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Abstract

We present our experience building a big ob ject-oriented
software whose aim is to help designing open-air high-
voltage substations layout. We list the motivations and
objectives, briefly develop the expertise and then the
way we used the object-oriented paradigm as a support
for our system. We develop in particular the adopted
original control structure.

1 Introduction

The whole layout design of an open-air high-voltage
(from 72.5 kV to 765 kV) substation has always been
a real challenge to systems designers, so true is it that
it requires them to be acquainted with numerous fields
such as electrical and mechanical engineering.

Adding the strongly parametrizable and country-
dependant type of expert appraisement to the fact that
very few people can control the entire design strength-
ens the difficulty in dealing with it.

In connection with industrial partners, we felt the
need to build a software whose aim would be to mix
this world-spread expertise together with very up-to-
date computation codes, database systems and artificial
intelligence techniques.

This ambitious work began in September 1988 with
the collaboration of an electric devices manufacturer
and a network operating staff, namely Merlin Gérin
(France) and EDP (Portugal).

Our objectives are twofold:

* providing a reliable and adaptable expert system to
be used in the industrial world, by electric devices
manufacturers, by power supply operating staff and
by engineering offices
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¢ adding a didactic module, which we plan to be a
multimedia system, in order to fulfil educational
requirements both for our students and for contin-
uous educational training in engineering offices.

This paper is organized as follows: In next section
we briefly develop some of the aspects of the substation
design. Section 3 will outline the constraints we have
to satisfy if we want to meet our objectives. Section
4 will focuse on the state of development of the pre-
liminary version of our system which we call SAPHO
(for Systéme d’Aide & la conception de Postes Haute-
tension Ouverts). It will briefly present some of its as-
pects and particularly develop the original control struc-
ture we are building. It will also briefly introduce the
object-oriented concepts we will be using throughout
the paper. We finally give our conclusions in section 5.

2 Designing an open-air high-
voltage substation layout

We outline in this section the difficulties encountered
by system designers when dealing with power systems
layout in general and open-air high-voltage substation in
particular. We also present the main lines of this design
and insist on some of the originalities we did introduce
in the expertise.

The complexity of the whole design is of common
knowledge and this for the following reasons:

¢ system designers have to deal with numerous fields
going from electrical engineering to mechanics,
some of those fields requiring them to become ac-
quainted with very up-to-date research results

» some of the values to consider, such as security dis-
tances often differ from one country to another

e experts for the entire design are very seldom

o like any other design, the high-voltage open-air sub-
station design is not a sequential work and you may



have to re-begin a one week engineering office work
when noticing that for example the planned struc-
ture won’t support the electrodynamic stresses due
to short-circuits

The design description consists of the seven following
tasks to be fulfilled, each of them taking into account
the planification requirements:

1.
2:

fid

- Busbar type (rigid or flexible) choice.

Single-phase diagram choice among 15 possibilities

Electric devices (circuit breaker, surge arrester,
current and potential transformer, isolator, wave
trap, anchoring insulators and insulator supports)
choice

General
busbar and switch-bays (feeder, transformer, cou-
pling) disposition including overall space require-
ments (clearances, security, span length) computa-
tion

. Busbar sizing (diameter, cross-section and thick-

ness or number of sub-conductors) in order for it
to support the rated and short-circuit currents and
to lessen the corona effect. This task also includes
the sag verification, the frequencies analysis and
the aeolian vibrations study

. Computation of both static and dynamic overloads

like wind, ice, short-circuit and combinations of
them. Final acceptation of the overall design with
devices choice updating if needed and definition of
the load to be supported by the anchoring struc-
tures

. Computation of the ground network for step and

touch potentials

Lightning protection

Let us now give further details about those tasks, in-
tentionally limiting this description to the first five ones,
tasks 6 and 7 being not yet implemented.

