Hirayama’s disease
Keizo Hirayama is a neurologist from Chiba University in Japan.

In 1959, Hirayama, with two colleagues, reported 12 patients with:
- predominantly unilateral **weakness** of the fingers and hand
- **atrophy** of the hand and forearm

which didn’t fit with ALS or spinal muscular atrophy

Largest series were reported in Asian countries:
- **Japan** (330 cases, Tashiro et al, 2006)
- **Taiwan** (40 cases, Huang et al, 2008)
- Singapore, India, Malaysia, Sri Lanka, Hong Kong
Cases have also been described in western countries:
- France, Germany, Holland, UK, Denmark, Poland, Australia, USA, Canada

Hirayama’s disease is also known as: monomelic amyotrophy and

Juvenile

Muscular

Atrophy of the

Distal

Upper

Extremity
The disease develops in young persons, mostly in males (89%), between 11 and 25 years, often slender sportsman (football, rugby).

For females, onset is slightly older (mean 19.3 years) than for males (mean 17.6 years).

Almost all cases are sporadic.

Familial cases are quite rare: some pairs of brothers and one family with a father and son.

HD seems to be not linked to SOD1, SMN1, SMN2, GARS and androgen receptor genes.
The onset is very insidious, without precipitant toxic history, infection or trauma.

Many patients (97%) report that weakness easily worsens in a somewhat cold environment, and improves in a warm one.

The patients often first notice their disease during the winter.

However, cold paresis is also reported in other diseases (ALS).

Cold paresis might be due to a dysfunction of sodium and potassium axonal channels.

(Sawai et al, 2011)
Atrophy and weakness of muscles is confined to the hand and forearm (C7-T1 segments)

Brachioradialis muscle is spared

= oblique amyotrophy

Ulnar territory is more affected than median one

The right side is more often affected, regardless of handedness

The amyotrophy is unilateral in most patients (72 %), asymmetrically bilateral in some (25 %) and rarely symmetric (3 %)

CLINICAL FEATURES: oblique amyotrophy and unilateral predominance
Fasciculations are rare

Moderate extension of the fingers, usually produces fine, fast, irregular and non-synchronous tremulous movements

Simultaneously, irregular, recurrent, short twitchings on contraction are observed in the dorsolateral portion of the forearm

Slight and inconstant autonomic disturbances: cyanosis, livedo reticularis, hyperhidrosis, Horner’s syndrome

CLINICAL FEATURES: fine tremulous movements, fascicular twitchings on contraction and autonomic disturbance
Usually, careful examination **does not reveal sensory impairment**

Occasional numb sensation or slight hypoesthesia in a localized area on the dorsum of the hand are reported

Stretch reflexes are within normal range or reduced in the upper limbs (sometimes with hyperreflexia in the lower limbs, babinski sign is reported in very few cases)

Absence of central motor deficit, ocular dysfunction and urinary disturbance
The disease progression is arrested within 3 years in 70% of cases and within 6 years in 90% of cases.

The disease stops progressing before age 25 years in the majority of cases.
Sensory neurography is normal

- Carpal tunnel syndrome
 - Ulnar neuropathy at the elbow (or at the wrist)
 - TOS
 - Polyneuropathy
 - Mononeuritis multiplex
 - Kennedy’s disease

- Ulnar nerve
- Median nerve
- Medial antebrachial cutaneous nerve
Ulnar territory is more affected than median territory

Ulnar/median CMAP amplitude ratio (Lyu et al 2011)

[0.6 – 1.7] : normal subjects

> 1.7 : ALS, TOS

< 0.6 : Hirayama’s disease

Cervical spondylotic amyotrophy
- Motor distal latency and **conduction velocity are normal** or slightly prolonged or mildly slow (related to the loss of fast conducting axons)

- **Absence** of conduction block and temporal dispersion

- **CIDP**
 - Multifocal motor neuropathy
 - Hereditary demyelinating neuropathy
Needle EMG shows chronic denervation in the **C7, C8, and T1 myotomes**.

The **ulnar motor fibers** are more affected than the median ones.

Subclinical involvement of C5 and C6 myotomes and of the unaffected upper limb is **common**.

EMG of the lower limbs shows a normal pattern.

ELECTROPHYSIOLOGICAL EXAMINATIONS: *electromyography*
Median and ulnar N9, N13, and N20 latency and amplitudes are usually **normal** in neutral and neck flexion \((\text{Misra et al, 2006})\)

Attenuation of both the EP potentials and the N13 spinal responses, particularly during neck flexion, are sometimes reported \((\text{Restuccia et al, 2003})\)
- MEP are normal in latency and in amplitude
- CMCT between cortex and C8-T1 is sometimes marginally prolonged
(A) There is mild antero-posterior flattening of the spinal cord at the C6 vertebral level in a neutral neck position.

(B) Full neck flexion induces forward displacement of the dural sac and remarkable flattening of the spinal cord at the C5-7 vertebral levels.

