1 — 7).
La dérivée du logarithme de la vraisemblance s’écrit :

dlog, L(m) =z n-—x

dm T l—m7

En annulant cette dérivée :

r n—zx
~ = A:07
T 1—7
on obtient :
R T
T=—.
n

La proportion observée est donc une estimation du maximum de vraisem-
blance d’une proportion théorique. La figure 1 donne la représentation graphique
du logarithme de la vraisemblance pour ’exemple considéré. Elle atteint son
maximum pour :

7 =183/230 = 0,7957 ou 0,80.

On considére donc que, parmi les chénes atteints de dépérissement, 80 %
présentent un dépérissement faible & trés fort.

Il a été démontré que 'erreur-standard d’un paramétre estimé par la mé-
thode du maximum de vraisemblance est égale a I'inverse de la racine carrée de
I'information i, définie de la maniére suivante :

d?log, L
i~ _E g L(m) ]
d 2

Il s’agit donc de calculer ’espérance mathématique de la dérivée seconde
par rapport & 7 de la fonction de vraisemblance. Pour calculer cette espérance
mathématique, on remplace, dans la fonction de vraisemblance x par X et on
trouve :

e -] e
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Figure 1 — Logarithme de la fonction de vraisemblance en fonction de la propor-
tion d’arbres atteints d’un dépérissement faible & trés fort.

X étant une variable binomiale de paramétres n et 7.

Ona:

E(X)=nm et E(n-X)=n(l-mn),

et il en résulte que :

i =n/[x(1— 7).

L’erreur-standard de la proportion estimée est égale a :

es(®) =1/Vi=/m(1 —7)/n.

On retrouve bien la formule classique de ’écart-type d’une proportion qu’on
peut d’ailleurs obtenir trés simplement en considérant que la proportion est une
transformation linéaire de la variable binomiale.

Une des propriétés des estimateurs du maximum de vraisemblance est que
leur distribution d’échantillonnage est asymptotiquement normale. Cette pro-
priété peut étre utilisée pour construire un intervalle de confiance par la méthode
de ’erreur-standard. Les limites de confiance sont données par la relation :



Tt Ui/ V(L —7)/n,

U1_q /2 ¢tant le percentile 1 — a/2 de la variable normale réduite. Pour un degré
de confiance de 95 %, ce percentile est égal & 1,96.

Pour les données relatives aux chénes, on obtient :

0,7957 + 1,96 /0,7957(1 — 0,7957) /230,

soit 0,7436 et 0,8478.

L’intervalle défini ci-dessus est appelé intervalle de WALD. II correspond &
toutes les valeurs 7y telles que :

|ﬁ' — 7T0| <u
T 1-a/2
VAl —=7)/n o/
le dénominateur de cette expression étant 1’écart-type de la proportion estimée
sim=m.

Une autre solution consiste a remplacer ce dénominateur par 1’écart-type
de la proportion estimée si m = my. L’intervalle de confiance est alors constitué
de toutes les valeurs g telles que :

|ﬁ' —7T0|

—_—— < U _ .
Py Ry

Cette deuxiéme solution, qui est analytiquement plus compliquée, est ap-
pelée méthode du score.

Pour les données du dépérissement, le calcul de ’expression ci-dessus, en
faisant varier mg, conduit aux deux limites de confiance suivantes :

0,7389 et 0,8427.

Une troisiéme approche est basée sur le rapport de vraisemblance. Cette
approche est plus complexe du point de vue des calculs mais est simple dans son
principe : font partie de I'intervalle de confiance toutes les valeurs g telles que :

2 [log, L(#) — log, L(m0)] < X3 _a

ou logeL(ﬂ'O) > loge L(ﬁ-) - %X%—aa
x?_,, étant le percentile 1 — « de la distribution x2 & 1 degré de liberté. Pour un
degré de confiance de 95 %, ce percentile est égal & 3,84.

Pour I’échantillon observé, la valeur maximum du logarithme de la fonction
de vraisemblance vaut —116,465. Les limites de confiance correspondent donc
aux deux valeurs 7 telles que :



log, L(mo) = —116,465 — 3,84/2 = —118,385,

soit 0,7404 et 0,8443. Ces valeurs se déduisent de la figure 1, ou, si on souhaite
davantage de précision, & partir des valeurs qui ont été calculées pour établir
cette figure.

Pour tester I’hypothése nulle :

Hy : 7= m,

contre 'alternative :

Hy :m # mo,
les trois approches ci-dessus peuvent étre envisagées. Dans chaque cas, on rejette
I’hypothése nulle si la valeur my ne se trouve pas dans U'intervalle de confiance.

Pour la méthode de WALD et la méthode du score, cela revient & calculer
respectivement la statistique :

Uohs = ‘7?('—7To| OU  Upps = ‘ﬁ'—ﬂ'o|
obs — T /—/—/———— obs — T /—>— ———
*1—%)/n To(1 — mo)/n’

et a rejeter 'hypothese nulle si uops > u1_/2. Le carré d’une variable normale

réduite étant une variable 2 & 1 degré de liberté, on peut aussi rejeter ’hypo-
thése nulle si :

(uObS)Q = ngs > X%—oﬁ

Pour I'exemple et pour my = 0,5 on a, pour le test de WALD :

0,7957 - 0,5
Uobs = =11,12
\/0,7957(1 —0,7957)/230
et pour le test du score :
Vb 0,7957 - 0,5 8.97

~ J/050(1 _0,5)/230

et, dans les deux cas, on rejette indiscutablement I’hypothése nulle.

Pour la méthode du rapport de vraisemblance, on calcule :

s = 2o, | 2| — 2 log, L(mo) ~ log, L(#)




et on rejette ’hypothése nulle si ngs > X3_,, la variable x? ayant un degré de
liberté.

Pour mp = 0,5 on a :

log, L(0,5) = log, (0,5%3%) = —159,424

et on trouve :

X2pe = —2[—159,424 — (—116,465)] = 85,92

et on rejette ’hypothése nulle car :
2 _ 2 _
Xobs = 85,92 > Xl—a = 3,84.

2.2. Test de WALD, test du score et test du rapport de vraisemblance en régres-
sion logistique.

Les trois méthodes qui ont été présentées dans le cas particulier du calcul
des limites de confiance et du test de conformité d’une proportion peuvent étre
généralisées a d’autres situations. Elles peuvent notamment étre utilisées pour
I'inférence statistique multivariée.

La variable normale réduite et la variable x2 & un degré de liberté qui inter-
viennent dans les cas d’un paramétre seront alors remplacées par des variables
2 . . ) . .
x° dont le nombre de degrés de liberté est fonction du nombre de parameétres
impliqués dans l'inférence statistique.