* TASK 1: The single-phase diagram choice (when

not imposed) is based upon six questions and two
criteria (space and cost). The aim of those ques-
tions is to determine what we call the security and
flezibility levels. The security level is defined as fol-
lows: In case of busbar or line fault, you have to be
able to keep the largest number of devices busy and
so use the least number of breakers. The security
level expresses this ability. The flexibility level ex-
presses the easiness to deal with maintenance and
changes made to the electrical configuration of the
substation. One of those questions is for instance:
Do we accept loosing a switch-bay during the main-
tenance of one breaker? If the answer is 'no’ we

can then eliminate all diagrams with one, two or
three busbars, disconnectable or not, having only
one single breaker per bay and consider the remain-
ing ones like diagrams with one and a half or two
breakers per bay or like “loop” diagrams.

As an example of this expertise, here are some of
the characteristics of two diagrams whose represen-
tation is found in figures 1 and 2:

— disconnectable single busbar diagram with one
breaker : relative needed space: 85, relative
cost: 85, number of nodes: 2, in case of busbar
fault all connected switch-bays will be out of
service, in case of maintenance on one breaker
the switch-bay will be out of service, generally
used for voltage up to 245 kV

— two busbars diagram with one breaker : rel-
ative needed space: 100, relative cost: 100,
number of nodes: 2, in case of busbar fault all
connected switch-bays will be kept in service
after reconnection, in case of maintenance on
one breaker the switch-bay will be lost, gener-
ally used for voltage up to 765 kV

TASK 2: The difficulty of this task is to select the
best fit device among a huge number of them. It is
one of the longest tasks. To facilitate those choices,
we can restrict the set of devices to explore with em-
pirical rules such as: If available space is restricied,
do not consider transverse opening disconnectors
(double-rotation disconnectors fi.) or If the min-
imal temperature at the substation location can be
less than -20 degrees centigrade then the family of
disconnectors to consider is the paniograph one.

TASK 3: Expertise about this task is very hard
to synthesize, the experts studying each case sepa-
rately without general structure. First the busbar
type (either rigid or flexible) is to be chosen us-
ing rules such as: prefer flezible busbars if building
a substation in a seismic area or beware of flexible
busbars if the shori-circuit current is high. After de-
termination of the number of levels (two or three)
and insulating distances, the chosen devices are dis-
posed on switch-bays, starting from the overhead
line arrival to the busbars and respecting those se-
curity distances. The overall needed space is then
computed taking the different types of bays, the
connecting lines, etc, into account.

TASK 4: It consists of computing the minimal
busbar dimensions (external-diameter, section and
thickness if rigid busbar, section, sub-conductors
number and bundle geometry if flexible busbar) for
it to support both rated and short-circuit currents
(adiabatic heating) and corona effect. A busbar



is then selected in the catalogs using those dimen-
sions. For rigid busbars will follow a sag verifica-
tion, a frequencies analysis and an aeolian vibra-
tions analysis, each of them making use of methods
presented by the IEEE [3]. If the busbar is flexible
then a sag analysis and a non-resonance verification
will be performed using rules such as: the pendular
oscillation frequency must be sufficiently away from
half the vertical oscillation frequency of the cable.

o TASK 5: This is the most important task because
it may cause us to reconsider everything that pre-
ceedes. It mainly consists of a static and dynamic
sizing of the structure based upon the presence of
wind, ice and short-circuit current. While the static
sizing may generally easily be done using simpli-
fied methods, the dynamic behaviour requires much
more sophisticated techniques such as the ones rec-
ommended by the CIGRE ([1],[2]). For those meth-
ods, only the most constraining cases will be stud-
ied. For instance, in case of short-circuit on a
flexible busbar, the following case will be consid-
ered: two-phase isolated fault. Many other values
will also be computed such as the pitching stresses
for bundle configuration, especially the spacer com-
pression.

