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2. GENERAL EQUATIONS

1. INTRODUCTION

Some galloping are closely related to the relative
values of vertical and torsional frequencies, for a
single span as well as for a whole section. The existing
theory doesn’t take into account the tension variation
due to torsion in bundle configuration. This leads to
significant discrepancies between experimental and
theoretical results. Due to these discrepancies , an
unadequate design of antigalloping devices may occur.
This paper describes an improvement of the model
currently used and shows the importance of the
neglected terms. The new model agrees in a good way
with the published experimental results. The frequency
formulation is proposed in a closed form easily
managed by hand.

It will be put into evidence that, in opposition to
previous theories, the bundle geommetry influences
the torsional frequencies and this explains why these
frequencies are sometimes lower than vertical ones.
The fixation to anchoring towers by yoke plates also
plays a key role. This has never been investigated until
now. The results of the theory may be applied to a
proper design of pendulums whose well known effect
is to detune vertical and torsional frequencies.
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2.1. Basic hypothesis

We are mainly concerned by small amplitude
deviations around equilibrium. The value of the
eigenfrequencies and the mode shapes so obtained
may be used for galloping investigations. Galloping
amplitudes may be rather important producing
significative tensions variations, nevertheless the non-
linear term of tension variations don’t have a major
influence neighter on eigenfrequencies values nor on
modal shapes. Of courses tension variations
computation must include after all the non-linear
terms.

We shall neglect the propagation time of elastic wave
(5000 m/s) , the slope of the catenary and the
suspension string oscillations which practically are
weak. The spatial tension variations all along a
multispan section may be so neglected. Tension is
independent of abscissa but is time dependent. Tension
variation is related to the total variation of length
induced by the motion of the cable on the whole
section.

Assuming a parabola shape for the static catenary of
each span, the curvature is constant and given by :
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2.2. Vertical motion

Let’s consider the basic equation for vertical motion :
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let us suppose : T =To + AT 1 =10 +Al

With :

T, : equilibrium static tension.

ly : length of the cable at equilibrium conditions
related to y ()

I : instantaneous length at a given time t, related to

y(z,)

Taken into account the tower anchorings stiffness (K) ,
The Hooke’s law yields for a whole section to :
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For small variations around equilibrium position
equations (2.2) and (2.3) may be written in the form :
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2.3. Torsional motion

The well known torsional dynamic equilibrium
condition is for free vibration :
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According to (1.21 in appendix 1) and assuming for a
bundle I=mr? (m is the total mass of the bundle per
unit length and r the bundle radius) we have(see
appendix) for small variations :
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The previous equations concern each span (s =1, ...,
Ns) of a whole section. Coupling between spans arises
from AT and AH terms which are only time dependent.

2.4. Analytical solution

The solutions of the previous equations may be found
assuming the following decompositions :
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where :

§ = span index

k = mode number

substituting the expression (2.7) into (2.4) ,
multiplying by sin(kmz/Lg ) and integrating between 0
and Lg the partial differential equation splits into a set
of ordinary differential equations :
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Substituting expression of AT into left equation of
(2.9) we get :
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with :

(3%}

8a K,
b= Y

T m

(2.11)

N

Equation (2.8-10) concern vertical motion, same
equations hold for torsional motion mutatis mutandis,
replacing :

y by 9, Ky by Kg and T, by T, +7T / r2 (2.12)
Strictly speaking this system is infinite. But for
practical cases, coupling between modes becomes
weak for k greater than 3. ( the coefficients of the
matrix of the system are divided by k and j , so the
matrix tends to become diagonal as k and j increase.)
Computation of modal shape and corresponding
frequencies implies the computation of the eigenvalues
and the eigen vectors of the matrix associated to those
coupled equations.

3. FREQUENCIES
DISCUSSION

3.1. Torsional frequencies of single
conductors.

Generally speaking equation (2.6) holds for bundle
conductors and its structure is similar to (2.4) holding
for vertical motion. In the case of bundle conductor it
must be expected (see later) that vertical frequencies
are closely related to the torsional one. But for single
conductor equation (2.6) reduces to :
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in which torsional frequencies depend only of intrinsic
stiffness T . This intrinsic stiffness is related to the
internal elastic properties of the material.