Les trois méthodes ont en commun d’exploiter la normalité asymptotique
des estimateurs du maximum de vraisemblance. Pour certaines applications, elles
conduisent au méme résultat. Ainsi, en régression multiple ordinaire, les trois
méthodes d’inférence sont équivalentes.

Pour d’autres applications, et notamment pour la régression logistique bi-
naire, les différences entre les méthodes seront d’autant plus marquées que les
échantillons sont de taille réduite et que les modéles contiennent plus de para-
meétres. Les discordances entre les méthodes résultent notamment du caractére
dissymeétrique de la fonction de vraisemblance.

La méthode de WALD est la plus couramment utilisée & cause de la simpli-
cité de sa mise en oeuvre. Elle est proposée dans Minitab et SAS, comme nous
le verrons au paragraphe 5. La méthode du rapport de vraisemblance est cepen-
dant préférable pour les problémes de régression logistique. Elle est disponible
en option dans SAS pour le calcul des intervalles de confiance des paramétres
(paragraphe 5.2).



3. MODELE LOGIT POUR DONNEES BINAIRES

3.1. Fonction de lien et modele

Lorsque la variable & expliquer y posséde deux modalités, codées par exemple
y=1lety=2o0uy = Aety = B, I'objectif est de modéliser la probabilité
d’appartenance & 1'une des deux catégories, appelée succés ou événement®, en
fonction d’une ou plusieurs variables explicatives, z1,...,x,. Cette probabilité
d’appartenance est notée 7(x;), x; étant le vecteur des valeurs prises par les
variables explicatives pour un individu 1.

Les probabilités m(z;) évoluent cependant de maniére non linéaire en fonc-
tion de x; et la variance de ces probabilités varie avec ;. Pour cette raison, on
effectue une transformation de la probabilité du succés g[m(z;)]. Cette transfor-
mation s’appelle fonction de lien. Pour alléger les notations, la probabilité de
succes pour un individu sera fréquemment notée par la suite simplement w; et
la fonction de lien g;.

Plusieurs fonctions de lien existent, mais la plus couramment utilisée est la
fonction logit :

gi = logit (m;) = log,[m; /(1 — m;)].

Le modéle de régression s’écrit alors :

gi = a+x; B,

ou a et B sont des paramétres a estimer. La transformation inverse permet
ensuite de retrouver les probabilités estimées en fonction de x; :

m; = exp(gi)/[1 + exp(g:)]-

Cette expression est analogue & la densité de probabilité de la loi logistique,
ce qui justifie le nom donné & la fonction de lien et, par extension, a ce type
de régression. Cette fonction de lien est en effet la plus fréquemment retenue
parce qu’elle conduit & une interprétation simple des coefficients de régression,
par 'intermédiaire des odds ratios, qui seront présentés au paragraphe 5.2, mais
aussi pour des raisons théoriques [COLLETT, 1979].

Les variables explicatives peuvent étre quantitatives ou qualitatives. Les
premiéres possédent en général un grand nombre de valeurs différentes ; les se-
condes ont, au contraire, un nombre limité et connu a priori de modalités. Le
modéle peut également contenir des termes d’interaction entre variables.

Si le modéle ne comporte que des variables quantitatives, le vecteur 8 com-
porte autant d’éléments que de variables, ou, exprimé autrement, & chaque va-
riable quantitative correspond un coefficient. Pour une variable qualitative & ¢

5. En anglais : success ou event.



modalités, on a g — 1 coefficients affectés & ¢ — 1 modalités. Pour la ¢*¢™¢ mo-
dalité, qui constitue la modalité de référence, aucun coefficient n’est repris dans
les sorties des logiciels, mais ce coefficient peut étre obtenu & partir des ¢ — 1
autres coefficients. On notera cependant que les valeurs données aux coefficients
de régression et a 'ordonnée & 'origine sont différentes mais équivalentes, pour
le logiciel Minitab et le logiciel SAS, comme nous le verrons au paragraphe 5.2.

3.2. Profils

Une combinaison particuliére des variables explicatives définit un profil et
deux individus 7 et k£ ayant le méme profil ont le méme vecteur de variables
explicatives.

En relation avec ces profils, différentes situations peuvent se rencontrer en
pratique. Les individus peuvent tous avoir un profil différent. Les données sont
alors nécessairement présentées sous forme non groupée : la matrice des variables
explicatives et le vecteur de la variable & expliquer comportent n lignes, n étant
le nombre d’individus. Cette situation se rencontre typiquement lorsqu’une ou
plusieurs variables explicatives quantitatives sont présentes dans le modéle.

Lorsque plusieurs individus ont le méme profil, les données peuvent étre
regroupées selon les J profils différents et les m; observations relatives & un pro-
fil j se répartissent en y; succeés et m; — y; échecs. Cette situation se rencontre
typiquement lorsque le modéle de régression ne comporte que des variables ex-
plicatives qualitatives, mais il peut aussi se rencontrer avec des variables quan-
titatives, lorsque celles-ci ne peuvent prendre qu’un nombre limité de valeurs
différentes, par exemple du fait de la précision des données. Ce cas différe ce-
pendant du cas précédent car le nombre de profils n’est pas connu a priori mais
a tendance & augmenter avec le nombre d’observations.

L’utilisateur devra étre attentif & cette distinction entre données indivi-
duelles et données groupées lors de ’examen des résultats fournis par les logiciels
statistiques : méme si Minitab et SAS acceptent indifféremment les données in-
dividuelles ou les données groupées, des différences peuvent se présenter dans les
résultats dans le cas de profils multiples, comme nous le verrons au paragraphe
6.

Pour bien marquer la différence entre données individuelles et données grou-
pées, nous utilisons l'indice ¢ pour les données individuelles (i = 1,...,n) et
l'indice j pour les données groupées (j =1,...,J).

4. FONCTION DE VRAISEMBLANCE POUR LA
REGRESSION LOGISTIQUE BINAIRE

4.1. Fonction de vraisemblance et estimation des parametres
Pour des données individuelles et en considérant que la variable explicative

y est égale & 'unité en cas de succes et & zéro en cas d’échec, la fonction de
vraisemblance s’écrit :

10



aﬂ:ﬁ l*’/le']

i=1

et son logarithme est égal & :

log, L Z [yiloge mi + (1 — i) log, (1 — m)]
i=1

un des deux termes de ’expression étant systématiquement nul, puisque y; = 0
ou y; = 1, selon que I'individu 7 est caractérisé par un échec ou par un succes.

Pour les données groupées, on a :

J
H ]_—71‘)m] y]]

J
et loge L(CY,,B) = Zl [yj loge Tj + (mj - y]) loge(l - 7Tj)],
=

y; étant le nombre de succés pour le profil j et m; le nombre d’individus pré-
sentant la modalité j.