3 What are the constraints we
have to face if willing to com-
puterize the design?

To satisfy the already presented objectives of our sys-
tem, we have to consider the following constraints:

1. As the target user audience is mainly composed
of engineers and students, supposed not to be ac-
quainted with computer science, the first constraint
is obviously a convivial man-machine inter-
face.

2. If the sequence of tasks to be performed is com-
monly accepted, the way to achieve those tasks ob-
jectives often differ from one country or society to
another. Furthermore, the expert appraisement is
quite parametrizable, thus providing the following
constraint: providing an easy way to access
and modify both expertise and parameters.

3. The last constraint is to provide the user explana-
tions about what is going on.

Our main will is to come to a system where every-
thing will be available to the user in a very simple and
convivial way. This means that all formulas, rules,

parameters and pieces of expertise should be ac-
cessed and possibly modified by the user (entitled to
it) willing to fashion the system his way. As will be
presented later, this constraint motivates the adoption
of an original control structure.

4 Building the preliminary ver-
sion

We will in this section present the preliminary version
of the system. For reasons explained later we chose to
build our system using an object-oriented architecture
and of course an object-oriented language. You will for
this reason first find a very brief approach of what is the
object-oriented paradigm and what are its advantages.

4.1 The object-oriented paradigm

Object-oriented programming is a programming styie
based on the encapsulation of both data (the infor-
mation to handle) and procedure (the way to handle
this information) concepts. It is in opposition with the
“classical” programming style which maintains a clear
gap between data and procedures. The task of program
writing thus consists of the definition of a world of in-
dependant objects, communicating with one another
through messages, each object being made of a certain
quantity of information and procedures to process that
information. For instance if we want to compute the
permissible current rating of a given busbar:

e in “classical” programming, we will write a proce-
dure computing this value for any busbar, proce-
dure that will receive the given busbar characteris-
tics as arguments

e in object-oriented programming, we will create a
busbar object with the characteristics of the given
one and ask that object to compute its permissible
current rating and to return the result

Objects are the unique type of entities that can be
handled by an object-oriented system. It means that
everything, an integer as well as a modeled disconnec-
tor, has to be represented as an object. An object is
made up of three parts:

e it has a private memory consisting of a collection
of attributes whose value defines its state. The
value of an attribute is in turn an object. We can
distinguish between two types of objects: complex
objects whose attributes are means of referencing
other objects and primitive objects that do not
have attributes but only a value which is the object
itself (an integer for instance)



s it has a collection of methods that capture its be-

haviour. The methods of an object are the only
procedures able to manipulate the object private
memory and to return its state

¢ objects communicate with one another by sending
messages requiring the receiver object to execute
one of its own methods. An object can thus be
considered as an independant entity, except for a
collection of messages, coming from other objects
or itself, it is supposed able to interprete. This col-
lection of messages is called the communication
interface. Notice that the structure of a message
is the following:

[receiver method arguments]

Each object is defined as being part of a class. A
class describes the structure of a collection of objects
having the same attributes and methods, those objects,
called instances, only differing by the value associated
with their attributes. When a message is sent to an
instance, the method implementing the response to it is
found in the class definition.

Each created class is considered to be subclass of an
already existing one called its superclass and inherits
the methods and attributes of its superclasses. There
is a special class, superclass of all others, serving as
root for this hierarchical structure. A new class can
bring new attributes and methods adding them to the
inherited ones.

To be complete we have to tell that there exists a
pseudo-variable often called self ou oself which allows
an object to send messages to itself. This variable may
then be used to implement recursive functions.