With a good approximation one may admit the
following formulas :

” . oo od
T = k‘l: kagemg Kconstitution o

(¢inmm,1inNm2) (3.1)
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-kp 0.00027
- kageing : between | and 3
- Kconstitution : | for stranded; between 1.5 and 2.5

for smooth

Fig. 1 has been build after collecting more than 50
experimental measurement performed in different
countries (Ontario Hydro [1] and [2], EDF [3],
Laborelec [4], Nigol et al [5 and 6], Richardson [7],
Iowa state University [8] , Leppers et al [9] , Kaiser
Aluminium|[10]).

It appears that there is no need to try to refine the
diameter exponent, as proposed by some authors,
mainly due to the influence of ageing .

The second parameter which influences the torsional
frequencies is the moment of inertia .This parameter
depends on :

- type of conductor (number of wire)
- mass of the conductor

It is the moment of inertia referenced to the centre of
the conductor (single) . It is simply given by :

nq)4

pcable"gz_ fslrand (3.2)

where fgand 18 a function of the strand in the cable
usually close to 0.7.

For a given ageing the ratio /1 is merely a constant for
all kind of conductors whatever the diameter is (about
1060 m2/s2 ). There is no evidence for the torsional
frequencies to be close to the vertical ones. For
instance the fundamental torsional frequency of a
single conductor is about 5 to 10 times the vertical
one.

3.2 Comparison of torsional and
vertical frequencies for bundle
conductors

General considerations.

Looking at the equations (2.4) and (2.6) it appears that
their structure is quite similar. It is due to the fact that
when computing the torsional torque we consider
tension variations both in direction and magnitude.
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Nigol et al[5] , when computing the torsional stiffness
discarded the magnitude variation induced by length
variations of the subconductors. The so drop term is
not negligible and could explain why Nigol et al’s
analytical predeterminations are smaller than
experimental measurements, with discrepancies
reaching 50% in some cases. In all cases it would be
necessary to know exactly what kind of anchoring
device was used to be able to appreciate in what
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extend our theory fits with experiences. Anyway our
additional term increases the torsional stiffness.

It will appears further on that, for this kind of
conductor, some torsional frequencies may be close to
the vertical ones. We shall consider two cases: the
antisymmetric modes ( even number of “loops™ in
each span) and the symmetric modes (odd number of
“loops” in each span).
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Fig.1 : Fittings of measured torsional stiffness on single conductors
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a)

The antisymmetric modes correspond to even values
of ‘k’ in equations (2.7). The eigenfrequencies are
given by equations (see 2.8) :

Antisymmetric modes

P
Ty
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The eigen pulsations and the corresponding modal
shape for a whole section are given by the
“haracteristic values of the previous system .

It appears that the antisymmetric modes ( k even) are
totally decoupled (diagonal matrix) either inside a span
either between spans. It is due to the fact that no first
order tension variation is induced by even number of
loops per span. This is obviously related to the fact
that such deformations do not induce any first order
length variation. For those antisymmetric modes the
eigen pulsations are simply given by :

b) Symmetric mode on a dead-ended

single span( Ns = 1)

The symmetric deformations ( k odd, equations 1.10
and 1.11) are coupled inside a span and between spans.
It is due to the fact that tension variation associated
with length variation occured when an odd number of
loops appear in a span. The associated matrix is no
longer diagonal and the mode shapes are the
combination of weighted sine functions. Due to the
structure of the matrix it can be seen that the
eigenpulsations may be expressed by :
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R 3 f antisymmetric eigenfrequency, and K, and Ky defined
| by:
and the modal shape given by : ! | 'JI:"“
| L) 1 . .
A A - kmz K, £ E/; * = Ky defined in appendix
= o SN —— \
¥ ¥s,k Ls - G3.7)
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' o L Recall that for antisymmetric modes the only

S

These modes are easy to manage, each span may be
studied separately for itself.