On peut constater que, en présence de profils multiples, on obtient le méme
résultat, que les calculs soient réalisés & partir de données individuelles ou &
partir de données groupées : la fonction de vraisemblance est donc invariante au
regroupement des données qui ont le méme profil.

On se rappellera que les m; ou 7; sont fonction des x; ou z;, par l'inter-
médiaire des coefficients de régression, ceux-ci étant déterminés de maniére &
maximiser la fonction log, L(a, ).

Des informations concernant cette maximisation et les éventuels problémes
de non-convergence sont données par ALLISON notamment [1999].

4.2. Vraisemblance pour le modéle nul
La fonction log, L(a, B) est donc une fonction des coefficients de régression.
Elle peut étre évaluée pour n’importe quelles valeurs de o et f.

Outre les valeurs & et B qui maximisent cette fonction, un intérét particulier
concerne le cas B = 0, qui correspond au modele nul, c’est-a-dire au modéle ne
faisant intervenir aucune variable explicative :

Pour ce modéle nul, la proportion estimée 7 est donc constante, puisque le

modeéle ne présente pas de variables explicatives et cette constante est égale a la
proportion de succés pour ’ensemble des n données (paragraphe 2.1) :

11



T =mn1/n,

nq étant le nombre de succes et :

& = logit(7) = log, [/ (1 — 7)].

La valeur du logarithme de la fonction de vraisemblance de ce modéle nul
vaut :

loge L(d) = m lOge (nl/n) +no IOge (nO/n)
= mn log.(n1) + nolog.(no) — n log.(n),

ng étant le nombre d’échecs :

No=n—ny.

Pour les données relatives au dépérissement du chéne, 183 arbres appar-
tiennent & la catégorie « dépérissement faible & trés fort », sur un total de 230
observations. Le logarithme de la vraisemblance pour le modéle nul vaut donc :

log, L(a&) = 183 log,(183) + 47 log, (47) — 230 log,(230) = —116,465.

La vraisemblance du modéle nul est utilisée pour réaliser le test global de
signification des variables d’un modéle, comme nous le verrons au paragraphe
5.1.

4.3. Vraisemblance du modéle saturé
Un modéle saturé est un modéle qui reproduit parfaitement les observations
réalisées pour un ensemble de variables explicatives données.

Pour des données groupées, les 7;, pour le modéle saturé, sont donc égaux
a y;/m; et le logarithme de la fonction de vraisemblance est égal & :

J

” —

log, L(s) =Y y; log, (m—l> + (m; —y;) log, (%) :
i=1 i j

Pour les données relatives au chéne, considérons le modéle de régression
logistique faisant intervenir comme seule variable explicative la région dans la-
quelle ’arbre a été observé. Le tableau 1 donne, pour chacune des deux régions,

12



Tableau 1 — Répartition des observations en fonction du degré de dépérissement
et de la région naturelle.

Catégorie Ardenne Condroz Totaux
Trés faible 14 33 47
Faible & tres fort 134 49 183
Totaux 148 82 230

le nombre d’arbres & dépérissement trés faible et le nombre d’arbres & dépéris-
sement faible a trés fort.

Pour ce modéle, on n’a que deux profils (Ardenne et Condroz) et donc deux
valeurs de probabilité de succés. Le modéle saturé est par conséquent un modéle
qui redonne les deux proportions observées. Si j = 1 pour I’Ardenne et 7 = 2
pour le Condroz, on a :

71 =134/148 = 0,9054 et 7y = 49/82 = 0,5976.

Le logarithme de la fonction de vraisemblance est donné par :

log. L(s) = 134 log,(134/148) + 14 log,(14/148)
+ 49 log, (49/82) + 33 log, (33/82) = —101,597.

Nous reviendrons sur ce modéle au paragraphe 5.2.

Pour des données non groupées, le modéle saturé est tel que les n valeurs
m; sont égales & y; : la probabilité de succés pour un individu est égale a I'unité
si I'individu correspond & un succeés et elle est nulle si I'individu correspond & un
échec. Le logarithme de la fonction de vraisemblance est par conséquent égal & :

n

log, L(s) = _ [yi log,(y:) + (1 — y:) log, (1 — ;)]

i=1

On constate que pour chaque individu, les deux termes sont systématique-
ment nuls car :

si y; = 1 alors log.(y;)=0 et 1—y;=0,
si y; = 0 alors log,(1—y;)=0.

1l en résulte que log, L(s) est toujours égal & zéro pour des données indivi-
duelles.
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La vraisemblance du modéle saturé n’est donc pas invariante au regroupe-
ment des données ayant les mémes profils. En effet, ce regroupement conduit &
des termes qui ne seront plus systématiquement nuls. Cela peut se comprendre
car le modéle saturé pour des données individuelles doit reproduire n propor-
tions observées, alors que pour les données groupées il ne doit reproduire que J
proportions.

La vraisemblance du modéle saturé intervient dans la définition de la dé-
viance (paragraphe 6.1).

5. TESTS DE SIGNIFICATION DES COEFFICIENTS DE
REGRESSION

5.1. Test global de signification des variables

Comme en régression ordinaire, on peut tester la nullité simultanée de tous
les coefficients des variables intervenant dans le modéle, la nullité d’un coefficient
particulier quand les autres variables sont présentes dans le modéle et, enfin, la
nullité des coefficients d’un sous-ensemble de variables quand les autres variables
sont présentes dans le modeéle. Nous examinons d’abord la premiére situation,
les deux autres feront ’objet des paragraphes 5.2 et 5.3.

La nullité simultanée de tous les coefficients de régression du modéle peut
étre testée par le rapport de vraisemblance, en calculant la quantité :

G=-2lo
. [L(a,m
Cette quantité G est basée sur la comparaison de la vraisemblance du mo-
déle nul, c’est-a-dire du modéle ne faisant intervenir aucune variable explicative,
et du modéle avec les variables explicatives. Si I’hypothése nulle est vraie, la dis-
tribution de G est approximativement une distribution x? & p degrés de liberte,
p étant le nombre de paramétres dans le modéle, a I'exclusion de ’ordonnée &
Porigine. On rejette ’hypothése de nullité simultanée de tous les coefficients des
variables du modéle si G > xi_,.

Les deux autres méthodes présentées au paragraphe 2 (test de WALD et
test basé sur le score), peuvent aussi étre utilisées. Elles conduisent également
a une valeur y2,, provenant d'une distribution x? a p degrés de liberté et au
rejet de Phypothése de nullité des coefficients si cette valeur x2,, est supérieure
a x?_,,. Pour des échantillons de taille faible ou modérée, le test du rapport de
vraisemblance est cependant préférable.