The advantages of such a way of programming are
well identified:

¢ the message passing mechanism is such that the
object can be seen as a black box responding to a
finite number of activations. A program can thus be
constructed as a collection of modules interacting
only through the communication interface, without
any idea of the “internal implementation” of one
another

¢ object-orientedness insures integrity, that is when
two different classes each own a different method
with the same name, the correct one will always be
activated by the correct receiver. It allows the pro-
grammer to get rid of the data types management.
For example, the classes integer, fraction or float
have their own version of the “+” method and the
system will determine which of these versions to ac-
tivate when meeting a form “{a + b]”, depending
on the type of the receiver a

e the inheritance mechanism allows the sharing of
knowledge between related classes of objects with-
out having to recopy it

e an object identity mechanism allows to distin-
guish each object from the others thus permitting
numerous objects to refer to the same one via that
identity. This increases the modeling power, for it
is the most rational way of expressing for instance
that two persons have the same child

o the encapsulation of the data structure and meth-
ods applying to it allows a quicker program up-
dating whenever it is decided to modify this data
structure

To end this quite abstract section, we illustrate that
theory with an example. The following piece of code
gives the definition of both the root class for all busbars
and one of its subclasses, the one for rigid busbars. We
use the SPOKE syntax which is self explanatory.

The busbar class contains (among a lot of others)
three slots (attributes) and one function (method). The
slots are for the chosen material (Al, Cu, etc ), assum-
ing that a class for all materials already has been de-
fined, for the cross-section and for the external diam-
eter. The Young-modulus? function gives the busbar
Young’s modulus which is in fact the chosen material
Young’s modulus.

The rigid-busbar class is a specialization of busbars
and thus is defined as being a subclass of the first one.
It inherits all characteristics of busbars and defines new
ones which are attributes only suited for rigid busbars
such as the wall thickness and functions providing use-
ful values needing a complex computation such as the
permissible current rating.

Clearly, a second subclass for flexible busbars is to
be defined, differing from the first one by the lack of
wall thickness and by the introduction of the number
of sub-conductors and sub-conductor ray attributes and
the ultimate-sirength? method.

[busbar isa class superset electric-device
with
(slot chosen-material range material)
(slot cross-section range number)
(slot external-diameter range number)
(slot mass-pu-length range number)

(function Young-modulus?
form
[[oself chosen-material] Young])]

[rigid-busbar isa class superset busbar
with
(slot wall-thickness range number)



(slot max-length-all-in-one-block
range number)

(function permissible-current-rating?
i)

(function inertia-moment? ...)

(function flexion-modulus? ...)]

We can now create an instance of the rigid-busbar
class by simply typing the following lines, assuming the
used units are m, m? and kg/m:

[a-bus isa rigid-busbar
chosen-material AlMgSi-f22
cross-section 0.000955
external-diameter 0.08
mass-pu-length 2.58
wall-thickness 0.004
max-length-all-in-one-block 19]

4.2 SAPHO, a preliminary version for
our system

We started working on SAPHO in January 1989. What
first appeared after a good part of the expertise had
been collected was that there was no matter to build
an expert system in the computer science meaning of
the word. In fact we were facing a very important al-
gorithm making use of lots of techniques, with a lot of
unavoidable tasks to perform, the way to achieve them
only being subject to changes. Furthermore, this algo-
rithm was quite sequential although there may occur a
backtrack to a previous stage of the design from time to
time. SAPHO was nevertheless called “expert system”
because it was based on expertise and even if it didn’t
make use of decision trees or inferences, its aim was still
to try behaving like an expert in the field.

We based ourselves on the collected expertise, the
identified six main tasks to be performed and the in-
teractions between them. The goals of this work were
to show the feasibility of such a system, to solve major
problems such as interfacing our system with big For-
tran codes and try to satisfy the presented constraints.
To those ends, it was decided that the six steps of the
design would be partially implemented to form a mini-
mal version of the system taking the major part of the
problems into account.

We use SPOKE as software support for developing
SAPHO. The reasons for this choice are:

 The object-oriented paradigm is particularly well-
suited for an easy modelization of physical world
components, like a substation or a potential trans-
former, because it allows the programmer to model
the real complexity of such entities without hav-
ing to simplify them. Another reason for which the

object-orientation was chosen is that the design of
a man-machine interface is considerably simplified
with its use.

e SPOKE is build upon Sun Common Lisp, thus of-
fering an interface to Fortran provided by this lan-

guage.