As it was previously announced the torsional and
vertical frequencies for antisymmetric modes are close
to each others, this is due to the fact that usually the
intrinsic stiffness term is weak before T, (excepted for
high subconductors diameter). The torsional
frequencies are slightly higher than the vertical one.
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difference between torsional and vertical frequencies
for bundle configurations comes from the intrinsic
stiffness of each subconductor. For symmetric modes
the anchoring stiffnesses may induce significant
difference between the two type of frequencies.

For vertical frequencies K, depends on the anchoring
tower stiffness K (about 500000 N/m). For multi-span
section K may be consider as infinite compared with
EA/Lg:
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For torsional frequencies Ky depends on the
geommetry of the bundle and on the device by which
the bundle is anchored to the tower ( shape of the yoke
plates). See appendix for special cases formulas. The
influence of yoke plates on torsional frequencies has
never been investigated by other authors. Its influence
can be so important that it can produce a torsional
frequency lower than the vertical one. This is due to
the fact that Ky may be significantly smaller than K, .
Firstly by the term taking into account the yoke plate
design ( possible value for h is 0.1m), secondly the
number of subconductors. This last point may be
understood if we consider an infinite anchoring
stiffnesses both for the tower (K infinite) and for the
yoke plate (h very large or for yoke plate designed for
double anchoring insulators chain) :

le
5

5 2
8E .
MV= ;g—ﬁch;—)
m O

for horizontal twin : M,

7 for quad bundle : 0.5 M, (3.8)

This fact might be taken into account for pendulum
design.

Roughly speaking ‘M’ is proportional to the square of
the span length, other terms are rather constant ( E ,
Young’s modulus about 6 1010 N/m2 g=9.81 m/s? ;
Pc » specific mass, about 3000 kg/m3 , O the every
day stress =T/A , about 55 N/mm? ). The functions
fi.(M) are plotted on fig. 2 for k=1 and 3.
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Fig.2 : Giving the ratio betwen the symetric mode frequency (kodd) and the basic frequency.
Valuable both for vertical and torsional motion (see formula 3.6).
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For practical value of ‘M’ (M<10) , fi(M) is about 1
for k>4. This parameter has already been discussed by
some authors [11,12,13]

The functions f (M) are such that fi(0) = k and
increase with M in such a way that for some values of
M (>3) we have f{(M) > 2 and the lowest symmetric
frequency is higher than the first antisymmetric one(2
loops). Let’s notice that the shape of this mode may be
called a pseudo one-loop due to the fact that its shape
may not be properly approximate by a pure sine wave
as it may be accepted for the higher ones.( See Fig. 3 ).
This fact has already been pointed out by other authors
[12]

¢) Symmetric modes for equal span
section

Let’s consider the special case of equally span section.
In this case the matrix has the form of a matrix of
submatrices with equal diagonal submatrices and equal
off-diagonal submatrices. According to this it may be
shown that eigen pulsations would be those of a span
of the section, isolated from the others, and supposed
to be dead-ended one time with an anchoring stiffness

(Ng x K) and another time with zero anchoring
stiffnesses .

For zero stiffness the eigen pulsations are given by :

9

2 2
0 =k Q k odd (3.9)

and the corresponding mode shapes for the whole
section :
. kmz
Ay, = Agsin ¥ T A I,N, such that Z‘AS =0
S

S

(3.10)

Expression (3.9) implies that no first order tension
variations occurs. It must be pointed out that this shape
and those eigen pulsations are not met in a single span
as long as the anchoring stiffness is different from
zero. Let’s notice that anti-symmetric mode could be
considered as included in the last one , the right
condition (3.10) being omitted.

These modes are the so called “up and down
galloping” the most frequently observed.