(Hirayama et Tokumaru, 2000)
Hirayama’s disease

Table V. Abnormal findings of cervical cord and dura mater on neuroradiological examinations.

<table>
<thead>
<tr>
<th></th>
<th>Myelography (185 cases)</th>
<th>CT after myelography (171 cases)</th>
<th>MRI (sagittal section) (229 cases)</th>
<th>MRI (horizontal section) (229 cases)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrophy of cervical cord</td>
<td>A 65%</td>
<td>83%</td>
<td>65%</td>
<td>75%</td>
</tr>
<tr>
<td>Flattening of cervical cord</td>
<td>D 72%</td>
<td>86%</td>
<td>76%</td>
<td>77%</td>
</tr>
<tr>
<td>Forward displacement of cervical cord</td>
<td>E 86%</td>
<td>88%</td>
<td>81%</td>
<td>81%</td>
</tr>
<tr>
<td>Forward displacement of posterior wall of dural tube</td>
<td>B 74%</td>
<td>75%</td>
<td>68%</td>
<td>69%</td>
</tr>
<tr>
<td>Expansion of posterior extradural space</td>
<td>C -</td>
<td></td>
<td>73%</td>
<td></td>
</tr>
</tbody>
</table>
There is no abnormal intrinsic cord signal

Full neuroradiological signs are observed when disease duration > 18 months *(Fu et al, 2008)*

In patients with a **disease duration more than 10 years**, dynamic changes disappear, but **atrophy** of the lower cervical cord is still present
Clinical and electrophysiological data are in favour of a proximal neuropathy as a **chronic axonal polyradiculopathy**, a **motor neuronopathy** or a **pure motor neuropathy**

- Abnormal sensory neurography:
 - **TOS**: medial antebrachial cutaneous nerve, ulnar sensory nerve, motor median nerve > motor ulnar nerve
 - (Ulnar/median CMAP amplitude ratio > 1.7)
 - Lower trunk of brachial plexus: **perineurioma** (localized hypertrophic neuropathy)
Abnormal imagery:

- **TOS**: cervical X-ray (cervical cost, C7 apophysomegaly)

- **brachial plexus benign tumor** (perineurioma): MRI

- **Syringomyelia**: MRI

- **Cervical myelopathy** associated with spondylosis or tumor: MRI
Normal sensory neurography and imagery:

- ALS: fasciculations (thoracic region, lower limbs), bulbar or pseudo-bulbar signs, amyotrophy and weakness beyond C7-T1 myotomes, central motor impairment (MEP), subacute and progressive course (> 3 years)

- Acute anterior poliomyelitis: acute course, fever

- CIDP and multifocal motor neuropathy with or without conduction block (TST, Magistris et al, 1999)

If any atypical sign: hematological and immunological assessment, PET-scan
Chronic segmental **spinal muscular atrophy** (O’Sullivan-McLeod syndrome):
- more progressive course
- two genes are identified: GARS and BSCL2

Partial **spinal anterior artery syndrome**
- subacute course
- T2 hyperintense cord signal in anterior horn (**snake eyes** in MRI transversal plane)
Chronic progressive **degenerative disease** of cervical motoneurons
(Robberecht et al, 1997; Schröder et al, 1999), but:
- the disease progression is arrested within 3-6 years in 90% of cases

Flexion myelopathy (Hirayama and co-authors)
- the *primum movens*: might be a disproportionate growth between the vertebral column and the contents of the spinal cord
- on neck flexion, the tight dural sac cannot compensate for the increased length of the posterior wall, which causes anterior shifting of the posterior dural wall and consequent compression of the cord =>
- an increased intramedullary pressure, resulting in microcirculatory disturbance in the **anterior horn** (the most vulnerable structure to **ischemia**)
Based on a flexion myelopathy mechanism: **cervical collar therapy**
- improvement is expected in patients who have shorter of illness (< 2.5 years) and have mild cord atrophy in a neutral neck position
- early diagnosis and therapeutic intervention may minimize the functional disability of young patients

Surgery : cervical decompression and fusion, vertebrectomy, duraplasty
- cervical cord compression in a neutral neck position
- abnormal intrinsic cord signal
- impairment beyond anterior horns
Hirayama’s disease occurs almost exclusively in males of 15-25 years, often slender sportsman, and is not usually hereditary.

Insidious onset of oblique amyotrophy, unilateral in many cases or asymmetric, often associated with cold paresis.

Muscular tremor, in extensors of the wrist and the fingers, on moderate extension.

In general, absence of sensory disturbance, ocular dysfunction or urinary disturbance.

Progressive course and arrest within 3 to 6 years after onset.
- **Neurogenic changes** in EMG, distributed mainly to **C7, C8 and T1** myotomes, **ulnar superior median** territories

- Localized and **asymmetrical atrophy of the spinal cord** at the lower cervical levels with **forward displacement of the posterior wall** of the dural canal in neck flexion
Domo Arigato Gozaimas