A titre d’illustration, les données relatives au dépérissement ont été expri-
mées en fonction de l'altitude et de la région naturelle, en utilisant, d’une part,
la commande BLOGISTIC de Minitab et, d’autre part, la procédure PROC LO-
GISTIC de SAS. Le code relatif & ces exécutions est donné en annexe. Une partie
des résultats obtenus est reprise dans les figures 2 et 3.
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Log-Likelihood = -99.804
Test that all slopes are zero: G = 33.322, DF = 2, P-Value = 0.000

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant -0.808214 0.690910 -1.17 0.242
Altitude 0.0049716 0.0027065 1.84 0.066 1.00 1.00 1.01
Region
Ardenne 1.22693 0.473007 2.59 0.009 3.41 1.35 8.62

Figure 2 — Paramétres estimés et tests de signification des variables Altitude et
Région (Minitab).

La premiére partie de ces figures concerne les tests globaux de signification
simultanée des deux coefficients de régression. L’autre partie sera discutée au
point suivant.

Pour le modéle ajusté, la figure 2 donne le logarithme de la vraisemblance :

log, L(&, B) = —99,804.

D’autre part, nous avons vu que le logarithme de la vraisemblance pour le
modéle nul est égal & (paragraphe 4.2) :

log, L(&) = —116,465.

On a donc :

G = 2[—99,804 — (—116,465)] = 33,322,

ce qui correspond bien & la valeur donnée par Minitab.

La probabilité associée a cette valeur observée d’une variable x2 & 2 degrés
de liberté est trés faible et, par conséquent, on rejette I’hypothése de nullité
simultanée des deux coefficients de régression. Cela signifie concrétement qu’il
est opportun d’utiliser soit les deux variables soit une des deux variables pour
modéliser le dépérissement. La solution & retenir sera envisagée au point suivant.

SAS donne également les résultats de ce test, mais reprend aussi les ré-
sultats des tests du score et de WALD (figure 3). On constate qu’il y a peu de
différence entre les valeurs numériques pour le test du score (x2,, = 32,895) et le
test du rapport de vraisemblance (ngs = 33,322), mais que la valeur du test de
WALD est plus différente (ngs = 27,563). Pour cet exemple, la conclusion pra-
tique est la méme pour les trois tests : on rejette indiscutablement ’hypothése
de nullité simultanée des deux coefficients.
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Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq
Likelihood Ratio 33.3218 2 <.0001
Score 32.8947 2 <.0001
Wald 27.5627 2 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate Error Chi-Square Pr > ChiSq
Intercept 1 -0.1947 0.8247 0.0558 0.8133
Altitude 1 0.00497 0.00271 3.3743 0.0662
Region Ardenne 1 0.6135 0.2365 6.7283 0.0095

Profile Likelihood Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits
Intercept -0.1947 -1.8242 1.4202
Altitude 0.00497 -0.00017 0.0105
Region Ardenne 0.6135 0.1633 1.0965

Wald Confidence Interval for Parameters

Parameter Estimate 95% Confidence Limits
Intercept -0.1947 -1.8110 1.4215
Altitude 0.00497 -0.00033 0.0103
Region Ardenne 0.6135 0.1499 1.0770

Profile Likelihood Confidence Interval for (0dds Ratio

Effect Unit Estimate 95% Confidence Limits
Altitude 1.0000 1.005 1.000 1.011
Region Ardenne vs Condroz 1.0000 3.411 1.386 8.961

Wald Confidence Interval for Odds Ratios

Effect Unit Estimate 95% Confidence Limits
Altitude 1.0000 1.005 1.000 1.010
Region Ardenne vs Condroz 1.0000 3.411 1.350 8.619

Figure 3 — Paramétres estimés et tests de signification des variables Altitude et
Région (SAS).
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5.2. Test de signification d’un coefficient particulier

Le test de signification d’une variable explicative quantitative particuliére
x; peut se faire par le test de WALD en calculant la valeur :

et en rejetant, pour un test bilatéral, I'hypothése de nullité de §; si uops > u1_q/2
ou encore si ugbs > x3_,, la variable x? ayant un degré de liberté. Dans cette

relation, e s(3;) est Perreur-standard du coefficient de régression estimé 3; de la
variable x;.

Le test peut également étre réalisé par le rapport de vraisemblance, en
déterminant la quantité :

] =2 {logeL(d,B) — log, L(dvﬁre’d)] .

Dans cette relation, L(d,B) est la vraisemblance pour le modeéle complet
et L(&, B,4,) la vraisemblance pour le modele dont on a éliminé la variable z;.
On rejette hypothése de nullité de §; si x2,, > X7_,, la variable x? ayant un
degré de liberté.

Pour une variable explicative qualitative & deux modalités, le test de signi-
fication de la variable se fait comme décrit ci-dessus, 'introduction d’une telle
variable dans le modéle conduisant & I’estimation d’un seul paramétre supplé-
mentaire.

Une variable explicative qualitative & ¢ modalités conduit, par contre, & g—1
paramétres supplémentaires. Le test de signification de chacun de ces paramétres
peut se faire comme ci-dessus. Dans ce cas, le rejet de '’hypothése de nullité du
coefficient pour une modalité donnée signifie que la modalité en question est
significativement différente de la modalité de référence.

Si on souhaite tester globalement 'effet de la variable qualitative, on teste
la nullité simultanée des coefficients des ¢ — 1 modalités. Il s’agit alors d’un test
de nullité d’un groupe de coefficients. Ce probléme sera abordé au paragraphe
5.3.

Minitab donne uniquement les tests de WALD. Dans la deuxiéme partie de
la figure 2, la colonne intitulée z reprend les valeurs wuqps, s0it 1,84 pour I'altitude
et 2,59 pour la région. Les probabilités associées sont égales a 0,066 et 0,009.
On rejette donc ’hypothése de nullité de Deffet de I'altitude quand on prend en
considération la région, mais on ne rejette pas I’hypothése de nullité de D'effet
région quand on prend en considération altitude. Pratiquement, cela signifie
que 'altitude peut étre éliminée du modéle.
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Minitab ne donne pas les valeurs x2 des tests du rapport de vraisemblance
ni du score. Les valeurs relatives aux premiers tests peuvent cependant s’obtenir
en ajustant plusieurs modeéles de régression. Pour un coefficient 3; donné, la
différence entre les valeurs G' des modéles avec et sans la variable x; correspond
au ngs'

Ainsi par exemple, pour tester la signification de I'altitude, la différence de
valeur G du modéle & deux variables et du modéle avec comme seule variable la
région est égale a :

33,322 — 29,736 = 3,586.

La valeur 33,322 est donnée dans la figure 2 et la valeur 29,736 peut se
retrouver & partir de la vraisemblance du modéle nul (paragraphe 4.2) et de
la vraisemblance du modéle saturé quand on ne prend en considération que la
région (paragraphe 4.3) :

2(—101,597 — (—116,465)] = 29,736.