Fig.3 : Shape of the pseudo-one loop mode for different M values.
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For the ﬁiK stiffness the corresponding mode d) Symmetric modes in the genera] case
obtained for the dead-ended single span is simply
repeated in phase all along the section (in phase  For non equal span section eigenvalue of the complete

mode). system (2.10) have to be computed for each case.
4. ORDER OF MAGNITUDE
Let’s consider three kinds of cable whose characteristics follows :
ACSR 4702 AMS 2 x 6202 ACSR 4 x 5502
(drake)
span length 488 360 225
(m)
tension 40 2x35 4x29.25
(kN)
stress 85 56 53
(N/mmz)
mass 1.63 2x1.7 4x19
(kg/m)
catenary parameter 2500. 2100. 1570.
(T/mg) (m)
volumic mass 3460 2740 3470
(kg/m3 )
Young modulus 7.5 1010 5.9. 1010 7.5 1010
(N/mz)
subconductor
diameter (mm) 28.2 B2D 30.5
spacing (m) - 0.45 0.457
bundle radius 0.225 0.323
(m)
orientation - horizontal any
yoke plate(s)
dimension(h) = 0.1 0.2
(m)
7 (N m?) 170. 2 x 460 4x292
Moment of inertia
(kg x m) 0.16 103 0.17 0.80
calculated sag :
Y1o (m) 11.9 g 4
sag/span 2.4% 2.1% 1.8%
Basic pulsations
Q, (rad/s) 2 x 0.16 2rx 0.20 2n x 0.28
Q(rad/s) 2r x 1.07 2rx 022 2r x 0.29

Rev. AIM - Liége n° 1/1991




53 A.LM.

deadended span :

bundle stiffness (torque at mid-span)

(N m/rad) -

frequencies

a) Ky = Ky = 0 (hypothetic case)

M,=0 My=0
v B
1 loop 0.16 1.07
2 loops 0.32 2.14
3 loops 0.48 3.21
4 loops 0.64 4.28

b) K=250000. N/m and yoke plate of dimension h
M,=22 My=0

105.(h=co)
70. (h=0.1)

50. (h=0)
My=0 M,=0
\ 3
020 022
040  0.44
0.60  0.66
080  0.88

M,=1.4 My=0.51

410. (h=o)
290. (h=0.2)
240. (h=0)

My=0 M,y=0

\ B
028 029
055 058
083  0.87
10 115

M, = 0.60 My=0.25

stiffness (N/m) K,=610%
Kyg=0.

% O
pseudo-1 loop 0.28 1.07
2 loops 0.32 2.14
pseudo-3 loops 0.49 3.21
4 loops 0.48 4.28
5 loops 0.80 2.85

¢)K= and h=e

Ky=1110%
Kg=510%

v O
0.31 0.27
0.40 0.45
0.60 0.67
0.80 0.89
1.0 1.12

K,= 19 10%
Kg=8.5 104
\ )
035 032
055 058
083  0.87
Al LIS
138 144

M, =2.5 My=2.0

M, =2.38 M, =1.08

K,=7310%
4
Kg=36 10

M,=2.78 My =0
stiffness (N/m) Ky=7 104
Ky=0.

v B
pseudo-1 loop 0.31 1.07
2 loops 0.32 2.14
pseudo-3 loops 0.49 3:21
4 loops 0.64 4.28
5 loops 0.80 535

v
0.50
0.55
0.84
1.10
1.38

9
0.41
0.58
0.87
1.15
1.44

four-spans section frequencies (equal spans) :

bundle stiffness (torque at mid-span of the first span)
(N m/rad) -
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K= 20 104
Kg=20 10%

v o
0.37 0.38
0.40 0.45
0.61 0.68
0.80 0.89
1.0 112
60. (h=c0)

57. (h=0.1)
50. (h=0)

270. (h=co)
260. (h=0.2)
240. (h=0)