The hardware support for our work is a SUN 3/60
workstation with 12 Mbytes RAM.

SAPHO is composed of four modules which we will
next briefly develop.

4.2.1 The knowledge base

This module is to contain knowledge about the physical
entities involved in the design procedure. All informa-
tions about entities such as busbars or string insulators
are there to be found. In fact, this knowledge base con-
sists of numerous SPOKE class definitions, each mod-
elling a real-world component, as presented in the ex-
ample above. The attributes of the entities involved in
the design are filled as the system proceeded.

4.2.2 Man-machine interface

The design of a window-based interface was a very inter-
esting part of our work and grandly simplified both by
the object-oriented concepts and by the window toolkit
of SPOKE. As this is not the matter of this paper, we
will not give details about this design. You will anyway
find a screen hardcopy at the end of the paper to give
you an idea of the interface.

4.2.3 Fortran codes interface

As said above, the design requires numerous complex
computation methods, especially methods using finite
elements. We decided to integrate into our system a
software called SAMCEF-CABLE developped at the
University of Liége. By integration, we mean that we
avoided the user the troubles of using such a complex
code by automatically generating the input data files
(with automatic predetermination of most critical short-
circuit conditions), managing the result files and by al-
lowing visualization of those results. The integration
was obviously made easier by a very good knowledge of
SAMCEF-CABLE.

SAMCEF-CABLE is used in our system to perform
the following computations:

¢ modal analysis of flexible and rigid structures, tak-
ing into account the insulator supports or string
insulators

e transient response of electrodynamic stresses com-
putation in case of short-circuit



¢ computation of the stresses induced by every com-
bination of loads such as wind, ice thickness and
short-circuit

A lot of small Fortran functions were also added to
the system, their integration being facilitated by the
Sun Common Lisp Fortran interface.

4.3 Electric devices database

This module is to permit storage of electric devices cat-
alogs in order for the system to select among them the
best fit device, that is the one satisfying a number of
criteria.

After having eliminated the commercial database
softwares, the relational ones because the objects to
store were everything but flat tuples and the object-
oriented ones because none of the existing few ones was
compatible with either LISP or SPOKE, we decided to
proceed the following way. For each device type, a file
was created, containing the many instances of the class
corresponding to that device. That is we managed files
of SPOKE objects. Selections were made by loading the
concerned file into the SPOKE environment, selecting
the best device and then killing all non-selected ob jects.
Although this is a naive approach it provides good re-
sults and seems to be sufficient for our preliminary ver-
sion whose aim is among others to show the feasibility.

The selection operations proceed the following way:
Let us take the disconnector choice as an example. First
of all, one or more disconnector families are selected us-
ing both the highest voltage as an immutable criterion
and another criterion, either the available space or the
cost, depending on rules such as the cost is the default
additional criterion or if the available space level for the
substation is limited then the needed space should be used
as the additional criterion. Rules such as if the mini-
mum temperature is less than -20C then the family must
be semi-pantograph are also taken into account.

The selection is then performed on the selected fami-
lies using, in the disconnector case, the highest-voltage,
the basic insulation level, the rated current and the
short-circuit current as criteria.

4.4 A fully adaptable control structure

The identified constraints egged us to build a fully
adaptable control structure which we will introduce in
this section.

We are confronted with the problem of implementing
huge conception tasks, each of them requiring different
techniques and expertises. As said above, the corre-
sponding algorithm will be a task chaining one with
possible backtracks to previous stages.

What we first thought was to implement each huge
task separately using classes including all methods

needed to achieve a task. The sequencing of opera-
tions inside a task being scheduled by a leader method.
This unelegant type of implementation surely would
have worked, even if making roar object-oriented pro-
gramming purists, and was motivated by the following
remark: Object-oriented programming authors all tell
you to model the behaviour of each real world entity in
order to be as close as possible to reality, but what if
you have to deal with numerous methods such as select
among breakers the one satisfying some criteria? Do
you attach this method to the breakers class knowing
that it won’t ever model one of its behaviours or do
you create a fask object whose only behaviour will be to
perform the selection?