Quand on ne dispose que de la variable région, le maximum du logarithme
de la vraisemblance est en effet égal au logarithme de la vraisemblance du modéle
saturé car le modéle avec la variable région donne des probabilités estimées par
région qui sont égales aux proportions estimées.

A titre de vérification, la figure 4 donne les résultats de ’ajustement du
modeéle lorsqu’on prend en compte uniquement la variable région.

La procédure LOGISTIC de SAS donne également les résultats des test de
WALD, les valeurs x2, de WALD étant égales aux carrés des valeurs z données par
Minitab, ainsi que les limites de confiance des paramétres estimés (figure 3). Elle
donne aussi les limites de confiance calculées par le rapport de vraisemblance,
ce qui permet de tester la signification des variables par cette méthode : un
coefficient de régression est significatif si ses deux limites de confiance sont du
méme signe. On conclut donc, comme pour la méthode de WALD, que l'altitude
n’est pas significative mais que la région est, par contre, significative.

Log-Likelihood = -101.597
Test that all slopes are zero: G = 29.736, DF = 1, P-Value = 0.000

Logistic Regression Table

0dds 95} CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 0.395313 0.225191 1.76 0.079
Region

Ardenne 1.86347 0.359991 5.18 0.000 6.45 3.18 13.05

Figure 4 — Paramétres estimés et signification de la variable Région (Minitab).
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A propos des paramétres estimés, on notera que, en présence de variables
qualitatives, les résultats donnés par Minitab et par SAS différent. Cela est da
4 la valeur attribuée arbitrairement & la modalité non reprise dans la liste des
coefficients. Minitab considére que ce coefficient est nul alors que SAS considére
que ce coefficient est tel que la somme des coefficients pour toutes les modalités
est nulle. Si on développe les équations pour I’Ardenne et pour le Condroz, on
obtient les mémes résultats. En effet, pour Minitab on a, respectivement pour
PArdenne et le Condroz (figure 2) :

logit (m;) = —0,8082 + 1,2269 + 0,00497 Altitude

et logit (m;) = —0,8082 + 0,00497 Altitude.
Pour SAS on a (figure 3) :

logit (m;) = —0,1947 + 0,6135 4 0,00497 Altitude
et logit (m;) = —0,1947 — 0,6135 4 0,00497 Altitude.

Soit, dans les deux cas :

logit (m;) = 0,4187 + 0,00497 Altitude
et logit (m;) = —0,8082 + 0,00497 Altitude.

En plus des informations relatives aux coefficients, les deux logiciels four-
nissent des estimations et les limites de confiance des odds ratios. Pour une
variable quantitative, 1’odds ratio est le rapport suivant :

m(z)/[1 — m(z)]
m(z+1)/[1 —m(x+1)]

11 s’agit du rapport des rapports probabilité de succés/probabilité d’échec
pour une augmentation d’une unité de la variable explicative. Cet odds ratio
est directement lié au coeflicient de régression §; de la variable explicative en

question : ’odds ratio est égal & e

Pour I’altitude, on a :

000497 — 1 005.

Les limites de confiance de ce rapport sont obtenues en remplacant f3;
dans la formule ci-dessus successivement par la limite de confiance inférieure et
supérieure de ;.

Pour une variable qualitative, 1’odds ratio pour une modalité donnée est le
rapport des rapports probabilité de succés/probabilité d’échec pour la modalité

considérée et pour la modalité de référence. Il est égal a e(/fk_[i"), B et B, étant
les coefficients pour la modalité k et la modalité de référence de la variable
explicative en question.
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Pour I’Ardenne on a, avec Minitab et avec SAS :

1,2269—0 0,6135—(~0,6135) _ 3 411
= 3.411.

€ =e€

Le rapport de probabilité de dépérissement faible & trés fort /probabilité de

dépérissement trés faible est donc 3,41 fois plus grand en Ardenne que dans le
Condroz, & égalité d’altitude.

5.3. Test de signification d’un sous-ensemble de variables

La nullité simultanée des coefficients d’un groupe de k variables repose sur
le calcul de :

) — log L(d, Brea)]

] —2 [logeL(d,

L(&,B,¢q) et L(&,B) étant respectivement la valeur de la fonction de vraisem-
blance pour le modéle estimé en ’absence des k variables et pour le modéle
complet. Si I'hypothése nulle est vraie, la quantité x?,, suit approximativement
une distribution x? & k degrés de liberté. On rejette donc I’hypothése de nullité
simultanée des k coefficients de régression si 2, est supérieur au percentile 1 —a
de la variable x? & k degrés de liberté.

Pratiquement, le calcul de G peut se faire par ’ajustement du modéle com-
plet et du modéle avec omission des k variables. Soit G et Gr¢q les statistiques
associées au test global de signification de tous les coefficients de ces deux mo-
déles (paragraphe 5.1), la valeur x?2,. est égale & la différence entre ces deux
statistiques. En effet :

G—Greg = 2 [1ogeL(d, B) —1ogeL(a)] —9 [logeL(d, Bre) —1ogeL(a)}

2 |i10ge L(dﬂB) - loge L(deréd)} .

Ce test peut notamment étre utilisé pour tester la nullité simultanée des
q — 1 coefficients de régression relatifs & une variable qualitative & ¢ modalités,
c’est-a-dire pour tester la signification de cette variable qualitative.

6. CRITERES GLOBAUX D’AJUSTEMENT

6.1. La déviance et les résidus au sens de la déviance

Différents critéres permettent de comparer plusieurs modeéles relatifs & une
méme variable a expliquer. Ils sont liés & la fonction de vraisemblance et plus
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précisément aux trois valeurs particuliéres du logarithme de la fonction de vrai-
semblance : valeur du maximum, valeur pour le modéle nul et valeur pour le
modéle saturé.

Le premier de ces critéres est la déviance D, définie par la relation suivante :

L(a,B)

D = —2log (s)

e

=2 [loge L(s) — log, L(d,B)] .

La vraisemblance pour le modéle saturé L(s) étant toujours supérieure
ou égale a la vraisemblance pour le modéle ajusté L(d,ﬁ), la, déviance sera
toujours nulle ou positive. Elle joue, en régression logistique, le méme réle que la
somme des carrés des écarts résiduelle en régression classique : elle est d’autant
plus faible que I'ajustement est bon, c’est-a-dire que ’ajustement conduit & des

probabilités estimées proches des proportions observées.