54 A.LM.

frequencies i

K:%SOOOO. N/m and yoke plate of dimension h
remark : “up and down” mode corresponds to any shape of he whole section satisfying the condition : see
fig. as an example of 1-loop(up and down) mode

span span

1

2

span span

3

4

gl

L AL

spar\ span span fspan
1 2 3 4

Shape shape
1 2 '
Shape
3
spary span span span
Y 2 2 4
v (i v B \ 1)
I loop 0.16 1.07 0.20 0.22 0.28 0.29
(up and down)
pseudo-1 loop 0.3 1.07 035 0.33 042 036
(in phase)
2 loops 032 2.14 040 044 0.56 0.58
3 loops 048 3.21 0.60 0.67 0.83 0.87
(up and down)
pseudo-3 loops 049 321 0.61 0.68 0.84  0.87
(in phase)
4 loops 048  4.28 0.80  0.88 1.12 1.16
5 loops 0.80 535 1.0 1.12 1.38 1.44
(any type)

5. EXPERIMENTAL
COMPARISONS

5.1 Bundle stiffness

For a single span configuration we will refer to Nigol

and Havard [5] experimental results.

As we pointed out before it must be expected that
application of Nigol et al formula will give stiffness
values lower than experimental one, especially for
“M” values greater than 1. In this last eventuality there
is a major influence of tension variations between
subconductors, that means a major influence of
subconductor fixation on the anchoring insulator.

Comparison with our theoretical formula is made for a

yoke plate dimension corresponding to the value of
“h” (see appendix 3) equal to 0.2 meter. Moreover we

Rev. AIM - Liége n® 1/1991
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have indicated the stiffness value for h=ce, which , for
a twin, would correspond to subconductors connected
to two separate anchoring insulator string. Let’s notice
that Nigol’s theoretical values correponds to a value of
“h” equal to zero.

bundle 2x470 ACSR (T =2 x 164 Nm? ) - torque applied at mid-span

spacing tension span length
(m) (N) (m)

0.305 2x35600 244

0.457 2x40000 488

0.610 2x35600 244

bundle 4x550 ACSR (T = 4 x 292 Nm?2 )- torque applied at mid-span

spacing tension span length
(m) (N) (m)
0.457 4x29250 225

Tests on a four spans section of Belgium experimental
line [4]

The subconductors are fixed to the anchoring towers
by two insulator chains, in such a way “h” can be
consider as infinite.

Special spacers were used (5 per span) whose mass
were about 7.5 kg each. The center of gravity of those
spacers were situated below the subconductors plane
(of about 0.13m). These spacers act like pendulums
and thus add a significant contribution to bundle
stiffness. This has been taken into account in the
computation of stiffness and later on in the
computation of frequencies.

twin 2x620 AMS (T = 2x460 Nm? ) horizontal

spacing tension spans  h=0 =co experience
(m) (N) length
0.450 2x35200 361 12 1.33 1.34

361

397 torque applied at the middle
429 of the first span (about S0Nm)

Lets notice that the same structure without pendulum
effect of the spacers would give a stiffness of 1 Nm/
deg (for h=ee) in the same conditions of testing. Thus
a reduction of about 30% of the bundle stiffness !!
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[3] [5]

h=0 | h=0.2 | h=ee | Exper. | (test N°)
Stiffness in Nm/deg

0.57 0.76 0.89 0.76 9)

0.64 1.18 1.49 1.30 (31)

2.0 2.3 3.26 2.1 (35)

[5] [5]

h=0 | h=0.2 | h=ec | Exper. | (test N°)
Stiffness in Nm/deg

40 | 506 | 714 | 5.08 (46)

5.2 Bundle frequencies (Hz)

The same four-span section of the belgium
experimental line has been tested. We first propose the
results of computations :

mode torsional vertical
1, v
1. one loop 0.24 0.17
2. one loop 0.26 0.19
3. one loop 0.27 0.20
4. pseudo-one loop 0.40 0.36
5. two loops 0.40 0.33
6. two loops 0.43 0.36
7. two loops 0.47 0.39
8. two loops 0.47 0.39
9. three loops 0.58 0.50
10.three loops 0.63 0.54
11.three loops 0.68 0.59
12.pseudo three loops  0.69 0.59

Experimental measurements :

The measurement of the frequencies has been made as
explained in [4].
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The following frequencies has been found :

for vertical motion : 0.40 (test serie 30, subtest 31)
and 0.19 (all other tests) Hz (one loop)

for torsional tests : 0.22 (test N°60) and 0.36 (test
N°150) Hz (one loop)

It is important to notice that for vertical tests,
recording of the mechanical tension shows a very clear
one frequency oscillation of 0.37 Hz for all tests

Those frequencies must be included in our 4 first
modal proposition (one loop) and it is the case with a
very good correlation.