We then adopted an architecture, based on the fol-
lowing ideas:

e why not consider task objects corresponding to el-
ementary operations instead of a large number of
complex operations? We would then have to con-
sider independant entities which we will call actors,
each of them having the responsibility of an elemen-
tary task such as initialization, computation, help
providing or results displaying

e one such actor will have at least two methods, one
for its operation and one to activate the next actor
once its operation over. It will also own a direct
reference to the next actor it has to activate

o there will be a class for each type of actor, and
each particular actor of that type will be one of its
instances. For example, we can have a class for all
actors whose operation is to let the user enter a
value for a system variable ! and instances of that
class for each variable to be given a value

o the control structure will then be made of a static
network of actors of which the leftmost one is to be
activated to start running the system

e one such approach satisfies one of our constraints
which is explanations generating. Indeed, as
each actor is devoted to a type of operation, it is
easy to generate rudimentary but sufficient expla-
nations at the activation of any actor and after the
result of its operation is obtained. To manage this
we can have a standard trace for each type of oper-
ation and adapt this trace, basing ourselves on the
context of the activated actor. For example, if we
have an actor devoted to the initialization of the
highest-voltage, the (silly in that case) trace will

Inot such an easy stuff as it seems, because, this type of actor
will have to generate 2 menu with all possible values, allow the
user to ask for help about the variable and allow him to enter
his value in a convivial way whenever he is not satisfied with the
proposed ones



take into account the variable it has to initialize,
that is the highest-voltage

To illustrate this, we can consider the simplest type
of those actors, the initialization ones. The following
pieces of code briefly describe the very simple way of
managing this kind of actors and all actors in general.
First of all, we have to define a root class init_actors for
all those actors:

[init_actors isa class superset system_actors
with
(slot the_variable_to_init
range system_variables)
(function actor_operation ...)

ved

An actor, instance of this class will have the following
main characteristics: it will be assigned a reference to
the variable he is to initialize and he owns a method
allowing it to perform its operation.

We do actually consider two sub-types of those ac-
tors: the first one, the simplest, will be for actors clearly
knowing the next actor they have to activate and the
second one for actors in which a test will be performed
on the value assigned to the variable in order to deter-
mine one of two actors to activate next. Here is the code
for the first sub-type:

[next_known_init_actors isa class
superset init_actors

with
(slot next_actor range system_actors)
(function display_trace ...)
(function display_trace_when_over ...)
(function activate_next_actor vel)
(function activate ...)]

All those characteristics are self explanatory, but let us

precise that the activaie function is the only function

through which any actor can be accessed. It is respon-

sible for the sequencing of actions inside that actor.
The second sub-type is defined by:

[next_unknown_init_actors isa class
superset init_actors
with

(slot it_is_ok range boolean)

(slot next_actor_if_ok ...)

(slot next_actor_if_not_ok ...)

(slot the_value_to_compare_to ...)

(slot superior_to range boolean)

(function display_trace ...)

(function display_trace_when_over ...)
(function activate_next_actor —
(function activate ...)]

The attribute if_is_ok is to reflect the result of the test to
perform, the the_value_to_compare_to slot is for the value
that will be compared to the entered value for the vari-
able to initialize and the slots superior_to, inferior_to,
etc, are to tell what kind of comparison operator will
be applied. One may wonder why the other functions
for that class look similar to the ones of the above olass:
in fact their names are the same (this is a feature of
object-oriented languages) but the content differs (for
instance, the trace to generate clearly differs from one
case to another).