Lorsque les données ne comportent qu’un nombre limité de profils différents
et définis a priori, par exemple lorsque les variables explicatives sont qualitatives,
la, déviance posséde une distribution qui tend vers une variable x? lorsque le
nombre d’observations tend vers 'infini. Le nombre de degrés de liberté associé
a cette variable x? est égal & J — p, p étant le nombre de paramétres dans le
modeéle. Il est alors possible de tester ’adéquation du modéle, en comparant la
déviance au percentile 1 — a de la distribution x? & J — p degrés de liberté :
on considére que le modéle est inadéquat si la déviance est supérieure a y7_,.
Il s’agit en fait d’un test par la méthode du rapport de vraisemblance de la
conformité du modéle ajusté au modéle saturé (paragraphe 4.3).

La déviance est également liée aux résidus au sens de la déviance, qui se
définissent comme suit, pour des données groupées :

1/2
s fo e () o (= )
77 ) J

le signe étant le signe de y; — m; #;. Pour y; = 0 et y; = m;, la relation se
simplifie :

dj = _\/Qmj“Oge(l — ;) siy; =0

et d; = \/2m;|log, 7;] siy; =m;.

La somme des carrés de ces résidus donne la déviance :
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La formule générale donnant d;, pour un profil j donné, montre que :

d? = 2[0;110g.(0j1/Ej1) + Oj210g,(052/Ej2)] ,

Oj1 et Ojo étant respectivement les fréquences observées de succés et d’échec
pour le profil j, Ej; et Ejo étant des fréquences attendues correspondantes. La
déviance, qui est la somme des d? sur les J profils, peut donc s’écrire, de maniére
synthétique : '

2
D=2 ZOjk log, (Ojk/Ejk),
=1 k=1

la somme étant étendue aux 2J cellules du tableau croisant les profils et les
deux modalités de la variable & expliquer et Oj;, et Ejj;, étant respectivement les
fréquences observées et attendues de chacune de ces 2.J cellules.

Pour les données individuelles, le logarithme de la vraisemblance du modéle
saturé est toujours égal a zéro (paragraphe 4.3) et on a :

D = —2log L(&, B).

Les résidus au sens de la déviance s’écrivent, dans ce cas :

di = —1/2|log. (1 —7;)| siy; =0

et d; = +/2|log.(7;)| siy; =1,

et on a :

D= Xn:df.
i=1

Pour des données individuelles ou pour des données groupées sur la base
de variables explicatives continues ou & peu prés continues, la déviance ne pos-
séde pas asymptotiquement une distribution x2. Le test x2 ne peut donc pas
étre réalisé, mais la déviance reste un parameétre utile pour comparer différents
modéles construits pour une méme variable & expliquer.

La figure 5, extraite des résultats fournis par Minitab, donne la déviance
ainsi que deux autres paramétres qui seront présentés aux paragraphes 6.2 et 6.3.
La valeur de la déviance est de 73,3, le nombre de degrés de liberté est de 54 et la
probabilité correspondante est de 0,041. Cette probabilité n’a cependant aucune
signification pratique, car la déviance n’a pas une distribution x? & 54 degrés
de liberté. Le modéle contient, en effet, une variable quantitative - altitude
- qui présente des valeurs identiques pour de nombreux individus. Le nombre
de profils différents est de 57 alors qu’on dispose de 230 observations. Celui-ci
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Goodness-of-Fit Tests

Method Chi-Square DF P
Pearson 66.6504 54 0.116
Deviance 73.3001 54 0.041
Hosmer-Lemeshow 15.9078 8 0.044

Figure 5 — Critéres globaux d’ajustement pour le modeéle avec Altitude et Région
comme variables explicatives (Minitab).

n’était cependant pas fixé a priori avant la collecte des données et la déviance
ne posséde pas une distribution pouvant étre approchée par une variable x2.

Pour le modeéle ne faisant intervenir que la variable région, Minitab ne don-
nerait pas la déviance mais signalerait que le modéle utilise tous les degrés de
liberté. En effet, la variable explicative donne lieu uniquement & deux profils
différents et le modéle posséde deux paramétres. Il en résulte que la vraisem-
blance liée au modéle se confond avec la vraisemblance du modéle saturé et que
la déviance est, nulle.

Pour des données groupées selon des variables qualitatives, une option de
SAS permet d’obtenir la déviance qui, pour le modéle avec la région comme seule
variable explicative est bien égale a zéro.

Lorsque les données sont présentées sous la forme de données individuelles,
mais qu’elles présentent des profils multiples, comme dans le cas du dépérisse-
ment des chénes, les résidus calculés par Minitab et par SAS différent. En effet,
SAS calcule les n résidus en considérant les données individuelles et des profils
identiques donnent des résidus identiques. Par contre, Minitab regroupe auto-
matiquement les données & profils identiques et détermine un seul résidu par
profil. Ce résidu est repris en regard du premier individu présentant ce profil et
des données manquantes sont indiquées pour les autres individus ayant le méme
profil. Pour les données relatives au dépérissement, SAS donne donc 230 résidus
mais Minitab ne calcule que 57 résidus et donne 173 données manquantes.

Cette facon de procéder est d’ailleurs la méme pour les résidus de PEARSON
dont il est question ci-dessous.

6.2. Lasomme des carrés des résidus au sens de PEARSON

Pour des données groupées, ces résidus sont définis par la relation suivante :

Yj —mym;
Vmy7 (1 —7t;)

Il s’agit donc des écarts entre les fréquences observées de succés et les
fréquences attendues, ces écarts étant divisés par l’écart-type des fréquences
observées.

Ty =
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Pour des données et des profils fixés a priori, la somme des carrés des
résidus de PEARSON tend vers une distribution y? de PEARSON & J — p degrés
de liberté. Comme la déviance, cette somme de carrés des résidus peut servir
A tester I’adéquation du modéle : on considére que le modéle est inadéquat si
cette somme est supérieure & x?_,. On peut montrer que la somme des carrés
des résidus est égale a la statistique x2 calculée & partir des différences entre
les fréquences observées et les fréquences attendues d’un tableau a deux entrées,
croisant les J profils et les deux modalités de la variable & expliquer :

J J ~ \2 N ) A 2
Z z:l{(yjmﬂrj) +[(mJ y;j) —m;(1 )

m;7; m;(1 — ;) ’

ou encore, de facon plus synthétique :

J 2
%:ZZ Jjk — Jk /Eykv

7j=1k=1

Oj1. étant la fréquence observée et £, la fréquence attendue de la cellule jk.

Pour I'exemple numérique, la somme des carrés des résidus de PEARSON
donnée par Minitab (figure 5) est égale a 66,7, mais, comme pour la déviance,
cette valeur ne peut pas étre comparée & un pourcentile théorique d’une variable
x? & 54 degrés de liberté, le nombre de profils différents n’étant pas fixé a priori.