6. CONCLUSIONS

A more general theory for overhead lines torsional
stiffnesses has been established. This theory takes into
account the tension variations in the bundle induced by
its torsion. We must point out , in spite of its weakness
, the tension variation between subconductors may
increase the bundle stiffness to more than 50%. The
new resulting mathematical terms leads to torsional
eigenvalues equations structurally similar to the
vertical ones. The difference between torsional and
vertical frequencies comes in a minor way from
intrinsic stiffness of the subconductors and essentially
from bundle geommetry and equivalent stiffnesses of
anchoring at both dead-end towers. For vertical motion
the stiffness of the dead-end towers is to be
considered. For the torsional motion the “equivalent
stiffness™ decribes the behaviour of anchoring device
(yoke plates) which moves trying to balance the
tension variations between subconductors. The
importance of these two stiffnesses decrease as the
number of spans increases in the section. With the
introduction of tension variation a coupling between
spans appears in the section.

Although not explained in the paper we have introduce
pendulum effects (static and dynamic) in the equations
in order to study their detuning effect. A proper choice
of pendulums equipment may be delicate. Our theory
shows that ,for a given same mode, torsional
frequency may be significantly smaller than vertical
one, especially for three and quad bundle, and not

systematically greater as it is commonly admitted.
Pendulums tend to increase torsional frequencies so it
is worthwhile to be sure that a tuning effect is not
obtained instead of a detuning one.

A last refinement has been introduce to take into
account the motion of the suspension insulators for
vertical motion. This makes appear small tension
variations between spans and doesn’t affect
significantly the eigenfrequencies.

Let’s recall that our theory has been established for
small displacements around equilibrium position, the
non-linear terms appearing in tension expression have
been dropped. This is perfectly acceptable for
frequencies evaluation. To some extend this would be
unvaluable for studying the free response of a section
when the amplitude is not strictly negligeable
compared with the sag (about 5%). Addition of non
linear terms show that due to a parametric excitation
unexisting modes in initial conditions may arise whose
amplitudes are comparable to the initially excited
modes.

This suggest that a proper modelization of galloping
must consider the phenomenon as a whole and that
physical simplifications have to be carefully
introduced step by step.

For instance, up to now we supposed a very short
longitudinal propagation time compared with
galloping period allowing us to suppose that tension is
spatially constant all along the section. When
observing some oscillogram of tension recorded
during galloping , a significant and sometimes
dominant “high frequency” ( about 1 to 2 Hz)
component appears. Curiously this frequency is very
close to the first longitudinal eigen frequency.
Reasonably it could be suspected that an unfortunate
tuning exists between this last frequency and a high
harmonic of vertical motion. This phenomenon has
been reproduced by a general simulation program
based on finite elements method. This phenomenon
would have to be investigated because when occuring
it could be very dangerous for the anchoring towers
whose first frequency is around 163 Hz.
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Torsional stiffness for bundle

Appendix 1

conductors

if for instance :

Fig.A.1 bundle torsion situation

xij(z) , yij(z) coordinates of subconductor i in the

bundlc (fig A.1)

T; the tension in the subconductor 1

C the centre of the bundle

r the radius of the bundle

O; the angular position of subconductor i in static
position

the vectorial expression for the tension is :

dx;
9z
Iy; . X d
Tiet:Ti 7I with i<<1 X]<<1
dz oz
1
(1.1)

Discarding temporarily the torque due to intrinsic
stiffness, the torque with regard to the centre of the
bundle is given by :

Ci=1j ATj e (1.2)
where the vector r is given by (see fig A.1)

rcos (0, + AD)
r; =| rsin(c;+ A9) (1.3)