This structure cannot convivially satisfy the remain-
ing constraint that is access and modification of ex-
pertise since the user would have to deal with gener-
ating new actors and modifying bindings. Thus we de-
cided to consider three abstraction levels:

1. the basic level, which is made of the already in-
troduced actors network

2. the middle level, which is made of a collection of
instructions to generate actors and establish bind-
ings between them, and which generates the basic
level by simply executing those instructions

3. the electric strategy level, which allows the
user to read and possibly modify the expertise by
adding, suppressing, interchanging or modifying
high-level instructions, expressed in a very simple
formalism. This level generates the middle level by
execution of those instructions

As an illustration of this architecture you can con-
sider figure 3 where an example of the mapping between
two initialization high level instructions and the actors
(small number in that case) network is showed.

Our main will was to allow everything in our system
to be accessed by the user in both reading and writing
accesses. All system entities such as formulas will thus
be available and the user will be able to define his own
entities in order to fashion the system his way.

How will he do that? Those entities will be stored as
named objects and those names will be used to compose
the high-level instructions. The user defining his own
entities will give them a name. Suppose for instance
that we have a high-level instruction to compute the
busbar external diameter to support the rated current
using a formula entity named formula_l. If the user
whishes to use another formula, he will only have to
enter it in the system, in a way described later, to give
it a name and to replace formula_I by that name in the
instruction.

All entities and expertise (the high level instructions)
will be editable in a suited editor, allowing the user to
modify them or to compose his own ones by simply se-
lecting on menus everything he needs. If we consider



formulas, those menus will present mathematical oper-
ators and all system variables (their name). A menu for
all system entities (their name) will always be user avail-
able in order for him to access these entities or to select
their name for insertion into a high-level instruction.
The user willing to compose a new high level instruc-
tion will be provided a menu with the simple syntax of
those instructions and the menus for all system entities.
The system entities are:

¢ formulas: a formula will be written in a lisp-like
formalism for the simplest of them. For complex
computations, FORTRAN codes will be used as
formulas, assuming the user is familiar to this lan-
guage

¢ parameters: a collection of parameters will be
available for value modification, that is the user will
be able to give a value corresponding to his country
to parameters such as the percentage of the span to
consider in order to proceed to the busbar sag anal-
ysis. He will also be allowed to add new parameters
which he will insert in his formulas

¢ system variables: in order to be used by high-
level instructions and formulas, the system vari-
ables such as the highest voltage will be available
by menu. Each variable is assigned a collection
or interval of possible values and the user will be
abilited to modify them

* selection criteria: the attributes of all classes of
the knowledge base will always be available to com-
pose the selection high-level instructions

e rules: a collection of rules will also be user avail-
able and definable

¢ checkings: a checking is a collection of tests to val-
idate the value assigned to a system variable with
regard to already initialized ones. They are to en-
sure a consistency of the system. For instance, a
checking based on the highest voltage can be done
when initializing the rated current

It is now time to introduce the high level instruc-
tions. There will only be three types of them because
our experience with the expertise told us it would be
sufficient 2. Each of those instructions will correspond
to at least one actor, selection operations for instance
requiring many of them. We will only give one example
of the most complex instructions for each type:

1. initializations : For initialization of the planified
highest voltage and basic insulation level, we use
the following instruction:

2for all tasks but the disposition one that will need the integra-
tion of a CAD tool in the system and for which other instructions
will be introduced

[init_and_test highest_voltage using (< 300)
(if_ok [init lightning_impulse])
(if_not_ok [init switching_impulse])]

That particular instruction means that once a value
has been given to the highest voltage, a test on
this value is made in order to determine the next
instruction to execute. That is, if the highest volt-
age is less than 300 kV then proceed to the light-
ning impulse initialization, else give a value to the
switching impulse. As can be seen on figure 3, this
will generate a three actors sub-network. Notice
that many instructions can be inserted in the if_ok
and if_not_ok branches.