6.3. Le test de HOSMER et LEMESHOW

Ce test basé sur le regroupement des observations en un nombre limité g
de groupes en fonction de la probabilité estimée 7; ou 7;. Le nombre de groupes
est typiquement de ’ordre de la dizaine et les groupes ont, autant que possible,
des effectifs identiques. Des variations dans les effectifs peuvent cependant se
présenter, d’une part, lorsque le nombre total d’observations n’est pas un mul-
tiple de g et d’autre part, du fait que des observations ayant méme profil et donc
méme probabilité estimée sont affectées & un méme groupe.

Pour chaque groupe, on détermine la moyenne des probabilités estimées 7
des observations du groupe et on calcule les fréquences attendues pour le succés
et I’échec. Ensuite, on établit le tableau & deux entrées croisant les groupes et
les deux modalités de la variable & expliquer. On calcule enfin la statistique :

2
Xbar =YY (Ow — Ew)? [ En.

k=11=1

Dans cette relation, Oy; est la fréquence du groupe kl et Ej; est la fré-
quence attendue correspondante. Si le modéle est adéquat, la statistique x%
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suit approximativement une distribution x2 & g — 2 degrés de liberté. On rejette
par conséquent Phypothése d’adéquation du modéle si x%; > x3_,.

La statistique de HOSMER et LEMESHOW présente clairement une analogie
avec la somme des carrés des résidus de PEARSON puisque dans les deux cas
on compare des fréquences observées et des fréquences attendues d’un tableau
de fréquences a deux entrées. L’intérét du test de HOSMER et LEMESHOW est
qu’il peut étre utilisé dans les situations ou la somme des carrés des résidus
de PEARSON ne suit pas une distribution x2, comme dans le cas de données
individuelles.

La valeur donnée par Minitab pour ce test est de 15,9, le nombre de classes
étant égal a dix donnant lieu & 8 degrés de liberté (figure 5).On conclut que le mo-
déle n’est pas adéquat, les écarts entre les fréquences observées et les fréquences
attendues étant trop importants.

La figure 6 donne le résultat obtenu avec SAS. Le nombre de groupes est
égal & 9 et la valeur x%;, égale & 15,9 avec 7 degrés de liberté, conduit aussi
a la conclusion que le modéle n’est pas adéquat. La figure 6 reprend également
le tableau des fréquences observées et des fréquences attendues des groupes. Un
tableau similaire est aussi donné par Minitab, mais n’est pas repris ici.

Partition for the Hosmer and Lemeshow Test

Dep_binaire
Dep_binaire = F_Fort = T_faible

Group Total Observed Expected Observed Expected
1 24 16 12.66 8 11.34
2 23 13 13.59 10 9.41
3 27 14 17.37 13 9.63
4 23 21 17.79 2 5.21
5 26 20 22.62 6 3.38
6 25 20 22.47 5 2.53
7 26 26 23.81 0 2.19
8 25 22 23.10 3 1.90
9 31 31 29.58 0 1.42

Hosmer and Lemeshow Goodness-of-Fit Test
Chi-Square DF Pr > ChiSq

15.9053 7 0.0260

Figure 6 — Test de HOSMER et LEMESHOW pour le modéle avec Altitude et Région
comme variables explicatives (SAS).
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6.4. Le critére d’ AKAIKE et le critéere de SCHWARTZ

Le critére AIC I’AKAIKE® et le critére SC de SCHWARTZ 7 sont donnés par
les relations suivantes :

—2log, )+ 2k

AIC (&,
& ,B) + klog, n,

L
SC = —2log, L(4,

k étant le nombre de paramétres dans le modéle et n le nombre d’observations.

Ces deux critéres pénalisent la vraisemblance si plus de paramétres sont
estimés, la pénalisation étant plus sévére pour le critére de SCHWARTZ. Ils sont
utiles pour la comparaison de modéles construits pour la méme variable & ex-
pliquer, les valeurs les plus faibles correspondant & des modéles préférables. Ils
sont donnés par SAS (figure 7) mais pas par Minitab.

6.5. Les coefficients R?

En régression ordinaire, le coefficient de détermination multiple est couram-
ment utilisé pour quantifier 'aptitude qu’ont les variables explicatives & prédire
la variable & expliquer. Différentes mesures ont également été proposées dans ce
but pour la régression logistique.

Model Fit Statistics

Intercept

Intercept and

Criterion Only Covariates
AIC 234.931 205.609
SC 238.369 215.923
-2 Log L 232.931 199.609

R-Square 0.1349 Max-rescaled R-Square 0.2118

Figure 7 — Critéres d’AKAIKE et de SCHWARTZ et valeurs R? pour le modéle
avec Altitude et Région comme variables explicatives (SAS).

6. En anglais : AKAIKE’s information criterion.
7. En anglais : SCHWARTZ criterion, Bayesian information criterion, BIC.
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Un premier coefficient est donné par le rapport suivant :

2 _ log L(a,B) — log, L(@)
log, L(s) —log, L(&)

Il s’agit de la mesure de ’amélioration de l’ajustement par la prise en
compte des variables en proportion de I’amélioration maximum possible. Le co-
efficient varie par conséquent de 0 & 1. Il vaut O lorsque les variables utilisées
n’apportent aucune information et il vaut 1 lorsque la prédiction est parfaite.

Dans le cas de données individuelles, log, L(s) est nul et le coefficient
s’écrit :

log, (@) —log, L(é.f) _ | log, L(&.B)
log, L(&) log, L(&)
Une autre solution est basée sur la statistique G, calculée lors du test

global de signification de I’ensemble des coefficients de régression du modéle
(paragraphe 5.1) :

R2

L(a)
L(a, B)

G = —2log,

Le coefficient R? généralisé s’écrit en effet :

2/n
L(a)
L(a,B)

La justification est qu’en régression ordinaire, la valeur G est liée au coef-
ficient de détermination multiple par la relation ci-dessus.

RZ =1—exp(—G/n) =

Un inconvénient de ce paramétre est que la borne supérieur du domaine de
variation est égale 4 :

R?}"mam =1- L(d)2/n

puisqu’un ajustement parfait correspond au modéle saturé pour lequel on a, pour
des données individuelles :

log, L(s) =0 ou L(s)=
C’est la raison pour laquelle un coefficient corrigé?® a été proposé :

R%
Ro; = 1— L(a)2/n

8. En anglais : Mazimum rescaled R square.
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Une discussion de ces différents coefficients est donnée par MENARD [2000].

Pour les données relatives au dépérissement, on a (paragraphe 5.1 et figure
2) :

log, L(&, B) = —99,804, log, L(&) = —116,47 et G = 33,322.

On en déduit :

—99,804
2 _ ) _
R? = 1 176,465 0,1431,
33,322
R, = 1- — 220 ) = 10,1349
G P ( 230 )
0,1349
R, = ’ = 0,2118.