0

We are only interested by the z component of the
torque , which can be written:
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oK 9
C,;i=T;r| -—sin (0, +A%) + ——cos (0, +AD)

0z 7.
(1.4)
with :
X =rcos(0; + AV)  y; =y +rsin(0; + Av) (1.5)
X
i TS rsin (0; + AD) i
7 oz
Iy i
i 9 +rcos (0; + AD) . (1.6)
dz dz dz
Substitution into (1.34) yields to :
dy; o JdAD
Vi W 4 rcos (0, + AD) 2
dz 0z 0z
JdAY 0o
=T;r| r ! +—ycos(05+Aﬁ) (1.7)
oz 0z
Let’s
T;= 204 AT, (1.8)
n

So we have for the total torque :

C,=1"(Tp+ ZAT)BM

o ¥
z

Ty, cos(G+AD) + Y, AT, cos (G+ Aﬁ)]‘
(1.9)

Neglecting ZATi compared with T(y and considering
only symmetric bundle (o; = 6;_1 + /n) equation (1.9)
may be written :

C,=1"T, A g Y AT, cos (o AD)
d

7 0z
(1.10)

whose first derivative may be written , after dropping
sine term which is either nul or negligible :

2 2
oC, J AD AT.
2= Ty =% —z Z-—r- *cos ©, (1.1D)
dz dz. 0z
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We have still to compute the AT; values according to
the elastic properties of the section (L/EA) , and the
flexibility matrix ( IF ) associated to the device by
which subconductors are fixed to the dead-end towers
of the section. We are mainly concerned with dead-end
towers fixations due to the fact that we admit free
horizontal motions of subconductors at their fixations
on suspension towers.

AT, Al FiaFi . Fia| [AT,
ATy | EA[[AL] , FyiFap o Fyy || AT,
B AL AT
AT, Al By iF o oo By AT
i (1.12)
or with matricial notations :
AT = [Al-2F AT ] (1.13)

as Ay; <<y we have by application of rectification
formula :

L
2 2
oly + Ay
Al zé Ay 2] —(ay) dz =
0z 0z
0
£
L a 2
AV .
a—y y]dz=— aiyAy[dl
Jz oz N
0 G
(1.14)
with :
Ayj =r (sin (0] + Av) - sin V;) (1.15)

For torsional motions around equilibrium position or if
vertical motion is relatively small coupling between
vertical and torsional motion may be neglected and we
may replace (1.14) and (1.15) by :

2
a L
M=-220 [ ayida=

i 2

0z”

2

dyy
oz>

L
-|r f Ad dz Cos O,
0

(1.16)

Let’s recall :

2
9o _mg (1.17)
dz2 Ty
By (1.16) we see that :
az
L
Al=-{r 22 Apdaz]s
3z 7o
. :
with § " =|cos 6, ,cos Gy 5:::,C08 T, (1.18)
and we may write :
2
AT, dyyg ("
Y ——'coso;=-K,——" | Addz =AH
I 2 2
gz ¥
(1.19)
L 1
Ky =+ st %/i U +2]F] S where U = diag(1,...)

(1.20)

Reintroducing the torque due to total intrinsic stiffness
(T = nT;), and according to (1.19) equation (1.11)
becomes :

2
aC Jd A%
} -T— 4+
aZ azz
i)
2 g1
A a L
e To_a.._zﬁ_ g Lt f AD dz
0z dz~ | 70

Appendix 2 Flexibility matrix

Case 1 twin bundle

For the yoke plate shown on fig. A.2 we have :
Fi,1=Fp=-Fip=-F 1 =d% 4T =q

For twin bundle of any orientation : G{= © and 09 =
C+T

Rev. AIM - Liége n° 1/1991



39 A.LM.

Expression (1.20, appendix 1) is easy to compute. The
vector S is an eigen vector of [ associated to the
eigenvalues 2q. It is allways an eigen vector of the
matrix (1.20, appendix 1) associated to the eigenvalue
“4q+ nlL/EA” .We have so for Ky :