. computations :

[test_then_compute external_diameter
using (= busbar_type rigid)
(if_ok with formula_1)
(if_not_ok with formula_2)]

In this case, the formula to be applied in order to
compute the busbar external diameter depends on
the busbar type.

. selections :

[select_single disconnector

using criteria

((= disc_type chosen_disc_type 1)

(= manufacturer (siemens merlin_gerin) 1)

(>= disc_highest_voltage highest_voltage
1 25%)

(>= disc_bil bil 1)

(>= disc_rated_current rated_current 0.5)

(>= disc_sh_circuit_current

sh_circuit_current 0.5))]

Selection operations are certainly the most complex
ones and they correspond to lots of actors. This ex-
ample asks the system to select a single device for
each of the mentioned manufacturers, device that
will be of the chosen type and that will satisfy all
specified criteria. It is clear that a solution will
always have to be provided, so, if a criterion can-
not be satisfied by the stored devices, the system
will have to proceed to an approximation on that
criterion, that is, if there are devices satisfying all
criteria but the one involving bil, the selection will
return among those devices, the one whose disc_bil
attribute is the closest to the system bil. In that
rare case, the system will go on working with that
approximation if told to, telling you anyway to con-
tact a manufacturer to build a special device for



your needs. If you prefer waiting for the dimensions
of that special device, the session will be stopped
until you enter the new device in the system.

The numbers at the end of each criterion express a
relative importance among those criteria. This will
be useful to determine a single device. In effect,
suppose we have a collection of possible devices, if
we wish to select the most adequate one, we have
to sort those devices on the criteria, in order to get
an ordering of devices. If we consider the example,
it can easily be seen that the device satisfying all
equality criteria and whose attributes involved in
inequality criteria are the smallest ones to be found
in the ordering, will be selected. What if we are
to decide between two devices having the following
characteristics:

» Al: supported highest voltage 245, supported
bil 1050, supported rated current 1600 and
supported short-circuit current 40

o A2: supported highest voltage 300, supported
bil 1175, supported rated current 1200 and
supported short-circuit current 31

It must be possible to tell the system to begin sort-
ing for instance on the highest voltage, then on the
bil and so on. An hierarchy for criteria is thus to
be established for the final sorting.

Some criteria are to be considered carefully. If we
consider for example the highest voltage, it is not
acceptable to select devices supporting 765k V if the
planified highest voltage is 420kV even if obliged to
go that up because of other criteria to satisfy. That
1s the purpose of the percentage found at the end of
those criteria. In our example it tells the system not
to go beyond 25% of the planified highest voltage.

We hope that the syntax of those instructions will not
be too discouraging so that the control structure will
effectly be adaptable. The instructions are of so high
level of abstraction that we believe the entire expertise
can be expressed using few of them thus insuring an
easy reading and understanding of it.

5 Conclusions

We are currently developing a fully adaptable expert
system called SAPHO. For this system to be good, we
are confronted with a substation design combining high
levels of both security and reliability at the lowest price.
These requirements necessitate a good level of expertise
and some complex computation methods in order to be
as close as possible to reality thus insuring reliability
and money saving (no oversizing).

Those complex methods are of difficult use and often
discourage the user because of teduous manipulation.
SAPHO fully integrates those methods and the exper-
tise needed for their manipulation. It also provides a
very convivial man-machine interface and a high level
of expertise easily adaptable by a user who is not the
system conceiver.

We hope SAPHO will satisfy both students, in a di-
dactic point of view and the industrial world, by the
time saving it brings and the facts that it synthesizes
the procedure to be followed and that it helps not to
forget any detail.
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Figure 1: single busbar diagram Figure 2: two busbars diagram

High level instructions

[init_and_test highest_voltage

using (<300) (init_and_check rated_current electric
(if _ok [init bil]) using r_c_check]
(if _not_ok [init switching_impulse])] SIEALEZY level

Generatmw code for actors and bmdmﬂs between them
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level

/ \ Network of actors
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level

Figure 3: abstraction levels
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