1 — [exp(—116,465)]2/230

Auncun de ces coefficients n’est donné par Minitab mais les deux derniers
peuvent étre obtenus avec SAS (figure 7).

6.6. Les mesures d’association

Différents paramétres sont définis afin de quantifier ’association entre les
probabilités estimées et I'appartenance aux deux catégories.

Considérons que les n observations sont divisées en deux groupes selon
la variable & expliquer. Les observations du premier groupe correspondent aux
individus caractérisés par le succés et sont identifiées par leur numéro d’ordre
désigné par i(i = 1,...,n1); les observations du deuxiéme groupe correspondent
aux individus caractérisés par 1’échec et sont identifiées par le numéro d’ordre
désigné par j(j = 1,...,n0).

Soit un couple particulier ij et soit 7; et 7; les probabilités estimées d’ap-
partenir au premier groupe, respectivement pour l'individu 7 et j. Pour ce couple
d’observations, trois situations peuvent se présenter. Il y a :

concordance si ;> 7 ,
discordance si m; < 7 ,

ex-aequo Ssi  T; = 7;.

Au total, on peut définir ning couples 7j et déterminer le nombre n. de
concordances, le nombre ny de discordances et le nombre n. d’ex-aequos. A
partir de ces nombres, on définit les mesures d’association suivantes :
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Association of Predicted Probabilities and Observed Responses

Percent Concordant 75.0 Somers’ D 0.519
Percent Discordant 23.1 Gamma 0.530
Percent Tied 2.0 Tau-a 0.170
Pairs 8601 c 0.760

Figure 8 — Mesures d’association pour le modéle avec Altitude et Région comme
variables explicatives (SAS).

le coefficient D de SOMERS : D = (n, — nq) / (n1no),

le coefficient v de GOODMAN et KRUSKAL : v = (ne — ng) / (ne + naq),
le coefficient 7 de KENDALL : 7 = (n., — ng) / [0,5n(n — 1)],

le coefficient ¢ : ¢ = (n. + 0,5n¢)/n1ng.

Les quatre coefficients sont toujours compris entre 0 et 1 et sont d’autant
plus grands que ’association entre valeurs observées et valeurs prédites est forte.

Les trois premiers coeflicients sont fournis & la fois par Minitab et SAS
mais le dernier n’est donné que par SAS. De trés légeres différences dans les
résultats peuvent s’observer, 'algorithme utilisé par SAS procédant, par défaut,
4 un regroupement des observations en classes de probabilités estimées. Cette
différence est cependant sans importance pratique.

Pour les données relatives au dépérissement, les résultats donnés par SAS
sont repris & la figure 8.

7. INFORMATIONS COMPLEMENTAIRES

Dans cette note, nous avons présenté divers outils permettant la critique
d’un modéle de régression logistique binaire. Nous avons ainsi discuté des tests
de signification d’'une ou de plusieurs variables et de divers paramétres glo-
baux quantifiant la qualité de I’ajustement. Les différentes statistiques proposées
sont évidemment largement redondantes mais peuvent aussi, dans certains cas,
conduire & des conclusions opposées.

Ainsi, un coefficient de régression pourrait étre significatif lorsque le test est
basé sur la méthode de WALD, mais étre non significatif pour le test du rapport
de vraisemblance, ou inversément. Rappelons que dans une telle situation, la
préférence doit étre donnée au test du rapport de vraisemblance.

De méme, les tests x2 basés sur la déviance, sur les résidus de PEARSON et
sur I’approche de HOSMER et LEMESHOW peuvent donner des résultats contra-
dictoires. La premiére question a se poser & ce sujet concerne la validité de ces
tests. Nous avons vu en effet que les tests basés sur la déviance et sur les résidus
de PEARSON ne sont valables que si le nombre de profils différents générés par
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les variables explicatives est fixé a priori et limité de maniére & disposer d’un
nombre suffisant d’observations par profil. Les statistiques n’ont aucune valeur
inférentielle en présence de données individuelles ou de données groupées sur
la base d’une variable quantitative observée avec une faible précision, comme
c’est le cas pour 'altitude dans I'exemple examiné. Dans de telles situations, la
préférence sera donnée au test de HOSMER et LEMESHOW.

Quant aux autres parameétres présentés (coefficients d’association et coeffi-
cients R?), ils mesurent en réalité des caractéristiques différentes et ne peuvent
donc pas étre directement comparés. Ils peuvent cependant étre utiles pour la
comparaison de différents modéles de régression établis pour une méme variable
A expliquer. Dans ce cas, on comparera évidemment les valeurs obtenues d’un
modéle & I’autre pour une méme statistique.

La non-invariance de certains paramétres au groupement des données peut
également perturber l'utilisateur. C’est le cas par exemple pour la déviance.
Ainsi, pour les données relatives au chéne, il n’est pas possible de comparer le
modéle ayant comme variable explicative I'altitude et le modéle ayant comme
variable explicative la région. Le deuxiéme modéle est en effet un modéle saturé
et conduit & une déviance nulle, alors que le premier modéle est un modéle non
saturé, dont la déviance n’est pas nulle. Nous avons constaté au paragraphe 5.2
que le seconde modéle est effectivement préférable, non pas parce que sa déviance
est plus faible, mais parce que la probabilité associée au test de conformité du
coefficient de régression de la variable région est plus faible que la probabilité
associée au test de conformité de la variable altitude (figures 2 et 3).

Enfin, rappelons encore une fois que des différences existent entre les résul-
tats fournis par Minitab et SAS, d’une part en ce qui concerne les coefficients de
régression en présence de variables explicatives qualitatives. Les deux logiciels
utilisent en effet une paramétrisation différente, mais équivalente, comme nous
I’avons vu au paragraphe 5.2.

De méme, en présence de profils multiples, les deux logiciels donnent des
résidus, au sens de la déviance et au sens de PEARSON qui sont différents, SAS
calculant un résidu par observation et Minitab un résidu par profil.
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ANNEXE

Commandes Minitab et procédure SAS utilisées
Commandes Minitab

# Figures 2 et 5
Blogistic ’Dep_binaire’ = Altitude Region;
Factors ’Region’;
Logit;
Reference ’Dep_binaire’ ’Faible a tres fort’ Region ’Condroz’;
Brief 2.

# Figure 4

Blogistic ’Dep_binaire’ = Region;
Factors ’Region’;
Logit;

Reference ’Dep_binaire’ ’Faible a tres fort’ Region ’Condroz’;
Brief 2.

Procedure SAS

* Figures 3,6,7 et 8

PROC LOGISTIC DATA=1lsas.deperissement;

CLASS Region;

MODEL Dep_binaire (event=’F_Fort’)= Altitude Region/
CLPARM=Both Clodds=Both
LACKFIT RSQ;

run;
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