-1
2
d”  nlL
K1<)=]S iz(hT * Eﬁ)

b _ 1
Ko 00320

a L

and m -+ EA

(A2.1)

For a vertical bundle ¢ = 7t/2 and K=0.
For a horizontal bundle ¢ =0 and
1/Kg=d2/2hT + L/EA

[
P //%ﬁ}\\\\
@*:?Hll :

Fig. A.2 twin bundle yoke arrangement, with
definition of h

Fig. A.3 Two practical arrangement on twin bundle geommetry
The upper one can be considered with a very large h (h=ce in equation A2.1)
The lower one can be considered with h =0.12 m and d=0.4 m.
Means that those two yoke plates arrangement will have very sensible different impact
on torsional frequencies, especially for horizontal twin configuration.
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Case 2 quad bundle

For the yoke plate shown on fig. A.4, detailed in fig.
A.5 we have :
Fj;=3d% 4hT =g Fjj=-d%4hT

For such a matrix every vector whose the sum of the
terms is equal to zero is an eigen vector of F
associated to the eigenvalue 4¢/3 . This is the case for
a symmetric bundle whatever its orientation is. In the
same way as previously explained and taking into
account the fact that the square of the S norm is equal
to 0.5 x n (n>2), we obtain :

-1
2
2d”  nL
Kﬁ=|sz(hT+E)

2
1 d L
and Iiln}. =2 (m + E A )

Fig. A.5 Detailed fixation of the subconductors, with
representation of the yoke plates.

|
|

Fig. A.4 Quad bundle arrangement for tension set.
On this practical case the value of h can be considered close to 0.12 m (d=0.47 m)

Case 3 three bundle

For the yoke plate shown on fig. A.6 and detailed on
fig. A.8 we have :
Fij=+d%3hT=q Fjj=-d% 6hT

The vector S is an eigenvector of ¥ associated to the

eigenvalue 3q/2 . In the same way as previously
explained, we obtain :

|
2
d nL
Ki}: |SIZ('hTF+ E! )

1
and =2
Kl‘}

d” L
3hT T EA

Don’t forget that A is the total cross section of one
phase, T the total tension in one phase and d the
subconductor spacing .
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Fig. A.7 Details on the triple yoke plate arrangement.
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NOTATIONS

System characteristics

P volumic mass of a conductor

a

¢
I
T
m

inverse of the catenary parameter (m'ly = mg/T
(sub)conductor diameter (m)

moment of inertia of one phase p.u. length (kg x m)
intrinsic torsional stiffness of one phase ( N m2 )
mass of one phase p.u. length (kg/m)
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E Young modulus (N/m?2)

A cross section of one phase (m2)

K anchoring stiffness off both end towers in serie
(N/m)

K, equivalent stiffness for vertical motion (N/m)

K g equivalent stiffness for torsional motion (N/m)

d subconductors spacing (m)

r radius of the bundle (m)

O; angular position of subcond. i, refer to horizontal
(rad)

Ng number of spans in a line section

n number of subconductors in a bundle

L span length off the whole section (m)

L¢ span length off spans (m)

M, structural dimensionless parameter for vertical
motion

Mg structural dimensionless parameter for torsional
motion

Mathematical and physical quantities

y vertical displacement oriented positive upwards (m)
( z and time dependent)

ygx vertical magnitude of mode k (m) (yi  initial
value) ’

¥ torsional angle oriented positive sinistrorsum (rad)
( z and time dependent)

ﬁk torsional magnitude of mode k (time dependent)

€2, basic pulsation for vertical motion (rad/s)

Qﬁbasic pulsation for torsional motion (rad/s)

Oy k kth pulsation of the vertical mode (rad/s)

0y k kth pulsation of the torsional mode (rad/s)

t time

z horizontal position in the span (m)

d=mz/L auxiliar dimensionless variable

k mode number

T instantaneous mechanical tension in one phase (N)
( T, initial static value)

fo external vertical force p.u. length (N/m)

1  instantaneous length of the cable, related to y(z,t)
(m)

(1, initial value)
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